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Abstract 13 
Several studies on age-related cognitive decline in dogs involve laboratory dogs 14 

and prolonged training. We developed two spatial tasks that required a single one-15 

hour session. We tested 107 medium-large sized dogs: “young” (N=41, aged 2.5–16 

6.5 years) and “old” (N=66, aged 8–14.5 years). Our results indicated that, in a 17 

discrimination learning task and in a reversal learning task, young dogs learned 18 

significantly faster than the old dogs, indicating that these two tasks could 19 

successfully be used to investigate differences in spatial learning between young 20 

and old dogs. We also provide two novel findings. First, in the reversal learning, 21 

the dogs trained based on the location of stimuli learned faster than the dogs 22 

trained based on stimulus characteristics. Most old dogs did not learn the task 23 

within our cut-off of 50 trials. Training based on an object’s location is therefore 24 

more appropriate for reversal learning tasks. Second, the contrast between the 25 

response to the positive and negative stimuli was narrower in old dogs, compared 26 

to young dogs, during the reversal learning task, as well as the cognitive bias test. 27 

This measure favours comparability between tasks and between studies. 28 

Following the cognitive bias test, we could not find any indication of differences 29 

in the positive and negative expectations between young and old dogs. Taken 30 

together, these findings do not support the hypothesis that old dogs have more 31 

negative expectations than young dogs and the use of the cognitive bias test in 32 

older dogs requires further investigation. 33 
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Introduction 9 

The family dog as a model for human ageing  10 

An increasing amount of evidence describes the domestic dog (Canis 11 

familiaris) as a good translational model for the study of ageing (e.g. Cotman & 12 

Head, 2008; Cummings et al., 1996; Kaeberlein, Creevy & Promislow, 2016; 13 

Head, 2013; Neus Bosch, Pugliese, Gimeno-Bayón, Jose Rodriguez & Mahy, 14 

2012; Schütt et al., 2016). Both dogs and humans spontaneously develop similar 15 

medical conditions that increase the risk of death, as they age, such as cancer 16 

(Hoffman, Creevy, Franks, O'Neill & Promislow, 2018). Behavioural changes, 17 

such as increased anxiety, confusion, alteration of the sleep-wake cycle, may be 18 

similarly observed (e.g. dog: Landsberg, Nichol & Araujo, 2012; human: Delphin‐19 

Combe et al., 2016). This body of evidence may reflect a naturally occurring and 20 

age-related cognitive decline, which follows similar pathways in dogs as it does in 21 

humans (Head et al., 1995; Head, 2013). For example, beta-amyloid accumulation 22 

has been observed in dogs as early as 9 years of age in the brain region of the 23 

prefrontal cortex and from 14 years on in the entorhinal cortex (Head, McCleary, 24 

Hahn, Milgram & Cotman, 2000).  Atrophy of the cerebral cortex and 25 

enlargement of the brain ventricles have also been described in MRI (Magnetic 26 

Resonance Imaging) scans of a group 16 years old dogs (Kimotsuki et al., 2005) 27 

and in morphometry studies of the cerebral ventricles of both young and old dogs 28 

(2-5 years vs 10-12 years, Gonzalez-Soriano et al., 2001). One study looked at 29 

MRI scans of a group of 18 dogs aged between 4 and 15 years (with age treated as 30 

continuous variable), observing a non-linear relationship between age and brain 31 

ventricles enlargement, cortical atrophy. Interestingly, individual differences were 32 
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also detected, as one 6 year old dog in the sample was as severely affected as the 1 

14 year old dogs in the group; this suggests that some individuals can develop 2 

age-related brain degeneration before others and this can be as early as 6 years of 3 

age (Su et al., 1998). The same dogs had been tested for their cognitive 4 

performance in a different study (Head, Callhan, Muggenburg, Cotman & 5 

Milgram, 1998), but no relationships between cognitive findings and brain 6 

changes was reported (Su et al., 1998). The dogs had been tested for cognitive 7 

performance up to 2 years prior to the MRI scanning (Su et al., 1998; Head et al., 8 

1998) and the results of the cognitive tests were reported according to 3 distinct 9 

age groups (young: < 5 years, middle aged: 5-10 years, old: 10+ years; Head et 10 

al., 1998), which made any comparison difficult to interpret. Studzinski et al., 11 

(2006) also investigated cognitive decline in dogs; they observed spatial deficits 12 

starting from the age of 6 and reported that age alone predicted 48.2% of the 13 

variability in learning in a task to assess memory. Overall, a large body of 14 

evidence indicates that functional decline in cognitive domains, such as learning, 15 

memory, executive function, and spatial function, occurs similarly in dogs and 16 

humans as they age (for reviews, Cotman & Head, 2008; Head et al., 2013). It 17 

should however be noted that, in this body of research, it is difficult to evaluate 18 

the effect of age alone as these findings are rarely adjusted to the lifespan 19 

variability that is due to factors such as breed, size, or weight (Szabó et al., 2016).  20 

In addition to the physiological reasons described above, the use of family 21 

dogs as models for ageing research is also supported by ecological reasons. 22 

Through their unique domestication history, dogs have adapted to a specific niche, 23 

i.e. the human social environment (Miklósi, Polgárdi, Topál & Csányi, 1998; 24 

Hare, Brown, Williamson & Tomasello, 2002). However, a large proportion of the 25 

research on dog cognitive decline involves purpose-bred and raised laboratory 26 

animals (Head, 2013 for a review). It should be noted that laboratory conditions 27 

are unrelated to animals’ natural environment (Wood, Desjardins & Fernald, 28 

2011). There is some evidence that family dogs (i.e. dogs living with humans as 29 

pets) and purpose-bred research dogs (i.e. kennel reared domestic dogs) diverge in 30 

their performance during some cognitive tasks (Lazarwoski & Dorman, 2014). 31 

Indeed, it has been argued that dogs residing long-term in kennel environments 32 

may be affected by cognitive deficits, due to the lack of stimulation provided by 33 

their living environment (Miklósi & Topál, 2011; Mongillo et al., 2013). Thus, 34 
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results from canine cognitive tests, when performed in conditions similar to those 1 

of the human environment, are likely to have strong ecological validity (Waters, 2 

2011).  Family dogs, which share the same living environment as humans, are 3 

promising subjects for research that is both clinically relevant and provide the 4 

necessary vertical integration of findings originated from invertebrate and rodent 5 

models (Waters, 2011). Consequently, studies on family dogs’ cognitive ageing 6 

have begun to emerge (e.g. Chapagain et al., 2017; González-Martínez et al., 7 

2013; Heckler, Tranquilim, Svicero, Barbosa & Amorim, 2014; Mongillo et al., 8 

2013; Piotti et al., 2017; Wallis et al., 2016; Wallis et al., 2017). One remaining 9 

issue is that some of these tests still require prolonged and complex procedures 10 

(discussed below); this limits the replicability of such studies, especially outside 11 

of the laboratory setting (Heckler et al., 2014 for a discussion). The importance of 12 

replicability is being discussed in psychology research, as replications and data 13 

reproducibility are necessary to generalise research findings to the general 14 

population (Westfall, Judd & Kenny, 2015), and further efforts should be made to 15 

increase the replicability of research (Asendorpf et al., 2013). 16 

Cognitive testing of ageing dogs 17 

Decline in the spatial function (i.e. the ability to perceive, remember, and 18 

manipulate information within a spatial context, Tapp et al., 2003a), pertaining to 19 

executive function (i.e. the selection and monitoring of behaviours for the 20 

attainment of goals, Malenka, Nestler & Hyman, 2009), and learning is a part of 21 

the normal ageing process (Cotman & Head, 2008). Impairment in the spatial 22 

function is particularly of interest because it may be detected before other 23 

cognitive deficits emerge (e.g. Dog: Head et al., 1995; Studzinski et al., 2006; 24 

Piotti et al 2017; Human: Becker et al., 1988). Reversal learning tasks are often 25 

used to detect changes in these two domains as they rely on the dog’s ability to 26 

differentiate and mentally adjust previously learned behaviours (Cotman & Head, 27 

2008; Milgram et al., 1994). Dogs are initially trained to discriminate between 28 

two stimuli (one associated with a reward, usually food, and the other with no 29 

reward). Following a delay period, the dogs are presented with the same stimuli, 30 

though the discrimination is reversed. Thus the subjects must inhibit their 31 

previously learned response to the rewarded object (perseverative behaviour), and 32 

learn a new association between the previously unrewarded object and the food 33 
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reward (Milgram et al., 1994). Older dogs typically require a longer time to learn 1 

the associations and commit more errors than younger dogs (Chan et al 2002; 2 

Head et al., 1998; Mongillo et al., 2013; Studzinski et al., 2006; Salvin et al., 3 

2011). However, in the literature, grouping based on dogs’ age often varied 4 

between studies. One study compared old and young dogs, classifying young dogs 5 

as 3-5 years and old dogs as 9-12 years (Chan et al., 2002). Another study looked 6 

at age both as a continuous variable and after splitting their population into young 7 

(< 8 years) and old dogs (≥ 8 years; Mongillo et al., 2013). Others chose more 8 

than one cohort; for example, Head et al. (1998) compared young (< 5 years), 9 

middle aged (6-9 years) and old dogs (>10 years), while Studzinski et al. (2006) 10 

split their sample into 6 cohorts (puppies < 1 years, young 1-2.99 years, adults 3-11 

5.99 years, middle-aged 6-7.99 years, old 8-9.99 years, senior 10-11.99 years). 12 

Authors do not always provide the rationale behind their grouping choices or they 13 

base it on literature about other species (e.g. primates, Head et al., 1998). 14 

However, interestingly, Studzinski et al. (2006) observed deficits in the spatial 15 

function from the age of 6 and decline in the performance of reversal learning 16 

tasks has been related to age-associated atrophy of the frontal lobe and possibly 17 

cortical areas such as the hippocampus and entorhinal cortex (Tapp et al., 2004; 18 

Siwak-Tapp, Head, Muggenburg, Milgram & Cotman, 2008). It should be noted 19 

that, in some studies, on simple visual discrimination tasks and procedural 20 

learning measures, aged dogs performed as well as younger subjects (Milgram et 21 

al., 1994). Authors have suggested that these results may reflect differential 22 

susceptibility of various cognitive functions to ageing (Head, 2013) – reversal 23 

learning being the more sensitive measure (Milgram et al., 1994). Szabó et al. 24 

(2016), however, argued that the disregard of intrinsic and extrinsic factors, such 25 

as gender or social environment, may be an underlying cause of inconsistency in 26 

the ageing research findings, which may be addressed through more standardised 27 

identification of ageing phenotypes (Szabó et al., 2016). While this may be 28 

achieved with testing large and diverse populations, such as those of family dogs, 29 

it is also not always feasible due to the training methods of the existing research 30 

protocols, which require days or hours of practice. For example, Mongillo et al. 31 

(2013) developed a maze-based navigation task designed as learning and reversal 32 

learning tasks to test the effect of age on cognitive performance. Comparing dogs 33 

younger and older than 8 years, the authors were able to detect an effect of age in 34 
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the reversal task but not in the learning task or in a retention phase – where dogs 1 

were tested 2 weeks after the learning task (Mongillo et al., 2013). However, the 2 

test required several weeks to be performed as well as a large apparatus, which 3 

makes the procedure difficult to reproduce, e.g. with diseased and demented dogs 4 

or in veterinary clinical settings.  5 

Measuring emotional changes in aged dogs 6 

There is evidence that, in humans, cognitive state and mood, i.e. long term 7 

emotional states, are closely intertwined. For example, depression and emotional 8 

dysregulation are related with deficits in working memory, alteration of inhibitory 9 

processes, especially in the presence of negative stimuli, and inability to use 10 

rewarding stimuli (for a review: Gotlib & Joormann, 2010). Moreover, humans’ 11 

risk of developing depression increases as they age, e.g. due to sleep-disturbance 12 

and disability (Cole & Dendukuri, 2003), which is in turn a risk factor for the 13 

development of Alzheimer Disease, a type of dementia (Ownby, Crocco & 14 

Acevedo, 2006). Therefore, frailty has an overall negative impact on the 15 

emotional state and quality of life of elderly people (Delphin‐Combe et al., 2016). 16 

Interestingly, geriatric conditions are considered reasons of welfare concern in 17 

relation to the quality of life and welfare of dogs as well (Yeates & Main, 2009). 18 

According to dog owners, aged pet dogs present behaviour symptoms that are 19 

very similar to those reported in humans, such as increased anxiety, alteration of 20 

the wake-sleep cycle, and disorientation (Landsberg et al., 2012; Madari et al., 21 

2015; Neilson, Hart, Cliff & Ruehl, 2001). These have a rather high prevalence, 22 

ranging from 28% in 11–12 years old dogs to 68% in 15–16 years old dogs 23 

(Neilson et al., 2001). However, to our knowledge, no attempts have been made to 24 

investigate the relationship between age-related changes in emotional states and 25 

cognitive decline. There are recommendations on monitoring the quality of life of 26 

old dogs, however the existing methods are prone to subjectivity (Yeates & Main, 27 

2009). For this reason, it was recently suggested that monitoring quality of life in 28 

old dogs may benefit from the use of objective methods such as those based on 29 

changes in cognitive performance as measured through behaviour tests (Piotti, 30 

2017).    31 

One such test is the “cognitive bias test”, which measures changes in dogs’ 32 

tendency to approach ambivalent stimuli (Mendl et al., 2010). A cognitive bias 33 
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(or, more specifically, a judgement bias) is a known phenomenon, where 1 

individuals experiencing long term negative emotional states (moods) tend to 2 

interpret ambiguous stimuli more negatively than individuals experiencing more 3 

positive moods do (Harding, Paul, & Mendl, 2004; Mendl, Burman, Parker & 4 

Paul, 2009; Roelofs, Boleij, Nordquist & van der Staay, 2016).  One advantage of 5 

cognitive biases is that they are responses to threat of punishment or prediction of 6 

reward that generalise beyond the trigger stimuli (Paul & Mendl, 2017). 7 

Therefore, measurements obtained during the test may be used to infer the long 8 

term emotional state of the animal beyond the testing conditions. 9 

 The judgment bias phenomenon is described in several species, including 10 

dogs, and has led to the development of behaviour tests that can objectively 11 

measure the bias in this species (Harding et al., 2004; Mendl et al., 2009). 12 

Typically, subjects are trained to discriminate between positive stimuli (P, which 13 

predict a reward, e.g. food) and negative stimuli (N, which predict the absence of 14 

reward or a mild punishment). Once the discrimination is established, subjects are 15 

exposed to one or more ambiguous stimuli (A), which have features that are in 16 

between those of the positive and the negative stimulus. The intensity of response 17 

toward each stimulus type is measured. Animals experiencing a negative mood 18 

are thought to have negative expectations, i.e. when they are exposed to 19 

ambiguous information, they expect a negative outcome rather than the positive 20 

one – the opposite is true for animals experiencing a positive mood (Harding et 21 

al., 2004). As a consequence, in the cognitive bias test, responses to the 22 

ambiguous stimulus (A) that are on average more similar to those directed to the 23 

negative stimulus (N) are considered as an indication of a more negative mood; 24 

responses that are more similar to those directed to the positive stimulus (P) 25 

reflect a more positive mood (Harding et al., 2004; Mendl et al., 2009). In dogs, 26 

the test could successfully separate dogs affected by anxiety related problems 27 

(separation related anxiety), as opposed to non-anxious counterparts (Mendl et al., 28 

2010). Subsequently, the cognitive bias test was used to monitor the treatment 29 

progress of dogs affected by separation related problems (Karagiannis, Burman & 30 

Mills, 2015). Additionally, Kis et al. (2015) proposed the canine cognitive bias as 31 

a measure of overall well-being. The authors tested dogs with a cognitive bias test 32 

after administering them with either a placebo or oxytocin (which has a known 33 

association with psychological well-being in humans; William, Kahloon, Fakhry 34 
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& Ishak, 2011), in combination with the presence or absence of social stimuli. 1 

Consistent with the human literature, the test results indicated that oxytocin, 2 

especially in the presence of social stimuli, lead to more positive expectations 3 

than the placebo (Kis et al., 2015). More recently, the use of the cognitive bias test 4 

was extended to the assessment of the well-being of dogs affected by a chronic 5 

and putatively painful condition, i.e. syringomyelia (a neurological malformation 6 

that involves the formation of sacs filled with fluid in the spinal neural cord; 7 

Cockburn, et al., 2017). The test results indicated that a group of dogs affected by 8 

syringomielia had a more negative expectation as opposed to a group of healthy 9 

dogs (Cockburn et al., 2017).  10 

It should be noted that there are some limitations in the use of the 11 

cognitive bias test; for example it did not prove to be useful in measuring the 12 

effect of short-term positive events (Burman et al., 2011). On the contrary, the 13 

evidence in the literature indicates that the test is a reliable measure for the long-14 

term effects on wellbeing that are related with chronic health conditions. 15 

However, to our knowledge, the cognitive bias test has never been used to assess 16 

the decline in the wellbeing of old dogs.  17 

Aims of the study 18 

The aims of the present study were: 1) to design a simple and reproducible 19 

version of the reversal learning task, which did not require large apparatuses or 20 

several weeks of training and could detect differences in performance between old 21 

and young dogs; 2) to assess the two groups of dogs with a cognitive bias test (Kis 22 

et al., 2015). For the first goal, the performance of the old dogs was expected to be 23 

poorer (in terms of time required to learn and number of trained dogs) during the 24 

reversal learning task. For the second goal, the old dogs were expected to have a 25 

more negative expectation towards the ambiguous stimulus when compared to the 26 

young dogs.  27 

We were also interested in developing tests that could be potentially 28 

repeated over time, e.g. to monitor the progress of the condition. However, both 29 

the reversal learning tasks and the cognitive bias test intrinsically have a large 30 

carryover effect (i.e. during retesting the subjects are influenced by their previous 31 

experience). Therefore, we tested the dogs in this study with different stimuli, in 32 

order to explore whether these would affect the dogs’ performance. The two types 33 
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of stimuli varied in their physical characteristics and relied on slightly different 1 

cognitive tasks and domains, as described by Cotman and Head (2008). For one 2 

group of dogs, the stimuli varied based on their location, as described in the 3 

original cognitive bias protocol (Mendl et al., 2010); therefore, the tasks relied on 4 

egocentric spatial coding (i.e. the animal can rely on the representation of the 5 

objects in space relative to its own body axes, such as left-right and front-back), 6 

specifically relying on learning (spatial function) and reversal learning (executive 7 

function). For the other group of dogs, the stimuli varied based on their physical 8 

characteristics, such as colour and shape; therefore, the tasks relied on visual 9 

learning and reversal learning (executive function). Both tasks also relied on 10 

visual discrimination learning and reward and object approach learning (learning 11 

domain). Previous findings suggested similar effects of age on location and size 12 

discrimination (Tapp et al., 2003b); therefore we expected young dogs to perform 13 

better than old dogs in both tasks.  14 

In this study we decided to investigate the normal ageing process, i.e. the 15 

cognitive changes that occur in all individuals as they age, rather than more severe 16 

signs occurring in a smaller part of the population, therefore the subjects were 17 

screened based on symptoms of health issues associated with age. In fact, 18 

knowing the “normal” ageing process is a prerequisite for the subsequent 19 

identification of pathological phenotypes (Szabó et al., 2016).  20 

 21 

Materials and methods 22 

Ethics statement 23 

The procedures applied complied with national and EU legislation and 24 

institutional guidelines. The study received Ethical Permission from the Eötvös 25 

Loránd University, Budapest, Hungary (Permission No.: PE/EA/2019-5/2017). 26 

Owners provided written consent to their participation. Our Consent Form was 27 

based on the Ethical Codex of Hungarian Psychologists (2004). We took special 28 

care to ensure that the consent process was understood completely by the dog 29 

owners. In the Consent Form, participants were informed about the identity of the 30 

researchers, the aim, procedure, location, expected time commitment of the 31 

experiment, the handling of personal and research data, and data reuse. The 32 
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owners were not informed about the exact aim of the test. The information 1 

included the participant’s right to withdraw their consent at any time. Participants 2 

could at any point decline to participate and could request for their data not to be 3 

used and/or deleted after they were collected during the experiments. The study 4 

was performed in strict accordance with the recommendations in the International 5 

Society for Applied Ethology guidelines for the use of animals in research. 6 

Subjects 7 

 Power analysis was performed using G*power in order to estimate the 8 

required sample size for the study, aiming for a medium effect size (d = .65) and a 9 

power of .08. The analysis yielded a recommended sample of N = 35 per group 10 

(old and young). A group of old dogs (Nold = 76) had already been recruited and 11 

tested, following the same procedure as the current work, for a different study 12 

(unpublished). Therefore, a matching sample of young dogs had been recruited 13 

following the same inclusion and exclusion criteria, although the sample size had 14 

been kept closer to that calculated a priori (Nyoung = 43) in order to avoid inflating 15 

the risk of type I errors. For both groups, the inclusion criteria were for the dogs to 16 

be free from overt signs of cognitive decline (as reported by the owner) and/or 17 

medical problems, which might have affected the performance in the tasks (e.g. 18 

untreated neurological conditions, motor-sensory deficits). All dogs were assessed 19 

for their motor-sensory skills by a qualified veterinary surgeon or a 20 

physiotherapist, following on a previously defined procedure (Bognár et al., in 21 

prep). For the young dogs group, dogs between 2 and 6.5 years were recruited; for 22 

the old dogs group, dogs had to be above 8 years of age. The age limits had been 23 

set based on previous findings about the age when the first signs of cognitive 24 

decline were detected (Studzinski et al., 2006; Szabó et al., 2016 for a review). 25 

The sample included 54 mix breeds and 69 pure breeds from 17 different types of 26 

breed. In order to reduce the confounding effect of dogs’ size on ageing speed 27 

(see Szabó et al., 2016), only dogs of medium to large size were included in the 28 

sample. Twelve dogs were tested but excluded from the analysis (Supplemental 29 

material) due to procedural mistakes during the data collection (N = 11) or due to 30 

technical issues with the electronic spread sheet (N = 1). The demographic 31 

characteristics of the final sample (N = 107) are described in table 1. 32 

 33 
Table 1. Demographic information of the dogs included in the analysis. 34 
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 N 
Mdn Age [years] 

(min – max) 

M : F 

(Neutered N) 

Mdn Weight [Kg] 

(min – max) 

Mdn Height [cm] 

(min – max) 

Groups      

Young 41 4.5 (2.5-6.5) 1 : 1 (27) 20.2 (9.5 – 44.2) 50.00 (27.00 - 84.00) 

Old 66 10.5 (8-14.5) 1 : 1 (53) 18.65 (5.9 – 78) 50.00 (35.00 - 70.00) 

 1 

Study design 2 

Stimuli and randomisation  3 

Different sets of stimuli were used to train the dogs to discriminate the 4 

stimuli based on their location (“location” group) or based on their physical 5 

characteristics, i.e. size, colour, and shape (“physical characteristics” group).  6 

For the test performed based on location, dogs had to associate the 7 

presence (P) or absence (N) of food with the specific location where the stimulus 8 

was placed. The stimulus was a blue plate (plastic, round shape, 20 cm of 9 

diameter) and it was placed on the floor either on the left or the right hand side of 10 

the experimenter. For about half of the dogs in the location group, the positive 11 

location was on the left and the negative was on the right, while for the other half 12 

the opposite was true; the same balancing method was used for the colour group 13 

(table 2).  14 

Table 2. Groups composition. The number of individuals is shown based on the counter-balancing for type of discrimination (based on 15 
location or physical characteristics of the stimuli) 16 

Groups N total Location (P = left) Colour (P = white) 

Young 41 21 (10) 20 (9) 

Old 66 28 (13) 38 (18) 

Notes: P = positive 17 

 For the test performed based on the physical characteristics of the stimuli, 18 

the stimuli were always placed on the floor right in front of the experimenter and 19 

the dog had to learn the association between presence (P) or absence of food (N) 20 

based on the shape and colour of the stimuli. These consisted of a set of 3 plates; 21 

two plates were used as P and N stimuli and the third plate, with intermediate 22 

characteristics between the P and N, was used as an ambiguous stimulus. The two 23 

plates used as P and N (Fig 1) were a large, black, rectangular plate (plastic, 23 x 24 

15.5 cm) and a small, white, round plate (plastic, 12 cm). The ambiguous stimulus 25 

(A) was a plate of a size that was in between the other two and of a colour 26 

(plastic, round, green colour, 15 cm of diameter), which had contrast and 27 
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chromatic characteristics that are supposed to be perceived as in between black 1 

and white, according to dogs’ sensory abilities (Pongrácz et al., 2017).  2 

 3 
Figure 1. Stimuli used in the physical characteristics group. The two images 4 

show the stimuli in the way they are perceived by humans (a) and dogs (b, altered 5 

to dog-vision setting through a dedicated image processing tool, http://dog-6 

vision.com). The three plates varied in shape, size and colour. The middle plate 7 

(used as ambiguous cue) had intermediate characteristics between the other two 8 

plates. 9 

 10 

All dogs had pre-tested to ensure that they could reliably find a small 11 

object placed on the floor – this was done to ensure that their visual abilities were 12 

sufficient for them to perform successfully in the current test. Additionally, in all 13 

cases, from their starting position the dog could not see the food inside of the plate 14 

as we were interested for the dogs to decide whether to approach a stimulus or not 15 

based on the outcome associated with it. Finally, previous findings indicate that 16 

dogs do not rely on smell in such settings (Szetei et al., 2003); nevertheless, all 17 

plates were smeared with food prior to testing in order to control for odour cues. 18 

A thin slice of sausage or a piece of cheese of equal size was used as food reward 19 

in all conditions (one dog was on a medical diet, so was tested using pieces of 20 

food from their own diet); the dog owners were asked about the dog’s preference 21 

and dietary requirements. 22 

 23 

Testing area  24 

The study was performed at the Department of Ethology, Eötvös Loránd 25 

University (Budapest, Hungary), in a small room (2.8 x 5 m). Only the dog’s 26 

owner, the dog, and the experimenter were in the room. The room was empty 27 

beside a chair placed at one end of the room (for the owner). The owner held the 28 

dog’s collar in order to keep the dog in front of the chair (on a spot marked with 29 

tape on the floor). The experimenter was standing approximately 3 meters in front 30 
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of the dog-owner dyad. Two cameras were mounted on the ceiling, one behind the 1 

experimenter and the other behind the dog-owner dyad (Fig 2).  2 

 For the “location” group, the food plates were placed on the floor right in 3 

front of the experimenter (L2) or towards her left (L3) or right-hand side (L1) and 4 

at arm’s length distance from her (P and N). For the “colour” group, the plates 5 

were always placed in front of the experimenter (L2).  6 

 7 

 8 

 9 

 10 
Figure 2. Room set up. The owner and the dog were at one side of the room 11 

(black circles at the bottom of the figure) and the experimenter was standing 12 

opposite to them (black circle at the top of the figure). The grey circles in front of 13 

the experimenter mark the positions where the plates could be placed based on the 14 

type of the stimuli (L1 and L3 = positions for the P and N stimuli in the “location” 15 

group; L2 = position for the ambiguous stimulus as well as the P and N stimuli in 16 

the “physical characteristics” group). 17 

 18 
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Protocol 1 

The study consisted of four different phases. In the “discrimination 2 

learning” (phase 1), dogs were trained to discriminate between the P and N stimuli 3 

(“discrimination learning”), then they were given a break of a few minutes. Kis et 4 

al. (2015) observed that some dogs appeared to not discriminate well the stimuli 5 

after a short delay; therefore, as in their study, the dogs in our study underwent 6 

additional training-like trials (phase 2, “consolidation”). In the “cognitive bias 7 

test” (phase 3), the dogs were then tested with a similar procedure as in Kis et al. 8 

(2015), described below. Finally, the dogs were exposed to a “reversal learning” 9 

(phase 4), where the P and N valence of the stimuli was swapped around. The 10 

order of presentation of the P, N, and A stimuli was identical for all dogs. 11 

The discrimination and the reversal learning lasted between 15 and 35 12 

minutes each, depending on the dog, and the consolidation and cognitive bias test 13 

each lasted less than 5 minutes. The whole procedure lasted about one hour. 14 

 15 

 16 

1) Discrimination learning 17 

The aim of this phase was to teach the dogs that one stimulus was 18 

associated with food (P = positive) and the opposite stimulus was associated with 19 

no food (N = negative). This was achieved by presenting the dogs with the two 20 

stimuli in consecutive trials; the stimuli were presented in a pre-determined 21 

pseudo-random order, with no more than two trials of the same type being 22 

presented consecutively (for the order of presentations see the supplemental 23 

material). 24 

At the beginning of each trial, the owner was asked to put the dog on the 25 

leash while the experimenter baited (or did not bait, depending on the trial 26 

valence, N or P) one of the plates. The experimenter then put the plate on the floor 27 

(based on the group type and the trial valence, and according to the pseudo-28 

random order), and in front of her: for the location group this was placed either 29 

towards the left-hand side or the right-hand side of the dog; for the location the 30 

plate corresponding to that trial valence was placed right in front of the 31 

experimenter. 32 
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As soon as the plate was on the floor, the owner unleashed the dog. 1 

Owners had been instructed to unleash the dogs exactly as the plate touched the 2 

floor, so to avoid biasing the dog’s behaviour. Dogs had up to 15 seconds to reach 3 

the plate and eat the food, while the experimenter looked straight ahead without 4 

making eye contact with the dog; once the dog ate the food, or after the 15 5 

seconds had elapsed, the experimenter took the plate and the trial was over. If the 6 

dog did not immediately approach the food plates when released, the owner was 7 

allowed to encourage it with short sentences, such as “Go”, or gently touching the 8 

dog. For each trial, the latency to reach the plate was recorded (defined as the 9 

amount of time from when the food plate touched the ground to when the dog 10 

crossed the line on the floor that marked the plates’ position); if the dog did not 11 

approach the plate, the experimenter recorded the no-choice and the trial was 12 

given a latency of 15 seconds. Dogs were deemed to have learned the association 13 

between the stimulus and the food when the longest latency to reach the P plate in 14 

the previous 5 trials was shorter than the latency to reach any of the previous N 15 

trials (“learning threshold”). Dogs underwent a maximum of 50 training trials; if 16 

they did not reach the learning criterion by the 50th trial, they were excluded from 17 

further testing. If the dog refused to participate in the test (i.e. did not leave the 18 

location of the chair), the training was interrupted. For each dog, the experimenter 19 

recorded the latency to reach the food in each trial. These were imported in a 20 

spreadsheet at the time of testing; after the first 10 trials, the spreadsheet 21 

compared the last 5 latencies to P and the last 5 latencies to N for each trial in 22 

order to assess whether the dog had reached the learning threshold. Overall, the 23 

following variables were recorded and calculated: 24 

- number of learning trials: count variable indicating the number of 25 

training trials (this could be either the number of trials required to 26 

learn the task, the number of trials before the task was interrupted 27 

because the dog refused to participate, or the maximum number 28 

of trials (50) if the dog did not learn); 29 

- learning success: binary variable indicating whether the dog 30 

reached the learning criterion (0 = did not achieve learning, 1 = 31 

achieved learning). 32 
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- latency: time to reach the plate in each trial (continuous variable), 1 

if the dog did not make a choice, the maximum latency (15 2 

seconds) was assigned to that trial; 3 

- learning mean latency P; learning mean latency N:  continuous 4 

variable indicating the mean latency to the last 5 P and 5 N trials; 5 

 6 

 7 

2) Consolidation  8 

The dogs that passed the learning threshold in the discrimination learning 9 

phase, underwent the consolidation phase (N = 88). The aim of this phase was to 10 

have a measure of how stable the learning remained after about 5 minute break. 11 

This consisted of 10 trials (5 P and 5 N) identical to the training trials (reported in 12 

the supplemental material). The following variables were recorded: 13 

- consolidation success: binary variable, indicating whether the dog 14 

reached the same threshold as in the learning (0 = fail, 1 = 15 

success)  16 

- latency to reach the plate in each trial (continuous variable), if the 17 

dog did not make a choice, the maximum latency (15 seconds) 18 

was assigned to that trial; 19 

- consolidation mean latency P; consolidation mean latency N:  20 

continuous variable indicating the mean latency to the last 5 P 21 

and 5 N trials; 22 

 23 

3) Cognitive bias test 24 

Dogs (N = 88) were tested following the procedure described in Kis et al. 25 

(2015). The test consisted of 3 trials: one negative (N), one positive (P), and one 26 

ambiguous (A). The trials were presented in a fixed order (N, P, A), which was 27 

identical for all dogs (reported in the supplemental material). The ambiguous trial 28 

was not baited; otherwise, the 3 trials were identical to those in the training. The 29 

following variable was recorded: 30 
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- latency to reach the plate in each trial i.e. P, N, A (continuous 1 

variable), if the dog did not make a choice, the maximum latency 2 

(15 seconds) was assigned to that trial. 3 

4) Reversal learning  4 

This phase was identical to the discrimination learning phase, except only 5 

the dogs that had passed the learning threshold were included (N = 88) and the P 6 

and N were reversed. For example, for a dog in the location group, if the positive 7 

stimulus (P) was on the left, now it was on the right; for a dog in the colour group, 8 

if the P was the white plate, now it was the black plate. As in the learning phase 9 

the dogs underwent a maximum of 50 trials; the learning threshold was the same 10 

as in the discrimination learning phase (reported in the supplemental material). 11 

The following variables were recorded: 12 

- number of reversal trials: count variable indicating the number of 13 

trials (this could be either the number of trials required to learn 14 

the reversal discrimination, the number of trials before the task 15 

was interrupted, or the maximum number of trials (50) if the dog 16 

did not learn); 17 

- reversal learning success: binary variable indicating whether the 18 

dog reached the learning criterion (0 = did not achieve learning, 1 19 

= achieved learning)  20 

- latency to reach the plate in each trial (continuous variable), if the 21 

dog did not make a choice, the maximum latency (15 seconds) 22 

was assigned to that trial; 23 

- reversal learning mean latency P; reversal learning mean latency 24 

N:  continuous variable indicating the mean latency to the last 5 P 25 

and 5 N trials; 26 

 27 

 28 

 29 

Statistical analysis 30 

Data were analysed using R statistical language (R Core Team, 2017). The 31 

recorded variables were subjected to a Shapiro-Wilk normality test (Supplemental 32 
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material), which indicated that some of the data were not normally distributed; 1 

therefore, non-parametric and semi-parametric tests were used. All tests were two-2 

tailed.  3 

 4 

1) Discrimination learning 5 

Our variable regarding the number of trials was right censored (i.e. some 6 

dogs did not reach the learning outcome within the 50 trials or became 7 

uncooperative, leading to interruption of the phase). Therefore a survival analysis 8 

was performed on the discrimination learning using a Cox proportional hazard 9 

regression model (Cox regression) implemented in the R package “survival.” A 10 

Cox regression model for survival-time (time-to-event) was fit to calculate the 11 

effect of the age group upon the time (i.e. number of trials) on the occurrence of 12 

learning; types of stimuli were included in the model as covariate to evaluate their 13 

effect on the learning. The assumption of proportional hazards was tested using 14 

the function “cox.zph” and by plotting the estimates over the time to event 15 

(supplemental material). The analysis provided the Hazard ratios (HRs) for each 16 

parameter, i.e. the ratio of the risk (probability) for the event to occur (i.e. for the 17 

dog to learn) for different levels of the explanatory variables. For each survival 18 

analysis completed, significant results were presented with hazard ratios (HRs), 19 

95% confidence intervals (CIs), p-values (p), and median survival times (i.e. the 20 

time taken to learn). The R squared of the model and test significance (log-rank 21 

test) were also reported: the R squared indicates the proportion of the variance in 22 

the dependent variable that is attributable to the variables in the model; the log-23 

rank test is a non-parametric test which tests the null-hypothesis that the 24 

distribution in the groups under consideration is not different.  25 

A delta score was also calculated to measured the difference between the 26 

average latency to the last 5 P and 5 N trials of that given phase (Deltadiscr = mean 27 

latN –mean latP). Only the dogs which had reached the learning criterion were 28 

considered when calculating the delta score. A small delta indicates that the dogs’ 29 

speeds to the N and to the P are very similar. We then used a Wilcoxon rank-sum 30 

test to look at how the delta varied between the two age groups.  31 

 32 

2) Consolidation phase 33 
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In order to assess any age differences in the dogs’ ability to remember the 1 

discrimination after a short break, the “consolidation success” variable was 2 

analysed using a Chi-squared test of independence, comparing the success and 3 

failure between old and young dogs.  4 

A delta score was calculated for the consolidation phase, using the same 5 

formula adopted for the discrimination learning (Deltacons = mean latN –mean latP) 6 

and a Wilcoxon rank-sum test was used to assess differences between old and 7 

young dogs. 8 

 9 

3) Cognitive bias test 10 

The cognitive bias test was analysed as suggested by Mendl et al. (2010). 11 

Positive and negative expectations were measured using the formula provided by 12 

Mendl et al. (2010), which controls for the possibility that differences in the 13 

latency to the ambiguous cue location (A) was due to differences between the 14 

dogs in the running speeds. This score (“cognitive bias score”, CBS) was 15 

calculated by adjusting the A latency by taking into account the baseline latency 16 

to P and to N in the test phase: 17 

 18 

CBS = ((LatA – LatP) * 100) / (LatN – LatP) 19 

 20 

 This formula varies slightly from the one described in Mendl et al. (2010), 21 

in that in our sample there was one trial per condition, therefore our CBS score is 22 

calculated from absolute values rather than averages. A Wilcoxon sum-rank test 23 

was used to analyse the differences in the CBS between the two age groups and 24 

between types of stimuli (alpha = .025 to correct for multiple comparisons). 25 

 Startling et al. (2014) recommended comparing average individual 26 

latencies to P and to N in the cognitive bias test, because the average latency to 27 

reach P needs to be significantly less than the average length to reach N for the 28 

test to be meaningful. However, in our case only one score for each stimulus 29 

valence was available (as our cognitive bias test had only 1 P and 1 N). Therefore, 30 

a delta score was used instead, although in this case it was calculated as the 31 

difference between the latency to N and the latency to P (DeltaCBS = latN – latP). 32 

The main interest was to ensure that the delta was positive for all dogs. However, 33 
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the difference between young and old dogs was assessed as well using a Wilxocon 1 

rank-sum test.  2 

 3 

4) Reversal learning 4 

 The effect of the age group on the time (i.e. number of trials) necessary for 5 

the occurrence of learning was analysed using Cox regression models, with the 6 

same modalities followed for the discrimination learning. Two additional Cox 7 

regression models were calculated for the location and the physical characteristics 8 

groups separately. 9 

 Latencies were analysed with a Wilcoxon rank-sum test, after calculating a 10 

delta score as in the discrimination learning (Deltarev = mean LatN – mean LatP). 11 

Results 12 

1) Discrimination learning  13 

A Cox proportional hazard model (Table 3) indicated that, during the 14 

discrimination learning phase, the number of trials that the dogs required to reach 15 

the learning criterion was influenced by the age group, with the young dogs 16 

learning faster when compared to the old dogs (Table 4, Fig 3). The type of 17 

stimuli did not significantly affect the number of trials required to learn (Table 3). 18 
 19 

Table 3. Cox Proportional Hazards estimates of the determinants of learning in the 20 
discrimination learning phase, by age group and type of stimuli. 21 
Variable Coefficient a HRb Test statistics p 

Age group c     

(Old)     

Young .6513 1.91 2.99 .003 

Type of stimuli c     

(Physic.)     

Location -.3952 .67 -1.83 .066 

Total N  107 

Wald test 12.25 (2 df), p = .002 

Test for proportional hazards  χ2 = 4.083, p = .129 

R2 .10 
a Coefficient = log (relative hazard). 22 
b HR = Hazard Ratio. 23 
c Reference category in parenthesis.  24 
 25 
 26 
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  1 

Figure 3. Survival curve for the number of trials to reach the learning criterion in the 2 
discrimination learning according to the age group. The darker line represents the young dogs, 3 
the lighter line represents the old dogs. The shadowed areas reflect the confidence intervals and the 4 
crosses (+) indicate censored data (i.e. dogs for which the task was interrupted but they had not 5 
learned).  6 

 7 

Table 4. Median number of trials necessary to reach the learning criterion in the 8 
discrimination learning phase, according to age groups. 9 

Variable N 
Events 

(learning) 
Median 95% CI 

Age group      

Old 66 50 36 31-39 

Young 41 38 27 21-34 
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 1 

 2 

The Wilcoxon rank-sum test (Table 12) revealed that there was no 3 

significant difference in the delta score between young and old dogs (Fig 6). 4 

 5 

As table 4 indicates, 82% of the dogs (Nevents= 50 + 38 = 88) reached the 6 

learning criterion during the discrimination learning phase. The dogs which did 7 

not learn the discrimination were excluded from further testing. 8 

2) Consolidation phase 9 

 The Chi-square test of independence indicated that there was no 10 

significant difference between old and young dogs in their success during the 11 

consolidation phase (Table 5), χ2
(1) = 1.36, p = .243. 12 

Table 5. Contingency table for the consolidation success variable. 13 
 Success  

 0 (%) 1 (%) Total 

Old 26 (53%) 24 (47%) 50 (100%) 

Young 15 (40%) 23 (60%) 38 (100%) 

Total 41 (47%) 47 (53%)  

Note: N = 88 14 
 15 

The Wilcoxon rank-sum test (Table 12) revealed that there was no 16 

significant difference in the delta score between young and old dogs (Fig 6). 17 

Additionally, for some of the dogs, the delta score was equal or below 0 18 

(Nconsolidation = 3). 19 

 20 

3) Cognitive bias test 21 

Two Wilcoxon rank-sum tests (Table 6) revealed that there was no 22 

significant difference in the CBS between the young and the old dogs or between 23 

the two types of stimuli. 24 

 25 
Table 6. Results of the Wilcoxon rank-sum test for the cognitive bias score (CBS), as compared between old and 26 
young dogs and between type of stimuli (location and physical characteristics). The effect size is reported (r = z / √ N), 27 
significance level was corrected for multiple comparisons (alpha = .025) 28 
 W p r 

Old-Young 1043 .433 -.08 
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Location-Physic. 986 .867 -.02 

Note: N = 88 1 
 2 

A Wilcoxon rank-sum test (Table 12) revealed that the delta score was 3 

significantly smaller in the old dogs compared to the young dogs (Fig 6). Again, 4 

for some of the dogs the delta was negative or equal to 0 (NCB = 2). 5 

 6 

4) Reversal learning 7 

A second Cox proportional hazard model (Table 7) indicated that, during 8 

the reversal learning phase, the number of trials that the dogs required to reach the 9 

learning criterion was influenced by both the age group and type of stimuli. The 10 

young dogs required fewer trials to reach the learning criterion, compared to the 11 

old dogs; similarly, the dogs in the location group required less trials to learn, 12 

compared to the dogs in the physical characteristics group. 13 

 14 

Table 7. Cox Proportional Hazards estimates of the determinants of learning in the reversal 15 
learning phase, by age group and type of stimuli. 16 
Variable Coefficient a HRb Test statistics p 

Age group c     

(Old)     

Young 1.1091 3.03 4.15 <.001 

Type of stimuli c     

(Location)     

Physic. -1.46 .23 -5.34 <.001 

Total N  88 

Wald test 36.10 (2 df), p < .001 

Test for proportional hazards  χ2 = .815, p = .665 

R2 .37 
a Coefficient = log (relative hazard). 17 
b HR = Hazard Ratio. 18 
c Reference category in parenthesis.  19 

 20 

 As the Hazard Ratios for the two types of stimuli differ significantly, with 21 

the dogs in the physical characteristics having 74% less of probability to learn the 22 

task, compared to the dogs in the location group, the two groups where further 23 

assessed separately, in order to obtain predictions regarding the effect of age alone 24 

for each of them. 25 

 26 

Another Cox proportional hazard model (Table 8) indicated that, during 27 

the reversal learning phase of the location group, the number of trials that the dogs 28 
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required to reach the learning criterion was influenced by the age group, with 1 

young dogs requiring fewer trials to reach the learning criterion, compared to the 2 

old dogs (Table 9, Fig 4). 3 

 4 

Table 8. Cox Proportional Hazards estimates of the determinants of learning in the reversal 5 
learning phase in the location group, by age group. 6 
Variable Coefficient a HRb Test statistics p 

Age group c     

(Old)     

Young .91 2.49 2.658 .008 

Total N  42 

Wald test 7.07 (1 df), p = .008 

Test for proportional hazards  χ2 = 1.14, p = .285 

R2 .15 
a Coefficient = log (relative hazard). 7 
b HR = Hazard Ratio. 8 
c Reference category in parenthesis.  9 
 10 

 11 

 12 

Figure 4. Survival curve for the number of trials to reach the learning criterion in the 13 
reversal learning phase of the location group according to the age group. The darker line 14 
represents the young dogs, the lighter line represents the old dogs. The shadowed areas reflect the 15 
confidence intervals and the crosses (+) indicate censored data (i.e. dogs for which the task was 16 
interrupted but they had not learned).  17 

 18 
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Table 9. Median number of trials necessary to reach the learning criterion in the reversal 1 
learning phase of the location group, according to age groups. 2 

Variable N 
Events 

(learning) 
Median 95% CI 

Age group      

Old 24 20 32 28-45 

Young 18 17 21 20-32 

 3 

 4 

The same analysis was repeated for the physical characteristics group and 5 

the Cox proportional hazard model (Table 10) indicated that, during the reversal 6 

learning, the number of trials that the dogs required to reach the learning criterion 7 

was influenced by the age group, with young dogs requiring fewer trials to reach 8 

the learning criterion, compared to the old dogs (Table 11, Fig 5). 9 

 10 

Table 10. Cox Proportional Hazards estimates of the determinants of learning in the reversal 11 
learning phase in the physical characteristics group, by age group. 12 
Variable Coefficient a HRb Test statistics p 

Age group c     

(Old)     

Young 1.351 3.862 3.092 .002 

Total N  46 

Wald test 9.56 (1 df), p = .002 

Test for proportional hazards  χ2 = .01, p = .99 

R2 .20 
a Coefficient = log (relative hazard). 13 
b HR = Hazard Ratio. 14 
c Reference category in parenthesis.  15 
 16 
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 1 

 2 

Figure 5. Survival curve for the number of trials to reach the learning criterion in the 3 
reversal learning phase of the physical characteristics group according to the age group. The 4 
darker line represents the young dogs, the lighter line represents the old dogs. The shadowed areas 5 
reflect the confidence intervals and the crosses (+) indicate censored data (i.e. dogs for which the 6 
task was interrupted but they had not learned).  7 
 8 

Table 11. Median number of trials necessary to reach the learning criterion in the reversal 9 
learning phase of the physical characteristics group, according to age groups. 10 

Variable N Events 

(learning) 
Median 95% CI 

Age group      

Old 26 8 39 - 

Young 20 16 38.5 32 - 50 

 11 

 12 

A Wilcoxon rank-sum test (Table 12) revealed that the delta score was 13 

significantly smaller in the old dogs compared to the young dogs (Fig 6). 14 

Furthermore, for several dogs, the delta score was negative or equal to 0 (Nreversal 15 

= 7).    16 

 17 
Table 12. Results of the Wilcoxon rank-sum test for the delta score, as compared between old and young dogs. The 18 
effect size is reported (r = z / √ N), significance level was corrected for multiple comparisons (alpha = .025) 19 

 Mdn (min, max) W p r 

 Young Old    

Discrimination learning 3.01 (.11, 10.26) 1.03 (.19, 10.17) 739 .075 -.19 
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Consolidation 4.57 (-.58, 12.06) 2.02 (-.23, 10.40) 728 .060 -.19 

Cognitive bias test 9.38 (.08, 13.81) .86 (-.62, 12.99) 567 .001 -.34 

Reversal learning 1.27 (.00, 8.65) .58 (-.18, 9.19) 649 .011 -.27 

Note: N = 88 1 
 2 

 3 
Figure 6. Box-plot graph for the delta scores of the discrimination learning, 4 

consolidation, cognitive bias and reversal learning phases. The tick bar 5 

represents the median score for the group, the boxes are the 25% and 75% 6 

quartiles and the error bars represent the minimum and maximum values; * 7 

indicates p < .025. 8 

 9 

Discussion 10 

 11 

The first aim of this study was to develop a reversal learning task which 12 

could detect age-related changes in the cognitive function of family dogs. We 13 

found that both the reversal learning and the preceding discrimination learning 14 

tasks could detect age differences in a group of family dogs without overt medical 15 

problems. Younger dogs (2-6.5 years), as a group, required fewer repetitions than 16 

older dogs (7-14.5 years) to discriminate between two stimuli; the same was true 17 

for the reversal learning task. In contrast to previous discrimination and reversal 18 

learning tests designed for the same purpose, our protocol could be performed in a 19 

short time frame (about 1 hour). 20 

* * 
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Our second aim was to assess mood differences between the two groups, 1 

old and young dogs, through a cognitive bias test. The two groups did not vary in 2 

their performance in the test, as measured by the cognitive bias score (Mendl et 3 

al., 2010). This suggests that, contrary to our hypothesis, successfully ageing dogs 4 

might not have more negative expectations in the presence of ambiguous stimuli. 5 

However, a delta score (measuring a difference in the speed approaching stimuli 6 

predicting a reward, P, and stimuli predicting the absence of reward, N) showed 7 

that, during the cognitive bias test and at the end of the reversal learning, older 8 

dogs approached the two stimuli (P and N) at a very similar speed. This delta 9 

score may be interpreted as an indirect measure of the contrast or magnitude of 10 

the discrimination between stimuli predicting a reward and stimuli predicting the 11 

absence of reward, and is suggested here as a novel measure in the study of dog 12 

ageing. The small contrast observed in the speed to approach P and to approach N 13 

could be due to lower motivation in old dogs, or cognitive reasons, e.g. decline in 14 

memory function or spatial function. Either way, because the old dogs responded 15 

very similarly to both P and N or were sometimes even faster in reaching the N 16 

than the P, the results regarding the cognitive bias test performed on this sample 17 

are limited in their interpretability in relation to mood. Nevertheless, the 18 

relationship between age and the delta score highlights the fact that cognitive 19 

tasks requiring training might not always be feasible in old dog populations. 20 

Another novelty of our study is the indication that the types of stimuli 21 

affect the level of difficulty of the task. Especially during the reversal learning, it 22 

was clear that that the learning was more difficult (required more trials) for the 23 

dogs trained based on the physical characteristics of the stimuli.  24 

The literature shows inconsistent evidence regarding age effects on 25 

discrimination learning (detected: Milgram et al., 2002; Studzinski et al., 2006; 26 

Tapp et al., 2003a,b; Tapp et al., 2004; Wallis et al., 2016; not detected: Christie 27 

et al., 2005; Milgram et al., 1994; Mongillo et al., 2014). On the contrary, the age 28 

effect is more stable when reversal learning tasks are employed (Christie et al., 29 

2005; Milgram et al., 1994; Mongillo et al., 2014; Tapp et al., 2003a,b Tapp et al., 30 

2004). On the other hand, dog populations, age ranges and types of tasks (as well 31 

as task design) vary largely in the literature (Szabó et al., 2016); therefore, any 32 

direct comparison between tasks should be cautious. Mongillo et al. (2013) 33 

developed a spatial learning task for family dogs. The authors reported no 34 
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difference in the discrimination learning between young dogs (3-7.3 years) and 1 

old dogs (8-14 years) and concluded that the task is likely too simple (Mongillo et 2 

al., 2013). It should be noted that 25% of the dogs in their sample (young: 23%; 3 

old: 28%) did not learn the discrimination. In our sample the rate in the learning 4 

failure was relatively similar for the old dogs (27%), but not for the young ones 5 

(7%), suggesting that the discrimination learning alone is more difficult for the 6 

old compared to the young dogs. Mongillo et al. (2013) suggested that the 7 

differences in performance that they observed between their discrimination 8 

learning and reversal learning tasks were likely due to variability in the level of 9 

difficulty between the two tasks. However, easier tasks should not be deemed as 10 

not useful; in fact, they allow for measuring a wider range of variability within a 11 

population. For example we observed that the dogs in our study found size, shape 12 

and colour discrimination more difficult than egocentric spatial learning in the 13 

reversal learning task (i.e. dogs in the “physical characteristics” group required 14 

more trials than dogs in the “location” group), although we cannot know which of 15 

these three components were used by the dogs and which were more difficult to 16 

them. Possibly as a consequence of this we observed a ceiling effect in the 17 

“physical characteristics” group, as the median number of trials of the old dogs 18 

corresponded to the maximum number of trials for the task. One might also argue 19 

that older dogs had impaired visual abilities and could not see the plates. 20 

Although, all dogs included in the current study had been preselected to ensure 21 

that they were able to reliably find small objects placed on floor. We cannot 22 

completely exclude that differences in the visual function affected old dogs’ 23 

ability to discriminate the stimuli in the “physical characteristics” group. 24 

Regardless of the reason, our results show that excessively difficult tasks might 25 

reduce the variance within the tested population, making it impossible to 26 

investigate within group differences. 27 

The focus on the discrimination learning task brings an additional level of 28 

detail in the assessment of dogs’ cognitive function, especially overcoming the 29 

issue of the ceiling effect observed in the reversal learning task, which might be 30 

relevant in the assessment of dogs with a higher deficit. Thus, tasks which are 31 

difficult for successfully ageing dogs and lead to a ceiling effect, cannot be used 32 

for testing dogs with cognitive dysfunction. On the contrary, as previously 33 

mentioned, reversal learning is a very consistent measure of age related decline 34 
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(e.g. Christie et al., 2005; Milgram et al., 1994; Mongillo et al., 2014; Tapp et al., 1 

2004). Our findings therefore suggest that the discrimination learning and reversal 2 

learning, based on location or combined with learning based on physical 3 

characteristics, may be an efficient task for the objective investigation of age-4 

related cognitive decline in family dogs. 5 

One possible reason for the discrepancies reported in the literature, in 6 

relation to learning and reversal learning, may be the fact that not all brain regions 7 

are affected by ageing at the same pace and not all subjects are equally affected at 8 

a given age; moreover, different cognitive functions rely on different brain areas. 9 

For example, Tapp et al. (2004) observed increasing atrophy in the frontal lobe of 10 

dogs as their age increased (starting from 8 – 11 years) as well as an inverse 11 

correlation between frontal lobe volume and a discrimination learning and 12 

reversal learning task. Moreover, Studzinski et al. (2006) observed deficits in the 13 

acquisition of a discrimination task in dogs aged 10+ years, compared to dogs 14 

below 8 years of age. However, they also reported that not all dogs in their sample 15 

showed spatial impairment, with 25% of the dogs above the age of 10 showing no 16 

deficit in their performance. Similarly, Head et al. (2000) reported signs of beta-17 

amyloid accumulation in some brain areas (enthorinal cortex, prefrontal cortex) 18 

from the age of 9 years, but only in subsets of dogs (42% vs 75% respectively), 19 

which was not consistently affected until the age of 14 years. Finally, Siwak-Tapp 20 

et al. (2007) found that hippocampal neurogenesis is significantly lower in dogs 21 

aged 3-5 years, compared to dogs aged 13-15 years. Additionally, hippocampal 22 

neurogenesis was negatively correlated with dogs’ performance in a number of 23 

cognitive tasks, including object discrimination, size discrimination, and 24 

black/white discrimination (Siwak-Tapp et al., 2007). The dogs in our sample 25 

were screened for neurological conditions, sensory-motor decline, and general 26 

signs of pathological ageing. Therefore our results could mirror cognitive changes 27 

of successfully aging dogs.  28 

One advantage of the use of family dogs as models for the study of ageing 29 

is the large and diverse population available, as long as non-invasive methods are 30 

employed. The discrimination learning and reversal learning tests described in our 31 

study could be used in combination with imaging techniques (e.g. MRI, fMRI, 32 

EEG) to further investigate the role of structural and functional changes in the 33 

brain on cognitive function. Future research should also investigate ways to 34 
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overcome the issue with the non-learning dogs. This is a limitation of the current 1 

study (as well as any study requiring training), as the dogs that do not learn the 2 

discrimination cannot be assessed in such cognitive tasks. One way to attempt 3 

overcoming this issue could be to increase the number of training trials during the 4 

discrimination learning; however, this strategy has a limitation in that it prolongs 5 

the overall duration of the task. 6 

 One interesting finding is the variation in the delta score (i.e. difference 7 

between the latency to N and the latency to P, which could be defined as positive-8 

negative contrast) between old and young dogs. Originally derived from the 9 

cognitive bias test research (Starling et al., 2011), the measure should provide an 10 

indication of dogs’ ability to discriminate between the two stimuli. It is therefore 11 

interesting that we could observe two phenomena: 1) based on the delta score, 12 

there was a marked difference between the young and the old dogs, both during 13 

the cognitive bias test and the reversal learning; the young dogs tended to have a 14 

higher delta in terms of central tendency (median value) as well as spread (min-15 

max range). It is interesting that the difference between the groups appeared in the 16 

two phases where the discrimination may be more difficult for the dogs. Dogs 17 

might have found the discrimination difficult during the cognitive bias because of 18 

the delay from the training (despite of the use of a block of consolidation trials), 19 

and in the reversal learning due to the cognitive conflict with the previous 20 

learning. We did not analyse further delta difference between tests as this was 21 

beyond the scope of the current paper; however, another advantage of measures 22 

such as a delta score is that it allows for comparability between tasks and between 23 

papers.  24 

 Our findings do not support the hypothesis that old dogs have more 25 

negative expectations than young dogs. However, as previously mentioned, the 26 

fact that the dogs in our sample did not consistently discriminate between the P 27 

and the N, deemed the results of the cognitive bias test to be difficult to interpret 28 

(Roelofs et al., 2016; Starling et al., 2014). Kis et al. (2015) reported that dogs 29 

could not remember the discrimination between P and N after a delay and indeed 30 

we observed that a large number of dogs did not repeat their discrimination 31 

learning performance during the consolidation phase (5 P and 5 N trials). This is 32 

something that should be explored more in the cognitive bias research, especially 33 

when the training protocols or the types of stimuli vary or there is a time gap 34 



 

32 

between training and testing. Another reason for the inconsistent findings that 1 

were observed in the cognitive bias test could be the limited number of test trials 2 

(i.e., 3 trials). The protocol had been previously used and yielded successful 3 

results in detecting differences between groups of dogs with the same number of 4 

trials (Kis et al., 2015). One solid justification for the use of few trials is that, with 5 

repetitions, subjects of the cognitive bias test readily learn that the ambiguous 6 

cues are unrewarded (a phenomenon called ‘loss of ambiguity’), which may lead 7 

to false conclusions (Doyle et al., 2010). In contrast, repeated tests may be 8 

particularly relevant in the case of ageing research (e.g. to monitor changes over 9 

time), therefore further investigations aiming to find a balance between loss of 10 

ambiguity and susceptibility to random errors is necessary. It has also been 11 

pointed out that personality traits (e.g. trait anxiety) might affect the results of the 12 

cognitive bias test (Roelofs et al., 2016), which is particularly relevant for a 13 

between subject design. For example, Starling et al. (2014) reported individual 14 

differences in baseline judgement bias in dogs. This should be taken into account, 15 

for example by matching the cognitive bias results with other behavioural 16 

observations and personality measures of the animal (Roefls et al., 2016). 17 

Research should also investigate other measures potentially related to welfare, 18 

such as anticipatory behaviour (Clegg & Deflour, 2018). 19 

 Overall, our findings indicate that a discrimination task based on the 20 

location of two objects, accompanied by a reversal learning task, may be an 21 

efficient way to measure age related decline in learning performance in family 22 

dogs. Further studies are necessary to better understand to which degree variation 23 

in the performance of this test might relate to functional changes in the brain or 24 

whether the test is predictive to cognitive decline. The task may be associated to 25 

colour and shape discrimination, although care should be taken to avoid ceiling 26 

effects, e.g. by increasing the maximum number of trials in the test. Future 27 

research should investigate the stability over time of the learned associations. This 28 

is particularly important when other tests (for example the cognitive bias test) rely 29 

on this association. However, the effectiveness of a cognitive bias test on a 30 

population of aged dogs is yet to be demonstrated. 31 

 32 

 33 
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