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THE FIXED POINT SET OF ANTI-SYMPLECTIC
INVOLUTIONS OF LAGRANGIAN FIBRATIONS

Abstract. We discuss some results and ideas on the topology of Lagrarsgibmanifolds
obtained as the fixed point locus of certain anti-sympleiciolutions preserving the fibres
of a Lagrangian fibratiorf : X — B. HereX is a symplectic manifold diffeomorphic to a
Calabi-Yau manifold.

1. Introduction

The fixed point locus of an anti-symplectic involution (izemapt : X — X such that
12 = ldyx andi*w = —w) is an interesting type of Lagrangian submanifold of a sym-
plectic manifold(X,w). An easy, classical, construction of such an involutionveiy
by complex conjugation wheX is a smooth complex subvariety Bf cut out by poly-
nomials with real coefficients. In this case the fixed poicu®is just the intersection
with RP". Understanding the topology of such varieties is genemltjfficult prob-
lem. One reason why the fixed point set of an anti-sympleticlution is interesting
is that its Floer homology is particularly well behaved (I8)]). In [3], together with
Jake P. Solomon, we constructed a class of anti-symplewt@iitions by requiring
that they preserve the fibres of the Lagrangian fibrationX — B constructed in [2].
In this caseX is diffeomorphic to a Calabi—Yau manifold (of complex dinsem 2 or
3), e.g. &3 surface or a quintic hypersurfacelif.

In this note we review the constructions in [2] and [3] and wpart, in an in-
formal way and with almost no proofs, on some work in progsshe topology of
the fixed point locus of these anti-symplectic involutioRsoofs and details, together
with other results, will appear in [1]. Many of the resultgdladeas mentioned here on
Lagrangian fibrations are based on, or inspired by, the wbM.dGross [6, 7, 8, 10]
and M. Gross—B. Siebert [12]. In particular, it follows framsults in these articles
and the construction in [2], that in most cases also the m@aabi—YauX comes
with a “dual” Lagrangian fibration and anti-symplectic itwtion. In our fibrations
the general fibre of is a smooth Lagrangian torus, while fibres over points in a set
A C B are singular. In the 2-dimensional case the fibrations wsiden are topolog-
ically identical to stable elliptic fibrations, i.& = S and there are 24 singular fibres
of Kodaira typels, i.e. once pinched tori. In the 3-dimensional case the sakeme-
omorphic toS® and the discriminant locus is a 3-valent graph (with the inility that
some connected components are just circles with no veytidgée singular fibres are
also “stable” in some sense but their topology is more carafgid.

The fibrations we consider also have a Lagrangian sectiergfibre the smooth
fibres have naturally a group structure isomorphi@?gZ". The anti-symplectic invo-
lution fixes such a section and restricted to smooth fibrassisj— —a, and therefore
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the fixed point set in each smooth fibre is juspdints. So, if we calk the fixed point
locus, thenX is a Lagrangian submanifold of and f restricted toX is a branched
covering ofB, of degree 2, branching oveA. In the 2-dimensional case it is not dif-
ficult to show thatz has two connected components, one being the fixed Lagrangian
section, the other being a genus 10 curve. In this 2alsas the largest possible total
cohomology group for the fixed point locus of an involutiongdas therefore maximal.
The 3-dimensional case is more complicated. We discussyeehaact sequence linking
theZ /27 cohomology of to the cohomology oX. It is inspired by a Leray spectral
sequence studied by Gross (op. cit.), computing the cohmggaif X in terms of the
fibration. As a corollary we obtain that ¥ and its mirrorX are simply connected,
thenZX has just two connected components. ComputingifigZ-cohomology of is
reduced to computing a mgpappearing in the long exact sequence (cf. Section 3).
When 3 = 0, Z has the largest possible total cohomology. We describe plicix
example coming from the so-called Schoen’s Calabi—Yau rehean be described

in a sufficiently simple way so to apply standard techniquesttie computation of
cohomology. The result is that for Schoen’s 3-fddds not zero.

A few questions remain open. Can we compfitexplicitly in more compli-
cated known examples such as the quintic or complete irtgoss in toric manifolds?
What is the relationship betweenand the corresponding fixed point lockisnside
the mirror manifoldX? What is the relation between the involutions we study aed th
more classical ones constructed algebraically, for icsdry conjugation ifP"? IsZ
in our case somehow special among other possible constngciie. is it maximal in
some other sense? These and other questions will be addire$skand further work.

Acknowledgments.This project was partially supported by NSF award DMS-0&19
FRG: Mirror Symmetry & Tropical GeometryMatessi was partially supported by
MIUR (Geometria Differenziale e Analisi GlobaleRINO7).

2. Lagrangian fibrations and involutions

2.1. Affine manifolds with singularities

Let (X, w) be a smooth symplectici2dimensional manifoldB a smootm-dimensional
manifold andA C B a closed subset witBy = B — A dense irB. A Lagrangian fibra-
tion on X is a smooth mag : X — B such that the fibres of overBp are Lagrangian
submanifolds (i.e. dimi~(b) = n andw)| t-1(p) = 0), andf restricted tdBo is a submer-
sion. The fibres oveh are called singular. If the top dimensional stratum of a giag
fibre isn-dimensional, we require the smooth part offit,(b) — {Crit(f)n f~(b)},
to be a Lagrangian submanifold as well. When the fibres argpactrand connected,
then the Arnold-Liouville theorem implies that the fibresoB are alln-tori. More-
over, we can cover the subsBg with an atlas,{(Uj,®;) }jc3 such that the transi-
tion maps are affine transformations whose linear part hizgral coefficients, i.e.
@i o @t € R" % Shy(2).

This motivates the definition of a@ntegral affine manifold with singularities
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topological manifoldB with a closed subsé C B, with Bo = B— A dense inB, such
that onBy there exists an atlad whose change of coordinates areRA x SIy(Z).

If (y1,...,¥n) are affine coordinates, then tfelinear combinations of the 1-forms
dyi,...dy, span a maximal latticA C T*Bg which is well defined independently of the
chosen affine coordinates (this follows from the fact thatlthear part of the change
of coordinates is in §(Z)). We can use this to form thetorus bundleXo = T*Bg/A.
The standard symplectic form dn'Bp descends t&Xp so that the standard projection
fo : Xo — Bp is a Lagrangian submersion.

In general, if we start with a given integral affine manifolittwsingularities
(B,A,A), we may ask whether we can find a symplectic mani¥ldnd extend the
bundle fp : Xop — Bog to a Lagrangian fibratiorf : X — B by inserting singular La-
grangian fibres over the s&t More precisely we want the following commutative
diagram

1) fol lf
Bp —— B

wherej is a symplectomorphism arids the inclusion. This is the starting point for
the construction of the Lagrangian fibrations in [2]. If wé& &e question at the purely
topological level (i.e. without requiring a symplectic foron X and the Lagrangian
condition onf) then, for the cases we consider here, the answer was ptovyd&ross
in [8]. In particular Gross finds a topological torus fibration the quintic threefold in
P4,

Let us now give some examples of affine manifolds with singtids.

ExamPLE 1 (Focus-focus). We start with a 2-dimensional example. @fend
an affine structure with singularities @= R?. Let A = {0} and let(x;,x;) be the
standard coordinates @ As the coverindU; } of Bp = R? — A we take the following
two sets

Ui = R? — {xp = 0 andx; > 0},

Us = R? — {xp = 0 andx; < 0}.
Denote byH™" the set{x, > 0} and byH ™ the set{x; < 0}. LetT be the matrix

2 T:(i g)

The coordinate mapg and@, onU; andU, are defined as follows
m = Id,

{ Id on HTNU,
@

(T™H' on H-.
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The atlasA = {U;,@ }i—1,2 is clearly an affine structure dBg. We can easily check
that if we consider the 2-torus bundig = T*Bo/A, then the monodromy of thid;
homology of the fibres at a poibte By, associates the matrix to the anti-clockwise
oriented generator afy (Bo).

This is a compact example:

EXAMPLE 2. InR3 consider the 3-dimensional simpl&spanned by the points
Po=(-1,-1,-1),P,=(3,-1,-1),P,=(-1,3,-1),P3 = (—1,-1,3). LetB=0=.
We explain how to construct an affine structure with singties onB. Each edgé;
of = has 5 integral points (i.e. belonging #5), which divide/; into 4 segments. For
eachj=1,...,6 denote b)AH(, k=1,...,4 the four barycenters of these four segments.
We let _
A={p;j=1...6andk=1,...,4}.

A covering ofBp = B— A can be defined as follows. The first four open sets consist
of the four open faced;, i = 1...,4 with the affine coordinate mapg induced by
their affine embeddings iR3. Denote byl the set of integral points d which lie

on an edge. For ever@ < | we can choose a small open & in By such that
{Zi}i=1,..4U{Uq} el is a covering oBop. Let Ry denote the 1-dimensional subspace
of R® generated by < |. One can verify that ifJg is small enough, the projection
@0 : Ug — R3/Rq is a homeomorphism. A computation shows that the aflas
{Zi,@}i=1,..4U{Uq, @} qecl defines an integral affine structure B

In the latter example it can be easily checked that a neigtiomad of the sin-
gular points inA is affine isomorphic to a neighbourhood o0R? in Example 1.
In dimension 2, an affine manifold with singularitiéB,A, A) is calledsimpleif A
consists of isolated points and each point has a neighbodraifine isomorphic to a
neighbourhood of 0 in Example 1.

We now present some 3-dimensional examples.

EXAMPLE 3 (The edge). Let C R be an open interval. ConsidBr= R? x |
andA = {0} x 1. OnBg = (R?—{0}) x | we take the product affine structure be-
tween the affine structure d&? — {0} described in Example 1 and the standard affine
structure orl.

EXAMPLE 4 (Positive vertex). LeB=R xR?and let(xq, X2, X3) be coordinates
in B. Identify R? with {0} x R?. InsideR? consider the cone over three points:

A={x=0,x3<0}U{xs=0,x2 <0} U{x2 = X3, X3 > 0}.
Now define closed sets B

R = RxA,
Rt = RugxA,
R = ReoxA,
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and consider the following covél;} of R3 — A:

U = R®—-RT,
U, = R3-R".
Itis clear thatJ; NU> has the following three connected components
Vi = {X2<0, x3<0},
Vo = {X2>0, X2 > x3},
Vi = {x3>0, x3>X}.
Take two matrices
110 1 0 -1
3) 1= 01 0], =01 O
0 0 1 0 0 1
Now onUj,U, we define coordinate majgs, @, as follows
¢ = I
Id  on VinU,
®m = Tt on V,nU,

T on VzNUs.

Again we see thatl = {U;, @ }i—1 > gives an affine structure ddp = R3—A. One can
compute that, if we form the 3-torus bundfg, given a pointb € By and two closed
paths generating: (Bo), then theH; monodromy of the fibre 0Ky associates to these
two paths the matriced; *)" for j = 1,2.

EXAMPLE 5 (Negative vertex). LeB andA be as in Example 4. ThelR? — A
has three connected components, which we deBgt€; andCs. LetCj = Cj UdC;.
Consider the following three open subset8gf

U = R’-(CUGy),

Uz = R®—(CiUGy),

Us = R3—(CLUG).
Let

VT = {x >0},

V- = {x1<0}

ClearlyUinUj =V UV~ wheni # j. If Ty andT; are as in (3), define the following
coordinate charts ddi, Uz, U3 respectively:

(0]) Id,
_ (TrH) on ViNU,
¢ = Id on V- NUy,
B Id on V*nUs
%= 1 (Y on VoNuUs.
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We can check that the affine structure defined by these ckatsh that, on the 3-torus
bundleXp, given a poinb € By, then theH; monodromy of the fibre aXp associates to

two generators ofty(Bg) the matricedj, j = 1,2. In particular, monodromy is given
by the inverse transpose matrices of the monodromy in theéqure example.

These three examples are the building blocks of so-calldidn@nsional simple
affine structures with singularities. A 3-dimensional catiexample is the following:

EXAMPLE 6. This three dimensional example is taken from [11, §19.81=
be the 4-simplex ilR* spanned by

PO - (_1’_1’_1’_1)7 Pl = (45_17_15_1)7 PZ = (_1747_1;_1)7
P3: (7157174771% P4: (*1,*1,*1,4).

Let B=0=. Denote byZ; the open 3-face oB opposite to the poin®; and byF;
the closed 2-face separatiigandZ;. Eachh; contains 21 integral points (including
those on its boundary). These form the vertices of a triaatgui of Fj as in Figure
1. By joining the barycenter of each triangle with the bantees of its sides we form
a trivalent graph as in Figure 1. Define the Adb be the union of all such graphs in
each 2-face. Denote bythe set of integral points d&&. Just as in the previous example,
we can form a covering dBp = B — A by taking the open 3-faces; and small open
neighborhood$)g insideBp of Q € I. A coordinate charty on % can be obtained
from its affine embedding iR*. If we denote again bRq the linear space spanned by
Q€ 1, as a chart oblg we take the projectiogg : Ug — R*/Ro.

Figure 1: AffineS® with singularities.
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In the above example one can check that points in the intefitie edges of the
graphA have neighbourhoods which are affine isomorphic to neigttimmds of points
on the line of singularities in Example 3. The vertices\ofvhich are in the interior
of 2-faces have neighbourhoods affine isomorphic to theexernt Example 5 (these
are called negative vertices), while verticed\ain 1-faces have neighbourhoods affine
isomorphic to a neighbourhood of the vertex in Example 4ifesvertices).

We say that a 3-dimensional affine manifold with singulastissimpleif Ais a
3-valent graph, with vertices labelled as positive or niggafl he affine structure near
points on the edges @ is locally affine isomorphic to Example 3, near positive fres
negative) vertices it is locally affine isomorphic to Exampl(resp. Example 5).

2.2. Glueing singular fibres

Given the symplectic manifoltlp = T*Bp/A, how do we glue singular fibres &?
The 2-dimensional case can be achieved as follows. Firsidenthe following exam-
ple of Lagrangian fibration:

EXAMPLE 7. LetX = C2— {zrzz + 1 = 0} and letw be the restriction tX
of the standard symplectic form @?. One can easily check that the following map
f : X — R?is a Lagrangian fibration:

7% —|z/?
@ faz) - (255 log o +11).

The only singular fibre ig ~(0), which has the topology ofla fibre (a pinched torus).

This is an example of a fibration of “focus-focus” type. Ona eaplicitly com-
pute the affine coordinates on the base, away from the singalat (0,0) € R?. It
can be shown that this affine structure is isomorphic (in ght@urhood 0f0,0)) to
the one given in Example 1. This implies that given a 2-dinwared, simple, affine
manifold with singularities and a poirg € A, we can glue, via a fibre-preserving
symplectomorphism, a neighbourhood of the singular fibrthenabove example to
(fo) (U — p) C X, for a suitable neighbourhodél For the details of this construction
consult[2]. If we do this at all 24 points in Example 2, in thedeve obtain a symplec-
tic manifold diffeomorphic to a K3 surface and a Lagrangiandiionf : X — S with
24 singular fibres and a Lagrangian sectiorf of

A similar, but rather more complicated, construction carcaeied out in the
case of a 3-dimensional, simple affine manifold with singti&s. Thus obtaining a 6-
dimensional (compact) symplectic manifoldwith a Lagrangian fibratiori : X — B,
together with a Lagrangian section. This is the main redyRJo The idea is to find
suitable models of Lagrangian fibrations with singular fiosnich can be glued ovér.
When compactified in this way, Example 6 gives a manifoldsdifhorphic to a quintic
in P*. We should warn the reader that in the final result of [2] the@rhis not smooth
but just piecewise smooth, it fails to be smooth only alorg ggheimage of small 2-
dimensional discs containing negative vertices. Also,diseriminant locush has to
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be enlarged slightly, so that near a negative vertex it isdineension 1 thickening of
the graph. The total spaéeobtained is nevertheless smooth. When the integral affine
base is as the ones considered by Gross and Siebtntns out to be diffeomorphic to

a Calabi-Yau.

2.3. Anti-symplectic involutions

An anti-symplectic involutioon a symplectic manifol@X, w) is a map : X — X such
that1*w = —w and1? = Idy. The fixed point set of an anti-symplectic involution is
always a Lagrangian submanifold. In [3], together with JBk&olomon, we showed
that, given a Lagrangian fibratioh: X — B with a Lagrangian section constructed as
above, one can also find an anti-symplectic involutioX — X which preserves the
fibres and fixes the section. The idea for the constructios f®llows. Consider the
fibre-preserving anti-symplectic involutiopon T*Bp/A induced by(p,a) — (p,—a)

for everyp € Bp anda € TyBo. We show thato extends to a smooth fibre-preserving
anti-symplectic involution on X. This is done by first studying anti-symplectic invo-
lutions on local models of singular fibres and then refinirggghuing by also matching
the involutions.

In this note, we would like to discuss the topology of the fixainht set of this
type of involutions. The fixed point s&tis the closure irK of the image of the se}/\
insideT*Bp/A. The mapf|s : ¥ — Bis a branched covering &, branching oveA.

In dimension 2 this branched covering is of degree 4 and ofeseg in dimension 3.
Let us look more closely at some examples.

ExAmPLE 8. In the “focus-focus” case, i.e. Examples 1 and 7, fix a poiat
R? — {(0,0)}. Then we can find a basis @¥, with respect to which, monodromy
is the matrix (2). With respect to this basis, we can identifywith Z2. ThenZn
Ty Bo/ b consists of pointsg = (0,0),s1 = (1/2,0),5, = (0,1/2) andsz = (1/2,1/2).
As we go around the singular point, monodromy mgpsnds, to themselves and
s1 to s3. Therefore, ifU is a neighbourhood of0,0), f~1(U) N Z has 3 connected
components. There are two which map 1 to Utdhese are the ones containggnd
s respectively. Then there is one mapping 2 to 1, which cosataaths; andss. The
map f restricted to this latter component is a 2 to 1 branched @ogewith branched
point inside the singular fibre.

ExamMPLE 9. Inthe case of Example 2, where the compactiked diffeomor-
phic to a K3 surface, the fixed point setis a compact Lagrangian surface. It is not
difficult to check thatz has 2 connected components, one of them is the zero section
and the other one is a degree 3 branched covering $vaiith 24 branched points
of ramification index 2. The Riemann—Hurwitz formula tells that this connected
componentis a genus 10 surface.

Observe that in the previous examplé>) = 20= h'1(X). We will discuss in
the following sections the reason why this equality is nobmcidence. Moreover it
is known that the fixed point s&t of an involutioni : X — X on a compact manifold
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satisfies the following inequality in cohomology (see [4]):

(5) dim(z H*(Z,Z/ZZ)) <dim <ZH*(X,Z/ZZ)>
In the case of our involutiort, satisfies the equality, so it is in some sense maximal.

2.4. Mirror symmetry

For a more thorough explanation of the relevance of affineifolais with singularities
and Lagrangian torus fibrations in the context of mirror syatrmthe reader may con-
sult [9] and the references therein. We just mention a feusftat are related to the
topic of this note. Given an affine manifold with singulaB, besides{o = T*Bo/A,
we can also construdty = TBo/N*, whereA* is the dual lattice. IB is simple, then
alsoXy can be topologically compactified. This follows from the €s's topological
compactification, in fact in this case the role of verticeisigrted: where we had neg-
ative vertices, we glue fibres of positive type and vicevevéathus obtain a (compact)
smooth manifoldX together with a torus fibratiof : X — B. It was shown by Gross
(see next subsection) that the manifollandX satisfy the topological conditions re-
quired for them to be mirror manifolds. In the case of Exanfl&ross also shows
thatX is diffeomorphic to the mirror of the quintic.

The existence of a good symplectic structureXois not immediately appar-
ent from this description, since the tangent bundle doesay a natural symplec-
tic structure. To solve this problem one needs the extra aat of a (multivalued)
strictly convex functiong, which can be used to define a symplectic formToBy.
Equivalently, via the Legendre transform appliedpiane defines a new affine struc-
ture onBy, giving a new lattice il *Bp, which we denote by“\. It can be checked that
T*Bo/i\ andX, are isomorphic torus bundles o\&y, therefore als has a symplec-
tic structure (inherited frorT *Bg). Thus, alsoXo can be symplectically compactified
to give a Lagrangian fibratiof : X — B, with a fibre-preserving anti-symplectic invo-
lution. Using ideas from toric geometry, Gross and Siebled antroduce the discrete
Legendre transform, which is a combinatorial version ofdtendard Legendre trans-
form. In [10], Gross shows that this construction can beiappb all the examples of
Batirev—Borisov’s pairs of mirror Calabi—Yau’s.

In [3] we also discuss the relevance of our construction Gfgmplectic invo-
lutions in the context of the Homological Mirror Symmetryngecture. This conjecture
states that given mirror manifolésandX, there should be an equivalence of categories
between the derived category of coherent sheave$ and the derived Fukaya cate-
gory onX. The objects in this latter category are Lagrangian subfolaisi of X, with
some other data attached. Since the two categories arectngjé to be equivalent, an
autoequivalence on one category should correspond to otteeasther. The category
of coherent sheaves has a natural autoequivalence whidist®m mapping a sheaf
to its dual. In [3] we discussed some evidence of a conjeciaiming that the autoe-
quivalence on the Fukaya category, corresponding to datadiz, should be given by
the anti-symplectic involution that we constructed, where a Lagrangian submanifold
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is mapped to its image under

2.5. Topology of Lagrangian3-torus fibrations

We describe here some of Gross’s results on the Leray spsetyaence applied to
the torus fibrationd : X — B of the type discussed in the previous section. We as-
sume that(B,A,A) is a compact simply-connected, 3-dimensional, simplegiate
affine manifold with singularities. The arguments are ehfitopological, without
any reference to the fact thAtis symplectic and the fibres are Lagrangian. Given an
abelian groups, we denote byR¢f, G the sheaf associated to the presheaBagiven
by U — HX(f~3(U),G). The Leray spectral sequence associatefihias as, terms

the groupsH! (B, R¢f,G). We recall Gross’s definition:

DEFINITION 1. Let i: Bg — B be the inclusion. The fibration :fX — B is
G-simple if
i .R¢f0.G = RE.G

We will assume in the following thaX is simply connected. For some of the
arguments, this condition can be relaxed, e.qg. it could paced withH(X,R) = 0.
In [8] Gross showed that the fibrations considered here ar@yaiG-simple, wherG is
Z or Z/nZ. MoreoverZ simplicity impliesQ simplicity. Notice also that, since affine
coordinates orBy have linear part in $h,7Z), the fibres are canonically oriented, so
that
Rf.G=G.

Moreover, f has a smooth section (extending the zero sectiof ty). We also
consider the mirror dual fibratioh: X — B, which is also &-simple fibration with a
section and we will assume that al&ds simply connected.

Now, letG = Q (but the following also holds fo& = Z or Z/2Z). By Poincaré
duality applied to the fibres, we have that

(Rf0.Q)" =R fo,Q.
Moreover, from the definition of dual torus fibration, we alsve:
(R f0.Q)" = R fo.Q.
By applyingi. to the above and using-simplicity we obtain
(6) Rf.Q =R Q.

The E; page for the Leray spectral sequence forith G = Q, looks like the
following

Q 0 0
0 H(B,R?f.Q) H2(B,R’f.Q)
0 HYB,R}.Q) H?B,R'.Q)
Q 0 0

ool
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For the proof of this, one can argue as follows. Since the dilane con-
nected, we hav&®’f.Q = Q. MoreoverR3f,Q = Q, as we already mentioned. So,
together with the fact thaB is simply connected, we obtain the zeroes in the top
and bottom row. The zeroes in the first and last column comm fitee fact that
H(X,Q) = H3(X,Q) = HY(X,Q) = H5(X,Q) = 0 together with (6). Thé, term

3

for f is obtained by exchanging the first and second row o&hterm of f.

5 Gross proved that under these hypotheses the Leray speaiadnces of and
f degenerate at the, term, so that wheiX is a Calabi—Yau manifold

h!(X) = dimH™(B,R'.Q) = dimH*(B,R*f.Q) = h**(X).

So the topology of these fibrations dhand X guarantees thaX and X satisfy the
basic topological requirement of mirror symmetry. Thesguarents also work if we
replaceQ with Z /27 (except, maybe, the equality with Hodge numbers, due tdlpless
presence of 2-torsion):

727 0 0 Z)27
0 HY(B,Rf.Z/27Z) H?B,Rf.Z/2Z) O
0 HYB,RYf.Z/2Z) H?B,RY.Z/2Z) O

727 0 0 Z)27

From which we obtain that
H?(X,Z/2Z) =~ HY(B,R*f,Z/27Z)

H3(X,Z/272) =~ HY(B,R?1,Z/2Z) & H?(B,R ', Z/27) & 7./ 27.& 7./ 2Z.
H4(X,Z/2Z) =~ H?(B,R?f,Z/27)

3. Along exact sequence

We now wish to understand tt#&-cohomology of the fixed point locus of the anti-
symplectic involutions constructed in the previous sectidVe sketch here the con-
struction of a long exact sequence which links the conomoadd¢he ambient manifold
X with the cohomology ok, details will appear in [1]. The assumptions bnX — B
are the same as those in the last subsection of the previotisrsén particularX is
6-dimensional) and we l&t be the fixed point locus of the anti-symplectic involution
1: X —X. Let

0= f|z

and denote byy the restriction ofo to G*l(Bo). The idea is to consider the spectral
sequence associated to the branched covering — B and compare it with the one
associated td. Observe that th&, term of the spectral sequencemtonsists of just
one row of elements of the typ#! (B, R°0,7/27) and therefore the spectral sequence
degenerates &. It can also be shown that, sin€és Z/2Z-simple then also : ~Z — B

is aZ/27-simple fibration.
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We can now restrict our attention only to the shig®d.Z/27Z. For every point
p € Bo, 0~ *(p) consists of the 8 points in the image $A, inside T;Bo/Ap. Notice
thato~1(p) has a group structure isomorphic (@/27)3. Denote this group by
and letg be the sheaf oveBy whose stalk is;p. Observe that

) G = RTo.Z/2L,

in fact g is naturally isomorphic t¢R* fo.Z/27)" .

Now let us denote by’ the sheaR%00.Z/27 and observe that, is just the set
of maps fromg , to Z/27. Clearly, constant maps are monodromy invariant, but since
monodromy acts linearly ogp, also the map which is 1 at® g, and zero elsewhere
is monodromy invariant. Let us denote bythe sheaf generated by the constant maps
and this latter map. Since these maps are monodromy intagids just the constant
sheaf(Z/27)2. Also note thatg ¥ is naturally a subsheaf af’. It can be shown that
there is a short exact sequence of sheaves

0—-¢'@c—¢6' —¢g—0.

The mapg’ — ¢ in the above sequence is defined as follows.d-etg, and denote

by &g € gg the map which is 1 af and zero elsewhere. One can show that every class
in the quotient ofgg by gg @ Cp is represented by & for a uniqueg. So the map
from gg to Gp maps every element in the classdfto g. It can be shown that this
map is linear and that it is a morphism of sheaves. Using (@)Yaf2Z-simplicity the
above exact sequence becomes

0— (RYM.Z/272) ® 7276 7,/ 27— R0, 7,/ 27, — R2 £, 7,/ 27, — 0.

The fact that the sequence remains short exact after agplyifollows by directly
computing the above maps on elements which are locally nmronoginvariant near
pointsp € A. With some abuse of notation, we continue to denote thisesezpiby

0—-¢'@c—¢6' —¢g—0.
Passing to the long exact sequence in sheaf cohomology, tamob

THEOREM1. The sheaves, g’ andg " over B satisfy the following long exact
sequence:

0—-HB,g"®c) —HB,g')— HYB,g)—
(8) H(B,gec) —HYB,G')—~ HY(Bg)5

H2B,6V®c) —HAB,6')— H?B,G)—0
Observe that from the Leray spectral sequencefave have that

HI(B,g') = HI(Z,Z/27).
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and from the definitions o, gV andc, for j = 1,2, we have
HI(B,g"®c)=HI(B,g")=H!(BR1.Z/2Z),
HI(B,g)~H/(B,Rf,.Z/2Z).
So we obtain
COROLLARY 1. Z has two connected components.

Proof. SinceH%(B,g) = H(B,G") = 0 andc = 7/27.¢ 7./ 27, the first row splits
off from the rest and it tells us th&t®(,7/27) = 7,/27.© 7./27.. HenceZ has two
connected components. O

One of the two components is the zero section, thereforedtifbrphic toS°.
Notice also that the second row tells us tHatB, R* f,7Z/27) injects intoH* (%, Z /27).

COROLLARY 2. With the above hypotheses
dimHY(Z,%Z/27) > dimH?(X,Z/27)
Moreover if =0, for j = 1,2 we would have
HI(Z,7/22) = H)(B,R Y, Z/27) & H)(B,R?f,Z/2Z)

Observe that i3 = 0 thenZ satisfies the equality in the inequality (5) and is
therefore maximal. Observe also that in the 2-dimensicase of Example 9, a similar
but smaller spectral sequence gives us:

Hl(z,z/27) =~ HY(B,R ,Z/2Z) ® H?(B,R?f.Z/2Z).

Since the total space is a K3 surface anig oriented, the above equality holds since
by (Z) = 2h%1(X) = 20, which is what we already noticed.

4. An example: Schoen’s Calabi—Yau

4.1. The manifold and the fibration

At the time of writing this note, we were able to compute thé@a@oology of only
one example of fixed point locus of an involution of the typesaiéed. It comes
from a Lagrangian fibration of the so-called Schoen’s Calghi. This manifold was
studied in [15], and then described in terms of its assodiaténe manifold with sin-
gularities by Gross in [10]. Kovalev [13] described a 3-®fibration, which inspired
the construction we provide here. Consider. Y1 — P! and f5 : Yo — P! two ra-
tional elliptic surfaces with a section, such that theresdoet existx € P! for which
f;1(x) and f, 1 (x) are both singular. Then Schoen’s Calabi-Yau is the fibredyrb
Y =Y xp1 Yo, It satisfiesy(X) = 0, hb(X) = h%2(X) = 19. It can also be written
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as a complete intersection i x P2 x P? of hypersurfaces of tridegre@, 3,0) and
(1,0,3).

A topological construction can be given as follows. Consald-dimensional
manifold with boundaryM which fibres over the closed 2-dir so that the general
fibre is a 2-torus and such that there are 12 singular fibre®déla typd; (pinched
tori) over interior points oD. Assume also that the boundaryMfis a trivial 2-torus
bundle ovedD = S, i.e.0M = T x St, whereT is a 2-torus. To construdfl we can
proceed as follows. Take an elliptically or Lagrangian fibike3, with 24 singular fibres
of Kodairatypd. Then consider a simple closed cug@n the base bounding a 2-disc
D containing images of 12 singular fibres, and such that it doepass through critical
points. If, furthermore, we choogeso that along it théi*-monodromy of the fibres is
trivial, then we can tak& to be the union of the fibres over. Another construction
can be found in [14]. Now consider the 6-manifold with bourydé = M x T, where
T’ is a 2-torus. ClearlX fibres oveD x S' by taking the product of the given fibration
of M with the standarc' fibration of T. The boundary oKX is S' x T x T, where
S' x T is the boundary oM. Consider coordinates @X given by (@, @, ¢3,61,6),
whereq, is the (angle) coordinate d®, (¢, @3) and(61,6,) are (angle) coordinates
onT andT’ respectively. Assume that the fibration restricte@Xois the projection
onto the coordinate@p,8;) € dD x St.

Now consider the homeomorphisin: X — aigiven by

q)((pla (pza (p37 617 62) = (617 625 7%7(‘)17(‘)2)

We form the manifoldY by gluing two copies o along their boundary using the
homeomorphisnd, i.e. o
Y =XUgpX.

Itturns outtha is diffeomorphicto Schoen’s Calabi—Yau (see Gross [10]Kmglev
[13]). Notice that if we glue two copies of the baBex S* of the fibration onX via
the map(@1,01) — (81, ¢1), then we obtain a 3-sphe& and a 3-torus fibration of

on S* induced from the fibration o). One can show, using the results of [2], that
this fibration can be turned into a (smooth) Lagrangian fioraby compactifying the
affine manifold with singularities constructed by Gross, [84)].

4.2. The involution and the fixed point locus

We now describe the involution oi. OnM we can construct a fibrepreserving in-
volution, simply by considering the involution on the K3 assdribed in Example 9
and restricting it taVl. OnT’ we take the involution which preserves the fibres of the
fibration onSt, i.e. in coordinate$ds, 8,), the involution is(61,0;) — (81, —6,). Then
onX =M x T’ we take the product involution. It clearly descends to aolimion on

Y.

Let us now describe the fixed point locus of this involutiorheTfixed point
locus of the involution oM is the disjoint union of a 2-disc, which we denote &y
(corresponding to the zero section on #8) and a genus 4 surfa& with 3 open
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discs removed. The boundary of the 2-disc and the three £ai§' forming the
boundary ofS; are mapped by the fibration to the boundary of the [@3eIn fact,
we may assume that, with respect to the coordinapesp,, @3) of 0M = St x T the
involution is (@1, @, @3) — (@1, —@, —@3) So the four circles are given bipi,0,0)
(which is the boundary d&), (¢1,1/2,0), (¢1,0,1/2), (¢1,1/2,1/2). The latter three
form the boundary o%;. Now onT’, the fixed locus of the involution is given by a pair
of circles, corresponding t®,, 0) and(61,1/2). Therefore the fixed point locus of the
involution onM x T’ is given by two copies oy x St and two copies o8, x S, i.e.

S=(SoxSHU(SHxSHU (S x SHL(S xS,

Then, the fixed point locus of the involution ohis obtained by gluing together two
copies ofx via the the homeomorphish restricted to the boundary components of
>. The result is a 3-manifold with two connected components, one of which is
a 3-sphere. According to our computations (based on the M&jetoris Theorem)
HY(Z,7) is 234 SinceH?(Y,Z) = Z'° andH3(Y, Z) = Z*°, in the long exact sequence
of Theorem 1 applied t¥ andZ, we have

HY(B,g) = (Z/22)",

and
dimkerp = 15.

So this is an example whefis not zero.

References

[1] CasTANO-BERNARDR. AND MATESSID. The fixed point set of anti-symplectic involu-
tions of Lagrangian fibrations. In progress.

[2] CASTANO-BERNARDR.AND MATESSID. Lagrangian 3-torus fibrationg. Differential
Geom. 81(2009), 483-573.

[3] CASTANO-BERNARD R., MATESSI D. AND SOLOMON J. Symmetries of Lagrangian
fibrations.Adv. in Math. 2253 (2010), 1341-1386.

[4] FLoyD E. E. On periodic maps and the Euler characteristics of &socspacesTrans.
Amer. Math Soc. 721952), 138-147.

[5] Fukaya K., OH Y.-G., OHTA H. AND ONO K. Anti-symplectic involution and Floer
cohomology.arXiv:0912.2646v2.

[6] GROssM. Special Lagrangian fibrations I: Topology. limtegrable systems and algebraic
geometry (Kobe/Kyoto, 1997RRiver Edge NJ, 1998), World Sci. Publishing, pp. 156-193.

[7] GRossM. Special Lagrangian fibrations Il. Geometngurv. Differ. Geom. §1999),
341-403.

[8] GrRossM. Topological mirror symmetrylnvent. Math. 1442001), 75-137.

[9] GROssM. The Strominger-Yau-Zaslow conjecture: From torus filorsg to degenera-
tions. InAlgebraic Geometry, Seattle 2008005), vol. 80 ofProceedings of Symposia in
Pure MathematicsAmer. Math. Soc., pp. 149-192.



250 R. Castafio-Bernard and D. Matessi

[10] GrRossM. Toric degenerations and Batirev-Borisov dualityath. Ann. 3332005), 645—
688.

[11] GROssSM., HUYBRECHTSD. AND JoYyCE D. Calabi-Yau Manifolds and Related geome-
tries. Springer-Verlag, 2003. Lecture notes at a summer schddbndfjordeid, Norway,
June 2001.

[12] GROsSsM. AND SIEBERT B. Mirror symmetry via logarithmic degeneration dataJ.
Differential Geom. 7422006), 169-338.

[13] KovALEV A. A special Lagrangian fibration of smooth compact Calahis8-fold. IPAM
lecture, April 2003.

[14] LEUNG N. AND SYMINGTON M. Almost toric symplectic four-manifolds]. Symplectic
Geom. §2010), 143-187.

[15] ScHoEN C. On fiber products of rational elliptic surfaces with sewcti Math. Z. 197
(1988), 177-197.

[16] SoLomON J. Intersection theory on the moduli space of holomorphivesi with La-
grangian boundary conditionarXiv:math.SG/0606429.

AMS Subiject Classification: 53D37, 14J32

Ricardo CASTANO-BERNARD,

Mathematics Departmnent, Kansas State University,
138 Cardwell Hall, Manhattan, KS 66502, USA
e-mail: rcastano@math.ksu.edu

Diego MATESSI,

Dipartimento di Scienze e Tecnologie Avanzate, UniverdiPiemonte Orientale,
Via Bellini 25/G, 15100 Alessandria, ITALIA

e-mail:matessiCunipmn.it

Lavoro pervenuto in redazione il 30.07.2010, e in forma d&fen il 16.10.2010



