
Automatic Visual Tracking and Social Behaviour Analysis
with Multiple Mice
Luca Giancardo1*, Diego Sona1, Huiping Huang2, Sara Sannino2, Francesca Managò2, Diego Scheggia2,
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Abstract

Social interactions are made of complex behavioural actions that might be found in all mammalians, including humans and
rodents. Recently, mouse models are increasingly being used in preclinical research to understand the biological basis of
social-related pathologies or abnormalities. However, reliable and flexible automatic systems able to precisely quantify
social behavioural interactions of multiple mice are still missing. Here, we present a system built on two components. A
module able to accurately track the position of multiple interacting mice from videos, regardless of their fur colour or light
settings, and a module that automatically characterise social and non-social behaviours. The behavioural analysis is
obtained by deriving a new set of specialised spatio-temporal features from the tracker output. These features are further
employed by a learning-by-example classifier, which predicts for each frame and for each mouse in the cage one of the
behaviours learnt from the examples given by the experimenters. The system is validated on an extensive set of
experimental trials involving multiple mice in an open arena. In a first evaluation we compare the classifier output with the
independent evaluation of two human graders, obtaining comparable results. Then, we show the applicability of our
technique to multiple mice settings, using up to four interacting mice. The system is also compared with a solution recently
proposed in the literature that, similarly to us, addresses the problem with a learning-by-examples approach. Finally, we
further validated our automatic system to differentiate between C57B/6J (a commonly used reference inbred strain) and
BTBR T+tf/J (a mouse model for autism spectrum disorders). Overall, these data demonstrate the validity and effectiveness
of this new machine learning system in the detection of social and non-social behaviours in multiple (.2) interacting mice,
and its versatility to deal with different experimental settings and scenarios.
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Introduction

Social abnormalities in mental illnesses profoundly affect the life

quality of patients and their families, and still limited therapeutical

strategies are available for these behavioural diseases [1,2]. Mental

disorders characterised by severe social anomalies such as

schizophrenia and autism have a strong genetic heritability.

However, the complexity of human genetics, the clinical

heterogeneity, the uncontrollable impact of gene-gene and gene-

environment interactions have hindered our understanding of the

neurobiological basis of social-related disorders and the develop-

ment of effective treatments.

Mice are a social species engaging in high degrees of social

interactions [3,4]. Moreover, genetically modified mice are now

commonly generated and used, making them a unique tool to

elucidate the links between genes and behaviour [5], and thus to

understand the neurobiological basis of social abnormalities in

psychiatric disorders. A central issue in the analysis of complex

social behaviours is the reliable and objective investigation of

specific behavioural parameters, which might span for extended

periods. In such investigations, a manual scoring of the social

interactions is still the preponderant experimental bottleneck [6,7].

Indeed, manual scoring suffers from a number of limitations such

as scarce replicability and lack of standardisation. Moreover, it is

extremely challenging and time consuming to visually follow subtle

and composite social behaviours, especially when multiple animals

are involved. As a consequence, more explanatory long-lasting

and/or large-scale studies are still unaffordable. Hence, unless

technological innovation is introduced to facilitate the analysis, our

ability to link genetics and complex social behaviours in mice will

remain limited in the extent of the experimental protocols, which

in turn will limit the translational advances in psychiatric

medicine.

Hence, there is an increasing interest on the development of

systems for automated behaviour analysis from videos. Aiming at

the above issues, this work proposes a computational framework

integrating a tracking algorithm able to simultaneously track

multiple mice and a new automatic method for classifying

behaviours of multiple interacting mice using a learning-by-

examples approach.

In this type of problems, the first issue to be tackled is the

‘‘multiple animal tracking’’, i.e., the automatic detection of the

positions of multiple mice along time. A frequently adopted
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tracking solution is based on particle filter modelling extended to

multiple targets. An early example of this type is the algorithm

devised by Khan et al. [8] which was tested on ant tracking. A

similar approach was applied to mice by exploiting their slowly

changing contour by imaging the cage through a side view [9,10].

Pistori et al. [11] adopted a particle filtering approach with a

variation on the observation model in order to track multiple mice

from top view. However, the system was evaluated on white mice

on a black background with a coarse position estimate. An attempt

to reliably monitor multiple mice in a single cage was made using

radio transmitters inserted under the skin and then recorded by

detection coils [12]. However, this system is invasive for the tested

subjects, it has low spatial resolution and it exposes the animals to

a continuous electro-magnetic field.

The second issue to be addressed is the automatic analysis of

mouse behaviour. In the computer vision literature, a large variety

of methods for human action/activity recognition are proposed. In

this context, various general purpose spatio-temporal descriptors

were introduced for activity recognition tasks, such as HOG/HOF

[13], HOG3D [14], eSURF [15] and hierarchical spatio-temporal

features [16], to quote a few. Some of these descriptors were

applied as the basic encoding step for single mouse behaviour

analysis in home cages [17,18] followed by a classification stage or

for more complex behaviours [19,20]. However, they were limited

to single mouse processing, making them inapplicable for the

analysis of multifaceted social disorders [21].

More recently, two new methods have been developed to

monitor the behaviour of two mice in the same cage in a resident/

intruder task [22,23]. Specifically, De Chaumont et al. [22]

developed a model exploiting physics-based principles on a set of

geometrical primitives to track the position of two mice and to

monitor their interactions. The interactions were described by a

fixed set of rules, based on relative mice positions and accelerations

and on some numerical parameters that need to be manually set in

the software through a trial-and-error phase. More importantly,

their system does not actually classify social behaviour with respect

to a set of standard classes as given by a human grader and defined

in many social behaviour studies, but rather it detects and

quantifies very specific mouse configurations such as, for instance

‘‘mice distance is less than a given threshold’’, ‘‘mouse A gets to

mouse B and B escapes with a given distance threshold’’ or

‘‘mouse A is behind B and nearer than a given threshold’’. While

the above precisely defined actions are very objective (i.e.,

unrelated to a subjective human interpretation), they might not

correspond to a required personalised scoring of social behaviours

by a grader with some specific needs. In fact, all behaviours need

to be expressed in terms of a predefined set of basic rules.

Additionally, all these rules are hard-coded in the system, making

the addition to the system of any new behaviour difficult and error

prone. Similar approaches appear to be adopted by commercial

systems developed by two companies: Clever System, Inc. (http://

cleversysinc.com) and Noldus (http://www.noldus.com). Howev-

er, the inner details of the algorithms employed are not fully

disclosed.

Alternatively, Burgos-Artizzu et al. [23] adopted an approach

based on machine learning, where the behaviour is learned from

examples given by experimenters. Initially, the system tracks

mouse positions with an undisclosed algorithm, then the video is

analysed extracting a series of general purpose features borrowed

from recent computer vision literature. Finally, a machine learning

model (AdaBoost with temporal context features [13]) is trained to

classify the behaviour of the mouse emulating a human grader.

This approach has various advantages. Mouse behaviours can be

expressed via visual examples (sequences of video) given by the

behavioural scientist rather than by hard-coded numerical

parameters. As a result, it is easy to extend the system with new

behaviours according to the experimenters needs, moreover, the

output has a straightforward interpretation and it can be directly

compared to previous manual human-based scorings. Despite this,

all these systems are not designed to generalise over multiple mice

interactions or different experimental settings. In particular, [23]

heavily relies on full frame image-level measures (features), which

can only describe the global behaviour occurrences in the arena,

hence, only one action can be associated to each frame in the

video. This means that only experiments with two mice can be

addressed, where one of the two is considered active and the other

passive. As a matter of fact, the above image-level features cannot

be used to classify all possible interactions of each mouse when

more than two mice are involved.

In this paper, we overcome these limitations by proposing an

integrated automatic system for the analysis of social interactions,

which is characterised by a great adaptability to the expert needs.

The idea is to allow for multiple mouse tracking in a freely moving

environment, followed by the continuous monitoring of their

interactions. Similarly to the system proposed in [23] all classes of

interaction are learned from examples given (i.e., annotated) by

behavioural scientists. In our system, however, the social

interactions are detected on a mouse-by-mouse basis and then

appropriately combined in order to obtain all different behaviours

allowing either global analyses in the arena or a specific finer

analysis of a particular mouse. A further learning-based approach

overcoming the limitation on the number of processed mice has

been very recently proposed by Kabras et al. [24]. This system

focuses on behaviour classification taking advantage of the

temporal information, however, it differs from our proposal both

for the implemented features and for the classification methods.

Actually, instead of encoding the temporal information in the data

representation by using a set of temporal features, our system

directly processes this information into an ad hoc classification

architecture specifically designed to manage temporal relation-

ships. Moreover, our algorithm exploits the extra thermic

information acquired by the thermal camera to improve the

identity tracking of the mice.

Similarly to the above methods, tracking is the first fundamental

step of the process. This task was addressed by developing a robust

processing pipeline, composed of blob detection, shape segmen-

tation, refinement and matching modules. This is a challenging

task due to the frequent occlusions, the non-rigid shapes to deal

with, and the similar appearances of the animals. Animal tracking

is then followed by an automatic behavioural classification

algorithm based on the random forests [25], which is a theoretical

framework grounded on a mixture of decision trees [26] combining

the concept of boosting [27] and random subspaces [28]. Indeed, while

being a general-purpose classifier with excellent performance,

random forests have recently gained traction as an effective

method for automatic human action recognition, obtaining

excellent results in various public datasets. These works can be

roughly divided into methods that first track the movement and

the appearance of regions of interest and then perform action

classification [29–31], and integrated frameworks that combine

tracking and classification [32,33]. However, the final purpose of

these methods is mainly to detect the occurrence of an action in a

video sequence rather than evaluate its global duration. Addition-

ally, none of them considers the detection of social actions of

multiple interacting subjects. These two aspects are an absolute

requirement for mice social activity classification, in fact, each

mouse needs to be constantly monitored in relation to all other

mice in a computationally efficient manner and the action

Tracking/Classification of Mouse Social Behaviour
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duration is one of the main tools to evaluate the results from a

neurological perspective.

The original activity classification method presented here

extends the random forest approach to the multi-frame case,

exploiting the temporal information at the level of the trees rather

than at the feature level (i.e., time is encoded with an ensemble of

decision tree rather than with features concatenation), hence

providing the continuous estimation of the activities of the mice.

The multi-frame perspective of the designed classifier allows to

exploit the temporal information in order to recognize behaviours

that can be understood only considering a certain time span

instead of single frames. To summarize, the presented method has

several peculiarities as compared to previous systems, which makes

it original with respect to the state of the art. First, it is not based

on predefined hard-wired (i.e., manually encoded) rules, so it is

more directly comparable to manual human-based scorings;

second, it can be extended to any kind of behaviour, depending

on the need of the experimenters; and third, it can be applied to

different experimental settings and scenarios involving 2 or more

mice. To prove the validity of our approach, the proposed system

was evaluated on about 6.5 hours of social interaction labelled by

two independent graders. The agreement between grader and

classifier is in line with the agreement among the graders.

Additionally, our classification approach was compared with the

classification strategy of Burgos-Artizzu et al. [23] obtaining

higher performance. The datasets employed in this paper are

freely available for research purposes.

Materials

Ethics Statement
All procedures were approved by the Italian Ministry of Health

(permit n. 230/2009-B) and strictly adhere to the recommenda-

tions in the Guide for the Care and Use of Laboratory Animals of

the National Institutes of Health.

Experimental Setup
All experiments were carried out in an empty open arena with

opaque grey walls (40640640 cm) and dimly illuminated by

overhead red lightning (mainly to facilitate mice handling by the

experimenter). Mice were monitored by an infrared camera

mounted 1.5 m above the arena. The camera was a FLIR A315

capable of a spatial resolution of 3206240 px at 30fps, with a

thermal sensitivity of ,0.05uC at+30uC (according to the

producer) that allows full video recording even in full darkness.

This set-up allows for video tracking under any light conditions.

Indeed, dark conditions are less stressful for mice and correspond

to their more active phase [34]. All the animals were recorded

without any external artificial tagging (such as coloured paintings).

Datasets
The method was evaluated using two datasets specifically

collected to test the system. ‘‘Dataset A’’ is composed of a set of 4

videos recorded at different points in time with different animals,

for a total of 2h30min worth of video monitoring the social

behaviour of three interacting animals (‘‘dataA-1’’, ‘‘dataA-2’’ and

‘‘dataA-3’’) and 1h worth of video monitoring the interaction of

two animals (‘‘dataA-4’’), with a total of 11 different animals. The

data was analysed and manually labelled by multiple experts. This

dataset was therefore used as ground truth in various evaluation

aspects both for mice tracking and for behaviour classification.

Specifically, the ground truth to test the mice tracker was

compiled by three behavioural scientists who corrected the initial

mice identity estimates made by the tracking algorithm. Specif-

ically, we developed a tool allowing the manual correction of

identities determined by the tracking system. In particular, the

mice matching module (see below) is enriched with a sanity-check

index that reveals possible mistracking due to mice proximity.

Using this index, the tool for the identities correction shows the

video at high velocity, slowing down only when the sanity index

reveals possible identity switches. Hence, the tool allows stopping

the video in any moment in order to correct the mice identity.

This tool allowed to generate the ground truth in a very short time.

Two independent graders who previously agreed on the number

and types of behaviours then compiled the behaviour ground

truth. The identity of each mouse was superimposed on the video,

allowing a precise scoring on a frame-by-frame basis with ANVIL

(a open source video annotation tool [35]). The scoring was done

on multiple mice interacting in the open field arena, however,

their social behaviours were evaluated using a pair-by-pair

strategy, i.e., the movie was multiply annotated, each time for a

different pair of mice. In each pair, there was a reference mouse

performing the actions and a passive target mouse. By allowing

graders to concentrate on two mice at a time, the precision of the

scoring task was preserved and a total of ,6 h 30 min of social

behaviours were labelled by each grader. The behavioural

labelling required an average of 6 hours per grader to fully

analyse a single pair of mice over 30 minutes video.

Specifically, eight different mutually exclusive classes of mouse

behaviours were considered (see Fig. 1), which were determined as

the most reliable parameters used by human graders to score mice

social behaviours and that have been previously used in former

manual scorings [36]. The definition of the postures were agreed

among the graders resulting in a series of guidelines that were

followed by the human experimenters to label pieces of video with

the behaviours to be then used to train the automatic classifier and

test its quality:

Nose2Body (Body Sniffing) The nose of the mouse under

analysis points towards the body of a conspecific at a distance of

less than 0.5 cm or directly touches it.

Figure 1. Behaviour priorities employed to combine all
pairwise classifiers ha)b in order to describe the behaviour of
a mouse with a single class. ‘‘1’’ is the highest priority. The blue
mouse is the one actively performing the action. An arrow indicates
movement, a circle the lack thereof.
doi:10.1371/journal.pone.0074557.g001
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Nose2Nose (Head Sniffing) The nose of the mouse under

analysis points towards the nose of a conspecific at a distance of

less than 0.5 cm or directly touches it.

Nose2Genitals (Anogenital Sniffing) The nose of the mouse

under analysis points towards the genitals of a conspecific at a

distance of less than 0.5 cm or directly touches it.

Above (Crawling) The mouse under analysis crawls over or

under a conspecific. Following The mouse under analysis walks

on the same direction of a conspecific at a distance of less than

10 cm.

WalkAlone The mouse under analysis walks in the open field

arena without being involved in any of the above-described

behaviours.

StandAlone The mouse under analysis does not walk and has

a distance from any other conspecific of more than 10 cm.

StandTogether The mouse under analysis does not walk, it is

in contact or at a distance of less than 3 cm from a conspecific, and

the two mice have their heads pointing towards any direction

other than towards the other mouse.

‘‘Dataset B’’ is composed of 9 recording sessions of one hour

each. Two classes of animals were recorded, the C57BL/6J wild

type mouse (7 sessions) and the BTBR T+tf/J mouse (two sessions).

BTBR is a mouse strain widely used to model autism-like

behaviours, which is known to display a reduced social interaction

with its conspecifics [37]. Mice belonging to different strains were

not concurrently placed in the same arena for a total of 22

different animals. The experimental setups comprise of 7 sessions

with two concurrent mice (C57BL/6J and BTBR) and 2 sessions

with four concurrent mice (all C57BL/6J) in the same arena. This

dataset was left untouched by graders and it was analysed uniquely

by our algorithms without human intervention. This allowed us to

have an empirical evaluation of the algorithm performance with a

new, larger and diverse set of data. The datasets are freely

available to the research community at this URL: http://www.iit.

it/en/pavis/mice.html.

Methodology

The proposed method builds upon two main ingredients: mice

tracking and behaviour classification. The former module, recently

proposed by our group [38], aims at dynamically tracking mouse

positions and delineating their shapes through a non-rigid body

segmentation in time. The latter exploits the information

generated by the tracker to associate the behaviours to each

mouse on the basis of rules implicitly provided by the human

graders with examples. Figure 2, gives a visual overview of the

whole approach.

Mice Tracking
The tracking algorithm is composed of a pipeline of three

modules. The blob detection module initialises the system, estimates

the foreground shapes (i.e. it locates possible mice), and filters out

unfeasible structures; the temporal watershed module identifies mouse

positions and shapes, and their directionality; finally, the mice

matching module tracks the identities of each mouse. In this last

module, two strategies are employed; one based on the mouse

displacement, the other based on a dynamic heat model

independent from the position of the mouse. The choice of the

strategy is dictated by an automatic sanity check based on a

continuous statistical tracking of mouse shape distribution.

Blob Detection
The main aim of this module is to separate the mice from the

background. As shown in Fig. 3(a), the background includes static

elements such as the mouse arena itself, bedding, and some

dynamic components such as excretory products and infrared

reflections on the cage walls. The foreground separation is done by

thresholding all pixels above a limit t determined from the

cumulative distribution function of the temperature histogram Fi

estimated over a few seconds as follows:

ti~ minfx : Fi(x)§nh ^ fcc(x)~ng

�tt~
1

k

Xk

i~1

ti

ð1Þ

where h is the expected size of the smallest mouse in pixels, n is the

number of mice in the arena, fcc(x) is the number of connected

components found (with the method described in [39]) using x as

threshold and k is the number of frames employed for the

initialization. The window of k frames used to compute the

threshold is slid from the beginning of the video till the condition

in Eq. (1) is satisfied for all k frames in the window. This equation

describes a condition in which the system finds for each frame a

number of foreground blobs equal to the expected number of

mice, and with a total area comparable to the average total mice

dimension.

Once the threshold has been determined following Eq. (1), it

can be used to find the foreground in all following video frames.

The binary image Ibin obtained after thresholding is improved

with a series of fast morphological operations [40]: the mice tails

(frequently disappearing from the video) are removed as

ÎIbin~mini~1...3ffLi
(Ibin)g where fB(S) is an opening operation,

Li is a 3-dimensional vector containing a 5px linear structuring

element rotated at 0u, 45u and 90u.
The connected component analysis described in [39] is

performed to estimate location and number of blobs representing

the mice bodies. If the number of blobs detected and the number

of mice in the arena disagree due to a thresholding failure, the

module try to automatically correct the result. If the number of

blobs is greater than the number of mice, the image ÎIbin is

iteratively dilated until obtaining the expected number of blobs. If

this is not the case, the system is re-initialised using the following

frames. This might cause some frames to remain unlabelled and

hence discarded from the further analysis. In case the number of

detected blobs is smaller than the number of mice, the temporal

watershed module (described below) is involved in disambiguating

the blobs.

Temporal Watershed
Whenever mice are not in direct contact between each other,

their bodies can be easily segmented off the background by the

blob detection module. The temperature contrast between mice

and background is substantial, therefore, their individual shapes

are well-delineated. When they are touching each other, instead, a

single blob is detected for multiple bodies. In order to deal with

these occlusions, we developed a method called ‘‘temporal

watershed’’ which disambiguates the mice, thanks to an extension

of the classical watershed segmentation by exploiting the temporal

information in an Expectation Maximization (EM) framework.

The watershed segmentation [41], as other seed based methods,

partitions an image (a video frame in our case) via clues given by

two or more labelled areas, i.e. the seeds, whose shapes and

positions are essential for a correct segmentation. We employed

two types of seeds: one to model the background and the other to

Tracking/Classification of Mouse Social Behaviour

PLOS ONE | www.plosone.org 4 September 2013 | Volume 8 | Issue 9 | e74557



model the mice. The background seed is the morphological eroded

version of the inverted ÎIbin; the seed for a mouse m is a linear

structuring element made of three points. Specifically, the position

of each mouse m is summarised by a 6-dimensional vector pm,

which contains the 2D coordinates of 3 points: nose, genitals and

mouse centroid (determined via first order moments). The length

(cm) and the position vector (pm) of each mouse m are therefore

dynamically calculated using an EM algorithm. More specifically,

after the initialization, an expectation (E) and a maximization (M) step

are iterated, estimating the temporal watershed parameters (the

mice seeds and lengths) until convergence:

Initialization: the seed and the corresponding length of each

mouse at current time t are initialised using previous frames’

estimates.

pm
t ~pm

t{1

cm
t ~

z

s

Xt{1

i~t{s

cm
i

where cm
i is the length of the mouse’s m major axis at frame i

(which computation is described in the M step below), s is the

number of frames in the time window, and z fz[RD0:5ƒzv1g is a

constant employed to make the system robust either to the

displacement of mice between frames due to mouse movement or

to the variable mouse length due to its non-rigid shape.

Figure 2. Algorithm diagram summarizing the behaviour classification phases. The ‘‘Position Tracking’’ is composed of a pipeline of three
modules. The blob detection module initialises the system, estimates the foreground shapes (i.e. it locates possible mice), and filters out unfeasible
structures; the temporal watershed module identifies mouse positions and shapes, and their directionality; the mice matching module tracks the
identities of each mouse. Then, a feature vector composed of 13 measurements describes relative position, movement and attitude of mice for all
possible pairs. Finally, the continuous action description for the mice is generated thanks to our Temporal Random Forest approach, which evaluates
ensembles of decision trees through time.
doi:10.1371/journal.pone.0074557.g002
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Expecatation (E): the new mouse shape estimates are

therefore re-computed using the standard watershed segmentation

algorithm [41], starting from the current estimates of the

background seed and the mice seeds determined at previous M

step or during initialization. The result of this iteration is a binary

image containing the shape of each single mouse m.

Maximization(M): a new estimate of the parameters is

calculated from the mouse shapes in the binary image detected at

previous E step. Specifically, cm
t is the length of the major axis

determined by the eigen analysis of the covariance matrix of the

second order central moments of the mouse shape [40]. The mice

position vector pm
t is therefore determined assuming the nose and

the genitals at the two edges of the major axis. The orientation is

determined on the basis of the Euclidean distance to the previous

frame. The procedure converges when the estimated mouse shape

is stable across the EM iterations.

The parameters of the very first frame (pm
t~0 and cm

t~0) are

estimated directly on the output of the Blob Detection module by

analysing the major axis of each blob (with a similar technique

described for the maximization step). As such, the first frame

requires all mice to be disjointed for a correct estimation. If this is

not the case, the algorithm skips the frame.

An automatic sanity check on the nose/genitals association is

further performed to correct possible inversions. Similarly to the

method proposed in [7], we exploit the direction of movement to

correct the nose/genitals orientation. Our method, however,

rather than associating the orientation at each frame, it needs to be

corrected only in very few occasions, as the temporal watershed

already provides the correct orientation with very high probability.

For this reason, we performed this correction with a simpler and

faster approach. Specifically, the sanity check module computes a

directionality correction index d , considering the directionality of

the last k consecutive frames in a voting framework.

d~
Xk

i~1

sgn(vt{i
: at{i), ð2Þ

where vi is the movement vector from frame i{1 to frame i and ai

is the mouse direction, i.e., a vector that goes from the genitals to

the nose. When the vote d is negative, the head and tail positions

are inverted in pm
t . This sanity check guarantees stability in time,

allowing the nose/genitals inversion only after a sufficient number

of frames showing disagreement between mouse orientation and

direction of movement. In our experiments we assumed k~10.

Figure 3. Examples of challenging mice interactions. The red, blue and yellow lines represent the contours detected by the tracking algorithm.
(a) The whole mice arena; (b,d,f,h) details of the algorithm output; (c,e,g,i) unprocessed IR details.
doi:10.1371/journal.pone.0074557.g003
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Mice Matching
Identity preservation is a major problem for any multiple

animal tracking system [21], the difficulties lie on the resemblance

between the animals, the absence of any type of visual tag and

their continuous interactions causing occlusions. However, when

mice are well separated, a properly contrasted video in conjunc-

tion with the temporal watershed approach allow good mice

identity persistence based only on the Euclidean distance between

pm
t vectors in the current and previous frame. The order in which

the distances are evaluated is crucial for a robust mice assignment.

For each frame t, an adjacency matrix Mt between mice positions

at frames t and t{1 is created, with the mice distances as edges:

Mt(i,j)~ pi
t{pj

t{1

���
���

2
ð3Þ

Hence, a greedy search [42] (using a minimum distance

principle) is performed on this matrix to assign the mouse

identifiers to their most probable shapes. This method is an

approximation of the Hungarian algorithm, also used in [7], which

substantially gives the same results when few entities need to be

associated. Actually, we observed that the only mismatches appear

when two mice are very near each other and aligned in the same

direction becoming confused, like with the ‘‘Above’’ behaviour.

After the identity assignment, a further automated sanity check

is performed to reveal possible mistracking due to mice proximity.

This check is based on a metric defining the quality of results from

the temporal watershed segmentation and it is the trigger to switch

to the heat signature matching strategy. It was noticed that the vast

majority of shape mistracking was due to a mouse seed trapped in

a local minimum with the neighbouring seed overflowing on it.

Therefore, the system monitors the evolution of the mice shapes

and sets a misdetection flag whenever two or more mice

significantly deviate from the ‘‘standard’’ shape distribution.

Specifically, each mouse shape is described by the first Hu

moment (H1), a single scalar value characterising a shape

independently from translation, scale and rotation transformations

[40]. The Student’s t distribution is then used to estimate the H1

distribution for all shapes from frame 1 to frame t{1. The

misdetection flag is set thanks to a Student t-test whenever the null

hypothesis of having the Hu moment not deviating from the

baseline shape is rejected with a significance level below p~0:05.

In order to automatically deal with this misdetection, we

developed a complementary method based on heat analysis that

attempts to maintain mice identities when their geometrical

characteristics are not suited for distance-based mice matching.

The idea is to exploit the high sensitivity of the thermal camera

used to record the video. Specifically, we use the temperature

distributions over a small number k of frames in the video

sequence, cumulated inside the mice shapes detected by the

temporal watershed in the last k frames. This provides a

dynamically changing temperature distribution for each mouse

body. In our experiments, the size of a buffer k roughly

corresponds to 0.3 seconds worth of video. At each new frame,

the temperature distribution of each mouse in the current frame is

compared to the heat signatures (temperature distributions

determined in the moving time window) with the two-sample

Kolmogorov-Smirnov test [43]. This test has multiple advantages.

It does not make any assumption about the underlying distribu-

tion, it is fast to compute and it works directly on the samples. All

the test results are stored in an adjacency matrix, and a greedy

search similar to the one previously described is employed for mice

assignment correction.

Automatic Social Behaviour Classification
Once mouse positions, shapes and identities are tracked, the

task of classifying their social interaction is undertaken. A classifier

is trained to recognize the different behaviours on a set of

examples provided by the expert as labelled videos. The action of

each mouse in each frame of new videos (never seen by the system)

is then automatically detected as belonging to one of the

behavioural classes learned by the classifier. This is made possible

by a proper representation of all possible mouse behaviours

through spatio-temporal features, followed by the analysis

performed with a random forest classification approach [25],

which has been extended to exploit temporality as well.

To make the system scalable to a variable number of mice, all

social behaviours are decomposed into all possible pairwise

interactions, with a reference mouse that actively performs the

action and a target mouse that is subjected to it. This considerably

simplifies the definition of the feature vector and the further

analysis of mice behaviour, since it has to deal only with the

pairwise interactions of all mice pairs. All pairwise interactions are

therefore opportunely combined after the separated classifications

in order to have a single behaviour for each mouse at any given

time-point (video frame).

Spatio-Temporal Features
In order to capture the various aspects of all possible mouse

interactions, the feature vector needs to describe relative position,

movement and attitude of mice for all possible pairs. We propose a

feature vector x
a[b
t for each mouse pair a (the reference mouse)

and b (the target mouse) as a set of spatio-temporal features

specifically designed to capture the interactions at time frame t

from video recorded with overhead cameras. As shown in Fig. 2,

the feature vector is composed of 13 measurements, which can be

divided into three main categories:

Relative Position: the Euclidean distances between the two

mice measured between the corresponding three key points

identified by the position tracker try to capture the relative static

behaviours. Specifically, four distances (‘‘head2head’’, ‘‘head2-

body’’, ‘‘head2genitals’’ and ‘‘genitals2genitals’’) are able to

unambiguously describe relative positions, such as side by side

or nose interactions. A further ‘‘body2body’’ distance is computed

as the distance of the reference mouse from the closest one.

Differently from all other pairwise features, which are computed

between the reference and target mice, this one is computed

between the reference and the nearest mice, with the aim to better

highlight social and non-social behaviours of the reference mouse.

Shape: two features containing the first Hu moment (previ-

ously described) and the area of the reference mouse attempt to

capture the ‘‘attitude’’ of the mouse, such as being active, sleeping,

exploring, etc.

Movement: the two previous feature categories capture a

snapshot of the mouse actions in a frame. However, they are not

representative of the action dynamics. This is accomplished also

considering the movements of the reference mouse in a temporal

window covering the past and the future of current timeframe.

The Euclidean distance between the mouse centroid at frame t

and the corresponding centroids at frames t{15, t{5, t{1, tz1,

tz5, tz15 allows a multi-scale estimation of speed and

acceleration of each mouse. The time offsets were empirically

chosen on the basis of observations of mice movements in the

training set.

Tracking/Classification of Mouse Social Behaviour
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Temporal Random Forest Classification
In the proposed activity classification module we extended the

random forest (RF) approach to the multi-frame case, performing

a temporal evaluation of the tree ensemble, which provides the

continuous and temporally regularised action description of the

mice. This approach differs from the existing RF-like methods as it

allows class predictions by generating multiple decision trees

modelling the feature vector evolution through time. At the same

time, it supports regularisation of the estimated behaviours

avoiding abrupt changes of the predicted class. This framework

is applied separately to each possible mice pair, represented with

the feature vector x
a[b
t . All feature vectors are independently

classified, and the outputs are combined in order to obtain a

continuous labelling of behaviour for each mouse in the video (see

Fig. 2). Finally, the mouse behaviours can be analysed along all the

video duration, either globally or in their time evolution. More

specifically, the behaviour can be analysed as either summarizing

the total time spent by each single mouse or by the group in a

specific behavioural condition or, alternatively, counting the

number of occurrences. In all our experiments we always used

the total time.

In the proposed solution, K random trees gk~g(X ,hk) are built

for each frame using labelled videos

X~f(xa[b
t ,y

a[b
t )DV(a,b)g ð4Þ

where all feature vectors x
a[b
t are projected in a random subspace

hk (i.e., represented by different random subsets of features) and

are labelled with a behaviour class y
a[b
t . No pruning is performed.

At each branch, the decision was based on the information gain.

Every decision tree gk is inherently multi-class and it casts a vote

for one of the behaviour classes learned during training. All

random trees are then combined to form an ensemble (forest) used

to associate a behaviour to each mouse in each frame of the testing

videos with a voting strategy. Specifically, given a new feature

vector x
a[b
t the votes of the random forest at frame t is defined as

the set of votes of all random trees

V
a[b
t ~ gk(x

a[b
t ) D1ƒkƒK

n o
ð5Þ

The behaviour of the mouse pair a[b is obtained by further

extending the forest with decision trees determined across

neighbouring frames as follows:

Tt~fVa[b
t{w , . . . ,V

a[b
t , . . . V

a[b
tzw g ð6Þ

where 2w is the size of the time window surrounding frame t, and

Tt is the overall ensemble of votes for frame t. The activity

classifier ha[b is therefore obtained as the mode of the set of votes,

i.e. the most frequent behaviour class:

ha[b~Mode(Tt): ð7Þ

The advantage of using this temporal Random Forests framework

is twofold. On one side, the statistical robustness of the classifier is

increased thanks to the ensemble of classifiers in the time

dimension, which acts as a regularizing factor toward the optimal

estimator for the current window. On the other side, the ensemble

of decision trees in the temporally shifting window is trained

considering the label of the central frame. However, each single

tree in the forest exploits the different perspective on the data (i.e.,

the different underlying features). In this way, the ensemble

exploits both past, present and future information to predict the

label of the central frame.

In all our experiments we made forests of K~10 trees for each

frame in a window of radius w~2, and projecting the data into

subspaces of dimension Dhk D~10.

Note that ha[b could be trained on a representative video

segment on one mouse pair only while being exploited to classify

the behaviour of all possible a[b combinations in any video.

Given n mice in the arena, there are n|(n{1) possible mouse

pairs, (n{1) of which are those involving a specific mouse as the

‘‘reference mouse’’, that is (n{1) possible behaviour classes for

each mouse. Nevertheless, for intelligibility, the system is expected

to produce only one class label for each mouse at every frame t.

This issue is solved designing a priority table (see Fig. 1, where

small numbers mean higher priority) indicating the ‘‘preferred’’

behaviour class among the available multiple choices, i.e., the one

with the highest priority is assumed as the final class label. For

example, assume a situation with three mice: for mouse a there are

two behaviours determined by the system ha[b1 and ha[b2 . If

ha[b1~ ‘‘Nose2Body’’ and ha[b2~ ‘‘StandAlone’’, the behaviour

of mouse a will be classified as ‘‘Nose2Body’’ because of its higher

priority.

We compared our classification approach with one of the most

recent method for mice behaviour analysis proposed in literature

that also use a machine learning perspective, i.e. the one employed

by Burgos-Artizzu et al. [23]. They employ a multi-stage

classification approach based on an extension of the auto-context

[13] (temporal context features) and multi-class AdaBoost. While

in the original paper a mixture of Cuboids+Pca-Sift and trajectory

features were chosen, we employed their classification strategy

with our set of Spatio-Temporal Features. We obviously added the

derived temporal context features to the data representation for

the auto-context AdaBoost method. This allowed us to fairly

compare the two different computational frameworks, which are

both able to manage the temporal information in the data. A

further extension of our feature set with the full-frame features

used by Burgos-Artizzu et al. was not possible since they are

meaningful only when two mice are in the arena and only one of

the two is considered active. On the contrary, when more than 2

mice are considered, we need to classify the behaviour of each

mouse separately using a different representation for each different

mouse for each time instant.

Results

Evaluation of Position Tracking
We first evaluated the position tracking precision, particularly in

relation to mouse identities interchanges. Table 1 shows the

average number of manual interventions required to maintain the

mouse identities in a sample of 30 minutes of video tracking in a

cage of 3 mice (‘‘dataA-1’’). The complete tracking system,

combining the distance-based matching and the heat-based

matching, requires an average of 0.8852 manual intervention

every 30 seconds. This is a considerable improvement in

comparison to the two matching strategies by themselves, which

achieved 1.2623 (distance-based matching) and 6.0328 (heat-based

matching) manual intervention respectively. Note that the

distance-based matching and the heat-based matching concur-

rently fail only 24% of times, allowing further improvements of the

tracking performance by tuning the matching selection strategy.
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Evaluation of Social Behaviour Classification
The choice of the training data is essential for a fair evaluation

of the system. In all our experiments we adopted a strict 3-fold

cross validation approach, i.e. the video is divided into three

consecutive folds (leaving the frame ordering intact). A fold is used

for testing and the other two are joined together to form the

training set. This process is iterated over all folds. The same

approach is used even when the classifier is trained on a mouse

pair and tested on another, or when the classifier is trained on a

grader and tested on the other grader. This avoids any chance of

testing bias due to ‘‘double dipping’’ [44].

Dataset A was used to perform a quantitative analysis of the

classification discrepancies among human graders and a compar-

ison with the automatic system at a frame-by-frame level. This

level of granularity allows being conservative in the evaluation.

Table 2 shows the behaviour classification agreement among two

human graders (top section) and between graders and automatic

system (middle and bottom sections, respectively). In this table, all

pairwise interactions are considered allowing a performance

analysis before the combination of all pairwise classifications via

the priority table to obtain unique behaviour for each mouse. Each

value represents the percentage of frames showing a behaviour

agreement in terms of accuracy and precision. High values

indicate that a great number of frames have been annotated with

the same behaviour. The results are further divided into sub-

columns to better evaluate the agreement for different groups of

behaviour: social and non-social (as shown in Fig. 1). In the

classifier/grader comparisons, the classifier is tested for each

grader with a 3-fold cross validation scheme. The average

performance of all pairwise classifiers (ha[b) is also given, showing

a grader/system’s consistency in line with the inter-grader one, i.e.

the performance of our automated system is comparable to that of

a human grader.

Table 3 shows the above evaluation from a different perspective.

Instead of measuring the frame-by-frame agreement, this table

shows the behaviour duration agreement. This is achieved by

calculating the average duration error for social and non-social

behaviours in the grader/grader and grader/classifier cases. In all

instances the time difference accounts for a few seconds only, thus

highlighting the good performance of the algorithms. This kind of

analysis elicits the dimension of the error that might affect the

standard measures exposed by the experts to describe the

behavioural phenotypes characterizing the mice strands under

analysis.

Fig. 4 shows the duration of each behaviour in the 30 minutes

video for a sample mouse in dataset ‘‘dataA-1’’, marked by the

system with a red colour (see Fig. 3). In this case, the interactions

are not limited to an average over all pairs, but the different

classification are combined as described above, generalizing the

result for the reference mouse against the other two mice. The first

two columns show the behaviour durations estimated by the two

Table 1. Number of manual interventions every 30sec used
to correct the identities exchange od the tracking algorithm
on dataset A.

avg std

Described System 0.8852 1.082

Distance Matching Only 1.2623 1.413

Heat Matching Only 6.0328 3.16

doi:10.1371/journal.pone.0074557.t001

Table 2. Behaviour agreement among the two graders (top
section) and quality of the system compared to the two
graders (middle and bottom sections) on Dataset A (higher
values are better ).

Among Graders

Acc. Fullw Acc. SocVsNsoc{ Prec. Soc` Prec. Nsoc6

dataA-1_redVsBlue 80.68% 99.72% 97.36% 99.80%

dataA-1_redVs
Yellow

80.29% 99.41% 88.39% 99.61%

dataA-
1_yellowVsRed

89.31% 99.08% 97.65% 99.13%

dataA-2_2Vs1 69.91% 99.18% 98.92% 99.19%

dataA-2_2Vs3 70.18% 99.96% 99.29% 99.99%

dataA-3_2Vs1 72.94% 99.92% 98.36% 99.96%

dataA-3_2Vs3 72.90% 99.98% 99.71% 99.99%

dataA-4_2Vs1 66.57% 99.50% 91.26% 99.79%

average 75.35% 99.60% 96.37% 99.68%

System Vs. Grader 1

Acc. Fullw Acc. SocVsNsoc{ Prec. Soc` Prec. Nsocu

dataA-1_redVsBlue 76.16% 97.60% 72.00% 98.24%

dataA-1_redVs
Yellow

78.01% 98.69% 74.85% 99.00%

dataA-
1_yellowVsRed

81.61% 97.15% 68.22% 98.20%

dataA-2_2Vs1 69.94% 98.33% 92.36% 98.49%

dataA-2_2Vs3 70.94% 99.11% 95.91% 99.24%

dataA-3_2Vs1 73.09% 99.55% 95.16% 99.64%

dataA-3_2Vs3 73.71% 99.53% 96.55% 99.62%

dataA-4_2Vs1 72.06% 99.57% 97.56% 99.63%

average 74.44% 98.69% 86.58% 99.01%

System Vs. Grader 2

Acc. Fullw Acc. SocVsNsoc{ Prec. Soc` Prec. Nsocu

dataA-1_redVsBlue 85.46% 97.76% 76.56% 98.22%

dataA-1_redVs
Yellow

86.33% 98.66% 84.44% 98.76%

dataA-
1_yellowVsRed

85.37% 97.05% 58.40% 97.99%

dataA-2_2Vs1 77.01% 99.41% 89.96% 99.73%

dataA-2_2Vs3 75.73% 99.62% 93.57% 99.91%

dataA-3_2Vs1 79.92% 99.00% 73.40% 99.74%

dataA-3_2Vs3 79.60% 99.02% 80.67% 99.68%

dataA-4_2Vs1 91.98% 99.03% 86.79% 99.45%

average 82.67% 98.69% 80.47% 99.18%

The agreement is computed on a frame-by-frame basis. Each value represents
the percentage of frames with class agreement. The different columns show the
results for different types of behaviours:
waccuracy on all behaviours considered separately;
{accuracy on behaviours grouped into social and non-social meta-classes;
`precision on the social behaviours;
uprecision on the non-social behaviours. Accuracy = (TP+TN)/(TP+TN+FN+FP)
and Precision = TP/(TP+FP) where TP = True Positive, FP = False Positive,
FN = False Negative and TN = True Negative. The average agreement grader/
system is comparable to the average grader/grader agreement.
doi:10.1371/journal.pone.0074557.t002
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human graders, the third column describes the average of the

classifiers output trained on all other different mice pairs for both

graders. The correlation between manually and automatically

classified behaviour is substantial for the majority of the

behaviours, with an exception for the behaviour ‘‘Following’’,

which is affected by a poor representativeness of in the training

dataset, i.e., there are too few examples in the dataset for a good

learning and a robust statistical estimation.

As previously discussed, we also compared our classification

approach with the one proposed by Burgos-Artizzu et al. [23].

This work employed a multi-stage classification approach based on

an extension of the auto-context [13] (temporal context features)

and multi-class AdaBoost. Table 4 shows a summary of the

comparison among the two classification strategies (the detailed

ones are available as Additional Material): the tests are performed

for all the behaviours learned from Dataset A and the results show

that, in all instances, our approach outperforms [23] with any

adopted measure of performance (accuracy, precision and time

evaluation measurements).

Validation in Large Scale Studies
In the previous experiments comparing the system perfor-

mance with a ground truth, the combination of classifiers

trained on different mice pairs and graders showed excellent

results as shown in Tables 2 and 3. Therefore, we used the

Table 3. Average time difference (in seconds) between the overall duration of each behaviour as classified by the graders or by
the system (less is better).

Among Graders System Vs. Grader 1 System Vs. Grader 2

dataA-1_redVsBlue 1.3 sec. 13.7 sec. 16.4 sec.

dataA-1_redVsYellow 2.3 sec. 8.7 sec. 15.0 sec.

dataA-1_yellowVsRed 10.7 sec. 8.8 sec. 13.5 sec.

dataA-2_2Vs1 12.0 sec. 20.2 sec. 1.2 sec.

dataA-2_2Vs3 0.4 sec. 9.3 sec. 3.3 sec.

dataA-3_2Vs1 0.0 sec. 4.7 sec. 9.1 sec.

dataA-3_2Vs3 0.0 sec. 5.1 sec. 6.9 sec.

dataA-4_2Vs1 2.3 sec. 7.1 sec. 2.6 sec.

average (in sec.) 3.6 sec. 9.7 sec. 8.5 sec.

average (in percentage) 0.1% 0.3% 0.3%

Social and non-social behaviours are grouped together. These values show a comparable time consistency between the system/grader and the two different human
graders.
doi:10.1371/journal.pone.0074557.t003

Figure 4. Overall mouse behaviour for one mouse in Dataset A-1 expressed in total time, as specified by the two human readers
and automatically generated by our system. The results obtained by the classifier are comparable to those of the human scorers.
doi:10.1371/journal.pone.0074557.g004
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trained system to analyse a larger dataset (Dataset B), which

comprises of 9 hours of videos of freely interacting mice in

groups of 2 or 4 in an open field arena. In the following results

we decided to compare two mice strands observing the overall

total amount of time spent in each behavioural condition, as it

was sufficient to verify the starting hypothesis of socially

impaired mice.

We first compared, the social and non-social behaviours of

groups of BTBR T+tf/J (BTBR) and C57BL/6J (B6) mice. BTBR

is a strain with established low sociability, while C57BL/6J (B6)

has a standard social behaviour [37,45]. Fig. 5 shows the

comparison of the single behaviours for the two strains. BTBR

male cagemates showed a significant decrease of ‘‘Nose2Body’’

(P,0.05) and ‘‘Nose2Genital’’ (P,0.0001) sniffing interactions

compared to B6 mice. In accordance to this, BTBR male

cagemates also showed a significant increase in the ‘‘StandAlone’’

behaviour (P,0.005; Fig. 5(b)) and appeared to be less likely to

walk alone (P,0.005; Fig. 5(b)) compared to B6 mice. Overall, the

sum of the single social and non-social behaviours demonstrated

that our system was able to detect a significant reduction of social

behaviours (P,0.05; Fig. 5(c)) and increase in non-social

behaviours (P,0.05; Fig. 5(d)) in the BTBR compared to the B6

strain. This result is in line with what is already observed in other

studies [37,45].

In the last set of experiments, we compared the social

interaction of an identical breed (i.e. B6) with 4 or 2 mice in the

same arena. The system was able to reliably deal even with 4 mice

simultaneously interacting in the same arena. Moreover, from

Fig. 6 it was evident that, as expected, almost all social behaviours

were increased when in the same arena there were 4 instead of 2

mice (P,0.0001; Fig. 6(a)). Similarly, there was a significant

decrease of the ‘‘WalkAlone’’ behaviour in 4-mice cages

(P,0.0001). In Fig. 6(c) and 6(d), the expected behavioural

pattern is shown, i.e. social interactions in the 4 mice arena are

increased (P,0.0001) while non-social behaviours are decreased

(P,0.0001).

Computational Performance
In our experiments, the position tracking algorithm runs in real

time on a single core at 2.6GHz with a C++ implementation. A

single frame is processed in ,30 ms. The behaviour classification

is performed offline, however the computational resources to

generate the feature vectors and perform the classification are

negligible.

Discussion

In this paper, we addressed the challenging problem of multiple

mice behaviour analysis devising a tracking/classification system,

which presents several novel contributions. First, a real-time

model-based segmentation and tracking algorithm that combining

position, temperature and shape information is able to manage

multiple interacting mice regardless of their fur colour or light

settings is presented. A new set of specialised spatio-temporal

features, targeted to be general enough to represent various aspects

of static and dynamic social behaviours, are introduced. Finally,

such features are used as the input for a learning-by-example

classifier, based on random forest, which was extended to deal with

video sequences.

Using a set of videos annotated by experts as training data, we

were able to classify mice behaviours with an arbitrary number of

mice (compatibly with the cage size and the experimental

protocols). Currently, even the most recent methods have not

attempted to monitor the behaviour of more than two mice

concurrently. This is a substantial limitation in studies involving

complex social behaviours as grouped mice might interact

differently when groups have more than two components, as

normally happens during human social relations.

Our experiments showed promising results in several aspects.

Using three interacting mice, we obtained a tracking performance

in line with the one presented by De Chaumont et al. [22], 0.825

vs. 0.885 manual interventions every 30 seconds in favour of [22],

but testing their system uniquely with two mice. Concerning

behaviour classification, we showed a system/human classification

discrepancy comparable or better than the one among two human

graders, looking at both a frame-by-frame analysis (Table 2) and a

global time analysis (Table 3).

Various metrics were employed for the evaluation of

behaviour classification. In the case of all behaviours considered

separately, the system/grader frame-by-frame analysis showed a

concordance often higher than the one among graders. First

column in Table 2 shows an average concordance accuracy of

74.44%–82.67% for the automatic system and 75.35% for the

human graders. To put these results into perspective, Burgos-

Table 4. Comparison of classification performance between the method presented in this paper and the classification approach of
Burgos-Artizzu et al. [23].

Temporal Random Forests (this paper) Burgos-Artizzu et al. [23]

Grader 1 sets Acc. Full 74.44% 72.26%

Acc. SocVsNsoc 98.69% 94.29%

Prec. Soc 86.58% 75.11%

Prec. Nsoc 99.01% 98.60%

Avg time diff. 9.7 sec. 64.7 sec.

Grader 2 sets Acc. Full 82.67% 78.60%

Acc. SocVsNsoc 98.69% 94.28%

Prec. Soc 80.47% 63.01%

Prec. Nsoc 99.18% 98.83%

Avg time diff. 8.5 sec. 61.2 sec.

The results are the average across all the mouse pairs of Dataset A, computed employing all the metrics of Table 2 and 3. In all instances our approach outperforms [23].
The full results are available as additional material (Table S1).
doi:10.1371/journal.pone.0074557.t004
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Artizzu et al. [23] report a concordance among graders of 70%

and a system/grader concordance of 61.2% by combining two

views. However, they employed a different experimental setup

with different behaviour classes, hence these results are not

directly comparable. For a fair comparison we evaluated the

performance of their classification strategy (Adaboost with auto-

context features) with ours (Temporal Random Forests). Table 4

shows the results of these experiments, where our approach

consistently shows better performance (Table S1, which shows

the full list of experiments, is available as additional material).

In the last three columns of Table 2 and 3, we evaluate the

concordance of social vs. non-social behaviours, i.e. all

behaviours are grouped in two ‘‘super-classes’’. The frame-by-

frame analysis of Table 2 shows an average concordance

accuracy of 98.69% for the automatic system and 99.6% for the

human graders. The global time analysis of Table 3 shows a

time discrepancy of 8.5–9.7 seconds for the automatic system

and 3.6 seconds for the human graders. These results account

for less than 0.4% of the total video time, thus showing an

extremely interesting ability of the system (and the graders) in

evaluating the total time of social and non-social behaviours.

We also validated our system on a large dataset (Dataset B, 9

hours worth of video) showing two important aspects: the

generalisation ability of the classifier on new datasets (the

algorithm training was carried out on dataset A) and the

applicability of the system on real behavioural studies. These

experiments also highlight the need for more training data of some

behaviour classes, namely ‘‘Above’’, ‘‘Following’’ and ‘‘StandTo-

gether’’, which were rarely represented in the ‘‘training’’ data.

Future development of the system will consider this limitation.

This paper is one of the forerunners of the automatic social

behaviour classification in mice. For this reason, we made our

dataset and grader labelling publicly available in order to allow

other research groups to evaluate and compare their tracking and

classification algorithms on multiple mice in infrared light with

ours. We feel that the ability to design social experiments going

beyond the resident-intruder approach presented by Burgos-

Artizzu et al. [23] and de Chaumont et al. [22] is a necessity for

the advancement of the study of complex social behaviours.

Indeed, while in a resident/intruder set-up, the social behaviours

are chiefly aggressive and initiated by a single mouse, in a

‘‘cagemates’’ set-up, the social interactions are likely to be finer

and ultimately more complex.

Figure 5. Fully automated analysis comparing the interactions of C57BL/6J (N = 10) and BTBR (N = 6) mice of all experiments with
two animals per cage (Dataset B). The top graphs show the overall occurrence of each social and non-social interaction. We generated a different
graph for ‘‘StandTogether’’ behaviour since its classification as either social or non-social is arguable. The bottom graphs show the aggregate
comparison of social and non-social interaction. The null hypothesis that the C57BL/6J mouse and BTBR mice show a similar social/non-social
behaviour is rejected in both cases by a two-class, two tail t-test that assumes equal variance. This shows impaired social activity in the BTBR case. The
significance values of the t-test are (*) p,0.05, (**) p,0.005, (***) p,0.0005.
doi:10.1371/journal.pone.0074557.g005
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Additionally, the ability to constantly monitor the behaviours

of multiple mice in real time (even in near darkness) will greatly

increase the amount of information that can be acquired in

each experiment. Importantly, our system was able to discrim-

inate different mice interacting together without any use of

tagging which may alter the natural behaviour of mice.

Moreover, as this classification method is based on a learning-

by-example paradigm, it can be extended to analyse many other

types of social behaviours, as long as there are enough examples

that can be properly expressed by the feature vector.

Conclusions

With the increased interest of molecular biologists in

characterising and monitoring mice social behaviour, there is

a raise in the demand of automatic video analysis systems that

are easy to use, accurate and detailed. In this paper, we

presented a complete method for the automatic tracking and

classification of mouse behaviours from thermal video sequenc-

es. Quantitative tests performed using several sets of data show

that our automatic behaviour analysis system can be successfully

trained by examples and that its performance are in line with

the performance of a human grader. Importantly, this system is

able to go beyond the tracking and behaviour classification of

only two animals at once, opening new perspectives in social

behaviour studies. Moreover, this system is not only limited to

social behaviour analysis but its tracking module can also

measure accelerations, positions, etc. as in currently available

single mouse tracking software packages.

Supporting Information

Table S1 Full comparative evaluation of the classifica-
tion strategies in terms of accuracy, precision and
global time difference.
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Figure 6. Fully automated analysis comparing the interactions of C57BL/6J mice in cages of two (N = 6) or four (N = 8) cage mates
(Dataset B). The top graphs show the occurrence of each social and non-social interaction. For the same reasons exposed in Fig. 5 the
‘‘StandTogether’’ behaviour is shown in a separate graph. The bottom graphs show the aggregate comparison of social and non-social interaction.
The null hypothesis that mice show a similar social/non-social behaviour, regardless of the number of mice interacting, is rejected in both cases by a
two-class two tail t-test that assumes equal variance. This shows an increase of social activity when C57BL/6J mice can interact with more littermates.
The significance values of the t-test are (*) p,0.05, (**) p,0.005, (***) p,0.0005.
doi:10.1371/journal.pone.0074557.g006
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