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THE FIXED POINT SET OF ANTI-SYMPLECTIC

INVOLUTIONS OF LAGRANGIAN FIBRATIONS

Abstract. We discuss some results and ideas on the topology of Lagrangian submanifolds
obtained as the fixed point locus of certain anti-symplecticinvolutions preserving the fibres
of a Lagrangian fibrationf : X → B. HereX is a symplectic manifold diffeomorphic to a
Calabi–Yau manifold.

1. Introduction

The fixed point locus of an anti-symplectic involution (i.e.a mapι : X → X such that
ι2 = IdX andι∗ω = −ω) is an interesting type of Lagrangian submanifold of a sym-
plectic manifold(X,ω). An easy, classical, construction of such an involution is given
by complex conjugation whenX is a smooth complex subvariety ofPn cut out by poly-
nomials with real coefficients. In this case the fixed point locus is just the intersection
with RPn. Understanding the topology of such varieties is generallya difficult prob-
lem. One reason why the fixed point set of an anti-symplectic involution is interesting
is that its Floer homology is particularly well behaved ([5,16]). In [3], together with
Jake P. Solomon, we constructed a class of anti-symplectic involutions by requiring
that they preserve the fibres of the Lagrangian fibrationsf : X → B constructed in [2].
In this caseX is diffeomorphic to a Calabi–Yau manifold (of complex dimension 2 or
3), e.g. aK3 surface or a quintic hypersurface inP4.

In this note we review the constructions in [2] and [3] and we report, in an in-
formal way and with almost no proofs, on some work in progresson the topology of
the fixed point locus of these anti-symplectic involutions.Proofs and details, together
with other results, will appear in [1]. Many of the results and ideas mentioned here on
Lagrangian fibrations are based on, or inspired by, the work of M. Gross [6, 7, 8, 10]
and M. Gross–B. Siebert [12]. In particular, it follows fromresults in these articles
and the construction in [2], that in most cases also the mirror Calabi–YauX̌ comes
with a “dual” Lagrangian fibration and anti-symplectic involution. In our fibrations
the general fibre off is a smooth Lagrangian torus, while fibres over points in a set
∆ ⊂ B are singular. In the 2-dimensional case the fibrations we consider are topolog-
ically identical to stable elliptic fibrations, i.e.B= S2 and there are 24 singular fibres
of Kodaira typeI1, i.e. once pinched tori. In the 3-dimensional case the base is home-
omorphic toS3 and the discriminant locus is a 3-valent graph (with the possibility that
some connected components are just circles with no vertices). The singular fibres are
also “stable” in some sense but their topology is more complicated.

The fibrations we consider also have a Lagrangian section, therefore the smooth
fibres have naturally a group structure isomorphic toRn/Zn. The anti-symplectic invo-
lution fixes such a section and restricted to smooth fibres is justα 7→ −α, and therefore
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the fixed point set in each smooth fibre is just 2n points. So, if we callΣ the fixed point
locus, thenΣ is a Lagrangian submanifold ofX and f restricted toΣ is a branched
covering ofB, of degree 2n, branching over∆. In the 2-dimensional case it is not dif-
ficult to show thatΣ has two connected components, one being the fixed Lagrangian
section, the other being a genus 10 curve. In this caseΣ has the largest possible total
cohomology group for the fixed point locus of an involution, and is therefore maximal.
The 3-dimensional case is more complicated. We discuss a long exact sequence linking
theZ/2Z cohomology ofΣ to the cohomology ofX. It is inspired by a Leray spectral
sequence studied by Gross (op. cit.), computing the cohomology of X in terms of the
fibration. As a corollary we obtain that ifX and its mirrorX̌ are simply connected,
thenΣ has just two connected components. Computing theZ/2Z-cohomology ofΣ is
reduced to computing a mapβ appearing in the long exact sequence (cf. Section 3).
When β = 0, Σ has the largest possible total cohomology. We describe an explicit
example coming from the so-called Schoen’s Calabi–Yau, where Σ can be described
in a sufficiently simple way so to apply standard techniques for the computation of
cohomology. The result is that for Schoen’s 3-fold,β is not zero.

A few questions remain open. Can we computeβ explicitly in more compli-
cated known examples such as the quintic or complete intersections in toric manifolds?
What is the relationship betweenΣ and the corresponding fixed point locusΣ̌ inside
the mirror manifoldX̌? What is the relation between the involutions we study and the
more classical ones constructed algebraically, for instance by conjugation inPn? IsΣ
in our case somehow special among other possible constructions, i.e. is it maximal in
some other sense? These and other questions will be addressed in [1] and further work.

Acknowledgments.This project was partially supported by NSF award DMS-0854989:
FRG: Mirror Symmetry & Tropical Geometry. Matessi was partially supported by
MIUR (Geometria Differenziale e Analisi Globale, PRIN07).

2. Lagrangian fibrations and involutions

2.1. Affine manifolds with singularities

Let (X,ω) be a smooth symplectic 2n-dimensional manifold,B a smoothn-dimensional
manifold and∆ ⊂ B a closed subset withB0 = B−∆ dense inB. A Lagrangian fibra-
tion on X is a smooth mapf : X → B such that the fibres off overB0 are Lagrangian
submanifolds (i.e. dimf−1(b) = n andω| f−1(b) = 0), andf restricted toB0 is a submer-
sion. The fibres over∆ are called singular. If the top dimensional stratum of a singular
fibre isn-dimensional, we require the smooth part of it,f−1(b)−{Crit( f )∩ f−1(b)},
to be a Lagrangian submanifold as well. When the fibres are compact and connected,
then the Arnold-Liouville theorem implies that the fibres over B0 are alln-tori. More-
over, we can cover the subsetB0 with an atlas,{(U j ,φ j)} j∈J such that the transi-
tion maps are affine transformations whose linear part has integral coefficients, i.e.
φ j ◦φ−1

k ∈ Rn⋊Sln(Z).

This motivates the definition of anintegral affine manifold with singularities: a
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topological manifoldB with a closed subset∆ ⊂ B, with B0 = B−∆ dense inB, such
that onB0 there exists an atlasA whose change of coordinates are inRn ⋊Sln(Z).
If (y1, . . . ,yn) are affine coordinates, then theZ-linear combinations of the 1-forms
dy1, . . .dyn span a maximal latticeΛ⊂ T∗B0 which is well defined independently of the
chosen affine coordinates (this follows from the fact that the linear part of the change
of coordinates is in Sln(Z)). We can use this to form then-torus bundleX0 = T∗B0/Λ.
The standard symplectic form onT∗B0 descends toX0 so that the standard projection
f0 : X0 → B0 is a Lagrangian submersion.

In general, if we start with a given integral affine manifold with singularities
(B,∆,A), we may ask whether we can find a symplectic manifoldX and extend the
bundle f0 : X0 → B0 to a Lagrangian fibrationf : X → B by inserting singular La-
grangian fibres over the set∆. More precisely we want the following commutative
diagram

(1)

X0
j−−−−→ X

f0

y
y f

B0
i−−−−→ B

where j is a symplectomorphism andi is the inclusion. This is the starting point for
the construction of the Lagrangian fibrations in [2]. If we ask the question at the purely
topological level (i.e. without requiring a symplectic form on X and the Lagrangian
condition onf ) then, for the cases we consider here, the answer was provided by Gross
in [8]. In particular Gross finds a topological torus fibration on the quintic threefold in
P4.

Let us now give some examples of affine manifolds with singularities.

EXAMPLE 1 (Focus-focus). We start with a 2-dimensional example. We define
an affine structure with singularities onB = R2. Let ∆ = {0} and let(x1,x2) be the
standard coordinates onB. As the covering{Ui} of B0 =R2−∆ we take the following
two sets

U1 = R2−{x2 = 0 andx1 ≥ 0},

U2 = R2−{x2 = 0 andx1 ≤ 0}.
Denote byH+ the set{x2 > 0} and byH− the set{x2 < 0}. Let T be the matrix

(2) T =

(
1 0
1 1

)
.

The coordinate mapsφ1 andφ2 onU1 andU2 are defined as follows

φ1 = Id,

φ2 =

{
Id on H̄+∩U2

(T−1)t on H−.
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The atlasA = {Ui ,φi}i=1,2 is clearly an affine structure onB0. We can easily check
that if we consider the 2-torus bundleX0 = T∗B0/Λ, then the monodromy of theH1

homology of the fibres at a pointb∈ B0, associates the matrixT to the anti-clockwise
oriented generator ofπ1(B0).

This is a compact example:

EXAMPLE 2. InR3 consider the 3-dimensional simplexΞ spanned by the points
P0 = (−1,−1,−1), P1 = (3,−1,−1), P2 = (−1,3,−1), P3 = (−1,−1,3). Let B= ∂Ξ.
We explain how to construct an affine structure with singularities onB. Each edgeℓ j

of Ξ has 5 integral points (i.e. belonging toZ3), which divideℓ j into 4 segments. For

eachj = 1, . . . ,6 denote by∆ j
k, k= 1, . . . ,4 the four barycenters of these four segments.

We let
∆ = {∆ j

k; j = 1. . .6 andk= 1, . . . ,4}.
A covering ofB0 = B−∆ can be defined as follows. The first four open sets consist
of the four open facesΣi , i = 1. . . ,4 with the affine coordinate mapsφi induced by
their affine embeddings inR3. Denote byI the set of integral points ofB which lie
on an edge. For everyQ ∈ I we can choose a small open setUQ in B0 such that
{Σi}i=1,...,4∪{UQ}Q∈I is a covering ofB0. Let RQ denote the 1-dimensional subspace
of R3 generated byQ ∈ I . One can verify that ifUQ is small enough, the projection
φQ : UQ → R3/RQ is a homeomorphism. A computation shows that the atlasA =
{Σi ,φi}i=1,...,4∪{UQ,φQ}Q∈I defines an integral affine structure onB0.

In the latter example it can be easily checked that a neighbourhood of the sin-
gular points in∆ is affine isomorphic to a neighbourhood of 0∈ R2 in Example 1.
In dimension 2, an affine manifold with singularities(B,∆,A) is calledsimple if ∆
consists of isolated points and each point has a neighbourhood affine isomorphic to a
neighbourhood of 0 in Example 1.

We now present some 3-dimensional examples.

EXAMPLE 3 (The edge). LetI ⊆ R be an open interval. ConsiderB= R2× I
and ∆ = {0}× I . On B0 = (R2 −{0})× I we take the product affine structure be-
tween the affine structure onR2−{0} described in Example 1 and the standard affine
structure onI .

EXAMPLE 4 (Positive vertex). LetB=R×R2 and let(x1,x2,x3) be coordinates
in B. IdentifyR2 with {0}×R2. InsideR2 consider the cone over three points:

∆ = {x2 = 0, x3 ≤ 0}∪{x3 = 0, x2 ≤ 0}∪{x2 = x3, x3 ≥ 0}.

Now define closed sets inB

R = R×∆,
R+ = R≥0×∆,
R− = R≤0×∆,
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and consider the following cover{Ui} of R3−∆:

U1 = R3−R+,

U2 = R3−R−.

It is clear thatU1∩U2 has the following three connected components

V1 = {x2 < 0, x3 < 0},
V2 = {x2 > 0, x2 > x3},
V3 = {x3 > 0, x3 > x2}.

Take two matrices

(3) T1 =




1 1 0
0 1 0
0 0 1


 , T2 =




1 0 −1
0 1 0
0 0 1


 .

Now onU1,U2 we define coordinate mapsφ1, φ2 as follows

φ1 = Id,

φ2 =






Id on V̄1∩U2

T−1
1 on V̄2∩U2

T2 on V̄3∩U2.

Again we see thatA= {Ui,φi}i=1,2 gives an affine structure onB0 = R3−∆. One can
compute that, if we form the 3-torus bundleX0, given a pointb∈ B0 and two closed
paths generatingπ1(B0), then theH1 monodromy of the fibre ofX0 associates to these
two paths the matrices(T−1

j )t for j = 1,2.

EXAMPLE 5 (Negative vertex). LetB and∆ be as in Example 4. Then,R2−∆
has three connected components, which we denoteC1,C2 andC3. Let C̄j = Cj ∪ ∂Cj .
Consider the following three open subsets ofB0:

U1 = R3− (C̄2∪C̄3),

U2 = R3− (C̄1∪C̄3),

U3 = R3− (C̄1∪C̄2).

Let

V+ = {x1 > 0},
V− = {x1 < 0}.

ClearlyUi ∩U j =V+∪V− wheni 6= j. If T1 andT2 are as in (3), define the following
coordinate charts onU1, U2, U3 respectively:

φ1 = Id,

φ2 =

{
(T−1

1 )t on V̄+∩U2

Id on V̄−∩U2,

φ3 =

{
Id on V̄+∩U3

(T−1
2 )t on V̄−∩U3.
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We can check that the affine structure defined by these charts is such that, on the 3-torus
bundleX0, given a pointb∈ B0, then theH1 monodromy of the fibre ofX0 associates to
two generators ofπ1(B0) the matricesTj , j = 1,2. In particular, monodromy is given
by the inverse transpose matrices of the monodromy in the previous example.

These three examples are the building blocks of so-called 3-dimensional simple
affine structures with singularities. A 3-dimensional compact example is the following:

EXAMPLE 6. This three dimensional example is taken from [11, §19.3].Let Ξ
be the 4-simplex inR4 spanned by

P0 = (−1,−1,−1,−1), P1 = (4,−1,−1,−1), P2 = (−1,4,−1,−1),

P3 = (−1,−1,4,−1), P4 = (−1,−1,−1,4).

Let B = ∂Ξ. Denote byΣ j the open 3-face ofB opposite to the pointPj and byFi j

the closed 2-face separatingΣi andΣ j . EachFi j contains 21 integral points (including
those on its boundary). These form the vertices of a triangulation ofFi j as in Figure
1. By joining the barycenter of each triangle with the barycenters of its sides we form
a trivalent graph as in Figure 1. Define the set∆ to be the union of all such graphs in
each 2-face. Denote byI the set of integral points ofB. Just as in the previous example,
we can form a covering ofB0 = B−∆ by taking the open 3-facesΣ j and small open
neighborhoodsUQ insideB0 of Q ∈ I . A coordinate chartφi on Σi can be obtained
from its affine embedding inR4. If we denote again byRQ the linear space spanned by
Q∈ I , as a chart onUQ we take the projectionφQ : UQ →R4/RQ.

−

+

Figure 1: AffineS3 with singularities.
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In the above example one can check that points in the interiorof the edges of the
graph∆ have neighbourhoods which are affine isomorphic to neighbourhoods of points
on the line of singularities in Example 3. The vertices of∆ which are in the interior
of 2-faces have neighbourhoods affine isomorphic to the vertex in Example 5 (these
are called negative vertices), while vertices of∆ on 1-faces have neighbourhoods affine
isomorphic to a neighbourhood of the vertex in Example 4 (positive vertices).

We say that a 3-dimensional affine manifold with singularities issimpleif ∆ is a
3-valent graph, with vertices labelled as positive or negative. The affine structure near
points on the edges of∆ is locally affine isomorphic to Example 3, near positive (resp.
negative) vertices it is locally affine isomorphic to Example 4 (resp. Example 5).

2.2. Glueing singular fibres

Given the symplectic manifoldX0 = T∗B0/Λ, how do we glue singular fibres toX0?
The 2-dimensional case can be achieved as follows. First consider the following exam-
ple of Lagrangian fibration:

EXAMPLE 7. Let X = C2 −{z1z2 + 1 = 0} and letω be the restriction toX
of the standard symplectic form onC2. One can easily check that the following map
f : X →R2 is a Lagrangian fibration:

(4) f (z1,z2) =

( |z1|2−|z2|2
2

, log|z1z2+1|
)
.

The only singular fibre isf−1(0), which has the topology of aI1 fibre (a pinched torus).

This is an example of a fibration of “focus-focus” type. One can explicitly com-
pute the affine coordinates on the base, away from the singular point (0,0) ∈ R2. It
can be shown that this affine structure is isomorphic (in a neighbourhood of(0,0)) to
the one given in Example 1. This implies that given a 2-dimensional, simple, affine
manifold with singularities and a pointp ∈ ∆, we can glue, via a fibre-preserving
symplectomorphism, a neighbourhood of the singular fibre inthe above example to
( f0)−1(U− p)⊂X0 for a suitable neighbourhoodU . For the details of this construction
consult [2]. If we do this at all 24 points in Example 2, in the end we obtain a symplec-
tic manifold diffeomorphic to a K3 surface and a Lagrangian fibration f : X → S2 with
24 singular fibres and a Lagrangian section off .

A similar, but rather more complicated, construction can becarried out in the
case of a 3-dimensional, simple affine manifold with singularities. Thus obtaining a 6-
dimensional (compact) symplectic manifoldX with a Lagrangian fibrationf : X → B,
together with a Lagrangian section. This is the main result of [2]. The idea is to find
suitable models of Lagrangian fibrations with singular fibres which can be glued over∆.
When compactified in this way, Example 6 gives a manifold diffeomorphic to a quintic
in P4. We should warn the reader that in the final result of [2] the map f is not smooth
but just piecewise smooth, it fails to be smooth only along the preimage of small 2-
dimensional discs containing negative vertices. Also, thediscriminant locus∆ has to
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be enlarged slightly, so that near a negative vertex it is a codimension 1 thickening of
the graph. The total spaceX obtained is nevertheless smooth. When the integral affine
base is as the ones considered by Gross and Siebert,X turns out to be diffeomorphic to
a Calabi–Yau.

2.3. Anti-symplectic involutions

An anti-symplectic involutionon a symplectic manifold(X,ω) is a mapι : X → X such
that ι∗ω = −ω and ι2 = IdX. The fixed point set of an anti-symplectic involution is
always a Lagrangian submanifold. In [3], together with JakeP. Solomon, we showed
that, given a Lagrangian fibrationf : X → B with a Lagrangian section constructed as
above, one can also find an anti-symplectic involutionι : X → X which preserves the
fibres and fixes the section. The idea for the construction is as follows. Consider the
fibre-preserving anti-symplectic involutionι0 onT∗B0/Λ induced by(p,α) 7→ (p,−α)
for everyp∈ B0 andα ∈ T∗

p B0. We show thatι0 extends to a smooth fibre-preserving
anti-symplectic involutionι on X. This is done by first studying anti-symplectic invo-
lutions on local models of singular fibres and then refining the gluing by also matching
the involutions.

In this note, we would like to discuss the topology of the fixedpoint set of this
type of involutions. The fixed point setΣ is the closure inX of the image of the set12Λ
insideT∗B0/Λ. The mapf |Σ : Σ → B is a branched covering ofB, branching over∆.
In dimension 2 this branched covering is of degree 4 and of degree 8 in dimension 3.
Let us look more closely at some examples.

EXAMPLE 8. In the “focus-focus” case, i.e. Examples 1 and 7, fix a pointb∈
R2 −{(0,0)}. Then we can find a basis ofΛb with respect to which, monodromy
is the matrix (2). With respect to this basis, we can identifyΛb with Z2. ThenΣ∩
T∗

b B0/Λb consists of pointss0 = (0,0),s1 = (1/2,0),s2 = (0,1/2) ands3 = (1/2,1/2).
As we go around the singular point, monodromy mapss0 ands2 to themselves and
s1 to s3. Therefore, ifU is a neighbourhood of(0,0), f−1(U)∩Σ has 3 connected
components. There are two which map 1 to 1 toU , these are the ones containings0 and
s2 respectively. Then there is one mapping 2 to 1, which contains boths1 ands3. The
map f restricted to this latter component is a 2 to 1 branched covering, with branched
point inside the singular fibre.

EXAMPLE 9. In the case of Example 2, where the compactifiedX is diffeomor-
phic to a K3 surface, the fixed point setΣ is a compact Lagrangian surface. It is not
difficult to check thatΣ has 2 connected components, one of them is the zero section
and the other one is a degree 3 branched covering overS2 with 24 branched points
of ramification index 2. The Riemann–Hurwitz formula tells us that this connected
component is a genus 10 surface.

Observe that in the previous exampleb1(Σ) = 20= h1,1(X). We will discuss in
the following sections the reason why this equality is not a coincidence. Moreover it
is known that the fixed point setΣ of an involutionι : X → X on a compact manifold
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satisfies the following inequality in cohomology (see [4]):

(5) dim

(
∑
∗

H∗(Σ,Z/2Z)

)
≤ dim

(
∑
∗

H∗(X,Z/2Z)

)

In the case of our involution,Σ satisfies the equality, so it is in some sense maximal.

2.4. Mirror symmetry

For a more thorough explanation of the relevance of affine manifolds with singularities
and Lagrangian torus fibrations in the context of mirror symmetry the reader may con-
sult [9] and the references therein. We just mention a few facts that are related to the
topic of this note. Given an affine manifold with singularitiesB, besidesX0 = T∗B0/Λ,
we can also construcťX0 = TB0/Λ∗, whereΛ∗ is the dual lattice. IfB is simple, then
alsoX̌0 can be topologically compactified. This follows from the Gross’s topological
compactification, in fact in this case the role of vertices isinverted: where we had neg-
ative vertices, we glue fibres of positive type and viceversa. We thus obtain a (compact)
smooth manifoldX̌ together with a torus fibratioňf : X̌ → B. It was shown by Gross
(see next subsection) that the manifoldsX andX̌ satisfy the topological conditions re-
quired for them to be mirror manifolds. In the case of Example6, Gross also shows
thatX̌ is diffeomorphic to the mirror of the quintic.

The existence of a good symplectic structure onX̌ is not immediately appar-
ent from this description, since the tangent bundle does notcarry a natural symplec-
tic structure. To solve this problem one needs the extra dataon B of a (multivalued)
strictly convex functionφ, which can be used to define a symplectic form onTB0.
Equivalently, via the Legendre transform applied toφ, one defines a new affine struc-
ture onB0, giving a new lattice inT∗B0, which we denote by̌Λ. It can be checked that
T∗B0/Λ̌ andX̌0 are isomorphic torus bundles overB0, therefore alsǒX0 has a symplec-
tic structure (inherited fromT∗B0). Thus, alsoX̌0 can be symplectically compactified
to give a Lagrangian fibratioňf : X̌ → B, with a fibre-preserving anti-symplectic invo-
lution. Using ideas from toric geometry, Gross and Siebert also introduce the discrete
Legendre transform, which is a combinatorial version of thestandard Legendre trans-
form. In [10], Gross shows that this construction can be applied to all the examples of
Batirev–Borisov’s pairs of mirror Calabi–Yau’s.

In [3] we also discuss the relevance of our construction of anti-symplectic invo-
lutions in the context of the Homological Mirror Symmetry conjecture. This conjecture
states that given mirror manifoldsX andX̌, there should be an equivalence of categories
between the derived category of coherent sheaves onX̌ and the derived Fukaya cate-
gory onX. The objects in this latter category are Lagrangian submanifolds of X, with
some other data attached. Since the two categories are conjectured to be equivalent, an
autoequivalence on one category should correspond to one onthe other. The category
of coherent sheaves has a natural autoequivalence which consists in mapping a sheaf
to its dual. In [3] we discussed some evidence of a conjectureclaiming that the autoe-
quivalence on the Fukaya category, corresponding to dualization, should be given by
the anti-symplectic involutionι that we constructed, where a Lagrangian submanifold
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is mapped to its image underι.

2.5. Topology of Lagrangian3-torus fibrations

We describe here some of Gross’s results on the Leray spectral sequence applied to
the torus fibrationsf : X → B of the type discussed in the previous section. We as-
sume that(B,∆,A) is a compact simply-connected, 3-dimensional, simple integral
affine manifold with singularities. The arguments are entirely topological, without
any reference to the fact thatX is symplectic and the fibres are Lagrangian. Given an
abelian groupG, we denote byRk f∗G the sheaf associated to the presheaf onB given
by U 7→ Hk( f−1(U),G). The Leray spectral sequence associated tof has asE2 terms
the groupsH j(B,Rk f∗G). We recall Gross’s definition:

DEFINITION 1. Let i : B0 → B be the inclusion. The fibration f: X → B is
G-simple if

i∗Rk f0∗G= Rk f∗G

We will assume in the following thatX is simply connected. For some of the
arguments, this condition can be relaxed, e.g. it could be replaced withH1(X,R) = 0.
In [8] Gross showed that the fibrations considered here are alwaysG-simple, whenG is
Z or Z/nZ. MoreoverZ simplicity impliesQ simplicity. Notice also that, since affine
coordinates onB0 have linear part in Sl(n,Z), the fibres are canonically oriented, so
that

R3 f∗G= G.

Moreover, f has a smooth section (extending the zero section onT∗B0). We also
consider the mirror dual fibratioňf : X̌ → B, which is also aG-simple fibration with a
section and we will assume that alsoX̌ is simply connected.

Now, letG=Q (but the following also holds forG= Z orZ/2Z). By Poincaré
duality applied to the fibres, we have that

(Rj f0∗Q)∨ = Rn− j f0∗Q.

Moreover, from the definition of dual torus fibration, we alsohave:

(Rj f0∗Q)∨ = Rj f̌0∗Q.

By applyingi∗ to the above and usingQ-simplicity we obtain

(6) Rj f̌∗Q= Rn− j f∗Q.

TheE2 page for the Leray spectral sequence forf with G = Q, looks like the
following

Q 0 0 Q
0 H1(B,R2 f∗Q) H2(B,R2 f∗Q) 0
0 H1(B,R1 f∗Q) H2(B,R1 f∗Q) 0
Q 0 0 Q
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For the proof of this, one can argue as follows. Since the fibres are con-
nected, we haveR0 f∗Q = Q. MoreoverR3 f∗Q = Q, as we already mentioned. So,
together with the fact thatB is simply connected, we obtain the zeroes in the top
and bottom row. The zeroes in the first and last column come from the fact that
H1(X,Q) = H5(X,Q) = H1(X̌,Q) = H5(X̌,Q) = 0 together with (6). TheE2 term
for f̌ is obtained by exchanging the first and second row of theE2 term of f .

Gross proved that under these hypotheses the Leray spectralsequences off and
f̌ degenerate at theE2 term, so that whenX is a Calabi–Yau manifold

h1,1(X) = dimH1(B,R1 f∗Q) = dimH1(B,R2 f̌∗Q) = h2,1(X̌).

So the topology of these fibrations onX and X̌ guarantees thatX and X̌ satisfy the
basic topological requirement of mirror symmetry. These arguments also work if we
replaceQ withZ/2Z (except, maybe, the equality with Hodge numbers, due to possible
presence of 2-torsion):

Z/2Z 0 0 Z/2Z
0 H1(B,R2 f∗Z/2Z) H2(B,R2 f∗Z/2Z) 0
0 H1(B,R1 f∗Z/2Z) H2(B,R1 f∗Z/2Z) 0

Z/2Z 0 0 Z/2Z

From which we obtain that

H2(X,Z/2Z)∼= H1(B,R1 f∗Z/2Z)

H3(X,Z/2Z)∼= H1(B,R2 f∗Z/2Z)⊕H2(B,R1 f∗Z/2Z)⊕Z/2Z⊕Z/2Z

H4(X,Z/2Z)∼= H2(B,R2 f∗Z/2Z)

3. A long exact sequence

We now wish to understand theZ2-cohomology of the fixed point locus of the anti-
symplectic involutions constructed in the previous section. We sketch here the con-
struction of a long exact sequence which links the cohomology of the ambient manifold
X with the cohomology ofΣ, details will appear in [1]. The assumptions onf : X → B
are the same as those in the last subsection of the previous section (in particularX is
6-dimensional) and we letΣ be the fixed point locus of the anti-symplectic involution
ι : X → X. Let

σ = f |Σ
and denote byσ0 the restriction ofσ to σ−1(B0). The idea is to consider the spectral
sequence associated to the branched coveringσ : Σ → B and compare it with the one
associated tof . Observe that theE2 term of the spectral sequence ofσ consists of just
one row of elements of the typeH j(B,R0σ∗Z/2Z) and therefore the spectral sequence
degenerates atE2. It can also be shown that, sincef isZ/2Z-simple then alsoσ : Σ→B
is aZ/2Z-simple fibration.
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We can now restrict our attention only to the sheafR0σ0∗Z/2Z. For every point
p∈ B0, σ−1(p) consists of the 8 points in the image of1

2Λp insideT∗
p B0/Λp. Notice

that σ−1(p) has a group structure isomorphic to(Z/2Z)3. Denote this group byG p

and letG be the sheaf overB0 whose stalk isG p. Observe that

(7) G ∼= R2 f0∗Z/2Z,

in factG is naturally isomorphic to(R1 f0∗Z/2Z)∨.

Now let us denote byG ′ the sheafR0σ0∗Z/2Z and observe thatG ′p is just the set
of maps fromG p to Z/2Z. Clearly, constant maps are monodromy invariant, but since
monodromy acts linearly onG p, also the map which is 1 at 0∈ G p and zero elsewhere
is monodromy invariant. Let us denote byC the sheaf generated by the constant maps
and this latter map. Since these maps are monodromy invariant, C is just the constant
sheaf(Z/2Z)2. Also note thatG ∨ is naturally a subsheaf ofG ′. It can be shown that
there is a short exact sequence of sheaves

0→ G ∨⊕ C → G ′ → G → 0.

The mapG ′ → G in the above sequence is defined as follows. Letg∈ G p and denote
by δg ∈ G ′p the map which is 1 atg and zero elsewhere. One can show that every class
in the quotient ofG ′p by G ∨p ⊕ C p is represented by aδg for a uniqueg. So the map
from G ′p to G p maps every element in the class ofδg to g. It can be shown that this
map is linear and that it is a morphism of sheaves. Using (7) and Z/2Z-simplicity the
above exact sequence becomes

0→ (R1 f∗Z/2Z)⊕Z/2Z⊕Z/2Z→ R0σ∗Z/2Z→ R2 f∗Z/2Z→ 0.

The fact that the sequence remains short exact after applying i∗ follows by directly
computing the above maps on elements which are locally monodromy invariant near
pointsp∈ ∆. With some abuse of notation, we continue to denote this sequence by

0→ G ∨⊕ C → G ′ → G → 0.

Passing to the long exact sequence in sheaf cohomology, we obtain

THEOREM1. The sheavesG , G ′ andG ∨ over B satisfy the following long exact
sequence:

0→ H0(B,G ∨⊕ C ) → H0(B,G ′)→ H0(B,G )→

H1(B,G ∨⊕ C ) → H1(B,G ′)→ H1(B,G )
β→(8)

H2(B,G ∨⊕ C ) → H2(B,G ′)→ H2(B,G )→0

Observe that from the Leray spectral sequence forσ, we have that

H j(B,G ′)∼= H j(Σ,Z/2Z).
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and from the definitions ofG , G ∨ andC , for j = 1,2, we have

H j(B,G ∨⊕ C )∼= H j(B,G ∨)∼= H j(B,R1 f∗Z/2Z),

H j(B,G )∼= H j(B,R2 f∗Z/2Z).

So we obtain

COROLLARY 1. Σ has two connected components.

Proof. SinceH0(B,G ) = H0(B,G ∨) = 0 andC ∼= Z/2Z⊕Z/2Z, the first row splits
off from the rest and it tells us thatH0(Σ,Z/2Z) ∼= Z/2Z⊕Z/2Z. HenceΣ has two
connected components.

One of the two components is the zero section, therefore diffeomorphic toS3.
Notice also that the second row tells us thatH1(B,R1 f∗Z/2Z) injects intoH1(Σ,Z/2Z).

COROLLARY 2. With the above hypotheses

dimH1(Σ,Z/2Z)≥ dimH2(X,Z/2Z)

Moreover ifβ = 0, for j = 1,2 we would have

H j(Σ,Z/2Z)∼= H j(B,R1 f∗Z/2Z)⊕H j(B,R2 f∗Z/2Z)

Observe that ifβ = 0 thenΣ satisfies the equality in the inequality (5) and is
therefore maximal. Observe also that in the 2-dimensional case of Example 9, a similar
but smaller spectral sequence gives us:

H1(Σ,Z/2Z)∼= H1(B,R1 f∗Z/2Z)⊕H2(B,R2 f∗Z/2Z).

Since the total space is a K3 surface andΣ is oriented, the above equality holds since
b1(Σ) = 2h1,1(X) = 20, which is what we already noticed.

4. An example: Schoen’s Calabi–Yau

4.1. The manifold and the fibration

At the time of writing this note, we were able to compute the cohomology of only
one example of fixed point locus of an involution of the type described. It comes
from a Lagrangian fibration of the so-called Schoen’s Calabi–Yau. This manifold was
studied in [15], and then described in terms of its associated affine manifold with sin-
gularities by Gross in [10]. Kovalev [13] described a 3-torus fibration, which inspired
the construction we provide here. Considerf1 : Y1 → P1 and f2 : Y2 → P1 two ra-
tional elliptic surfaces with a section, such that there does not existx ∈ P1 for which
f−1
1 (x) and f−1

2 (x) are both singular. Then Schoen’s Calabi–Yau is the fibred product
Y = Y1 ×P1 Y2. It satisfiesχ(X) = 0, h1,1(X) = h1,2(X) = 19. It can also be written
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as a complete intersection inP1×P2×P2 of hypersurfaces of tridegree(1,3,0) and
(1,0,3).

A topological construction can be given as follows. Consider a 4-dimensional
manifold with boundaryM̄ which fibres over the closed 2-discD so that the general
fibre is a 2-torus and such that there are 12 singular fibres of Kodaira typeI1 (pinched
tori) over interior points ofD. Assume also that the boundary of̄M is a trivial 2-torus
bundle over∂D = S1, i.e. ∂M̄ ∼= T ×S1, whereT is a 2-torus. To construct̄M we can
proceed as follows. Take an elliptically or Lagrangian fibred K3, with 24 singular fibres
of Kodaira typeI1. Then consider a simple closed curveγ on the base bounding a 2-disc
D containing images of 12 singular fibres, and such that it doesnot pass through critical
points. If, furthermore, we chooseγ so that along it theH1-monodromy of the fibres is
trivial, then we can takēM to be the union of the fibres overD. Another construction
can be found in [14]. Now consider the 6-manifold with boundary X̄ = M̄×T ′, where
T ′ is a 2-torus. ClearlȳX fibres overD×S1 by taking the product of the given fibration
of M̄ with the standardS1 fibration of T. The boundary ofX̄ is S1×T ×T ′, where
S1×T is the boundary ofM̄. Consider coordinates on∂X̄ given by(φ1,φ2,φ3,θ1,θ2),
whereφ1 is the (angle) coordinate onS1, (φ2,φ3) and(θ1,θ2) are (angle) coordinates
on T andT ′ respectively. Assume that the fibration restricted to∂X̄ is the projection
onto the coordinates(φ1,θ1) ∈ ∂D×S1.

Now consider the homeomorphismΦ : ∂X̄ → ∂X̄ given by

Φ(φ1,φ2,φ3,θ1,θ2) = (θ1,θ2,−φ3,φ1,φ2).

We form the manifoldY by gluing two copies ofX̄ along their boundary using the
homeomorphismΦ, i.e.

Y = X̄⊔Φ X̄.

It turns out thatY is diffeomorphic to Schoen’s Calabi–Yau (see Gross [10] andKovalev
[13]). Notice that if we glue two copies of the baseD×S1 of the fibration onX̄ via
the map(φ1,θ1) 7→ (θ1,φ1), then we obtain a 3-sphereS3 and a 3-torus fibration ofY
on S3 induced from the fibration on̄X. One can show, using the results of [2], that
this fibration can be turned into a (smooth) Lagrangian fibration, by compactifying the
affine manifold with singularities constructed by Gross [10, §4].

4.2. The involution and the fixed point locus

We now describe the involution onY. On M̄ we can construct a fibrepreserving in-
volution, simply by considering the involution on the K3 as described in Example 9
and restricting it toM̄. OnT ′ we take the involution which preserves the fibres of the
fibration onS1, i.e. in coordinates(θ1,θ2), the involution is(θ1,θ2) 7→ (θ1,−θ2). Then
on X̄ = M̄×T ′ we take the product involution. It clearly descends to an involution on
Y.

Let us now describe the fixed point locus of this involution. The fixed point
locus of the involution onM̄ is the disjoint union of a 2-disc, which we denote byS0

(corresponding to the zero section on theK3) and a genus 4 surfaceS1 with 3 open
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discs removed. The boundary of the 2-disc and the three copies of S1 forming the
boundary ofS1 are mapped by the fibration to the boundary of the base∂D. In fact,
we may assume that, with respect to the coordinates(φ1,φ2,φ3) of ∂M̄ = S1×T the
involution is (φ1,φ2,φ3) 7→ (φ1,−φ2,−φ3) so the four circles are given by(φ1,0,0)
(which is the boundary ofS0), (φ1,1/2,0), (φ1,0,1/2), (φ1,1/2,1/2). The latter three
form the boundary ofS1. Now onT ′, the fixed locus of the involution is given by a pair
of circles, corresponding to(θ1,0) and(θ1,1/2). Therefore the fixed point locus of the
involution onM̄×T ′ is given by two copies ofS0×S1 and two copies ofS1×S1, i.e.

Σ̄ = (S0×S1)⊔ (S0×S1)⊔ (S1×S1)⊔ (S1×S1).

Then, the fixed point locus of the involution onY is obtained by gluing together two
copies ofΣ̄ via the the homeomorphismΦ restricted to the boundary components of
Σ̄. The result is a 3-manifoldΣ with two connected components, one of which is
a 3-sphere. According to our computations (based on the Mayer–Vietoris Theorem)
H1(Σ,Z) isZ34. SinceH2(Y,Z) =Z19 andH3(Y,Z) = Z40, in the long exact sequence
of Theorem 1 applied toY andΣ, we have

H1(B,G ) = (Z/2Z)19,

and
dimkerβ = 15.

So this is an example whereβ is not zero.
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