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Generation type inequalities
for closed linear operators

related to domains with conical points

Alberto Favaron (Bologna) ∗

Abstract. Let A(x;Dx) be a second-order linear differential operator in divergence
form. We prove that the operator λI − A(x;Dx), where λ ∈ C and I stands for the
identity operator, is closed and injective when Reλ is large enough and the domain of
A(x;Dx) consists of a special class of weighted Sobolev function spaces related to conical
open bounded sets of Rn, n ≥ 1.

Key words and phrases. Resolvent estimates. Weighted Sobolev function spaces. Conical
bounded domains of Rn.

1 Introduction and plan of the paper

In this paper we present a new approach for proving an estimate of generation type for
the norm of the resolvent [λI−A(x;Dx)]

−1 of the operator λI−A(x;Dx), where λ ∈ C, I
stands for the identity operator and A(x;Dx) denotes the second-order linear differential
operator in divergence form

A(x;Dx) =
n∑

j=1

Dxj

( n∑

k=1

aj,k(x)Dxk

)
. (1.1)

We stress that in our paper the domain of A(x;Dx) will consist of an appropriate class of
weighted Sobolev spaces whose elements will be functions taking their values in conical
open bounded sets of Rn, n ≥ 1.
With the language of the modern semigroup theory a generation type estimate means
that, denoted with L(X) the Banach space of the linear bounded operators from X to X ,
X being a Banach space, and endowed L(X) with the usual uniform operatorial norm,
then ‖[λI − A(x;Dx)]

−1‖L(X) is bounded from above by some constant times |λ|−1, at
least for large enough Reλ.
Even if in order to prove our main result we adopt an idea that goes back to [1] and [5],
i.e. the procedure of increasing the dimension from n to n + 1, in our proof there are so
many different elements with respect to the proof of the estimates in the quoted papers
that we may consider our results totally independent of those.
The novelties arise fundamentally from the fact that we consider bounded domain G ofRn
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having a singular point O situated in a part of the boundary ∂G with a conical structure.
This forces us to consider weighted Sobolev function spaces for which, unfortunately, the
classical a priori estimates of [2] are not available. The role of that estimates will be played
here by some estimates of the same type proven in [10], but these estimates, when applied
in dimension n + 1, require the conical structure of G to be preserved when we increase
the dimension. Therefore, denoted by x0 the added variable, unlike standard procedures
making use of Γ = (−∞,+∞)×G, we will consider, as a new domain in dimension n+1,

a domain G̃ which can be regarded as a rotation of G around its symmetry axis.
Of course, when n = 1, G simply coincides with a bounded open interval of R and
rotations have no meaning. However, in this situation too, it will always be possible to
consider two-dimensional conical domains G̃ having G as their symmetry axis.
The main difficulties arising by the use of G̃ instead of that of Γ consist in the following:

(i) the proof that the property of the boundary conditions to cover A(x;Dx) on ∂G\{O}
in the sense of [3] continues to hold when we increase the dimension. This is not
a straightforward fact and forces us to implement a new set of boundary operators
coinciding with the original ones on ∂G;

(ii) the necessity of considering cut-off functions depending on both variables x0, x,
where x ∈ G, instead of cut-off functions as those considered in [1] and [5] and
depending only on the added variable x0. As a consequence, our computations will
be heavier and longer than those in the quoted papers (cf. also [11]).

Observe that we will consider bounded domains of conical type. Since a lot of papers have
been devoted in the past to the investigation of boundary value problems in such domains,
we prefer here not to mention any of them, but only to refer the interested reader to [8],
where some examples of admissible domains and an exhaustive list of references for this
kind of problems are given.
We would like to emphasize that generation type estimates are one of the main tools
needed to prove that a linear operator generates an analytic semigroup of linear bounded
operators. Hence, if the generation in our functional setting could be guaranteed, by
showing the surjectivity of λI−A(x;Dx) too, the range of applications of our result would
be extremely large. Indeed, nowadays semigroup theory is one of the most used tool in
both direct and inverse problems related parabolic differential equations. However, while
for regular domains and classical Sobolev spaces many generation results are available,
the same, to the author’s knowledge, is not true for conical domains and weighted Sobolev
spaces.
The plan of this paper is the following. In Section 2, using notations of [10], we introduce
the class of domains and of weighted Sobolev function spaces we will deal with. Moreover,
we introduce also the correspondent spaces of traces for the boundary values.
Section 3 is devoted to recall the a priori estimates of [10] for boundary value problems
in the functional setting of Section 2. To this purpose we need to introduce some further
technical definitions and a rather heavy notation which, however, having to deal with
scalar and not matrix differential operators, turns out to be quite simple in our case.
In the first part of Section 4 we list all the basic assumptions on the domain G, on
the operator A(x;Dx) and on the boundary operator B(x;Dx) associated with A(x;Dx).
Under these assumptions, in the second part of Section 4 we will introduce the concept
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of regular boundary value problem and, for such a problem, we will state our main result
(Theorem 4.6). We conclude the section by showing some easy corollaries to our estimate
and related to the analytic semigroups theory.
Section 5 contains the proof of the preliminary Lemma 4.2. Essentially, it states that the
property of B(x;Dx) to cover A(x;Dx) on ∂G\{O} in the sense of [3] continues to hold
when we increase the dimension, provided we replace the triplet {A(x;Dx),B(x;Dx), G}

with the triplet {A(x;Dx) + eiψD2
x0 ,B(x;Dx) + x0Dx0, G̃}, ψ ∈ [−π/2, π/2].

In Section 6 we introduce the class of our admissible cut-off functions. For the reasons
we said before, they have a structure more complicated (cf. (6.2)) than those used in [1]
and [5] and hence, for clarity’s sake, we report all the necessary computations we need in
order to perform the technicalities of Section 7.
Finally, in Section 7 we prove our main result. The proof will be derived simply by taking
advantage of the assumptions on G and by combining Theorem 3.2 with Lemma 4.2 and
with the further preliminary estimates of Lemma 7.1 and Lemma 7.2.

2 The spaces V l
p,β(G), W

l
p,β(G), V

l−p−1

p,β (∂G), W l−p−1

p,β (∂G)

Let B(0, 1) be the unit open ball of Rn, n ≥ 1, and denote by K an open cone of Rn

having its vertex at the origin and cutting out on the unit sphere ∂B(0, 1) a domain Ω.
From now on, with G we will denote an open subset of Rn having compact closure G and
boundary ∂G on which there is a point O such that:

(i) ∂G\{O} is a smooth, (n− 1)–dimensional submanifold of Rn;

(ii) near O the domain G coincides with K ∩B(0, 1).

Using a multi-index notation, for 1 < p < +∞, β ∈ R, l = 0, 1, . . ., we define the weighted
spaces V l

p,β(G) and W
l
p,β(G) as the spaces of functions u in G endowed, respectively, with

the following norm ‖ · ‖V l
p,β(G) and ‖ · ‖W l

p,β(G), where |x| = (x21 + . . .+ x2n)
1/2:

‖u‖V l
p,β(G) =

( l∑

α=0

∫

G

|x|p(β−l+|α|)|Dαu(x)|p dx
)1/p

< +∞ (2.1)

‖u‖W l
p,β

(G) =
( l∑

α=0

∫

G

|x|pβ|Dαu(x)|p dx
)1/p

< +∞ (2.2)

Since (2.1) and (2.2) coincide if l = 0 we set Lp,β(G) to be the weighted Lp space of
functions in G endowed with norm

‖u‖Lp,β(G) =
(∫

G

|x|pβ|u(x)|p dx
)1/p

.

As shown in [10], the space C∞
0 (G\{O}) of the infinitely differentiable functions having

compact support on G\{O} is dense in V l
p,β(G) and the following theorem holds true.

Theorem 2.1. 1) If β < −np−1 or β > l − np−1 then the spaces V l
p,β(G) and W l

p,β(G)
coincide and the norm (2.1), (2.2) are equivalent.
2) If for some number ν = 0, 1, . . . , l− 1 the inequalities ν−np−1 < β < ν +1−np−1 are
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satisfied, then the space W l
p,β(G) is the direct sum of V l

p,β(G) and Πl−ν−1, where Πl−ν−1 is
the space of polynomials in x of degree at most equal to l − ν − 1 (Πq = {0} if q < 0).

Proof. See the proof of Theorem 2.1 in [10].

In order to consider boundary value problems we need to define also the spaces

V l−p−1

p,β (∂G) and W l−p−1

p,β (∂G), i.e. the spaces of traces on ∂G of functions in V l
p,β(G) and

W l
p,β(G), respectively. It turns out that V

l−p−1

p,β (∂G) is the quotient space V l
p,β(G)\Ṽ

l
p,β(G),

where Ṽ l
p,β(G) is the completion with respect to the V l

p,β(G)–norm of the set of smooth

functions in V l
p,β(G) equal to zero on ∂G. V l−p−1

p,β (∂G) is endowed with the norm:

‖u‖
V l−p−1

p,β
(∂G)

= inf
{
‖v‖V l

p,β(G) : v − u ∈ Ṽ l
p,β(G)

}
. (2.3)

Replacing V with W in the above definitions we obtain the description of W l−p−1

p,β (∂G).

From the fact that C∞
0 (G\{O}) is dense in V l

p,β(G) it easily follows that C∞
0 (∂G\{O}) is

dense in V l−p−1

p,β (∂G). Moreover, Theorem 2.1 ensures that if β < −np−1 or β > l − np−1

then V l−p−1

p,β (∂G) and W l−p−1

p,β (∂G) coincide whereas (cf. [10, Theorem 3.1]) if for some

number ν the inequalities ν − np−1 < β < ν + 1 − np−1 are satisfied then W l−p−1

p,β (∂G)

is the direct sum of V l−p−1

p,β (∂G) and the space Yl−ν−1 of polynomials of degree at most
l − ν − 1 which are not identically zero on ∂Ω ×R+.

3 Admissible operators and

boundary value problems in W l
p,β(G)

Let Dx denotes the n-uple (Dx1, . . . , Dxn) and let C(µ, s) to be the class of differential
operators M(x;Dx) of order µ with coefficients in Cs(G\{O};C) and admitting, near O,
the following representation in local spherical co-ordinates (r, ω):

M(x,Dx) = r−µ
∑

k+|γ|≤µ

pk,γ(r, ω)(rDr)
kDγ

ω ≡ r−µM(r, ω; rDr, Dω) , (3.1)

where the functions ph,α(r, ω), h + |α| ≤ µ, satisfy the condition

(rDr)
qDγ

ω ph,α ∈ C([0, δ]× Ω;C) , q + |γ| ≤ s, δ = const > 0. (3.2)

Recall that, for h > 0, we have

Dh
r =

∑

|α|=h

ah,α(ω)D
α
x , Dh

ω =
∑

0<|α|≤h

r|α|bh,α(ω)D
α
x , (3.3)

where ah,α and bh,α, 0 < |α| ≤ h, are smooth functions on ∂B(0, 1).
From (2.1) it is easy to prove that any M ∈ C(µ, s) realizes a continuous mapping
V l
p,β(G) → V l−µ

p,β (G) for s ≥ l− µ and, by Theorem 2.1, if β < −np−1 or β > l− np−1 the

same property holds true with V l
p,β(G) and V

l−µ
p,β (G) replaced by W l

p,β(G) and W
l−µ
p,β (G),

respectively. In the case there exists ν = 0, . . . , l−1 such that ν−np−1 < β < ν+1−np−1

the map M :W l
p,β(G) →W l−µ

p,β (G) is still continuous if M(Πl−ν−1) ⊂W l−µ
p,β (G).
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Remark 3.1. For reasons that will be clearer in Section 4, denote by (x0, x) the points of

Rn+1 and by G̃ an (n+1)-dimensional domain which, close to the origin, coincides with the
cone {(x0, x) ∈ Rn+1 : |(x0, x

′)| ≤ C1xn, x
′ = (x1, . . . , xn−1), xn > 0}, C1 > 0. We will

show here that if aj,k ∈ C1(G;C), j, k = 1, . . . , n, and G = {(x0, x) ∈ G̃ : x0 = 0}, then
the operator Aψ(x;Dx, Dx0) = A(x;Dx) + eiψD2

x0
, where ψ ∈ [−π/2, π/2] and A(x;Dx)

is defined by (1.1), belongs to the class C(2, 0).
We introduce in the space Rn+1 the (n+1)-dimensional spherical co-ordinates, related to
the Cartesian ones by the well-known relationships:

(x0, x1, . . . , xn−1, xn)

=
(
r cos θ0, r sin θ0 cos θ1, . . . , r

∏n−2
h=0 sin θh cos θn−1, r

∏n−1
h=0 sin θh

)
,

(3.4)

where r = |(x0, x)|, θh ∈ [0, π], h = 0, . . . , n− 2, θn−1 ∈ [0, 2π) and where
∏l2

h=l1
sin θh has

to be intending equal to one if l2 < l1.
Denoting by ω the (n − 1)-uple (θ0, . . . , θn−1), with the help of (3.4) it is not too diffi-
cult to show that the gradient (Dx0 , Dx) can be expressed in terms of (Dr, Dω), Dω =
(Dθ0 , . . . , Dθn−1), by the following formulae:

Dxj = τj,r(ω)Dr + r−1
(∑n−2

k=0 τj,θk(ω)Dθk + τj,θn−1(ω)Dθn−1

)
, j = 0, . . . , n , (3.5)

where, δi,l standing for the Kronecher symbol, for any j ∈ {0, . . . , n − 1} and any k ∈
{0, . . . , n− 2} we have




τj,r(ω) =
∏j−1

h=0 sin θh cos θj , τn,r(ω) =
∏n−1

h=0 sin θh ,

τj,θk(ω) =

{ (∏k
h=0 sin θh

)−1[∏j−1
h=k sin θh cos θk cos θj − δk,j

]
, if k ≤ j ,

0 , if k > j ,

τn,θk(ω) =
(∏k−1

h=0 sin θh
)−1∏n−1

h=k+1 sin θh cos θk ,

τj,θn−1(ω) = −
(∏n−2

h=0 sin θh
)−1

δ(n−1),j sin θj , τn,θn−1(ω) =
(∏n−2

h=0 sin θh
)−1

cos θn−1 .

(3.6)

Hence, if we set ãj,k(r, ω) = aj,k(r sin θ0 cos θ1, . . . , r
∏n−2

h=0 sin θh cos θn−1, r
∏n−1

h=0 sin θh),
j, k = 1, . . . , n, we obtain

∑n
k=1 aj,k(x)Dxk = fj,r(r, ω)Dr + r−1

∑n−1
h=0 fj,θh(r, ω)Dθh, j = 1, . . . , n , (3.7)

functions fj,r, fj,θl, j = 1, . . . , n, l = 0, . . . , n− 1, being defined by

fj,r(r, ω) :=
∑n

k=1 ãj,k(r, ω)τk,r(ω) , fj,θl(r, ω) :=
∑n

k=1 ãj,k(r, ω)τk,θl(ω) . (3.8)

Using again (3.5) and applying it to relations (3.7), performing easy computations we get

A(x;Dx) = Qr(r, ω;Dr, Dω) +
∑n−1

l=0 Qθl(r, ω;Dr, Dω), (3.9)

where Qr(r, ω;Dr, Dω), Qθl(r, ω;Dr, Dω), l = 0, . . . , n − 1, stand for the second-order
linear differential operator

Qr(r, ω;Dr, Dω) = Dr

(
kr(r, ω)Dr + r−1

∑n−1
h=0 kθh(r, ω)Dθh

)
,

Qθl(r, ω;Dr, Dω) = r−1
∑n

j=1 τj,θl(ω)Dθl

(
fj,r(r, ω)Dr + r−1

∑n−1
h=0 fj,θh(r, ω)Dθh

)
,

(3.10)
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functions kr, kθl, l = 0, . . . , n− 1, appearing in (3.10) being defined by

kr(r, ω) :=
∑n

j=1 τj,r(ω)fj,r(r, ω) , kθl(r, ω) :=
∑n

j=1 τj,r(ω)fj,θl(r, ω) . (3.11)

Moreover, since (3.5), (3.6) imply Dx0 = cos θ0Dr − r−1sin θ0Dθ0 , taking advantage from

(rDr)
2 = r2D2

r + rDr (3.12)

we obtain

D2
x0 = r−2{cos2 θ0(rDr)

2 + sin(2θ0)[I − (rDr)]Dθ0 + sin2 θ0D
2
θ0
− cos(2θ0)(rDr)}. (3.13)

Therefore, assuming ai,j ∈ C1(G;C), i, j = 1, . . . , n, taking into account the following
formulae (cf. (3.3) with h = 1)

{
Dr =

∑n−1
k=0(

∏k−1
h=0 sin θh cos θk)Dxk +

∏n−1
h=0 sin θhDxn ,

Dθl =
∑n

j=l(Dθkxj)Dxj , l = 0, . . . , n− 1 ,
(3.14)

and recalling (3.8) and (3.11), if we differentiate, respectively with respect to r and θl,
l = 0, . . . , n−1, each term in the brackets of (3.10) and we rearrange the term using (3.12),
from (3.9), (3.13) we can easily see that Aψ(x;Dx, Dx0) = A(x;Dx) + eiψD2

x0, admits
representation (3.1) with µ = 2. In addition, since the points (0, . . . , 0, xj, 0, . . . , 0), j =

0, . . . , n−1, with xj 6= 0 do not belong to G̃, we have sin θj 6= 0 for any j ∈ {0, . . . , n−1}
and hence (cf. (3.6)) condition (3.2) is satisfied, too, with s = 0.

Coming back to our purposes, we consider the boundary value problem:

L(x;Dx)u = F in G ; B(x;Dx)u = G on ∂G\{O} , (3.15)

L and B being matrix differential operators in G of dimension k×k andm×k, respectively,
with elements Lh,j(x;Dx) and Bq,j(x;Dx), h, j = 1, . . . , k, q = 1, . . . , m. The orders of
operators Lh,j and Bq,j are equal to (sh + tj) and (σq + tj), respectively, where {sh}

k
h=1,

{tj}
k
j=1 and {σq}

m
q=1 are collections of integers with maxh=1,...,k sh = 0, tj > 0, j = 1, . . . , k,

and
∑k

j=1(sj + tj) = 2m. Clearly, Lh,j ≡ 0 and Bq,j ≡ 0 if sh + tj < 0 and σq + tj < 0.
Moreover, taken l ≥ max{0,maxq=1,...,m σq}, we assume Lh,j(x;Dx) ∈ C(sh + tj , l − sh)
and Bq,j(x;Dx) ∈ C(σq + tj , l − σq) in a neighborhood of O (cf. [9] p.76).
We require L to be uniformly elliptic in G\{O} in the sense of [3] and we impose that
the boundary conditions B cover L on ∂G\{O} (cf. [3] or [7]).
Problem (3.15) generates a model problem in the cone (0,+∞)×Ω. With the pair {L,B}
we associate the operator U(0, ω, z,Dω) = {L(0, ω, z,Dω), B(0, ω, z,Dω)} where ω ∈ Ω,
z ∈ C and the matrix differential operators L(0, ω, z,Dω) and B(0, ω, z,Dω) are defined,
respectively, by

L(0, ω, z,Dω) =
(
Lh,j(0, ω; z − itj , Dω)

)j=1....,k

h=1....,k
, (3.16)

B(0, ω, z,Dω) =
(
Bq,j(0, ω; z − itj , Dω)

)j=1,...,k

q=1,...,m
, (3.17)

the operators Lh,j and Bq,j being determined from Lh,j and Bq,j by means of (3.1) replacing
pk,γ(r, ω) with pk,γ(0, ω). As shown in the Appendix the ellipticity of system (3.15) implies
that U(0, ω, z,Dω) is elliptic with parameter in the sense of [6].
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Denoting by ~t, ~s and ~σ the vectors (t1, . . . , tk), (s1, . . . , sk) and (σ1, . . . , σm), respectively,
we introduce the spaces of vector-valued functions

V l+~t
p,β (G) =

∏k
j=1 V

l+tj
p,β (G) , V l−~s

p,β (G) =
∏k

j=1 V
l−sj
p,β (G) ,

V l−~σ−p−1

p,β (∂G) =
∏m

q=1 V
l−σq−p−1

p,β (∂G) ,
(3.18)

and the correspondent spaces W l+~t
p,β (G), W

l−~σ−p−1

p,β (∂G) obtained by replacing V with W
in (3.18). By the assumptions it is obvious that the map

{L,B} : V l+~t
p,β (G) → V l−~s

p,β (G)× V l−~σ−p−1

p,β (∂G) , (3.19)

is continuous and from Theorem 2.1 we deduce that if β < −np−1 or β > l+ tmax −np−1,
tmax = maxj=1,...,k tj , the same regularity holds true by replacing V with W . In addition,
Theorem 4.2 in [10] shows that if there exists some ν = 0, 1, . . . , l + tmax − 1 such that

ν−np−1 < β < ν+1−np−1 then the map {L,B} : W l+~t
p,β (G) → W l−~s

p,β (G)×W
l−~σ−p−1

p,β (∂G)

still remains continuous provided that {L,B}(Πl+~t−ν−1) ⊂ W l−~s
p,β (G) × W l−~σ−p−1

p,β (∂G),

where Πl+~t−ν−1 =
∏k

j=1Πl+tj−ν−1. We can now state the following result corresponding
to Theorem 4.3 in [10] and to which we refer the reader for the proof.

Theorem 3.2. If β /∈ [−np−1, l+ tmax − np−1] or if there exists ν = 0, 1, . . . , l+ tmax − 1
such that ν − np−1 < β < ν + 1 − np−1 then for p ∈ (1,+∞) the operator (3.19) is
Fredholm if and only if the line Imz = β − l + np−1 contains no poles of the operator
U(0, ω, z,Dω)

−1 which are the eigenvalues of U(0, ω, z,Dω). Under this condition, for any

vector-valued function w ∈ W l+~t
p,β (G) the following estimate holds

‖w‖
W l+~t

p,β
(G)

≤ c1
{
‖Lw‖W l−~s

p,β (G) + ‖Bw‖
W l−~σ−p−1

p,β
(∂G)

+ ‖w‖
W l−1+~t

p,β
(G)

}
. (3.20)

In the next, Theorem 3.2 will be applied to the case in which L and B are single and
not matrix differential operators. Therefore, from now on the parameters appearing from
formula (3.15) onward will be assumed to be the following:

k = m = 1 , s1 = 0 , t1 = 2 σ1 = −1 , l = 0 . (3.21)

4 Basic assumptions and main result

With all the necessary background introduced in the previous sections, here we will be
finally able to state our a priori estimate for a solution u ∈ W 2

p,−1(G) to the boundary
value problem

{
λu(x)−A(x;Dx)u(x) = f(x) , x ∈ G ,

B(x;Dx)u(x) = g(x) , x ∈ ∂G ,
(4.1)

where f ∈ Lp,−1(G), g ∈ W 1−p−1

p,−1 (∂G) and λ ∈ C.
However, to state the main result, some basic assumptions on the domain G and on the
differential operators A(x;Dx) and B(x;Dx) are needed. We are going to list them.
Let Cj, j = 1, 2, 3, be three positive constants such that, denoted with φ the angle
arctan[(C1)

−1] ∈ (0, π/2), they satisfy C2 > sinφ and C3 > C1 and let η : [0, C2] → R be
a function of class C2 satisfying the following properties:
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i) η(y) = C1y , if y ∈ [0, sinφ] ;

ii) 0 < η(y) < C3y , if y ∈ (sinφ, C2) ;

iii) η(C2) = 0, η′(C2) = −∞ .

Having such a η, for the rest of the paper with G we will denote the domain

G =
{
x ∈ Rn : |x′| < η(xn) , x

′ = (x1, . . . , xn−1) , 0 < xn < C2

}
. (4.2)

When n ≥ 2, due to i), G∩B(0, 1) coincides with the cone {x ∈ Rn : |x′| < C1xn, xn > 0},
whereas, when n = 1, we have x′ = 0 and G simply coincides with the interval (0, C2).

Remark 4.1. To clarify the meaning of the constant C1 and of the choice of the interval
[0, sinφ] in the assumption i) on η, observe first what happens when n = 2. In this case
G ∩ B(0, 1) coincides with the cone {(x1, x2) ∈ R2 : |x1| < C1x2, x2 > 0} and therefore,
using polar co-ordinates in R2 (set θ0 = π/2 and n = 2 in formulae (3.4)), we deduce that
for any x ∈ G∩B(0, 1) the angle θ1 belongs to (φ, π−φ). Hence if x ∈ ∂G∩B(0, 1) then
x2 ∈ [0, sinφ]. Generalizing to the case n > 2, by setting θ0 = π/2 in formulae (3.4) we
deduce that for any x ∈ G∩B(0, 1) all the angles θi, i = 1, . . . , n− 1, belong to the same
interval (φ, π − φ).

Now, A(x;Dx) being defined by (1.1), we assume

ai,j ∈ C1(G;C) , ai,j = aj,i , i, j = 1, . . . , n , (4.3)

Re
n∑

i,j=1

ai,j(x)ξiξj ≥ C0|ξ|
2 , ∀ (x, ξ) ∈ (G\{O})×Rn and some C0 > 0 . (4.4)

As it is well-know, if n ≥ 2 then assumption (4.4) implies the following:




for any x ∈ G and any linearly independent vectors ξ, ζ ∈ Rn

the polynomial τ → A(x; ξ + τζ) =
∑n

i,j=1 ai,j(x)(ξi + τζi)(ξj + τζj)

has a unique root with positive imaginary part.

(4.5)

With A(x;Dx) we associate the boundary operator

B(x;Dx) =

n∑

i=1

bi(x)Dxi + b0(x)I , x ∈ ∂G , (4.6)

where, V being an open neighborhood of G, we have

bj ∈ C1(V;R) , j = 0, 1, . . . , n . (4.7)

Moreover, if n ≥ 2 we assume that the bj ’s satisfy also the following two requirements:





|
∑n−1

i=1 bi(x
′ cos γ, xn)vi(x) cos γ + bn(x

′ cos γ, xn)vn(x) + |v′(x)|2 sin2 γ| ≥ m > 0 ,

for any γ ∈ [0, 2π] and any x ∈ ∂G\{O},

v(x) = (v′(x), vn(x)) being the outer normal to ∂G\{O} at x ,

(4.8)
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for any x ∈ ∂G\{O} and for any ξ, ζ ∈ Rn, repectively tangent and normal

to ∂G\{O} at x, the polynomial B(x; ξ + τζ) =
∑n

i=1 bi(x)(ξi + τζi) is not

divisible by (τ − τ+(x, ξ, ζ)) without remainder, τ+(x, ξ, ζ) being the unique

root with positive imaginary part of the polynomial A(x; ξ + τζ) in (4.5) .

(4.9)

Observe that (4.8) is well defined by virtue of (4.7) since if x ∈ ∂G\{O} then (x′ cos γ, xn),
γ ∈ [0, 2π], belongs to G. Assumption (4.8) can be considered as an improvement of the
standard assumption for the coefficients of B(x;Dx), corresponding to γ = 0 in (4.8). In
Section 5 we will exhibit a concrete class of functions bj , j = 1, . . . , n, satisfying (4.8).
Instead, in the case n = 1 we assume

b1(x1) 6= [η′(x1)]
−1η(x1), for every x1 ∈ (0, C2] such that η′(x1) 6= 0 , (4.10)

with the convention that when x1 = C2 then (4.10) should be understood as b1(C2) 6= 0.
In accordance with Definition 1.5 on p. 113 in [7], assumption (4.9) means that B(x;Dx)
covers A(x;Dx) on ∂G\{O}. We will need the following preliminary result.

Lemma 4.2. Let G be the domain defined by (4.2) and let A(x;Dx) and B(x;Dx) be the
differential operators defined respectively by (1.1) and (4.6) and assume that the coeffi-
cients of A(x;Dx) satisfy (4.3), (4.4) whereas the coefficients of B(x;Dx) satisfy (4.7)–

(4.10). Denote with (x0, x), x = (x′, xn), the points of Rn+1 and with G̃ the domain

G̃ =
{
(x0, x) ∈ Rn+1 : |(x0, x

′)| < η(xn) , 0 < xn < C2

}
. (4.11)

Then B((x0, x);Dx, Dx0) = B(x;Dx)+x0Dx0 covers Aψ(x;Dx, Dx0) = A(x;Dx)+ e
iψD2

x0
,

ψ ∈ [−π/2, π/2], on ∂G̃\{O}.

The proof Lemma 4.2 will be given in Section 5. Here we make only two easy remarks.

Remark 4.3. Observe that if n = 2 then G̃ is a 3–dimensional domain generated by a
rotation of G around the x2–axis. In this sense, when n ≥ 2, the (n + 1)–dimensional

domain G̃ can always be viewed as a rotation of the n–dimensional domain G around
the xn–axis. In addition, in the critical case n = 1, definition (4.11) ensures that G̃ is
2–dimensional domain, symmetric with respect to the x1–axis and coinciding with a cone
near the origin. This will be important in the following, since we will use Theorem 3.2
in dimension n + 1 and therefore we will need to consider (n + 1)–dimensional domain
having the properties for which that theorem is true.

Remark 4.4. Under our assumptions on A(x;Dx) the operator Aψ(x;Dx, Dx0), ψ ∈
[−π/2, π/2], does not necessarily satisfy (4.4), but only the weaker ellipticity condition

∣∣∣
n∑

i,j=1

ai,j(x)ξiξj + eiψξ20

∣∣∣ ≥ 2−1/2min{C0, 1}|ξ|
2 ∀ (x, ξ) ∈ (G\{O})×Rn+1. (4.12)

However, if n ≥ 2 then n + 1 ≥ 3 and it is well-known that in this case (4.12) implies
(4.5). If n = 1, by computing explicitly the roots of the polynomial Aψ(x1; ξ+ τζ) for the
operator Aψ(x1;Dx1 , Dx0), it can be checked that (4.5) is satisfied, too. Indeed, by virtue
of (4.4), when n = 1 we may for simplicity assume a1,1 to be real and positive and hence,
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given two linearly independent vectors ξ = (ξ0, ξ1), ζ = (ζ0, ζ1) ∈ R2, it follows that the
polynomial Aψ(x1; ξ + τζ) = a1,1(x1)(ξ1 + τζ1)

2 + eiψ(ξ0 + τζ0)
2 has the roots:

τ±(x1, ξ, ζ) = [ζ40 + (a1,1(x1))
2ζ41 + 2a1,1(x1)ζ

2
0ζ

2
1 cosψ]

−1

×
{
− ξ0ζ

3
0 − (a1,1(x1))

2ξ1ζ
3
1 − a1,1(x1)ζ0ζ1e

−iψ[ξ0ζ1e
2iψ + ξ1ζ0]

± i [a1,1(x1)ξ0ζ1 − ξ1ζ0]e
−iψ/2[a1,1(x1)ζ

2
1e
iψ + ζ20 ]

}
. (4.13)

Now, triplet {Aψ(x;Dx, Dx0),B((x0, x);Dx, Dx0); G̃} being defined as in Lemma 4.2,
with problem (4.1) we associate the following boundary value problem, where F ∈

Lp,−1(G̃) and G ∈ W 1−p−1

p,−1 (∂G̃)
{

Aψ(x;Dx, Dx0)v(x0, x) = F(x0, x) , (x0, x) ∈ G̃ ,

B((x0, x);Dx, Dx0)v(x0, x) = G(x0, x) , (x0, x) ∈ ∂G̃ ,
(4.14)

As shown in Remark 3.1 when the coefficients ai,j , i, j = 1, . . . , n, of A(x;Dx) satisfy
(4.3) then Aψ(x;Dx, Dx0) belongs to the class C(2, 0). Moreover, when the coefficients bh,
h = 0, 1, . . . , n, of B(x;Dx) satisfy (4.7) then, using formulae (3.4), (3.5) and (3.14), it is
easy to see that B((x0, x);Dx, Dx0) belongs to C(1.1). In addition formula (4.12) shows

that Aψ(x;Dx, Dx0) is uniformly elliptic in G̃\{O}, whereas Lemma 4.2 establishes that

the boundary conditions B((x0, x);Dx, Dx0) covers Aψ(x;Dx, Dx0) on ∂G̃\{O}.

Hence, denoted with Ω the intersection G̃ ∩ ∂B(0, 1), problem (4.14) generates a model
problem in the cone (0,+∞) × Ω. Indeed, θi, i = 0, . . . , n − 1, being defined by (3.4),
with the pair {Aψ(x;Dx, Dx0),B((x0, x);Dx, Dx0)} we associate the operator

U(0, ω, z,Dω) = {Aψ(0, ω, z − 2i, Dω), B(0, ω, z − 2i, Dω)} , (4.15)

where ω = (θ0, . . . , θn−1), Dω = (θ0, . . . , θn−1), and the operators Aψ and B are determined
from Aψ(x;Dx, Dx0) and B((x0, x);Dx, Dx0) by means of (3.1) replacing the coefficients

ph,α(r, ω) with ph,α(0, ω). Since problem (4.14) is uniformly elliptic in G̃\{O} and the

boundary condition covers Aψ(x;Dx, Dx0) on ∂G̃\{O} then the operator U(0, ω, z,Dω)
is elliptic with complex parameter in the sense of [6]. Therefore, with the choice of the

parameter as in (3.21) and G replaced by G̃, all the assumptions on problem (3.15) which
are necessary in order to state Theorem 3.2 are satisfied even for problem (4.14).
We now give the following definition, arising from the necessity to use Theorem 3.2 in
dimension n+ 1, with β = −1 and l = 0.

Definition 4.5. The boundary value problem (4.14) will be said regular if the line Im z =
−1+(n+1)p−1 contains no eigenvalue of the operator U(0, ω, z,Dω) defined by (4.15). In
this case the triplet {A(x;Dx),B(x;Dx);G} will be said the restriction to the x variable

of the regular boundary value problem (4.14) in the domain G̃ related to G by (4.11).

Definition 4.5 can be considered as the equivalent, in the setting of weighted Sobolev
function spaces, of Definition 6.2 in [5]. In this sense our results are in accordance with
those proven in [5] for the subclass of problems consisting in the restriction to the x
variable of regular elliptic problems in one more variable. Two simple examples for the
Definition 4.5 are those given on p. 45 in [8] and p. 86 in [9] and related to the homoge-
neous Dirichlet boundary conditions.
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We can finally state our main result.

Theorem 4.6. Let p > n, p 6= n + 1, and let the triplet {A(x;Dx),B(x;Dx);G} be the
restriction to the x variable of the regular boundary value problem (4.14) in the sense of
Definition 4.5. Then, g0 ∈ W 1

p,−1(G) being any extension to G of B(x;Dx)u, there exists
ω > 0 such that if Reλ ≥ ω for every u ∈ W 2

p,−1(G) the following estimate hold

|λ|‖u‖Lp,−1(G) + |λ|1/2‖Du‖Lp,−1(G) + ‖D2u‖Lp,−1(G)

≤M
{
‖
(
λI −A(x;Dx)

)
u‖Lp,−1(G) + (1 + |λ|1/2)‖g0‖Lp,−1(G) + ‖Dg0‖Lp,−1(G)

}
. (4.16)

The positive constantM in (4.16) depends only on p, n, the C1(G)-norm of the coefficients
of A(x;Dx) and of B(x;Dx) and the constants Cj, j = 2, 3, intervening in the properties
i)–iii) for the function η which describes the boundary ∂G of G.

As announced in the Introduction, the proof of Theorem 4.6 will be given in Section 7.
Here, instead, we want to show some easy consequence of estimate (4.16). We set

{
D(A) = {u ∈ W 2

p,−1(G) : B(x;Dx)u = 0 in ∂G} ,

Au = A(x;Dx)u , ∀ u ∈ D(A) .
(4.17)

A is said the realization of A(x;Dx) in Lp,−1(G) with homogeneous boundary condition.

Corollary 4.7. Let assumptions of Theorem 4.6 be fulfilled and let the pair (A,D(A)) be
defined by (4.17). There exists ω > 0 such that if Reλ ≥ ω then the operator λI − A is
closed and injective in Lp,−1(G). As a consequence, A is closed in Lp,−1(G).

Proof. By taking as g0 the null function, the injectivity of λI − A, Reλ ≥ ω, trivially
follows from (4.16). Now, let {un}n∈N ⊂ D(A) such that un → u in Lp,−1(G) and
(λI −A)un → v in Lp,−1(G). If we set g0 = 0, from (4.16) it clearly follows that {un}n∈N
is a Cauchy sequence inW 2

p,−1(G) and hence u ∈ W 2
p,−1(G). Moreover, due to assumptions

(4.3), (4.7) on the coefficients of A(x;Dx) and B(x;Dx), respectively, it is easy to deduce

(λI − A)un → (λI − A)u in Lp,−1(G) and 0 = B(x;Dx)un → B(x;Dx)u in W 1−p−1

p,−1 (∂G).
Therefore u ∈ D(A) and (λI − A)u = v, i.e. λI −A is closed in Lp,−1(G).
The last assertion follows from A = λI − (λI −A).

As a further corollary of Theorem 4.6 we show that, if a solution u ∈ W 2
p,−1(G) of

problem (4.1) exists, then the operator A defined via (4.17) is sectorial, in accordance
with the Definition 2.0.1 in [11] which we report for reader’s convenience.

Definition 4.8. Let X be a complex Banach space, with norm ‖ · ‖. A linear operator
B : D(B) ⊂ X → X is said to be sectorial if there are constants ω1 ∈ R, ϑ ∈ (π/2, π),
C > 0 such that, denoted with ρ(B) the resolvent set of B, the following hold:

(i) ρ(B) ⊃ Sϑ,ω1 = {z ∈ C : z 6= ω1, | arg(z − ω1)| < ϑ},

(ii) ‖(zI − B)−1‖L(X) ≤ C|z − ω1|
−1, ∀ z ∈ Sϑ,ω1.

We recall also the following sufficient condition for an operator to be sectorial and for the
proof of which we refer to [11, Proposition 2.1.11].
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Proposition 4.9. Let ω1 ∈ R and let B : D(B) ⊂ X → X be a linear operator such that
ρ(B) ⊃ Sω1 = {z ∈ C : Rez ≥ ω1} and ‖(zI − B)−1‖L(X) ≤ C|z|−1 for any z ∈ Sω1 and
some C > 0. Then B is sectorial.

Consequently, we have the following corollary.

Corollary 4.10. Let assumptions of Theorem 4.6 be fulfilled and let us suppose that for

any pair (f, g) ∈ Lp,−1(G)×W 1−p−1

p,−1 (∂G) there exists a solution u ∈ W 2
p,−1(G) to problem

(4.1). Then the operator A defined by (4.17) is sectorial.

Proof. If for any pair (f, g) ∈ Lp,−1(G)×W
1−p−1

p,−1 (∂G) a solution u ∈ W 2
p,−1(G) of problem

(4.1) exists, then, when Reλ ≥ ω, the solution is unique by virtue of estimate (4.16).
Moreover, from (4.16) with g0 equal to zero, we deduce ‖(λI −A)−1‖L(Lp,−1(G)) ≤ M |λ|−1

for any λ ∈ C such that Reλ ≥ ω. Hence, the assertion follows from Proposition 4.9.

Since it is well-known that sectorial operators generate analytic semigroups, we have
the following further corollary.

Corollary 4.11. Under the hypotheses of Corollary 4.10 the realization A of A(x;Dx) in
Lp,−1(G) with homogeneous boundary condition generates an analytic semigroup of linear
bounded operators {T (t)}t≥0 ⊂ L(Lp,−1(G)).

5 Proof of Lemma 4.2

First, accordingly to Remark 4.3, we observe that if n ≥ 2 and G̃ is related to G by
(4.11) then a very special characterization of the points in ∂G̃\{O} in terms of those in

∂G\{O} can be given. Indeed, when n ≥ 2 and (x̃0, x̃) ∈ ∂G̃\{O} (i.e. |(x̃0, x̃
′)| = η(x̃n))

we set α = |(x̃0, x̃
′)|−1|x̃′|, β = |(x̃0, x̃

′)|−1x̃0. Since α2 + β2 = 1 there exists ϕ ∈ [0, 2π]
such that α = | cosϕ| and β = sinϕ. Let us set xi = x̃i/ cosϕ, i = 1, . . . , n − 1,
xn = x̃n. If cosϕ = 0, i.e. when (x̃0, x̃) is of the form (x̃0, 0, . . . , 0, x̃n), we set xi = 0,
i = 1, . . . , n − 1, xn = C2. In this way we have defined a point x ∈ ∂G\{O}. In fact,
|x′| = |x̃′|/| cosϕ| = |x̃′|/α = |(x̃0, x̃

′)| if α 6= 0 and x = (0, . . . , 0, C2) if α = 0. Summing

up, if n ≥ 2, given (x̃0, x̃) ∈ ∂G̃\{O} there exists an angle ϕ ∈ [0, 2π] such that

(x̃0, x̃
′, x̃n) = (|x′| sinϕ, x′ cosϕ, xn) , x = (x′, xn) ∈ ∂G\{O} , (5.1)

where boundary points of the form (x̃0, 0, . . . , 0, x̃n) correspond to the choice ϕ = π/2 if
x̃0 > 0 and ϕ = 3π/2 if x̃0 < 0.

Proof of Lemma 4.2. We consider the following two distinct cases: i) n ≥ 2, ii) n = 1.
i) n ≥ 2. Let Φ : Rn+1 → R to be the function defined by

Φ(y0, y) = 2−1{|(y0, y
′)|2 − [η(yn)]

2} , yn > 0 . (5.2)

It follows ∂G̃\{O} = {(y0, y) ∈ Rn+1 : Φ(y0, y) = 0, yn > 0} and hence, since the only

point of ∂G̃\{O} with xn = C2 is the point (0, . . . , 0, C2) with normal (0, . . . , 0, 1), the

normal ζ̃ to ∂G̃\{O} at (x̃0, x̃) is given by

ζ̃ =

{
(x̃0, x̃

′,−η(x̃n)η
′(x̃n)) , if xn ∈ (0, C2) ,

(0, . . . , 0, 1) , if xn = C2 .
(5.3)
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From (5.2) it follows also that the normal v(x) to ∂G\{O} at x is the vector

v(x) =

{
(x′,−η(xn)η

′(xn)) , if xn ∈ (0, C2) ,

(0, . . . , 0, 1) , if xn = C2 ,
(5.4)

and, since v′(x) = x′, we see that (5.3) can be rewritten in the more compact way

ζ̃ = (|v′(x)| sinϕ, v′(x) cosϕ, vn(x)) , (5.5)

where v(x) defined by (5.4) is the normal at the point x such that (5.1) holds.

It remains to characterize the tangent vectors ξ̃ to ∂G̃\{O}. Taking advantage from (5.4),

(5.5) it is not too difficult to show that any vector ξ̃ tangent to ∂G̃\{O} at (x̃0, x̃) has
one of the following three representations






(
a cosϕ+ c|v′(x)| sinϕ, by′ + cv′(x) cosϕ− a

v′(x)

|v′(x)|
sinϕ, c

η(xn)

η′(xn)

)
, if η′(xn) 6= 0,

(
a cosϕ, by′ − a

v′(x)

|v′(x)|
sinϕ, c

)
, if η′(xn) = 0 and ϕ /∈ {π/2, 3π/2}

(0, y), y ∈ Rn, |y| 6= 0, if η′(xn) = 0 and ϕ ∈ {π/2, 3π/2}

(5.6)

where y′ ∈ Rn−1, |y′| 6= 0, satisfies y′ · x′ = 0 if xn 6= C2 or ϕ /∈ {π/2, 3π/2}, a, b, c are
real numbers not all equal to zero and x ∈ ∂G\{O} is the point in (5.1).

Now, let (x̃0, x̃) ∈ ∂G̃\{O} with x̃0 6= 0 and assume condition (4.9) is violated for the

operator B((x̃0, x̃);Dx, Dx0). Hence, denoted with τ̃+((x̃0, x̃), ξ̃, ζ̃) the unique root with

positive imaginary part of the polynomial Aψ(x̃, ξ̃ + τ ζ̃) we have, for any τ ∈ C

n∑

i=1

bi(x̃)(ξ̃i + τ ζ̃i) + x̃0(ξ̃0 + τ ζ̃0) = χ((x̃0, x̃), ξ̃, ζ̃)[τ − τ̃+((x̃0, x̃), ξ̃, ζ̃)] . (5.7)

From (5.6) we deduce that there are three different situations to take into examination.
1) Case η′(xn) 6= 0. In this case from (5.1), (5.5)–(5.7) and assumption (4.8) we easily
deduce

n−1∑

i=1

bi(x
′ cosϕ, xn)vi(x) cosϕ+ bn(x

′ cosϕ, xn)vn(x) + |v′(x)|2 sin2 γ

= χ((x̃0, x̃), ξ̃, ζ̃) 6= 0 , (5.8)

{ n−1∑

i=1

bi(x
′ cosϕ, xn)[by

′
i + cvi(x) cosϕ− a|v′(x)|−1vi(x) sinϕ]

+ c bn(x
′ cosϕ, xn)[η

′(xn)]
−1η(xn) + |v′(x)|

(
a cosϕ+ c|v′(x)| sinϕ

)
sinϕ

}

= −χ((x̃0, x̃), ξ̃, ζ̃) τ̃
+((x̃0, x̃), ξ̃, ζ̃) (5.9)

From (5.8), (5.9) and the fact that bj , j = 1, . . . , n, assume only real values (cf. (4.7)) we

get a contradiction since Im τ+((x̃0, x̃), ξ̃, ζ̃) > 0.
2) Case η′(xn) = 0, ϕ /∈ {π/2, 3π/2}. From (5.4) we see that in this case we have vn(x) = 0
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and hence from (5.8) the contradiction follows as in the case before using assumption (4.8)
and changing the left-hand side of (5.9) in accordance with (5.6).

3) Case η′(xn) = 0, ϕ ∈ {π/2, 3π/2}. From (5.1), (5.3) and (5.6) we obtain that ζ̃

and ξ̃ are respectively of the form (ζ̃0, 0, . . . , 0) and (0, y) with ζ̃0 6= 0 and y ∈ Rn,
|y| 6= 0. However, due to the assumptions on η it follows xn ∈ (0, C2) and hence, since

(x̃0, 0, . . . , 0, xn) ∈ ∂G̃\{O}, we have x̃0 = η(xn) 6= 0. Therefore, from (5.7) we get

x̃0ζ̃0 = χ((x̃0, 0, . . . , 0, xn), ξ̃, ζ̃) 6= 0 , (5.10)
n∑

i=1

bi(0, . . . , 0, xn)yi = −χ((x̃0, 0, . . . , 0, xn), ξ̃, ζ̃) τ̃
+((x̃0, 0, . . . , 0, xn), ξ̃, ζ̃) , (5.11)

and again the contradiction follows from the fact that the bi’s assume only real values
whereas Im τ+((x̃0, x̃), ξ̃, ζ̃) > 0.
Contradictions we get in 1)–3) mean that the assumption that condition (4.9) was violated
for B((x̃0, x̃);Dx, Dx0) was wrong and so, if n ≥ 2, the proof is complete.
ii) n = 1. In this case, since x′ = 0, no relationship of type (5.1) is possible and we

can not reason as before. However, since the points of ∂G̃\{O} are the points (x̃0, x̃1) =

(±η(x1), x1), from (5.2) with n = 1 we deduce that the normal ζ̃ and the tangent ξ̃ to

∂G̃\{O} at (±η(x1), x1) have the following form

ζ̃ =

{
(±η(x1),−η(x1)η

′(x1)) , if x1 ∈ (0, C2) ,

(0, 1) , if x1 = C2 ,
(5.12)

ξ̃ =





(±η(x1), [η
′(x1)]

−1η(x1)) , if η′(x1) 6= 0 , and x1 ∈ (0, C2) ,

(0, 1) , if η′(x1) = 0 ,

(1, 0) , if x1 = C2 .

(5.13)

Now, assume that (4.9) does not hold for the operator B((x̃0, x̃);Dx, Dx0). Hence, denoted

with τ̃+((x̃0, x̃1), ξ̃, ζ̃) the unique root with positive imaginary part of the polynomial

Aψ(x̃, ξ̃ + τ ζ̃) (cf. (4.13)) we have that (5.7) reduces to

b1(x1)(ξ̃1 + τ ζ̃1) + x̃0(ξ̃0 + τ ζ̃0) = χ((x̃0, x̃), ξ̃, ζ̃)[τ − τ̃+((x̃0, x̃), ξ̃, ζ̃)] . (5.14)

From (5.12), (5.13) we deduce that only two situations have to be examined.
1) Case x1 ∈ (0, C2). If η

′(x1) 6= 0, from (5.12)–(5.14) and assumption (4.10) we find

−b1(x1)η(x1)η
′(x1) + [η(x1)]

2 = χ((x̃0, x̃), ξ̃, ζ̃) 6= 0 (5.15)

b1(x1)[η
′(x1)]

−1η(x1) + [η(x1)]
2 = −χ((x̃0, x̃), ξ̃, ζ̃)τ̃

+((x̃0, x̃), ξ̃, ζ̃) (5.16)

which is a contradiction since on the left-hand side of (5.16) we have a real value whereas
on the right-hand side we have a complex number with positive imaginary part. It is easy
to observe that if η′(x1) = 0 we still get a contradiction. Indeed, due to the fact that
x1 ∈ (0, C2), on the left-hand side of (5.15) we have [η(x1)]

2 6= 0 whereas (cf. (5.13)) on
the left-hand side of (5.16) we have only the real value b1(x1).
2) Case x1 = C2. Since η(C2) = 0, from (5.12)–(5.14) we find

b1(C2)τ = χ((0, C2), ξ̃, ζ̃)[τ − τ̃+((0, C2), ξ̃, ζ̃)] ,
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which is a contradiction due to assumption (4.10). Hence, also in the case n = 1 we are
done and the proof of Lemma 4.2 is complete.

Remark 5.1. With the help of (5.4) we present here a class of coefficients bj , j = 1, . . . , n,
which satisfy assumption (4.8). To this purpose, for any x ∈ G let set

bj(x) = xj , j = 1, . . . , n− 1, bn(x) 6= [η′(xn)]
−1η(xn) , if η′(xn) 6= 0. (5.17)

Since from (5.4) it follows v′(x) = x′ for any x ∈ ∂G\{O}, with the coefficients defined
by (5.17) and using |x′| = η(xn) we see that (4.8) is equivalent to require

[η(xn)]
2 − bn(x

′ cos γ, xn)η(xn)η
′(xn) 6= 0 if xn ∈ (0, C2) ,

−bn(0, . . . , 0, C2) 6= 0 if xn ∈ (0, C2) .

Therefore, with the convention that the assumption on bn in (5.17) should be intended
as bn(x) 6= 0 if xn = C2 (i.e. when η′(xn) = −∞), the previous two inequality are both
satisfied even in the case η′(xn) = 0 since in this case we have xn ∈ (0, C2) and hence
η(xn) 6= 0. Observe also that in the case n = 1 then (5.17) corresponds to (4.10).

Remark 5.2. From (5.10) and (5.11) we see that in the case n > 1 Lemma 4.2 fails if
instead of B((x0, x);Dx, Dx0) we consider only the operator B(x;Dx). In the case n = 2,
using complex valued coefficients bj , j = 1, 2, there could be still the possibility to conclude
the proof considering only B(x;Dx), but surely no if n ≥ 3.

6 The cut-off function

The procedure we will perform in Section 7 to prove estimate (4.16) for a function u ∈
W 2
p,−1(G), G being defined by (4.2), requires the implementing of a function v depending

on n+ 1 variables and having the following form

v(x0, x) = κ(x0, x)e
iρx0u(x) , (x0, x) ∈ G̃ , (6.1)

where ρ > 0, G̃ is related to G by (4.11) and κ is an infinitely differentiable function

having compact support on G̃.
Functions of type (6.1), with the aim of proving estimates for the function u, are used,

for instance, in [1], [5] and [11]. However, in that papers the domain G̃ always consists
in the infinite “cylinder” Γ = (−∞,+∞)×G and this, as remarked in the Introduction,
allows the authors to use cut-off functions κ depending only on x0.
In our case the situation is really different, since when G̃ is related to G by (4.11) then

(x0, x) do not belongs to G̃ if |x0| > {[η(xn)]
2 − |x′|2}1/2. By recalling definition of φ

before the definition (4.2) of G, the right choice of function κ suitable to our purposes

arise from Remark 4.1. Indeed, due to formulae (3.4), if we define G̃ accordingly to (4.11)

then, for any (x0, x) ∈ G̃, the angle θ0 between the x0 axis and the vector |(x0, x)| belongs
to the interval (φ, π− φ). This leads at once to consider the following cut-off function κ:

κ(x0, x) := E
(
arccos

x0
|(x0, x)|

)
, (x0, x) ∈ G̃ , (6.2)
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where E ∈ C∞([0, π],R+), ‖E‖C([0,π]) = 1 and for some ε ∈ (0, (π − 2φ)/6) satisfies

E(ϕ) ≡ 0 , ∀ϕ ∈ [0, (π − 6ε)/2] ∪ [(π + 6ε)/2, π] , (6.3)

E(ϕ) ≡ 1 , ∀ϕ ∈ [(π − 2ε)/2, (π + 2ε)/2] . (6.4)

In particular, by observing that our choice of ε guarantees E ≡ 1 in an open interval
containing π/2 and recalling G = {(x0, x) ∈ G̃ : x0 = 0}, we deduce that κ is equal to
one on G whereas E (l)(π/2) = 0 for any l ∈ N\{0}. Moreover, for any l ∈ N ∪ {0} and
i = 1, . . . , n we have

DxiE
(l)
(
arccos

x0
|(x0, x)|

)
=

x0xi
|x||(x0, x)|2

E (l+1)
(
arccos

x0
|(x0, x)|

)
, (6.5)

Dx0E
(l)
(
arccos

x0
|(x0, x)|

)
= −

|x|

|(x0, x)|2
E (l+1)

(
arccos

x0
|(x0, x)|

)
. (6.6)

Hence, when κ is defined by (6.2), from definition (6.1) we derive the following formulae
for the first and the second derivatives of v, where i, j = 1, . . . , n:

Dxiv(x0, x) = κ(x0, x)e
iρx0Dxiu(x) + [Dxiκ(x0, x)]e

iρx0u(x) , (6.7)

Dx0v(x0, x) = iρv(x0, x) + [Dx0κ(x0, x)]e
iρx0u(x) , (6.8)

D2
x0
v(x0, x) = − ρ2v(x0, x) +

|x|2

|(x0, x)|4
E ′′

(
arccos

x0
|(x0, x)|

)
eiρx0u(x)

−2
[x0 − iρ|(x0, x)|

2

|(x0, x)|2

]
[Dx0κ(x0, x)]e

iρx0u(x) , (6.9)

DxiDxjv(x0, x) = κ(x0, x)e
iρx0DxiDxju(x) + 2[Dxiκ(x0, x)]e

iρx0Dxju(x)

+
[ δi,jx0
|x||(x0, x)|2

−
x0xixj(x

2
0 + 2|x|2)

|x|3|(x0, x)|4

]
E ′
(
arccos

x0
|(x0, x)|

)
eiρx0u(x)

+
x20xixj

|x|2|(x0, x)|4
E ′′

(
arccos

x0
|(x0, x)|

)
eiρx0u(x) , (6.10)

Dx0Dxjv(x0, x) = [iρκ(x0, x) +Dx0κ(x0, x)]e
iρx0Dxju(x)

+
[ iρx0xj
|x||(x0, x)|2

+
xj(|x|

2 − x20)

|x||(x0, x)|4

]
E ′
(
arccos

x0
|(x0, x)|

)
eiρx0u(x)

−
x0xj |x|

|x||(x0, x)|4
E ′′

(
arccos

x0
|(x0, x)|

)
eiρx0u(x) . (6.11)

In addition, using (6.5), (6.6) with l = 0 we deduce, for any j, k = 1, . . . , n,

DxjDxkκ(x0, x) =
x20xjxk

|x|2|(x0, x)|4
E ′′

(
arccos

x0
|(x0, x)|

)

−
δj,kx0Dx0κ(x0, x)

|x|2
−
xk(x

2
0 + 3|x|2)Dxjκ(x0, x)

|x|2|(x0, x)|2
. (6.12)
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Now, let Aψ(x;Dx, Dx0) and B((x0, x);Dx, Dx0) be defined as in the statement of Lemma
4.2. Through easy but lengthy computations, from (6.7), (6.9), (6.12) we obtain

Aψ(x;Dx, Dx0)v(x0, x)

= κ(x0, x)e
iρx0[A(x;Dx)− ρ2eiψI]u(x) + 2eiρx0

n∑

j,k=1

aj,k(x)Dxku(x)Dxjκ(x0, x)

+ E ′′
(
arccos

x0
|(x0, x)|

)
eiρx0u(x)

n∑

j,k=1

aj,k(x)x
2
0xjxk

|x|2|(x0, x)|4

+ei(ψ+ρx0)u(x)

{
|x|2

|(x0, x)|4
E ′′

(
arccos

x0
|(x0, x)|

)
− 2

[x0 − iρ|(x0, x)|
2

|(x0, x)|2

]
Dx0κ(x0, x)

}

+ eiρx0u(x)

{ n∑

j,k=1

Dxkaj,k(x)Dxjκ(x0, x)−
n∑

j=1

aj,j(x)x0Dx0κ(x0, x)

|x|2

−
n∑

j,k=1

aj,k(x)xk(x
2
0 + 3|x|2)Dxjκ(x0, x)

|x|2|(x0, x)|2

}

=:

5∑

l=1

Jl(u, E , (x0, x)) , (6.13)

whereas, from (6.7) and (6.8), we get

B((x0, x);Dx, Dx0)v(x0, x) = κ(x0, x)e
iρx0B(x;Dx)u(x) + iρx0κ(x0, x)e

iρx0u(x)

+ eiρx0u(x)
[
x0Dx0κ(x0, x) +

n∑

i=1

bi(x)Dxiκ(x0, x)
]

=:

8∑

l=6

Jl(u, E , (x0, x)) . (6.14)

In the next section, with the help of (6.13) and (6.14), we will upper bound the norms

of Aψ(x;Dx, Dx0)v and B((x0, x);Dx, Dx0)v, respectively in Lp,−1(G̃) and W 1−p−1

p,−1 (∂G̃),
in terms of the W k

p,−1(G)-norms , k = 0, 1, 2, of u and of an any extension to G of its
assigned boundary values. Just these estimates will be the argument of the forthcoming
lemmata Lemma 7.1 and Lemma 7.2, which will be a fundamental step in the proof of
our main result Theorem 4.6.

7 Proof of Theorem 4.6

As we said at the end of Section 6, Theorem 4.6 will be an easy consequence of two
crucial lemmata, Lemma 7.1 and Lemma 7.2. We postpone such lemmata to the following
considerations which strictly depends on the class (4.2) of domains G we restrict to work
with. First, observe that |(x0, x)| ≥ |x| implies

|(x0, x)|
−q ≤ |x|−q , ∀ q ≥ 1 . (7.1)
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Hence, if w(x0, x) is a function such that |w(x0, x)| ≤ |(x0, x)|
−k|w1(x0, x)||w2(x)|, for

some k ∈ N∪ {0} and some w1 ∈ C(G̃) vanishing for x0 /∈ (−δ0, δ0), 0 < δ0 < ‖η‖C([0,C2]),
then from (7.1) we easily find

‖w‖Lp,−1(G̃) ≤ (2δ0)
1/p‖w1‖C(G̃)‖w2‖Lp,−(k+1)(G) . (7.2)

Moreover, assumptions i), ii) on function η which describes the boundary ∂G of G imply

|(x0, x)| ≤ {[η(xn)]
2 + x2n}

1/2 ≤ {C2
3 + 1}1/2xn , ∀ (x0, x) ∈ G̃ . (7.3)

Therefore, if we set C4 = {C2
3 + 1}1/2 and we use xn ≤ |x|, from (7.3) we deduce

C−q
4 |x|−q ≤ |(x0, x)|

−q , ∀ q ≥ 1 , ∀ (x0, x) ∈ G̃ , (7.4)

and hence, for any w ∈ Lp,−1(G̃), we deduce also ‖w‖Lp,−1(G̃) ≥ C−1
4 ‖w‖Lp,−1(G).

Lemma 7.1. Let p > n and u ∈ W 2
p,−1(G), where G is defined by (4.2), and let A(x;Dx)

be the differential operator (1.1) with coefficients ai,j, i, j = 1, . . . , n, satisfying (4.3).
Then, when v is defined by (6.1), (6.2) and Aψ(x;Dx, Dx0) is defined as in the statement
of Lemma 4.2, for any ρ > 0 and some δ0(ε) > 0 the following estimate holds:

‖Aψ(x;Dx, Dx0)v‖Lp,−1(G̃)

≤ [2δ0(ε)]
1/p

{
‖
(
A(x;Dx)− ρ2eiψI

)
u‖Lp,−1(G) +M1(1 + ρ)‖u‖W 2

p,−1(G)

}
, (7.5)

The positive constantM1 in (7.5) depends only on p, n, the C1(G)-norm of the coefficients
of A(x;Dx) and the constants Cj, j = 2, 3, intervening in the properties i)–iii) for the
function η which describes the boundary ∂G of G.

Proof. Since from formula (6.13) it follows

‖Aψ(x;Dx, Dx0)v‖Lp,−1(G̃) ≤

5∑

l=1

‖Jl(u, E , (x0, x))‖Lp,−1(G̃) . (7.6)

we need only to estimate from above each norm ‖Jl(u, E , (x0, x))‖Lp,−1(G̃), l = 1, . . . , 5,

and then to rearrange the term. First, from (7.2) and ‖E‖C([0,π]) = 1 we immediately get

‖J1(u, E , (x0, x))‖Lp,−1(G̃) ≤ [2δ0(ε)]
1/p‖

(
A(x;Dx)− ρ2eiψI

)
u‖Lp,−1(G) . (7.7)

where using (6.3), (6.4) and (7.3) we have set

δ0(ε) = C4C2 cos[(π − 6ε)/2], ε ∈ (0, (π − 2φ)/6) . (7.8)

Now, observe that for any (x0, x) ∈ G̃ and l ∈ N ∪ {0} from (6.5), (6.6) we derive

∣∣DxjE
(l)
(
arccos

x0
|(x0, x)|

)∣∣ ≤ 1

|(x0, x)|
‖E (l+1)‖C([0,π]) , j = 0, . . . , n , (7.9)
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whereas, since u ∈ W 2
p,−1(G) and −1 < −np−1, from Theorem 2.1 it follows

{
‖u‖pLp,−3(G) +

n∑

k=1

‖Dxku‖
p
Lp,−2(G)

}1/p
≤ ‖u‖V 2

p,−1(G) ≤ c‖u‖W 2
p,−1(G) . (7.10)

Hence, recalling the definition of J2(u, E , (x0, x)) in (6.13) and that of κ in (6.2), from
(7.2), (7.9) and (7.10) we deduce

‖J2(u, E , (x0, x))‖Lp,−1(G̃)

≤ 2n[2δ0(ε)]
1/p‖E ′‖C([0,π]) max

j,k=1,...,n
‖aj,k‖C(G)

( n∑

k=1

‖Dxku‖
p
Lp,−2(G)

)1/p

≤ 2cn[2δ0(ε)]
1/p‖E ′‖C([0,π]) max

j,k=1,...,n
‖aj,k‖C(G)‖u‖W 2

p,−1(G) , (7.11)

and similarly, but taking advantage from

∣∣∣
x20xjxk

|x|2|(x0, x)|4

∣∣∣ ≤
1

|(x0, x)|2
, j, k = 1, . . . , n , (7.12)

we obtain

‖J3(u, E , (x0, x))‖Lp,−1(G̃) ≤ n2[2δ0(ε)]
1/p‖E ′′‖C([0,π]) max

j,k=1,...,n
‖aj,k‖C(G)‖u‖Lp,−3(G)

≤ cn2[2δ0(ε)]
1/p‖E ′′‖C([0,π]) max

j,k=1,...,n
‖aj,k‖C(G)‖u‖W 2

p,−1(G). (7.13)

Finally, using (7.3) and (7.9), it is easy to prove that the factors on the braces in the defini-
tion of J4(u, E , (x0, x)) and J5(u, E , (x0, x)) have their absolute values which are bounded
from above respectively by |(x0, x)|

−2(3 + 2ρC4C2)‖E‖C2([0,π]) and [|x||(x0, x)|]
−1n2[4 +

C4(1 + C2)]‖E
′‖C([0,π])maxj,k=1,...,n ‖aj,k‖C1(G).

Therefore, if we set M0 = {max[2p−13p, 22p−1Cp
4C

p
2 ]}

1/p, from (7.2) and (7.10) we find

‖J4(u, E , (x0, x))‖Lp,−1(G̃) ≤ [2δ0(ε)]
1/pM0(1 + ρ)‖E‖C2([0,π])‖u‖Lp,−3(G)

≤ c[2δ0(ε)]
1/pM0(1 + ρ)‖E‖C2([0,π])‖u‖W 2

p,−1(G) , (7.14)

‖J5(u, E , (x0, x))‖Lp,−1(G̃)

≤ n2[2δ0(ε)]
1/p[4 + C4(1 + C2)]‖E

′‖C([0,π]) max
j,k=1,...,n

‖aj,k‖C1(G)‖u‖Lp,−3(G)

≤ cn2[2δ0(ε)]
1/p[4 + C4(1 + C2)]‖E

′‖C([0,π]) max
j,k=1,...,n

‖aj,k‖C1(G)‖u‖W 2
p,−1(G) . (7.15)

By replacing (7.7), (7.11), (7.13)–(7.15) in (7.6) and rearranging the term we obtain (7.5)
with M1 = c{M0 + n[2 + 5n+ nC4(1 + C2)]maxj,k=1,...,n ‖aj,k‖C1(G)}‖E‖C2([0,π]).

Lemma 7.2. Let p > n and u ∈ W 2
p,−1(G) where G is defined by (4.2) and let B(x;Dx)

be the differential operator (4.6) with coefficients bj, j = 0, . . . , n, satisfying (4.7). Then,
g0 ∈ W 1

p,−1(G) being any extension to G of B(x;Dx)u, when v is defined by (6.1), (6.2)
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and B((x0, x);Dx, Dx0) is defined as in the statement of Lemma 4.2, for any ρ > 0 and
some δ0(ε) > 0 the following estimate holds:

‖B((x0, x);Dx, Dx0)v‖W 1−p−1

p,−1 (∂G̃)

≤ 2[δ0(ε)]
1/pM2

{
‖g0‖W 1

p,−1(G) + ρ‖g0‖Lp,−1(G) + ‖u‖W 2
p,−1(G)

+ (1 + 2ρ)‖u‖W 1
p,−1(G) + (ρ+ ρ2)‖u‖Lp,−1(G)

}
, (7.16)

The constant M2 > 1 in (7.16) depends only on p, n, the C1(G)-norm of the coefficients
of B(x;Dx) and the constants Cj, j = 2, 3, intervening in the properties i)–iii) for the
function η which describes the boundary ∂G of G.

Proof. First, from (6.14) we get

‖B((x0, x);Dx, Dx0)v‖W 1−p−1

p,−1 (∂G̃)
≤

8∑

l=6

‖Jl(u, E , (x0, x))‖W 1−p−1

p,−1 (∂G̃)
, (7.17)

and observe that, due to the definition (4.11) of G̃, if (x0, x) belong to ∂G̃ then it is of
the form (0, x) with x ∈ ∂G or (x0, x) with x0 6= 0 and x ∈ G. Therefore (cf. also (4.7)),

the term Jl(u, E , (x0, x)), l = 6, 7, 8, in (7.17) are well defined for any (x0, x) ∈ G̃ ∪ ∂G̃.
Hence, recalling the definition (2.3) of the norm in the spaces of traces and using (6.7),
(6.8) with u replaced by g0 and the inequality |a+ b|q ≤ 2q−1(|a|q + |b|q), a, b ∈ C, q ≥ 1,
from (6.5), (6.6), (7.9) and (7.2) we obtain

‖J6(u, E , (x0, x))‖W 1−p−1

p,−1 (∂G̃)
≤ ‖J6(u, E , (x0, x))‖W 1

p,−1(G̃)

≤ 2[δ0(ε)]
1/p

{
‖g0‖W 1

p,−1(G) + (n+ 1)1/p‖E ′‖C([0,π])‖g0‖Lp,−2(G) + ρ‖g0‖Lp,−1(G)

}
, (7.18)

δ0(ε) being defined by (7.8). Now, for any w ∈ W 1
p,−1(G) with p > n Theorem 2.1 imply

{
‖w‖pLp,−2(G) +

n∑

k=1

‖Dxkw‖
p
Lp,−1(G)

}1/p
≤ ‖w‖V 1

p,−1(G) ≤ c‖w‖W 1
p,−1(G) , (7.19)

and consequently, if we set M3 = [1 + c(n+ 1)1/p‖E ′‖C([0,π])], from (7.18) we get

‖J6(u, E , (x0, x))‖W 1−p−1

p,−1 (∂G̃)
≤ 2[δ0(ε)]

1/p
{
M3‖g0‖W 1

p,−1(G) + ρ‖g0‖Lp,−1(G)

}
. (7.20)

Similarly, from (6.5)–(6.8), (7.9), (7.2) and (7.19) we obtain

‖J7(u, E , (x0, x))‖W 1−p−1

p,−1 (∂G̃)
≤ ‖J7(u, E , (x0, x))‖W 1

p,−1(G̃)

≤ 2M4[δ0(ε)]
1/p

{
M3ρ‖u‖W 1

p,−1(G) + 21−1/p(ρ+ ρ2)‖u‖Lp,−1(G)

}
, (7.21)

where M4 = max[1, δ0(ε)].
Before to estimate the term J8(u, E , (x0, x)) in (7.17) observe that from (6.5) and (6.6) it
follows

x0Dx0κ(x0, x) +
n∑

i=1

bi(x)Dxiκ(x0, x)

= −
[ x0|x|

|(x0, x)|2
−

n∑

i=1

bi(x)x0xi
|x||(x0, x)|2

]
E ′
(
arccos

x0
|(x0, x)|

)
, (7.22)
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so that, using (7.3), we easily get

∣∣∣x0Dx0κ(x0, x) +

n∑

i=1

bi(x)Dxiκ(x0, x)
∣∣∣ ≤

M5‖E
′‖C([0,π])

|(x0, x)|
, (7.23)

where M5 = [nmaxi=1,...,n ‖bi‖C(G) + C4C2]. In addition, for any k = 1, . . . , n we have

Dx0

[ x0|x|

|(x0, x)|2
−

n∑

i=1

bi(x)x0xi
|x||(x0, x)|2

]
=

(|x|2 − x20)

|(x0, x)|4

[
|x| −

n∑

i=1

bi(x)xi
|x|

]
,

Dxk

[ x0|x|

|(x0, x)|2
−

n∑

i=1

bi(x)x0xi
|x||(x0, x)|2

]

=
x0xk(x

2
0 − |x|2)

|x||(x0, x)|4
+

n∑

i=1

x0[xiDxkbi(x) + δi,kbi(x)]

|x||(x0, x)|2
−

n∑

i=1

bi(x)x0xixk[x
2
0 + 3|x|2]

|x|3|(x0, x)|4
,

and hence, applying the Leibniz’s formula to the right-hand side of (7.22) and using (7.1),
(7.3), (7.9) and (7.12), it is easy to obtain

∣∣∣Dx0

[
x0Dx0κ(x0, x) +

n∑

i=1

bi(x)Dxiκ(x0, x)
]∣∣∣ ≤

M5

|(x0, x)|2

2∑

k=1

‖E (k)‖C([0,π]) , (7.24)

∣∣∣Dxk

[
x0Dx0κ(x0, x) +

n∑

i=1

bi(x)Dxiκ(x0, x)
]∣∣∣ ≤

M6

|x||(x0, x)|

2∑

k=1

‖E (k)‖C([0,π]) , (7.25)

whereM6 = [n(5+C4C2)maxi=1,...,n ‖bi‖C1(G)+C4C2] and in (7.25) we have usedM5 < M6.
Therefore, combining (7.2) and (7.23)–(7.25) we deduce

‖J8(u, E , (x0, x))‖W 1−p−1

p,−1 (∂G̃)
≤ ‖J8(u, E , (x0, x))‖W 1

p,−1(G̃)

≤ 2M6[δ0(ε)]
1/p‖E‖C2([0,π])

{
21−1/p(1 + ρ)‖u‖Lp,−2(G) + 21−1/p(1 + 2n)1/p‖u‖Lp,−3(G)

+
[
‖u‖pLp,−3(G) +

n∑

k=1

‖Dxku‖
p
Lp,−2(G)

]1/p }
,

and hence, using (7.10) and (7.19),

‖J8(u, E , (x0, x))‖W 1−p−1

p,−1 (∂G̃)

≤ 2M7[δ0(ε)]
1/p

{
M8‖u‖W 2

p,−1(G) + 21−1/p(1 + ρ)‖u‖W 1
p,−1(G)

}
, (7.26)

where M7 = cM6‖E‖C2([0,π]) and M8 = [1 + 21−1/p(1 + 2n)1/p]. Rearranging (7.20),
(7.21) and (7.26) from (7.17) we derive (7.16) with the constant M2 = max[M4,M7] ×
max[M3,M8].

We can now prove the main result of the paper. To simplify notations, from now on
for any u ∈ W l

p,−1(G), l ≥ 0, we will set ‖Dlu‖Lp,−1(G) =
∑

|α|=l ‖D
αu‖Lp,−1(G).
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Proof of Theorem 4.6. For every u ∈ W 2
p,−1(G) and ρ > 0 we define the function v

accordingly to (6.1) (6.2) and we observe that p > n, p 6= n+ 1, imply

{
−1 < −(n + 1)p−1 , if p > n+ 1 ,

−(n+ 1)p−1 < −1 < 1− (n+ 1)p−1 , if n < p < n + 1 .

Therefore, recalling (3.21), the assumptions of Theorem 3.2 for β = −1 are both satisfied,
the second one with ν = 0. Moreover, since we have assumed problem (4.14) to be regular
in the sense of Definition 4.5, we can apply to the function v the estimate (3.20) with the
choice of the parameter l, ~t, ~s and ~σ as in (3.21):

‖v‖W 2
p,−1(G̃) ≤ c1

{
‖Aψ(x;Dx, Dx0)v‖Lp,−1(G̃)

+‖B((x0, x);Dx, Dx0)v‖W 1−p−1

p,−1 (∂G̃)
+ ‖v‖W 1

p,−1(G̃)

}
. (7.27)

Since the norms Lp,−1(G̃) and W 1−p−1

p,−1 (∂G̃) of Aψ(x;Dx, Dx0)v and B((x0, x);Dx, Dx0)v
have been estimated in Lemma 7.1 and Lemma 7.2, respectively, it remains only to analyze
the term ‖v‖W 1

p,−1(G̃) in (7.27). But, due to definition (6.1), as in (7.18) and (7.20) with

g0 replaced by u, we obtain

‖v‖W 1
p,−1(G̃) ≤ 2[δ0(ε)]

1/p
{
M3‖u‖W 1

p,−1(G) + ρ‖u‖Lp,−1(G)

}
. (7.28)

Since for any w ∈ W l
p,−1(G), l ≥ 0, we have ‖w‖W l

p,−1(G) ≤
∑l

|α|=0 ‖D
αw‖Lp,−1(G), if we

set M9 = M2 max[1,M1], M2 being defined at the end of the proof of Lemma 7.2, by
combining (7.5), (7.16) and (7.28) from (7.27) we obtain

‖v‖W 2
p,−1(G̃) ≤ 2c1M9[δ0(ε)]

1/p
{
‖(A(x;Dx)− ρ2eiψI)u‖Lp,−1(G) + (4 + 5ρ+ ρ2)‖u‖Lp,−1(G)

+(4 + 3ρ)‖Du‖Lp,−1(G) + (2 + ρ)‖D2u‖Lp,−1(G)

+ (1 + ρ)‖g0‖Lp,−1(G) + ‖Dg0‖Lp,−1(G)

}
, (7.29)

On the other hand, using G = {(x0, x) ∈ G̃ : x0 = 0}, (6.4) and E (k)(π/2) = 0, k = 1, 2,

from (6.1) and (6.7)–(6.11) for any (x0, x) ∈ G̃ we deduce the following inequalities





|v(x0, x)| ≥ |v(0, x)| = |u(x)| ,

|Dxiv(x0, x)| ≥ |Dxiv(0, x)| = |Dxiu(x)| , i = 1, . . . , n ,

|Dx0v(x0, x)| ≥ |Dx0v(0, x)| = ρ|u(x)| ,

|D2
x0
v(x0, x)| ≥ |D2

x0
v(0, x)| = ρ2|u(x)| ,

|DxiDxjv(x0, x)| ≥ |DxiDxjv(0, x)| = |DxiDxju(x)| , i, j = 1, . . . , n,

|Dx0Dxjv(x0, x)| ≥ |Dx0Dxjv(0, x)| = ρ|Dxju(x)| , j = 1, . . . , n.
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Hence, using (7.4) we obtain

Cp
4 ‖v‖

p

W 2
p,−1(G̃)

=
∑

0≤|α|≤2

∫

G̃

Cp
4 |(x0, x)|

−p
∣∣Dαv(x0, x)

∣∣p dx0 dx

≥

∫

G̃

|x|−p
[
|v(x0, x)|

p +
n∑

i=0

|Dxiv(x0, x)|
p +

n∑

i,j=0

|DxiDxiv(x0, x)|
p
]
dx0 dx

≥

∫

G

|x|−p
[
(1 + ρp + ρ2p)|u(x)|p + (1 + ρp)

n∑

i=1

|Dxiu(x)|
p +

n∑

i,j=1

|DxiDxiu(x)|
p
]
dx

≥ ρ2p‖u‖pLp,−1(G) + ρp‖Du‖pLp,−1(G) + ‖D2u‖pLp,−1(G) .

Taking into account (7.29), it follows

ρ2‖u‖Lp,−1(G) + ρ‖Du‖Lp,−1(G) + ‖D2u‖Lp,−1(G) ≤ 3C4 ‖v‖W 2
p,−1(G̃)

≤M10(ε)
{
‖
(
A(x;Dx)− ρ2eiψI

)
u‖Lp,−1(G) + (4 + 5ρ+ ρ2)‖u‖Lp,−1(G)

+ (4 + 3ρ)‖Du‖Lp,−1(G) + (2 + ρ)‖D2u‖Lp,−1(G)

+ (1 + ρ)‖g0‖Lp,−1(G) + ‖Dg0‖Lp,−1(G)

}
(7.30)

where we have set M10(ε) = 6c1C4M9[δ0(ε)]
1/p. Now, from (7.8) we deduce that M10(ε)

goes to zero as ε → 0+. Therefore, if we take λ = ρ2eiψ and we assume ε sufficiently
small, we can take ρ so large so that the following inequalities are satisfied






M10(ε)(4 + 5ρ+ ρ2) ≤ ρ2/2 ,

M10(ε)(4 + 3ρ) ≤ ρ/2 ,

M10(ε)(2 + ρ) ≤ 1/2 .

(7.31)

From (7.30) and (7.31) our statement follows with M = 2M10(ε) in (4.16).

Remark 7.3. In the latter part of the proof of Theorem 4.6 we have assumed ε to be
close to zero which, equivalently, means that the function E in (6.2) has its support in a
small neighborhood of π/2 (cf. (6.3) and (6.4)). The sake for such a condition is due to
estimate (7.21) where a factor ρ2 appear in front of ‖u‖Lp,−1(G). Since this factor takes
origin from the definition of J7(u, E , (x0, x)) in (6.14), we can say that the restriction to
considering small ε is a direct consequence of the necessity of introducing the boundary
operator B((x0, x);Dx, Dx0) in order to prove Lemma 4.2.

8 Appendix

We recall here the condition of ellipticity in the sense of Agranovich-Vishik for the operator
U(0, ω, z,Dω) = {L(0, ω, z,Dω), B(0, ω, z,Dω)}, ω ∈ Ω, z ∈ C, introduced in Section 3.
Moreover, taking advantage from the discussions on pages 88–90 in [6], we sketch out how
easily problems satisfying this condition can be constructed.
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First of all, letG be a bounded domain ofRn whose boundary ∂G is an (n−1)–dimensional
smooth surface locally admitting rectification by means of a C∞ transformation of co-
ordinates x → y. As a result of such transformation ∂G becomes locally a hyperplane
with equation yn = 0 and G turns out to lie in the half-space yn > 0.

Suppose now we are given the boundary value problem

L(x;Dx, q)u(x, q) = f(x, q) , x ∈ G , (8.1)

B(x′;Dx, q)u(x
′, q) = g(x′, q) , x′ ∈ ∂G . (8.2)

Here L and B are k × k and m× k matrix differential operators with sufficiently smooth
complex coefficients polynomially depending on a parameter q which varies in the sector
Q = {z ∈ C : θ0 ≤ arg z ≤ θ1}. In particular, for θ0 = θ1, Q can be a ray.
The assumptions on the orders of the differential operators being the same as those in
Section 3, with L0 and B0 we denote here the principal parts consisting of the terms of
higher order in L and B, respectively. We impose two algebraic conditions on L and B.

i) If x ∈ G, ξ ∈ Rn and q ∈ Q, |ξ|+ |q| 6= 0, then

detL0(x; ξ, q) 6= 0 .

Since the degree of the polynomial detL0(x; ξ, q) in ξ is 2r, for n ≥ 2 the equation
λ→ detL0(x; ξ + λξ0, q) = 0, where ξ0 6= 0 and ξ is orthogonal to ξ0, has exactly r roots
with positive imaginary part.

ii) Let x′ be any point on ∂G. We consider the problem in the half-line

L0((x
′, 0); ξ′,−iDy, q)v(y) = 0 , y = xn > 0 , (8.3)

B0((x
′, 0); ξ′,−iDy, q)v(y)|y=0 = h . (8.4)

and we require that if |ξ′| + |q| 6= 0, q ∈ Q, for any vector h ∈ Ck this problem has one
and only one solution in the class M(ξ′) of stable solutions of (8.3), i.e. solutions tending
(exponentially) to zero together with all their derivatives as y → +∞.

For q = 0 conditions i) and ii) reduces, respectively, to the condition that system (8.1) is
elliptic and to the condition of Shapiro-Lopatinskij for problem (8.1), (8.2).

Definition 8.1. With the problem (8.1), (8.2) we associate the operator

U(x;Dx, q) = {L(x;Dx, q),B(x
′;Dx, q)} .

If L and B satisfy the algebraic conditions i) and ii), we say that U(x;Dx, q) is elliptic
with parameter in the sense of Agranovich-Vishik.

Examples of problems satisfying i) and ii) can be constructed as follows.
Let L(x;Dx, Dxn+1) be an elliptic operator in the closure of the infinite cylinder G1 =
G × (−∞,+∞), connected on ∂G1 = ∂G × (−∞,+∞) by the condition of Shapiro-
Lopatinskij with the boundary operator B(x;Dx, Dxn+1). Then, the operators L(x;Dx, q)
and B(x;Dx, q), obtained by replacing Dxn+1 with q, satisfy conditions i) and ii) in each
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section xn+1 = const of G1 if q belongs to {z ∈ C : arg z = 0} or {z ∈ C : arg z = π}.
Moreover, since it is well-known (cf. [3] or [4]) that the Shapiro-Lopatinskij condition
is equivalent to require that B cover L on ∂G in the sense of [3] the former example
shows that the uniform ellipticity of system (3.15) implies the ellipticity in the sense of
Agranovich–Vishik for the operator U(0, ω, z,Dω) defined through (3.16), (3.17).
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