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SEMI-GLOBAL INVARIANTS OF PIECEWISE SMOOTH LAGRANGIAN

FIBRATIONS

R. CASTAÑO-BERNARD AND D. MATESSI

Abstract. We study certain types of piecewise smooth Lagrangian fibrations of smooth
symplectic manifolds, which we call stitched Lagrangian fibrations. We extend the classical
theory of action-angle coordinates to these fibrations by encoding the information on the
non-smoothness into certain invariants consisting, roughly, of a sequence of closed 1-forms
on a torus. The main motivation for this work is given by the piecewise smooth Lagrangian
fibrations previously constructed by the authors [3], which topologically coincide with the
local models used by Gross in Topological Mirror Symmetry [5].

1. Introduction

Lagrangian fibrations arise naturally from integrable systems. It is a standard fact of
Hamiltonian mechanics that such fibrations are locally given by maps of the type:

f = (f1, . . . , fn),

where the function components of f are Poisson commuting functions on a symplectic man-
ifold and such that the differentials df1, . . . , dfn are pointwise linearly independent almost
everywhere. It is customary to assume f to be C∞ differentiable (smooth). Under this
regularity assumption, a classical theorem of Arnold-Liouville says that a smooth proper La-
grangian submersion with connected fibres has locally the structure of a trivial Lagrangian
T n-bundle. In particular, all proper Lagrangian submersions are locally modelled on U ×T n,
where U ⊆ Rn is a contractible open set and U × T n has the standard symplectic form
induced from R2n. Standard coordinates with values in U × T n are known as action-angle
coordinates. Since these are defined on a fibred neighbourhood, action-angle coordinates are
semi-global canonical coordinates. Thus proper Lagrangian submersions have no semi-global
symplectic invariants.

In this article we investigate the semi-global symplectic topology of proper Lagrangian
fibrations given by piecewise smooth maps. In [3]§6 we introduced the notion of stitched
Lagrangian fibration. These are continuous proper S1 invariant fibrations of smooth sym-
plectic manifolds X which fail to be smooth only along the zero level set Z = µ−1(0) of the
moment map of the S1 action and whose fibres are all smooth Lagrangian n-tori. Essentially,
these fibrations consist of two honest smooth pieces X+ = {µ ≥ 0} and X− = {µ ≤ 0},
stitched1 together along Z, which we call the seam. These fibrations, roughly speaking, can
be expressed locally as:

f = (µ, f±
2 , . . . , f±

n ),

where f+
j and f−

j are smooth functions defined on X+ and X−, respectively, whose differen-
tials do not necessarily coincide along Z. Fibrations of this type are implicit in the examples
proposed earlier by the authors [3]§5 and may also be implicit in those in [14]. In this paper,
we develop a theory of action-angle coordinates for this class of piecewise smooth fibrations.
Contrary to what happens in the smooth case, we found that these fibrations do give rise to
semi-global symplectic invariants.

To the authors’ knowledge, the kind of non-smoothness we investigate here does not seem to
be of relevance to Hamiltonian mechanics. Nevertheless it is an important issue in symplectic
topology and mirror symmetry. Over the past ten years, Lagrangian torus fibrations, in
particular those which are special Lagrangian, have been discovered to play a fundamental

1We have chosen to use ‘stitching’ rather than ‘gluing’ since the resulting map is in general non smooth;
the term ‘gluing’ usually has a smoothness meaning attached to it.
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role in mirror symmetry [16]. One should expect mirror pairs of Calabi-Yau manifolds to
be fibred by Lagrangian tori and the mirror relation to be expressed in terms of a Legendre
transform between the corresponding affine bases [10], [6], [12]. This approach to mirror
symmetry has some intricacies. For instance, there are examples of (non proper) special
Lagrangian fibrations which are not given by smooth maps. Actually, one should expect a
generic special Lagrangian fibration to be piecewise smooth [11]. Non-smoothness may also
arise even in the purely Lagrangian case. In fact, there are examples of Lagrangian torus
fibrations of Calabi-Yau manifolds which are piecewise smooth [14]. This lack of regularity
has two important consequences. In first place, the discriminant locus of the fibration –i.e.
the set of points in the base corresponding to singular fibres– may have codimension less than
2. Secondly, the base of the fibration may no longer carry the structure of an integral affine
manifold away from the discriminant locus. In fact, the affine structure may break off not
only along the discriminant –as it normally occurs in the smooth case– but also along a larger
set containing the discriminant. Under these circumstances, it may become problematic to
interpret the SYZ duality as a Legendre transform between affine manifolds. One should
therefore understand the symplectic topology of piecewise smooth Lagrangian fibrations.

Some of the piecewise smooth examples here actually resemble the singular behaviour
expected to appear in generic special Lagrangian fibrations. What is more important for
our purposes, however, is the fact that our Lagrangian models coincide topologically with
the non-Lagrangian models used by Gross [5]; the discriminant locus in our case may jump
to codimension 1 in some regions but the total spaces are the same. In some cases, the
discriminant has the shape of a planar amoeba ∆ (see Figure 1) and fails to be smooth
over the hyperplane Γ = {µ = 0} containing ∆. Away from ∆ these fibrations are stitched
Lagrangian torus fibrations. In particular, the affine structure on the base breaks apart along
Γ \∆. In this paper we provide some useful techniques to understand how this degeneration
of the affine structure occurs.

The material of this paper is organised as follows. In §2 we start reviewing the classical
theory of action-angle coordinates for smooth fibrations. In §3 we recall the construction of
piecewise smooth fibrations of [3], these are explicitly given examples, some of them with
codimension 1 discriminant locus. Then we revise the definition of stitched fibration, in-
troduced in [3]. We formalise the idea of action-angle coordinates for stitched fibrations,
allowing us to define the first order invariant, ℓ1, of a stitched fibration. This invariant mea-
sures the discrepancy along Z between the distributions spanned by the Hamiltonian vector
fields η+2 , . . . , η

+
n and η−2 , . . . , η−n corresponding to f+

2 , . . . , f+
n and f−

2 , . . . , f−
n , respectively.

The seam Z is an S1-bundle p : Z → Z̄ := Z/S1 such that:

Z

f |Z
��>

>>
>>

>>

p
// Z̄

f̄
����

��
��

�

Γ

where f̄ is the reduced fibration over the wall Γ = {µ = 0}, with tangent (n − 1)-plane
distribution:

L = ker f̄∗ ⊂ T Z̄.

Let LZ̄ be the set of fibrewise closed sections of L∗, i.e. elements in LZ̄ can be viewed as
closed 1-forms on the fibres of f̄ . The first order invariant of f is defined as follows. There
are smooth S1-invariant functions a2, . . . , an on Z such that ajη1 = η+j − η−j . In particular,

this implies that η+j and η−j are mapped under p∗ to the same vector field η̄j on Z̄. The

first order invariant ℓ1 is defined to be the section of L∗ such that ℓ1(η̄j) = aj . It turns out
that ℓ1 ∈ LZ̄ . In §5 we investigate higher order invariants. These are sequences {ℓk}k∈N,
with each ℓk ∈ LZ̄ . Given a stitched Lagrangian fibration f , we define inv(f) to consist of
the data of (Z̄, f̄), suitably normalized, together with the sequence ℓ = {ℓk}k∈N. The main
result of this paper is proved in §6 (cf. Theorem 6.11 and Theorem 6.12) where we give a
classification of stitched fibrations up to fibre-preserving symplectomorphims. Roughly, this
can be stated as follows:
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Theorem. There are stitched Lagrangian fibrations f having any specified set of data inv(f).
Moreover, given stitched Lagrangian fibrations f and f ′ with invariants inv(f) and inv(f ′),
respectively, there is a smooth symplectomorphism Φ, defined on a neighbourhood of Z, and
a smooth diffeomorphism φ preserving Γ ⊂ B and a commutative diagram:

X
Φ−−−−→ X ′

f





y
f ′





y

B
φ−−−−→ B′

if and only if inv(f) = inv(f ′).

This result extends Arnold-Liouville’s theorem to this piecewise smooth setting. In §7 we
study stitched fibrations over non simply connected bases. We show that one can read the
monodromy of a stitched fibration as a jump of the cohomology class [ℓ1(b)] as b ∈ Γ traverses
a component of the discriminant locus.

In the last section, we propose the following:

Conjecture. Let Y ⊆ (C∗)n−1 be a smooth algebraic hypersurface, Log : (C∗)n−1 → Rn−1

be the map defined by:

Log(z2, . . . , zn) = (log |z2|, . . . , log |zn|).
Then there is a piecewise smooth Lagrangian n-torus fibration with discriminant locus being
the amoeba ∆ = Log(Y ) inside {0}×Rn−1 ⊂ Rn. Away from ∆ these fibrations are stitched
Lagrangian fibrations.

To support this conjecture we propose a construction.

The results of this article allow us to have good control on the regularity of a large class
of proper Lagrangian fibrations. Using simple techniques, one may deform the invariants
of a given stitched fibration and produce proper Lagrangian fibrations with S1 symmetry
which are smooth on prescribed regions. This can be done, for instance, by multiplying a
given sequence of invariants by a smooth function on the base B vanishing on a prescribed
region. In joint work in progress [2], the authors use these and other techniques to give
a construction of Lagrangian 3-torus fibrations of compact symplectic 6-manifolds starting
from the information encoded in suitable integral affine manifolds, such as those arising from
toric degenerations [7]. Such affine structures are expected to appear as Gromov-Hausdorff
limits of degenerating families of Calabi-Yau manifolds (in the sense of [8], [12]).

2. Action-angle coordinates

We review the classical theory of action-angle coordinates for C∞ Lagrangian fibrations.
For the details we refer the reader to [1]. Assume we are given a 2n-dimensional symplectic
manifold X with symplectic structure ω, a smooth n-dimensional manifold B and a proper
submersion f : X → B whose fibres are connected Lagrangian submanifolds.

Let Fb be the fibre of f over b ∈ B. We can define an action of T ∗
b B on Fb as follows. For

every α ∈ T ∗
b B we can associate a vector field vα on Fb determined by

(1) ιvαω = f∗α.

Let φt
α be the flow of vα with time t ∈ R. Define θα as θα(p) = φ1

α(p) where p ∈ Fb. One can
check that θα is well defined and that it induces an action (α, p) 7→ θα(p). Furthermore, the
action is transitive. Then, Λb defined as

Λb = {λ ∈ T ∗
b B | θλ(p) = p, for all p ∈ Fb}

is a closed discrete subgroup of T ∗
b B, i.e. a lattice. From the properness of f it follows that

Λb is maximal (in particular homomorphic to Zn) and that Fb is diffeomorphic to T ∗
b B/Λb

and therefore Fb is an n-torus.

Let Λ = ∪b∈BΛb. One can compute Λ as follows. Given a point b0 ∈ B and a contractible
neighbourhood U of b0, for every b ∈ U , H1(Fb,Z) is naturally identified with H1(Fb0 ,Z).
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Choose a basis γ1, . . . , γn of H1(Fb0 ,Z). Given a vector field v on U , denote by ṽ a lift of v
on f−1(U). We can define the following 1-forms λ1, . . . , λn on B:

(2) λj(v) = −
∫

γj

ιṽω.

It is well known that the 1-forms λj are closed and they generate Λ. If σ : B → X is a
smooth section of f we can define the map

Θ : T ∗B/Λ→ X

by Θ(b, α) = θα(σ(b)). This map is a diffeomorphism and it is a symplectomorphism if
σ(B) ⊆ X is Lagrangian. A choice of functions aj such that daj = λj defines coordinates a =
(a1, . . . an) on U called action coordinates. In particular, a covering {Ui} of B by small enough
contractible open sets and a choice of action coordinates ai on each Ui defines an integral
affine structure on B, i.e. an atlas whose change of coordinates maps are transformations in
Rn ⋊Gl(n,Z).

A less invariant approach –but useful for explicit computations– can be described as follows.
Let (b1, . . . bn) be local coordinates on U ⊆ B and let fj = bj ◦ f . Then f1, . . . , fn define an
integrable Hamiltonian system. Let Φt

ηj
be the flow of the Hamiltonian vector field ηj of fj .

Let σ be a Lagrangian section of f over U . Then the map Θ above can be expressed as:

Θ : (b, t1db1 + · · ·+ tndbn) 7→ Φt1
η1
◦ · · ·Φtn

ηn
(σ(b)).

One may verify that

Λb = {(b, t1db1 + · · ·+ tndbn) ∈ T ∗
b U | Φt1

η1
◦ · · ·Φtn

ηn
(σ(b)) = σ(b)}.

When (b1, . . . , bn) are action coordinates, (b1, . . . , bn, t1, . . . , tn) are action-angle coordinates.
These coordinates always exist on a fibred neighbourhood f−1(U) of a fibre Fb with U ⊆ Rn

a small neighbourhood of b, thus they can be regarded as semi-global canonical coordinates.
In particular, we have the following classical result:

Theorem 2.1 (Arnold, Liouville). A proper Lagrangian submersion with connected fibres
and a Lagrangian section has no semi-global symplectic invariants.

The global existence of action-angle coordinates is obstructed. For the details concerning
this issue we refer the reader to Duistermaat [4].

In the next section we consider a larger class of Lagrangian submersions which include
some Lagrangian fibrations which fail to be given by C∞ maps.

3. Stitched Lagrangian fibrations: definitions and examples

Definition 3.1. Let (X,ω) be a smooth 2n-dimensional symplectic manifold. Suppose there
is a free Hamiltonian S1 action on X with moment map µ : X → R. Let X+ = {µ ≥ 0} and
X− = {µ ≤ 0}. Given a smooth (n− 1)-dimensional manifold M , a map f : X → R×M is
said to be a stitched Lagrangian fibration if there is a continuous S1 invariant function
G : X →M , such that the following holds:

(i) Let G± = G|X± . Then G+ and G− are restrictions of C∞ maps on X ;
(ii) f can be written as

f = (µ,G)

and f restricted to X± is a proper submersion with connected Lagrangian fibres. We
denote

f± = f |X± .

We call Z = µ−1(0) the seam.

We warn the reader that throughout the paper the superscript ± appearing in a sentence
means that the sentence is true if read separately with the + superscript and with the −
superscript. Notice that a stitched Lagrangian fibration may be non-smooth. In general it
will be only piecewise C∞, however all its fibres are smooth Lagrangian tori. Observe also
that f+ and f− are restrictions of C∞ maps, they are not a priori required to extend to
smooth Lagrangian fibrations beyond X+ and X−, respectively. Later we show, however,
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that for any stitched fibration, f+ and f− are indeed restrictions of some locally defined
smooth Lagrangian fibrations (cf. §6).

Let πR be the projection of R×M onto R. Given a point m ∈M we study the geometry
of a stitched Lagrangian fibration f in a neighbourhood of the fibre over (0,m). For this
purpose it is convenient to allow a more general set of coordinates on R ×M than just the
smooth ones.

Definition 3.2. Let B be a neighbourhood of (0,m) ∈ R ×M , let B+ = B ∩ (R≥0 ×M)
and B− = B ∩ (R≤0 ×M). A continuous coordinate chart (B, φ) around (0,m) is said to be
admissible if the components of φ = (φ1, . . . , φn) satisfy the following properties:

(i) φ1 = πR;
(ii) for j = 2, . . . , n the restrictions of φj to B+ and B− are locally restrictions of smooth

functions on B.

Lemma 3.3. Let f : X → R × M be a stitched Lagrangian fibration and let (B, φ) be
an admissible coordinate chart around (0,m) ∈ R × M . For j = 2, . . . , n, the function
G±

j = (φj ◦ f)|f−1(B±) is the restriction of a C∞ function on X to X±. Let η1 and η±j be the

Hamiltonian vector fields of µ and G±
j respectively. Then there are S1 invariant functions

aj, j = 2, . . . , n on Z ∩ f−1(B) such that

(3) (η+j − η−j )|Z∩f−1(B) = aj η1|Z∩f−1(B).

Proof. Let Z̄ = Z/S1, with projection p : Z → Z̄ and let ωr be the Marsden-Weinstein
reduced symplectic form on Z̄. Given a vector field v on Z̄, let ṽ be a lift of v on Z. Then
we have

ωr(p∗(η
+
j − η−j ), v) = ω(η+j − η−j , ṽ)

= (dG+
j − dG−

j )(ṽ) = 0,

where the last equality comes from the fact that, being G continuous, G+
j |Z∩f−1(B) =

G−
j |Z∩f−1(B). Since ωr is non-degenerate on Z, it follows that

p∗(η
+
j − η−j ) = 0.

Therefore (3) must hold for some function aj , which must be S1 invariant since the left-hand
side of (3) is S1 invariant. �

Clearly, when f and the coordinate map φ are smooth, all the aj ’s vanish, so equation (3)
measures how far f and φ are from being smooth. We will say more about this in the coming
sections.

We now recall some of the examples which we already introduced and discussed extensively
in [3]. Consider the following S1 action on C3:

(4) eiθ(z1, z2, z3) = (eiθz1, e
−iθz2, z3).

This action is Hamiltonian with respect to the standard symplectic form ωC3 . Clearly, it is
singular along the surface Σ = {z1 = z2 = 0}. The corresponding moment map is:

(5) µ(z1, z2, z3) =
|z1|2 − |z2|2

2
.

The only critical value of µ is t = 0 and Crit(µ) = Σ ⊂ µ−1(0).
Let γ : C2 → C be the following piecewise smooth map

(6) γ(z1, z2) =











z1z2
|z1|

, when µ ≥ 0

z1z2
|z2|

, when µ < 0.

In two dimensions we have the following:
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Example 3.4 (Stitched focus-focus). Consider the map

(7) f(z1, z2) =

( |z1|2 − |z2|2
2

, log |γ(z1, z2) + 1|
)

.

It is clearly well defined on X = {(z1, z2) ∈ C
2 | γ(z1, z2) + 1 6= 0} and it has Lagrangian

fibres. We showed in [3] that f has the same topology of a smooth focus-focus fibration. The
only singular fibre, f−1(0), is a (once) pinched torus. One can easily see that, when restricted
to X−f−1(0), f is a stitched Lagrangian fibration. The seam is Z = µ−1(0)−f−1(0). Notice
that Z has two connected components. Let η1 and η±2 be the Hamiltonian vector fields defined
as in Lemma 3.3. After some computation one can verify that

(η+2 − η−2 )|Z = a η1|Z ,
where

a = Re

(

z1z2
|z1|2z1z2 − |z1|3

)

|Z .

There is an analogous model in three dimensions:

Example 3.5. Consider the map

(8) f(z1, z2, z3) = (µ, log |z3|, log |γ(z1, z2)− 1|) .
The discriminant locus of f is ∆ = {0} × R× {0} ⊂ R3. Again, f restricted to X − f−1(∆)
defines a stitched Lagrangian fibration.

Example 3.6. Consider the map

(9) f(z1, z2, z3) = (µ, log
1√
2
|γ − z3|, log

1√
2
|γ + z3 −

√
2|).

Let X be the dense open subset of C3 where f is well defined. The general construction
discussed in §5 of [3] shows that f is a piecewise smooth Lagrangian fibration. It contains
singular fibres, in fact the discriminant locus ∆ of f is depicted in Figure 1. One easily

Figure 1. Amoeba of v1 + v2 + 1 = 0

checks that f restricted to X − f−1(∆) is a stitched Lagrangian fibration. The seam is
Z = µ−1(0)− f−1(∆), notice that Z has three connected components. Let η1 and η±j be the
Hamiltonian vector fields defined as in Lemma 3.3. A computation shows that, for j = 2, 3

(η+j − η−j )|Z = aj η1|Z ,
where

a2 = −
Re
(

(γ − z3)
z1z2

|z1|3

)

|γ − z3|2
and

a3 = −
Re
(

(γ + z3 −
√
2) z1z2

|z1|3

)

|γ + z3 −
√
2|2

.

In [3] we describe the topology of the singular fibres of f and discuss the relevance of this
fibration in the context of Gross’ topological mirror symmetry construction. We also show
how this example can be perturbed to obtain other interesting stitched Lagrangian fibrations
with discriminant locus of mixed codimension one and two.
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4. The first order invariant

Our goal in this paper is to give a semi-global classification of stitched Lagrangian fibrations
up to smooth fibre-preserving symplectomorphism. For this purpose in this section we restrict
our attention to stitched Lagrangian fibrations f : X → R × M , where M = Rn−1. We
assume that f(X) ⊆ R

n is a contractible open neighbourhood U of 0 ∈ R
n and we denote

coordinates on U by b = (b1, . . . , bn). Clearly (X, f) is a topologically trivial torus bundle
over U . Let U+ := U ∩ {b1 ≥ 0}, U− := U ∩ {b1 ≤ 0} and Γ := U ∩ {b1 = 0}. We assume for
simplicity that the pair (U,Γ) is homeomorphic to the pair (Dn, Dn−1), where Dn ⊂ Rn is
an n-dimensional ball centred at 0 and Dn−1 ⊂ Dn is the intersection of Dn with an n − 1
dimensional subspace. We have that X± = f−1(U±) and Z = f−1(Γ). If f1, . . . , fn are the
components of f , then f1 = µ is the moment map of the S1 action. When j = 2, . . . , n, we
denote f±

j = fj |X± . As in Lemma 3.3 we let η1 and η±j denote the Hamiltonian vector fields

of f1 and f±
j respectively. Let us recall the notation used in the proof of Lemma 3.3. Since

Z = µ−1(0), the S1 action on X induces an S1-bundle p : Z → Z̄, where Z̄ = Z/S1. There
exists f̄ : Z̄ → Γ such that the following diagram commutes

Z

f
��>

>>
>>

>>

p
// Z̄

f̄
����

��
��

�

Γ

In fact f̄ = (f2, . . . , fn), where each component of f̄ is thought of as a function on Z̄. For
b ∈ Γ denote by Fb the fibre over b and F̄b = Fb/S

1, clearly F̄b = f̄−1(b). Denote by

L = ker f̄∗,

the bundle over Z̄ whose fibre at a point y ∈ F̄b is TyF̄b. From Lemma 3.3 it follows that
p∗η

+
j = p∗η

−
j , so we can define η̄ = (η̄2, . . . , η̄n) to be the frame of L where η̄j = p∗η

±
j . We

say that a section of Λk
L
∗ is fibrewise closed (exact) if it is closed (exact) when viewed as a

k-form on each fibre F̄b. We have the following:

Proposition 4.1. Let (X, f) be a stitched Lagrangian fibration. If ℓ1 is the section of L∗

defined by

ℓ1(η̄j) = aj ,

where aj is the S1-invariant function appearing in (3), then ℓ1 is fibrewise closed.

Proof. Since f is a Lagrangian submersion, the Hamiltonian vector fields η1, η
±
2 , . . . , η

±
2 com-

mute and are linearly independent. Therefore, for every fixed b ∈ Γ, the vector fields η±j |Fb

span (n − 1)-dimensional integrable distributions H±
b , which are horizontal with respect to

the S1-bundle pb : Fb → F̄b. From the S1 invariance of f2, . . . , fn, it also follows that H±
b

are S1 invariant. Thus they define flat connections θ±b of the bundle pb : Fb → F̄b. From the

properties of flat connections, it follows that θ−b − θ+b is the pull back of a closed one form on
F̄b. From (3) we obtain

(θ−b − θ+b )(η
±
j ) = aj |F̄b

,

i.e. that

θ−b − θ+b = p∗b(ℓ1|F̄b
).

Therefore ℓ1 is fibrewise closed. �

Clearly, the definition of ℓ1 depends on a choice of coordinates on U . Let ℓ′1 be a fibrewise
closed section of L∗. We say that ℓ′1 is equivalent to ℓ1 up to a change of coordinates on
the base if there exists a neighbourhood W ⊆ U of Γ and an admissible coordinate map
φ : W → Rn such that ℓ′1 is the section associated to (f−1(W ), φ ◦ f) via Proposition 4.1.
Denote by [ℓ1] the class represented by ℓ1 modulo this equivalence relation. We say that a
section δ of L∗ is fibrewise constant if

Lη̄j
δ = 0,
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for all j = 2, . . . , n, here Lη̄j
denotes the Lie derivative. One can easily check that the latter

definition is independent of the admissible coordinates on the base used to define η̄j . We
have the following

Proposition 4.2. A section ℓ′1 of L∗ is equivalent to ℓ1 up to a change of coordinates on the
base if and only if

ℓ′1 = ℓ1 + δ,

where δ is fibrewise constant. In particular, the class of ℓ1 may be written as

[ℓ1] = {ℓ1 + δ | δ is fibrewise constant}.

Proof. Given an admissible change of coordinates φ : W → Rn, we must have φ1 = b1.
Moreover the partial derivatives ∂kφj are defined and continuous on W for all k, j = 2, . . . , n.
As far as derivatives with respect to b1 are concerned, only left and right derivatives are
defined and smooth on Γ, i.e. only ∂1φ

+
j and ∂1φ

−
j , which may a priori differ. Let (η′j)

±

be the Hamiltonian vector fields on Z corresponding to φj ◦ f , with j = 2, . . . , n, and let
η̄′j = p∗(η

′
j)

± . An easy calculation shows that

(η′j)
± = ∂1φ

±
j η1 +

n
∑

k=2

∂kφj η
±
k .

In particular this implies

(10) η̄′j =

n
∑

k=2

∂kφj η̄k.

and

(η′j)
+ − (η′j)

− = (∂1φ
+
j − ∂1φ

−
j ) η1 +

n
∑

k=2

∂kφj (η
+
k − η−k )

= (∂1φ
+
j − ∂1φ

−
j +

n
∑

k=2

ak∂kφj) η1.

If ℓ′1 is the 1-form associated to φ ◦ f via Proposition 4.1, then by definition we must have

ℓ′1(η̄
′
j) = ∂1φ

+
j − ∂1φ

−
j +

n
∑

k=2

ak∂kφj .

Let δ be the section of L∗ defined by

(11) δ(η̄′j) = ∂1φ
+
j − ∂1φ

−
j .

Then, also using (10), we see that

(ℓ1 + δ)(η̄′j) = ℓ′1(η̄
′
j).

Moreover, from (11) one can see that δ(η̄′j) descends to a function on Γ and therefore δ is
fibrewise constant.

Now suppose that δ is a fibrewise constant section of L∗. Let

δ(η̄j) = dj .

Since δ is fibrewise constant, the dj ’s are fibrewise constant functions on Z̄, i.e. they descend
to functions on Γ. Define the following map

φ(b1, . . . , bn) =











(b1, b2 + d2(b2, . . . , bn) b1, . . . , bn + dn(b2, . . . , bn) b1), when b1 ≥ 0

Id, when b1 < 0.

It is a well defined admissible coordinate map on some open neighbourhood of Γ. It is also
clear that (11) holds. �

Definition 4.3. We call ℓ1 the first order invariant of the stitched fibration (X,ω, f).
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The name “invariant” in the above Definition will be fully justified later on.

It is clear from the proof of Proposition 4.2 that δ is a first order measure of how far the
change of coordinates on the base is from being smooth, in particular if it is smooth then
δ = 0.

We also have the following:

Corollary 4.4. If there exists an admissible change of coordinates on the base which makes
the stitched Lagrangian fibration smooth, then ℓ1 is fibrewise constant.

Proof. It is clear that if φ ◦ f is smooth then we must have that its first order invariant ℓ′1 is
zero. It then follows from Proposition 4.2 that ℓ1 must be fibrewise constant. �

We now describe action-angle coordinates of a stitched Lagrangian fibration f : X → U .
Let α be a 1-form on U . Since f± is the restriction of a smooth map, α pulls back to an
honest smooth 1-form α± defined on a neighbourhood of Z. The latter defines a smooth
vector field v±α determined by the equation (1). The flow of v±α , when restricted to X±, is
fibre-preserving. This induces an action of T ∗

b U on the fibre (f±)−1(b) for all b ∈ U±. Let
σ : U → X be a continuous section which is smooth and Lagrangian when restricted to U±.
Then, as explained in §2, there is a maximal smooth lattice Λ± ⊂ T ∗U± and a diagram

T ∗U±/Λ±

π±

%%J
JJJJJJJJ

Θ±

// X±

f±

}}{{
{{

{{
{{

U±

where Θ± is a symplectomorphism and π± is the standard projection. Let Φt
η1
,Φt

η
±

2

. . . ,Φt

η
±
n

denote the flow of η1, η
±
2 , . . . , η

±
n respectively. Then

(12) Θ± : (b,
∑

j

tj dbj) 7→ Φt1
η1
◦ Φt2

η
±

2

◦ . . . ◦ Φtn

η
±
n

(σ(b)),

and
Λ± = {(b,

∑

j

Tj dbj) ∈ T ∗U± | ΦT1

η1
◦ ΦT2

η
±

2

◦ . . . ◦ ΦTn

η
±
n

(σ(b)) = σ(b)}

Now let
λ1 = db1.

The S1 action implies db1 ∈ Λ±. Let us denote a basis for Λ± by {λ1, λ
±
2 , . . . , λ

±
n }, where

λ±
j =

n
∑

k=1

T±
jkdbk.

The S1 action on X corresponds to translations along the λ1 direction. Let

Z± = (π±)−1(Γ).

If we denote
λ̄±
j = λ±

j mod db1

and let Λ̄± = span〈λ̄±
2 , , . . . , λ̄

±
n 〉Z, then Θ± identifies Z/S1 with

Z̄± = T ∗Γ/Λ̄±.

Denote by t̄ = (t2, . . . , tn) the coordinates on the fibres of Z̄−.

Now observe that, due to the discrepancy (3) between η+j and η−j along Z, Θ+ and Θ−

behave differently on fibres lying over Γ. We have the diagram:

Z−

Θ−

  B
BB

BB
BB

B Z+

Θ+

~~||
||

||
||

Z

and the difference between the two maps is measured by

(Θ+)−1 ◦Θ− : Z− → Z+.
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We have the following characterisation of this map:

Proposition 4.5. The discrepancy (3) between the Hamiltonian vector fields of the stitched
Lagrangian fibration f : X → U induces the map

Q = (Θ+)−1 ◦Θ−

between Z− and Z+. Let

ℓ−1 = (Θ−)∗ℓ1.

Then, computed explicitly in the canonical coordinates on T ∗U− and T ∗U+, Q is given by

(13) Q : (b, t1, t̄) 7→
(

b, t1 −
∫ t̄

0

ℓ−1 , t̄

)

,

where (b, t̄) are the canonical coordinates on Z̄− and the integral is a line integral in T ∗
b Γ

along a path joining (b, 0) and (b, t̄).

Proof. Let (b1, . . . , bn, t1, . . . , tn) and (b1, . . . , bn, y1, . . . , yn) be the canonical coordinates on
T ∗U− and T ∗U+ respectively. From its definition, we see that Θ+ identifies η1, η

+
2 , . . . , η

+
n

with ∂y1
, . . . , ∂yn

and w.l.o.g. we can assume that it sends σ to the zero section of T ∗U .
Therefore (3) becomes

(14) η−j = ∂yj
− (aj ◦Θ+) ∂y1

.

Notice that aj ◦ Θ+ is independent of y1. Computing the flows of η1, η
−
2 , . . . , η

−
n in these

coordinates is not difficult and it turns out that Q is given by

Q : (b, t1, . . . , tn) 7→



b, t1 −
n
∑

j=2

∫ tj

0

aj ◦Θ−(b, t2, . . . , tj−1, t, 0, . . . , 0)dt, t2, . . . , tn



 ,

which is equivalent to (13), since ℓ1 is fibrewise closed2. �

We now explain how the map Q matches the periods in Λ− with those in Λ+. The maps
Θ± naturally identify Λ± with H1(X,Z) ∼= Zn, but in general Θ− does it differently from
Θ+. Let γ1 be the cycle represented by the orbit of the S1 action. We know that γ1 always
corresponds to the period db1.

We have the following

Corollary 4.6. Suppose we choose bases {λ1, λ
±
2 , . . . , λ

±
n } of Λ± corresponding to two bases

γ± = {γ1, γ±
2 , . . . , γ±

n } of H1(X,Z), such that

(i) γ1 is represented by an orbit of the S1 action,
(ii) γ+

j = γ−
j +mjγ1, for some m2, . . . ,mn ∈ Z.

Then at a point b ∈ Γ we have

(15) λ+
j (b) = λ−

j (b) +

(

mj −
∫

λ̄
−

j

ℓ−1

)

λ1,

where the integral of ℓ−1 is taken along the cycle represented by λ̄−
j . In particular

(16) λ̄+
j (b) = λ̄−

j (b).

Proof. To obtain (15) it suffices to observe that since mjλ1+λ−
j and λ+

j have to represent the

same 1-cycle in f−1(b), they must be mapped one to the other by Q. The result is therefore
obtained by applying (13) to mjλ1 + λ−

j . �

Remark 4.7. Condition (ii) means that under the map p∗ : H1(X,Z)→ H1(X/S1,Z), bases
γ+ and γ− are mapped to the same base of H1(X/S1,Z). We will need to consider condition
(ii) in § 7 where we discuss stitched Lagrangian fibrations over non simply connected bases,
for which non-trivial monodromy may occur.

2To verify that the above expression of Q is correct, it is enough to check that ∂tjQ = η−
j

◦Q.
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Remark 4.8. From Proposition 4.5 and Corollary 4.6 it follows that Λ̄− = Λ̄+ and that on
the quotients Z̄+ and Z̄−, Q acts as the identity. Therefore, if we let

ℓ+1 = (Θ+)∗ℓ1,

then we have Z̄+ = Z̄− and ℓ+1 = ℓ−1 . Thus we can remove the + and − signs and denote

λ̄j = λ̄+
j = λ̄−

j

Λ̄ = Λ̄− = Λ̄+

and, with slight abuse of notation, identify Z̄ with T ∗Γ/Λ̄ and f̄ with the projection π̄ : Z̄ →
Γ. Notice then that L is identified with ker π̄∗ and ℓ1 with ℓ±1 .

It is natural to consider bases of H1(X,Z) satisfying conditions (i) and (ii) also because
of the following

Lemma 4.9. Let {γ1, γ±
2 , . . . , γ±

n } be bases of H1(X,Z) satisfying conditions (i) and (ii)
of Corollary 4.6 and let α± : U± → Rn be the corresponding action coordinates satisfying
α±(0) = 0. Then the map

(17) α =

{

α+ on U+,

α− on U−,

is an admissible change of coordinates.

Proof. Action coordinates α± = (α±
1 , . . . , α

±
n ) are defined by the integral

α±
j (b) =

∫ b

0

λ±
j .

along a curve in U± joining 0 and b. When j = 1, this gives α+
1 = α−

1 = b1. Clearly α is a
diffeomorphism when restricted to U+ or U−. Moreover α is injective. The fact that α+ and
α− coincide along Γ follows from (16) and the connectedness of Γ. In fact (16) implies that
when b ∈ Γ the above integral gives

α+
j (b) =

∫ b

0

λ̄+
j =

∫ b

0

λ̄−
j = α−

j (b).

This concludes the proof. �

Remark 4.10. The upshot of Lemma 4.9 is that after a change of coordinates as in (17)
we can always assume that the coordinates on the base U , when restricted to U±, are action
coordinates corresponding to bases {γ1, γ±

2 , . . . , γ±
n } of H1(X,Z) satisfying (i) and (ii) of

Corollary 4.6. Then {db1, db2, . . . , dbn} form a basis of Λ+ and Λ−. From (15) it also follows
that, in view of the identifications of Remark 4.8, ℓ1 must satisfy

∫

λ̄j

ℓ1 = mj .

The reader should be warned at this point that, although the map α as in (17) allows us to
find action coordinates on both U+ and U−, we still have two different sets of action-angle
coordinates, (b1, . . . , bn, y1, . . . , yn) on X+ and (b1, . . . , bn, t1, . . . , tn) on X−. This is due to
the discrepancy between Θ+ and Θ−, which makes the map:

Θ =

{

(Θ+)−1 on X+

(Θ−)−1 on X−

discontinuous along the seam Z. As pointed out before, this discrepancy is measured by ℓ1.

In the next theorem we show that any fibrewise closed section ℓ1 ∈ L
∗ can be the first

order invariant of a stitched Lagrangian fibration.
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Theorem 4.11. Let U be an open contractible neighbourhood of 0 ∈ Rn such that Γ =
U ∩ {b1 = 0} is contractible. Let Λ̄ ⊆ T ∗Γ be the lattice spanned by {db2, . . . , dbn}, and let
Z̄ = T ∗Γ/Λ̄, with projection π̄ : Z̄ → Γ and bundle L = ker π̄∗. Given integers m2, . . . ,mn

and a smooth, fibrewise closed section ℓ1 of L∗ such that

(18)

∫

dbj

ℓ1 = mj for all j = 2, . . . , n,

there exists a smooth symplectic manifold (X,ω) and a stitched Lagrangian fibration f :
X → U satisfying the following properties:

(i) the coordinates (b1, . . . , bn) on U are action coordinates of f with µ = f∗b1;
(ii) the periods {db1, . . . , dbn}, restricted to U± correspond to basis {γ1, γ±

2 , . . . , γ±
n } of

H1(X,Z) satisfying (i) and (ii) of Corollary 4.6;
(iii) ℓ1 is the first order invariant of (X, f).

Proof. We regard the two halves of U , U+ and U− defined as before, as disjoint sets. Let
Λ± be the lattices in T ∗U± spanned by {db1, db2, . . . , dbn} and define X± = T ∗U±/Λ±,
with corresponding projections π±. Let Z± = ∂X± = (π±)−1(Γ). Translations along the
db1 direction define an S1 action on Z± such that Z̄ = Z±/S1. On T ∗U+ and T ∗U−, we
consider canonical coordinates (b1, . . . , bn, y1, . . . , yn) and (b1, . . . , bn, t1, . . . , tn) respectively
(or (b, y) and (b, t) for short). Coordinates on Z̄ are given by (b, t̄) (or (b, ȳ)), where b =
(0, b2, . . . , bn) ∈ Γ and t̄ = (t2, . . . , tn) (or ȳ = (y2, . . . , yn)). For j = 2, . . . , n, let

aj = ℓ1(∂tj ) = ℓ1(∂yj
)

On X+, let η1 = ∂y1
and η+j = ∂yj

then on Z+ we can define vector fields

η−j = η+j − aj η1,

which is coherent with (14). We can define a map Q : Z− → Z+ by composition of the flows
of η1, η

−
2 , . . . , η

−
n , i.e.

Q : (b, t1, . . . , tn) 7→ Φt1
η1
◦Φt2

η
−

2

◦ . . . ◦ Φtn

η
−
n

(b, 0).

Clearly, Q can be written as in (13). One can easily see that the properties of ℓ1 ensure
that Q is a well defined fibre-preserving diffeomorphism which sends the cycles represented
by db1 and dbj in H1(Z

−,Z) to the cycles represented by db1 and dbj −mjdb1 in H1(Z
+,Z),

j = 2, . . . , n, respectively. Intuitively, Q identifies fibres of π− inside Z− with fibres of π+

inside Z+ after the latter ones have been twisted by iteratively flowing in the direction of η−j ,
j = 2, . . . , n. Topologically we define

X = X+ ∪Q X−.

To give X smooth and symplectic structures we have to extend the gluing map Q to open
neighbourhoods of Z+ and Z−. Let open sets Ũ+ and Ũ− be small enlargements of U+ and
U− respectively, obtained by joining small open neighbourhoods of Γ to U+ and U−. Extend
Λ± to lattices of T ∗Ũ± in a constant way. We look for neighbourhoods V ± of Z± inside

T ∗Ũ±/Λ± and a symplectomorphism Q̃ : V − → V + extending Q. One can achieve this by
considering an “auxiliary” fibration. Suppose for now that we could find a neighbourhood
V + of Z+ and a smooth, proper S1-invariant Lagrangian fibration u : V + → Rn, with
components uj such that:

(19)
u1 = b1,
u|Z+ = π+,
ηuj
|Z+ = η−j , when j = 2, . . . , n.

This amounts to prescribing zero and first order terms of u along Z+ in the Taylor expansion
of u with respect to b1. Now inside Ũ− there will be a small open neighbourhood W of Γ
and a symplectomorphism:

Q̃ : V − → V +,

where V − := (π−)−1(W ) and

Q̃ : (b, t1, . . . , tn) 7→ Φt1
η1
◦ Φt2

ηu2
◦ . . . ◦ Φtn

ηun
(b, 0).
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In other words, Q̃ is the action-angle coordinate map associated to the fibration u : V + →
Rn, computed with respect to the cycles {db1,−m2db1 + db2, . . . ,−mndb1 + dbn} (it may be

necessary, for this purpose, to restrict to a smaller V +). From (19) it follows that Q̃ extends
Q. We define

X = (X+ ∪ V +) ∪Q̃ (X− ∪ V −).

and the stitched Lagrangian fibration to be

f =

{

π+ on X+

π− on X−.

Due to the non-triviality of the gluing map Q̃ used to define X , f is in general piecewise
smooth. In fact if we pull back f via the inclusion X+ ∪ V + →֒ X , then we obtain

f |X+∪V + =

{

π+ on b1 ≥ 0

u on b1 ≤ 0.

This is because π− = Q̃∗u. By construction (X,ω) and f satisfy the conditions (i)− (iii).

Now we prove that a fibration u : V + → Rn satisfying (19) exists. For every b ∈ Γ,
consider the following one-parameter family of closed 1-forms on the fibre Fb = (π+)−1(b)

ℓ(r) = r(dy1 + ℓ1),

where r ∈ R. For every r, the graph of ℓ(r) defines a Lagrangian submanifold inside T ∗Fb. For
r sufficiently small, let Lr,b be the image of the graph of ℓ(r) under the symplectomorphism

(y1, . . . , yn,

n
∑

k=1

xkdyk) 7→ (x1, b2 + x2, . . . , bn + xn, y1, . . . , yn),

between a neighbourhood of the zero section of T ∗Fb and a neighbourhood of Fb inside
T ∗Ũ+/Λ+. Then there will be a sufficiently small neighbourhood V + of Z+ which is fibred
by the submanifolds Lr,b, i.e. on which the manifolds Lr,b are the fibres of a Lagrangian
fibration u : V + → Rn. This is due to the fact that the map

(r, b2, . . . , bn, y1, . . . , yn) 7→ (r, b2 + ra2(b, ȳ), . . . , bn + ran(b, ȳ), y1, . . . , yn)

is a diffeomorphism when restricted to a neighbourhood of {0}×Z+ inside R×Z+. We now
show that a possible choice of u also satisfies (19). Notice that u will be S1-invariant since its
fibres Lr,b are S1-invariant. Given (b′, y′) ∈ V +, there exists a unique (r, b) ∈ R × Z+ such
that Lr,b ⊂ V + and (b′, y′) ∈ Lr,b. In fact (r, b) can be determined as a function of (b′, y′) by
solving the non linear system

(20)

{

r = b′1
bj + raj(b, y

′) = b′j when j = 2, . . . , n

using the implicit function theorem. Now define

u1(b
′, y′) = b′1

and, when j = 2, . . . , n

(21) uj(b
′, y′) = bj,

where bj (and thus b) are functions of (b′, y′). Notice that S1-invariance of uj can also be
seen from the fact that uj is independent of y1. It is clear that, when j = 2, . . . , n

{

∂y′
k
uj |Z+ = 0 for all k = 1, . . . , n

∂b′
k
uj|Z+ = δkj for all k = 2, . . . , n.

Therefore

ηuj
|Z+ = ∂b′

1
bj ∂y1

+ ∂yj
.

Using (20) we compute that

∂b′
1
bj |Z+ = −aj ,

which proves that conditions (19) are satisfied. �
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5. Higher order terms

In Theorem 4.11 we provided a (local) construction of stitched Lagrangian fibrations with
any given first order invariant satisfying integrality conditions (18). It involved the choice of
a Poisson commuting set of functions u1, . . . , un (producing a Lagrangian fibration u) defined
on a neighbourhood of Z and with prescribed 0-th and 1-st order terms (cf. (19)). In general
there may be many choices of such functions giving stitched Lagrangian fibrations which are
not fibrewise symplectomorphic. It is necessary to look at higher order terms. In this Section
we give a description of these higher order terms and prove an existence result of stitched
Lagrangian fibrations with prescribed higher order terms..

We fix here some basic notation. Let (b1, . . . , bn) be standard coordinates on Rn. Let Rn−1

be embedded in Rn as the subset {b1 = 0} and let Γ ⊂ Rn−1 be an open neighbourhood of
0 ∈ Rn−1. We will denote by U an open neighbourhood of Γ in Rn. We assume that the
pair (U,Γ) is diffeomorphic to the pair (Dn, Dn−1) where Dk ⊂ Rk is a unit ball centred
at 0. Denote U+ = U ∩ {b1 ≥ 0} and U− = U ∩ {b1 ≤ 0}. Then Γ = U+ ∩ U−. Let Λ
be the lattice in T ∗U generated by {db1, . . . , dbn} and consider T ∗U/Λ with the standard
symplectic form and with projection onto U denoted by π. We assume S1 acts on T ∗U/Λ via
translations along the db1 direction. Let Z = π−1(Γ) and Z̄ = Z/S1. If Λ̄ denotes the lattice
in T ∗Γ spanned by {db2, . . . , dbn}, we have Z̄ = T ∗Γ/Λ̄ with projection π̄. Given b ∈ Γ, we
denote Fb = π−1(b) and F̄b = π̄−1(b) = Fb/S

1. Canonical coordinates on T ∗U are denoted
by (b, y) = (b1, . . . , bn, y1, . . . , yn). We also have the bundle L = ker π̄∗.

Throughout this section we will study the set defined in the following

Definition 5.1. We define UZ̄ to be the set of pairs (V, u) where V is a neighbourhood of
Z and u : V → Rn is a C∞, proper, S1-invariant, Lagrangian submersion, with components
(u1, . . . , un), such that u|Z = π and u1 = b1.

Given (V, u) ∈ UZ̄ , let Y
+ := π−1(U+), Y := Y + ∪V , Y − := Y ∩π−1(U−) and define the

map fu : Y → Rn by

(22) fu =

{

u on Y −,

π on Y +.

Clearly (Y, fu) is a stitched Lagrangian fibration. We study the aforementioned higher order
terms of such fibrations.

Proposition 5.2. Let (V, u) ∈ UZ̄ . For every N ∈ N and j = 2, . . . , n, consider the N -th
order Taylor series expansion of uj in the variable b1, evaluated at b1 = 0:

(23) uj =

N
∑

k=0

Sj,kb
k
1 + o(bN1 ),

where Sj,k are smooth functions on Z which are S1 invariant (i.e. independent of y1). For
every m ∈ N, define the following sections of L∗ and Λ2

L
∗ respectively

(24) Sm =

n
∑

j=2

Sj,m dyj

and

(25)

{

P1 = 0

Pm =
∑n

j<l

(

∑m−1
k=1 {Sj,k, Sl,m−k}

)

dyj ∧ dyl when m ≥ 2.

where {·, ·} denotes the Poisson bracket on Z̄. Then on every fibre F̄b, Sm and Pm satisfy
the following equations

(26) dSm|F̄b
= Pm|F̄b

.

Proof. We recall that the Poisson bracket on T ∗U/Λ can be written as

{f, g} =
n
∑

k=1

∂yk
f ∂bkg − ∂bkf ∂yk

g.
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Since the functions Sj,m do not depend on y1, one can easily see that the following holds

{Sj,k b
k
1 , Sl,m bm1 } = {Sj,k, Sl,m} bk+m

1 ,

where the bracket on the right hand side reduces to the bracket on Z̄. Also we have

{Sj,k b
k
1 , o(b

N
1 )} = o(bN+k

1 ).

Thus we have

{uj, ul} =
∑

0≤m+k≤N

{Sj,k, Sl,m} bm+k
1 + o(bN1 )

=

N
∑

m=0

(

m
∑

k=0

{Sj,k, Sl,m−k}
)

bm1 + o(bN1 ).

Therefore if uj and ul commute then we must have that for all m ∈ N

m
∑

k=0

{Sj,k, Sl,m−k} = 0,

or that

(27) {Sj,m, Sl,0}+ {Sj,0, Sl,m} = −
m−1
∑

k=1

{Sj,k, Sl,m−k}.

The condition that u|Z = π implies

Sj,0 = bj .

Therefore
{Sj,m, Sl,0} = {Sj,m, bl} = ∂yl

Sj,m.

We then see that (27) becomes

∂yl
Sj,m − ∂yj

Sl,m = −
m−1
∑

k=1

{Sj,k, Sl,m−k}

which is exactly what we get by expanding (26). �

Remark 5.3. Notice that (26) are a set of partial differential equations satisfied by the
sequence {Sm}m∈N. Moreover the definition of Pm depends only on the Sk’s with k ≤ m− 1,
therefore one may think of solving the equations recursively. From each solution Sm of the
m-th equation, we may determine another by adding to Sm a fibrewise closed section of L∗.

Now we provide a method to construct and characterise sequences {Sm}m∈N of solutions
to (26). Suppose (V, u) ∈ UZ̄ and let W ⊆ u(V ) be a neighbourhood of Γ. Let r ∈ R be a
parameter. For b = (0, b2, . . . , bn) ∈ Γ, let (r, b) denote the point (r, b2, . . . , bn) ∈ Rn. Given
(r, b) ∈ W , denote by Lr,b the fibre u−1((r, b)). For every fibre Fb ⊂ Z of π, consider the
symplectomorphism

(28) (y1, . . . , yn,
n
∑

k=1

xkdyk) 7→ (x1, b2 + x2, . . . , bn + xn, y1, . . . , yn),

between a neighbourhood of the zero section of T ∗Fb and a neighbourhood of Fb in V . If
W is sufficiently small, for every (r, b) ∈ W , the Lagrangian submanifold Lr,b will be the
image of the graph of a closed 1-form on Fb. Due to the S1 invariance of u and the fact that
u1 = b1, this 1-form has to be of the type

rdy1 + ℓ(r, b),

where ℓ(r, b) is the pull back to Fb of a closed one form on F̄b. Denote by ℓ(r) the smooth
one parameter family of sections of L∗ such that ℓ(r)|F̄b

= ℓ(r, b). The condition u|Z = π
implies that ℓ(0, b) = 0. Furthermore, the N -th order Taylor series expansion of ℓ(r) in the
parameter r can be written as

(29) ℓ(r) =

N
∑

k=1

ℓk r
k + o(rN ),
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where the ℓk’s are fibrewise closed sections of L∗. We can write

(30) ℓk =
n
∑

j=2

aj,k dyj .

The following Lemma is rather technical but straightforward, thus its proof may be skipped
on first reading.

Lemma 5.4. Given (V, u) ∈ UZ̄ , let {Sm}m∈N be the sequence (24) of sections of L∗ encoding
the Taylor coefficients of u and let {ℓm}m∈N be the sequence of fibrewise closed sections of
L
∗ constructed from u as above. Then for every m ∈ N, there exist formulae

(31) aj,m = −Sj,m +Rj,m,

where Rj,m is an explicit polynomial expression depending on the Sl,k’s and their derivatives
in the bi’s up to order m − 1 and with 0 ≤ k ≤ m − 1. In particular Rj,1 = 0. Thus the
sequence {ℓm}m∈N uniquely determines the sequence {Sm}m∈N recursively and viceversa.

Proof. First of all let us write

ℓ(r) = r dy1 +

n
∑

j=2

aj(r)dyj .

Then by definition

(32) aj(r) =

N
∑

k=1

aj,k r
k + o(rN ).

The aj ’s are functions of (r, b, y), with (b, y) ∈ Z̄, satisfying by construction

(33)

{

u1(r, b2 + a2, . . . , bn + an, y) = r,

uj(r, b2 + a2, . . . , bn + an, y) = bj for all j = 2, . . . , n.

When W is sufficiently small and (r, b) ∈ W , this system can be solved using the implicit
function theorem to determine the aj ’s uniquely. We will now use it to compute the aj,m’s
and determine the formulae (31).

Let j = 2, . . . , n, then from the system and the conditions on u we obtain

aj |r=0 = 0

and

(34) ∂b1uj +

n
∑

k=2

∂bkuj ∂rak = 0.

When evaluating at r = 0, using u|Z = π, we get

∂b1uj|r=0 + ∂raj |r=0 = 0,

i.e. that

(35) aj,1 = −Sj,1.

Now we do the second order terms. Derivating (34) we obtain

∂2
b1
uj +

n
∑

k=2

∂b1∂bkuj ∂rak +

n
∑

k,l=2

∂bl∂bkuj ∂ral ∂rak +

n
∑

k=2

∂bkuj ∂
2
rak = 0.

Evaluating at r = 0 we get

∂2
b1
uj|r=0 +

(

n
∑

k=2

∂b1∂bkuj ∂rak

)

|r=0 + ∂2
raj |r=0 = 0,

i.e. we obtain

(36) aj,2 = −Sj,2 +

n
∑

k=2

∂bkSj,1 Sk,1.
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So we have that (31) holds for m = 2, where

Rj,2 =

n
∑

k=2

∂bkSj,1 Sk,1.

For the terms of order greater that two we refer the reader to the Appendix in §9. �

Remark 5.5. We point out that (35) shows that the definition of ℓ1 given in this section
coincides with the first order invariant defined in the previous section.

One good reason to work with the sequence {ℓk}k∈N rather than with the sequence
{Sm}m∈N is that we can easily prove the following

Proposition 5.6. Given any sequence {ℓk}k∈N of fibrewise closed sections of L∗, there exists
a smooth 1-parameter family ℓ(r) of fibrewise closed sections of L∗ such that (29) holds for
every N ∈ N.

The proof of this is based on the following general:

Lemma 5.7. For any sequence of C∞ functions {αk : Rp → R}, there is a C∞ function
f : R× R

p → R, such that αk(x) = ∂k
r f(r, x)|r=0, for all k ∈ N.

A proof of this Lemma in the case when {αk} is a sequence of real numbers is hinted in
[15] Exercise 13, page 384. It is an exercise to show that the method proposed there can be
adapted to the case when αk depends smoothly on a parameter x ∈ Rp.

Proof of Proposition 5.6. Let us first prove the statement assuming that all the ℓk’s are fi-
brewise exact, i.e. there exists a sequence of functions {fk}k∈N on Z̄ such that

ℓk|F̄b
= d fk|F̄b

.

We have Z̄ ∼= Rn−1×T n−1, where T n−1 is the (n− 1)-torus. Let {Uα, φα}α∈J be a partition
of unity on T n−1. Define

fk,α =
√

φαfk.

We apply Lemma 5.7, for every α ∈ J , to the sequence {fk,α}k∈N lifted to the covering Rn−1

of T n−1. So there exists a C∞ function fα = fα(r) such that

fα(r) =

N
∑

k=1

fk,α rk + o(rN ),

for every N ∈ N. Let

f(r) =
∑

α∈J

√

φα fα(r).

Then f(r) descends to a smooth 1-parameter family of functions on Z̄. Moreover

f(r) =

N
∑

k=1

(

∑

α∈J

√

φαfk,α

)

rk + o(rN )

=

N
∑

k=1

(

∑

α∈J

φαfk

)

rk + o(rN )

=

N
∑

k=1

fk r
k + o(rN ).

If we let ℓ(r) be the 1-parameter family of sections of L∗ such that

ℓ(r)|F̄b
= d f(r)|F̄b

,

then we clearly have

ℓ(r) =

N
∑

k=1

ℓk r
k + o(rN ).
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We now do the general case. There certainly is a sequence {lk}k∈N of fibrewise constant
sections of L∗ such that for every k ∈ N, ℓk − lk is fibrewise exact. Since lk is fibrewise
constant we can write

lk =
n
∑

j=2

qj,k dyj,

where the qj,k’s are fibrewise constant functions. Invoking Lemma 5.7, for every j = 2, . . . , n,
there exists a family of fibrewise constant functions qj(r) such that

qj(r) =

N
∑

k=1

qj,k r
k + o(rN ).

Let

l(r) =
n
∑

j=2

qj(r)dyj ,

and let ℓ̃(r) be the fibrewise exact family of forms such that

ℓ̃(r) =

N
∑

k=1

(ℓk − lk) r
k + o(rN ),

which exists from the previous step. Define

ℓ(r) = ℓ̃(r) + l(r).

One easily checks that (29) holds. �

The following is an existence result

Theorem 5.8. Let {ℓm}m∈N be a sequence of fibrewise closed sections of L∗ and let {Sm}m∈N

be the sequence of sections of L∗ obtained recursively from {ℓm}m∈N using formulae (31) in
Proposition 5.4, then there exists (V, u) ∈ UZ̄ such that for every N ∈ N

uj =

N
∑

k=0

Sj,k b
k
1 + o(bN1 ).

Proof. Following Proposition 5.6, given the sequence {ℓm}m∈N, we can construct ℓ(r), a
smooth 1-parameter family of fibrewise closed sections of L∗ satisfying (29). We show that
ℓ(r) can be used to construct the pair (V, u). In fact the process is the inverse of the one
which led us to the construction of a family ℓ(r) from a fibration u. The construction is
identical to the one in the proof of Theorem 4.11. Denote ℓ(r, b) = ℓ(r)|F̄b

and write

ℓ(r, b) =
n
∑

j=2

aj(r, b)dyj ,

where the aj(r, b)’s are functions depending on y and they satisfy

(37) aj(r, b) =

N
∑

k=1

aj,k(b) r
k + o(rN ).

Let Lr,b be the Lagrangian submanifold of T ∗U/Λ which is the image of the closed one form

rdy1 + ℓ(r, b)

under the symplectomorphism (28). When W ⊆ U is sufficiently small and (r, b) ∈ W , then
the submanifolds Lr,b are the fibres of a Lagrangian fibration u : V → Rn. We describe u
explicitly and show that (V, u) ∈ UZ̄ . Given (b′, y′) ∈ V , there exists a unique (r, b) ∈ W
such that Lr,b ⊂ V and (b′, y′) ∈ Lr,b, in fact (r, b) can be determined as functions of (b′, y′)
by solving the non linear system

(38)

{

r = b′1
bj + aj(r, b, y

′) = b′j when j = 2, . . . , n
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using the implicit function theorem. We define

u1(b
′, y′) = b′1

and, when j = 2, . . . , n

(39) uj(b
′, y′) = bj(b

′, y′).

We claim that the coefficients of the Taylor series expansion of uj in b′1 are exactly the
coefficients Sj,m obtained from the sequence {ℓm}m∈N through formulae (31). In fact notice
that, by construction of uj , the functions aj satisfy

uj(r, b2 + a2(r, b, y
′), . . . , bn + an(r, b, y

′)) = bj ,

i.e. they are obtained from uj as the unique solution to system (33) and therefore the claim
follows from the proof of Lemma 5.4. �

Corollary 5.9. Let {ℓm}m∈N and {Sm}m∈N be sequences of sections of L∗ with coefficients
aj,k and Sj,k, respectively, related by formulae (31). Then all the ℓm’s are fibrewise closed if
and only if the sequence {Sm}m∈N satisfies equations (26).

Proof. If all the ℓm’s are fibrewise closed, then Theorem 5.8 shows that there is a Lagrangian
fibration u : V → Rn whose Taylor coefficients are given by the sequence {Sm}m∈N. Being u
Lagrangian, the claim follows from Proposition 5.2.

Suppose now that {Sm}m∈N satisfies equations (26). We prove the claim by induction.
First of all notice that when m = 1, S1 = −ℓ1 and equation (26) implies that ℓ1 is fibrewise
closed. Now suppose we have proved that ℓm is fibrewise closed for all m ≤ N . Consider the
sequence {ℓ̃m}m∈N, where ℓ̃m = ℓm when m ≤ N and 0 otherwise. Using formulae (31), we

construct the associated sequence {S̃m}m∈N. Since all the ℓ̃m’s are fibrewise closed, from the

first part of this Corollary it follows that {S̃m}m∈N satisfies equations (26). Denote by P̃m

the 2-forms in (25) constructed from {S̃m}m∈N. Now notice that

S̃m = Sm,

when m ≤ N and

P̃m = Pm

when m ≤ N + 1. Moreover, if we denote by R̃j,k the expressions Rj,k appearing in (31)

applied to {S̃m}m∈N, then

R̃j,N+1 = Rj,N+1,

where the right hand side denotes the same expression obtained using {Sm}m∈N. Therefore

formula (31) with m = N + 1 and the fact that ℓ̃N+1 = 0, implies

(40) S̃j,N+1 = R̃j,N+1 = Rj,N+1.

Define the one form

RN+1 =

n
∑

j=2

Rj,N+1dyj .

Clearly (40) says that

S̃N+1 = RN+1

and that equation (26) for {S̃m}m∈N when m = N + 1 becomes

(41) dRN+1|F̄b
= P̃N+1|F̄b

= PN+1|F̄b
.

Using (31) for {Sm}m∈N when m = N + 1, we obtain

dℓN+1|F̄b
= −dSN+1|F̄b

+ dRN+1|F̄b
.

Now substituting (41) and using the fact that (26) holds for {Sm}m∈N when m = N + 1 we
obtain

dℓN+1|F̄b
= −dSN+1|F̄b

+ PN+1|F̄b
= 0,

which completes the proof. �

Finally we have the most general existence result
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Theorem 5.10. Let {Sm}m∈N be a sequence of sections of L∗, satisfying (26), then there
exists (V, u) ∈ UZ̄ such that for every N ∈ N

uj =

N
∑

k=0

Sj,k b
k
1 + o(bN1 ).

Proof. It is just a matter of applying the previous results. In fact given the sequence {Sm}m∈N

satisfying (26), using Proposition 5.4 we construct the sequence {ℓm}m∈N, whose terms are
all fibrewise closed thanks to Corollary 5.9. Finally we apply Theorem 5.8 to obtain u. �

Define the following sets:

LZ̄ = {{ℓm}m∈N | ℓm is a C∞, fibrewise closed section of L∗};

SZ̄ = {{Sm}m∈N | Sm is a C∞ section of L∗ satisfying (26)}.
Clearly Proposition 5.2 gives a map T : UZ̄ → SZ̄ , assigning to (V, u) the Taylor coefficients
of u. We summarise the previous results in the following:

Theorem 5.11. There is a one to one correspondence between the sets LZ̄ , SZ̄ and T (UZ̄).
In particular from every sequence ℓ ∈ LZ̄ we can construct a unique element S(ℓ) ∈ SZ̄ and
an element (V, u) ∈ UZ̄ such that T (V, u) = S(ℓ).

Given two elements (V, u) and (Ṽ , ũ) ∈ UZ̄ , we can construct two stitched Lagrangian

fibrations (Y, fu) and (Ỹ , fũ) as in (22). We recall that fu and fũ are equivalent up to a
change of coordinates on the base if fũ = φ ◦ fu, where φ : W → φ(W ) ⊆ Rn is an admissible
change of coordinates on the base. If we write φ = (φ1, . . . , φn), then φ must satisfy φ1 = b1
and φ|U+ = Id.

Similarly, we say that two sequences ℓ, ℓ̃ ∈ LZ̄ are equivalent up to a change of coordinates
in the base if they define fibrations fu and fũ respectively which are equivalent up to a change
of coordinates in the base. We now describe this equivalence relation in terms of a group
action. Given a change of coordinate map φ on the base satisfying the above properties, we
can consider its Taylor expansion in b1 from the left, i.e. where the coefficients are given by
left derivatives. For each component φj , j = 2, . . . , n, it can be written as

φj(b1, . . . , bn)|W∩U− = bj +

N
∑

k=1

Φj,k(b2, . . . , bn)b
k
1 + o(bN1 ).

The left Taylor coefficients of φ thus define a sequence {Φm}m∈N, where Φm : Γ → Rn−1 is
a C∞ map whose components are Φm = (Φ2,m, . . . ,Φn,m).

Lemma 5.12. Given any sequence {Φm}m∈N of smooth maps Φm : Γ → Rn−1 with
components Φm = (Φ2,m, . . . ,Φn,m) there exists an admissible change of coordinate map
φ = (φ1, . . . , φn) defined on some neighbourhood W of Γ such that φ1 = b1, φ|U+∩W = Id
and

φj(b1, . . . , bn)|U−∩W = bj +

N
∑

k=1

Φj,k(b2, . . . , bn)b
k
1 + o(bN1 ).

for all N ∈ N.

Proof. It follows from Lemma 5.7. �

Define the following set

DΓ = {{Φm}m∈N |Φm ∈ C∞(Γ,Rn−1)}.
We say that two admissible change of coordinate maps φ and φ′ are equivalent if their
corresponding left Taylor coefficients define the same element in DΓ. We call DΓ the set
of germs of admissible change of coordinates. Given a germ Φ ∈ DΓ we say that an
admissible change of coordinates φ is a representative of Φ, if φ satisfies Lemma 5.12.

Composition of germs of admissible maps induces a group structure on DΓ, i.e. given
Φ,Φ′ ∈ DΓ, we define Φ·Φ′ to be the germ of the map φ◦φ′, where φ and φ′ are representatives
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of Φ and Φ′ respectively. It is easy to see that this product on DΓ does not depend on the
choice of representatives.

The group DΓ acts on the set LZ̄ as follows. Given ℓ ∈ LZ̄ and Φ ∈ DΓ, we define Φ · ℓ
to be the sequence ℓ̃ ∈ LZ̄ associated to the Lagrangian fibration ũ = φ ◦ u, where φ is a
representative of Φ and u is a Lagrangian fibration obtained from ℓ via Theorem 5.8.

Lemma 5.13. The above action is well-defined.

Proof. We need to show that the action does not depend on the choices made. The sequence
ℓ̃ ∈ LZ̄ determines a unique sequence {S̃m}m∈N ∈ SZ̄ , where each S̃m is defined in terms of
the Taylor coefficients of ũ = φ ◦ u. These coefficients, in turn, are expressed in terms of the
Taylor coefficients of φ and u. If we take a different representative φ′ of Φ, clearly, the Taylor
coefficients of φ′ ◦ u and φ ◦ u coincide. Now let S ∈ SZ̄ be the sequence determined by ℓ. If
u′ ∈ UZ̄ is a different realisation of ℓ then, by construction, u′ defines a sequence S′ ∈ SZ̄

such that S = S′. Therefore the Taylor coefficients of φ ◦ u and φ ◦ u′ coincide. �

Proposition 5.14. Let fu and fũ be two stitched Lagrangian fibrations constructed as in
(22). If locally fũ = φ ◦ fu for some admissible change of coordinates, then the sequences

ℓ, ℓ̃ ∈ LZ̄ associated to fu and fũ are in the same orbit of DΓ. Moreover fu is equivalent to
a smooth fibration up to a change of coordinates on the base if and only if ℓ is a sequence of
fibrewise constant sections of L∗.

Proof. The first part of the statement is obvious. If fũ = φ ◦ fu is smooth, then ℓ̃ is the zero
sequence 0. It is easy to verify that ℓ = Φ−1 · 0 is a sequence of fibrewise constant sections
of L

∗. Suppose, viceversa, that ℓ is a sequence of fibrewise constant sections. Consider
the associated sequence S ∈ SZ̄ . The coefficients Sj,m of each element Sm ∈ S can be
regarded as functions on the base Γ, therefore S also defines a sequence Φ ∈ DΓ by setting
Φm = (S2,m, . . . , Sn,m). Let φ be an admissible change of coordinates representing Φ. It is
clear that φ−1 ◦ fu is smooth and that Φ−1 · ℓ = 0. �

In §6 we will consider equivalences up to smooth fibre preserving symplectomorphism.

6. The semiglobal classification

Let (X,ω) be a symplectic manifold and f : X → B be a stitched fibration as in Defi-
nition 3.1. Let Z ⊂ X be the seam of f and let Γ := f(Z) ⊂ B. Since we are interested
in a semiglobal classification, throughout this section we will consider stitched Lagrangian
fibrations satisfying the following assumption

Assumption 6.1. The stitched Lagrangian fibration f : X → B satisfies the following
condition

(1) the pair (B,Γ) is diffeomorphic to the pair (Dn, Dn−1) where Dn ⊂ Rn is a ball cen-
tred at the origin and Dn−1 ⊂ Dn is the intersection of Dn with an n−1 dimensional
subspace;

Also, the following data is specified

(2) a basis γ = (γ1, γ2, . . . , γn) of H1(X,Z) so that γ1 is represented by the orbit of the
S1 action;

(3) a continuous section σ of f defined on a neighbourhood of Γ, such that σ|f(X+)

and σ|f(X−) are restrictions of smooth maps on B and the image of σ is a smooth
Lagrangian submanifold of X .

We denote a stitched Lagrangian fibration together with this data by (X,B, f, γ, σ).

We will soon show that a section σ as in (3) always exists.

Definition 6.2. We say that two stitched fibrations (X,B, f, γ, σ) and (X ′, B′, f ′, γ′, σ′),
with seams Z and Z ′ respectively are fibrewise symplectically equivalent (or just equiv-
alent) if there are neighbourhoods W ⊆ B of Γ := f(Z) and W ′ ⊆ B′ of Γ′ := f ′(Z ′) and a
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commutative diagram:

(f ′)−1(W ′)
Ψ−−−−→ f−1(W )

f ′





y





y
f

W ′ φ−−−−→ W
where Ψ is an S1 equivariant C∞ symplectomorphism sending Z ′ to Z and φ is a C∞

diffeomorphism such that Ψ ◦ σ′ = σ ◦ φ and Ψ∗γ
′ = γ. The set of equivalence classes under

this relation will be denoted by F and elements therein will be called germs of stitched

fibrations.

Now we show that any stitched fibration, satisfying Assumption 6.1, is fibrewise symplec-
tically equivalent to a stitched fibration of the type (Y, fu) studied in §5. Before doing this
we need some preliminary results.

Recall we can write a stitched fibration as:

f =

{

f+ on X+;

f− on X−,

where f± is the restriction of a C∞, S1 invariant map to X± whose fibres are Lagrangian
when restricted to X±. As pointed out in §3, the fibres of such a map are not a priori required
to be Lagrangian beyond X±. Nevertheless we have the following:

Proposition 6.3. Let (X,B, f) be a stitched fibration with seam Z ⊂ X , satisfying condition
(1) of Assumption 6.1. Then there are neighbourhoods V ⊆ X of Z and W ⊆ B of Γ := f(Z)

and a C∞, proper Lagrangian fibration f̃+ : V → W such that f̃+|X+∩V = f+|X+∩V . The
same is true for f−.

Proof. Define f0 : Z → Γ to be f0 = f |Z . Consider the reduced space Z̄ = Z/S1 with its
reduced symplectic form ωred. On R× S1 × Z̄ we define the symplectic form:

ωred + ds ∧ dt

where (t, s) are coordinates on R×S1. From the coisotropic neighbourhood theorem (cf. [13]
§3.3) there exists a function ǫ : Γ→ R>0, a neighbourhood V ⊂ X of Z and a S1-equivariant
symplectomorphism between V and

(42) {(t, s, p) ∈ R× S1 × Z̄ | −ǫ(f̄(p)) < t < ǫ(f̄(p))}.
In particular, the projection onto R corresponds to the moment map µ on V . Now, on the
set in (42), we can define an “auxiliary” smooth Lagrangian fibration given by

π̃(t, s, p) = (t, f0(s, p)).

Fix a basis γ of H1(V,Z) ∼= H1(S
1 × Z̄,Z), satisfying condition (2) of Assumption 6.1 and a

smooth Lagrangian section of π̃. The action-angle coordinates map Θ associated to π̃, with
respect to γ and σ, together with (42), induces a C∞ symplectomorphism

(43) Ṽ := T ∗U/Λ ∼= V

for some open neighbourhood U of 0 ∈ Rn with coordinates (b1, . . . , bn), which are the action

coordinates of π̃. The pull back to Ṽ of the S1 action on V is given by translations along db1
and the corresponding moment map is b1. Pulling back f |V to Ṽ via the latter identification
we obtain a stitched fibration –with abuse of notation– defined by:

(44) f =

{

u+ on Ṽ +;

u− on Ṽ −,

where u± is the pull back of f±. It follows that u+|Z = u−|Z = π|Z .
What we gained so far is an identification which allows us to view f |V as a stitched

fibration on the smooth symplectic manifold Ṽ , where global canonical coordinates exist.
Now we can use the results of §5 to show that u+ (equivalently, u−) can be extended as

required. This can be done as follows. Since u+ is the restriction of a C∞ map to Ṽ +, all the
derivatives of its function components with respect to b1 exist. Evaluating them at b1 = 0
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produces a unique sequence in SZ̄ which in turn induces a unique sequence in LZ̄ and a

smooth Lagrangian fibration (Ṽ , w) ∈ UZ̄ (where eventually we restricted to a smaller Ṽ )
whose Taylor coefficients in b1 evaluated at b1 = 0 coincide with those of u+ (cf. Theorem
5.11). In particular, this allows us to define

(45) ũ+ =

{

u+ on Ṽ +;

w on Ṽ −,

obtaining an element (Ṽ , ũ+) ∈ UZ̄ , where ũ+ extends u+. Observe that different choices of
w induce different smooth extensions of u+, however, all such choices are obtained starting
from the same sequence in SZ̄ determined by the derivatives of u+. Finally, pulling back ũ+

to V under the identification (43), and perhaps shrinking V , gives us the required f̃+. One
can use the same arguments to find a suitable smooth extension of f−. �

Corollary 6.4. A section σ of (X,B, f) satisfying condition (3) of Assumption 6.1 exists.

Proof. Perhaps after an admissible change of coordinates on the base, a smooth Lagrangian
section of f̃+ is also a section of f . �

Let (b1, . . . bn) be coordinates on U ⊆ Rn and let Λ be the integral lattice inside T ∗U
generated by db1, . . . , dbn. Consider T ∗U/Λ with its standard symplectic structure and let
π : T ∗U/Λ → U be the standard projection. For convenience we change slightly the usual
notation. Let Γnor = {b1 = 0}∩U , U+ := {b1 ≥ 0}∩U , U− := {b1 ≤ 0}∩U , Znor := π−1(Γ)
and Z̄nor := Znor/S

1. We assume that (U,Γnor) is diffeomorphic to the pair (Dn, Dn−1).
Given (V, u) ∈ UZ̄nor

, we can construct a stitched Lagrangian fibration (Y, fu) as in (22).
The zero section of π also defines a section of fu, after perhaps an admissible change of
coordinates on the base. We denote this section by σ0. As a basis ofH1(Y,Z) we take the basis
(db1, . . . , db2) of Λ. We denote it by γ0. Then (Y, fu(Y ), fu, σ0, γ0) satisfies Assumption 6.1.

Definition 6.5. Let F := (X,B, f, σ, γ) be a stitched Lagrangian fibration with seam Z,
satisfying Assumption 6.1. A stitched fibration Fu := (Y, fu(Y ), fu, σ0, γ0) of the type above
is a normal form of F if Fu and F define the same germ of a stitched fibration, according
to Definition 6.2.

Observe that the above is a normalisation of a T n-fibred neighbourhood of the seam of F .
In this sense, Fu is a semi-global normal form.

If Fu = (Y, fu(Y ), fu, σ0, γ0) is a normal form of F := (X,B, f, σ, γ) and Z is the seam of
F , then Znor of Fu is nothing else but Z expressed in action angle coordinates, and thus it is
a normalisation of Z. Since σ0 and γ0 are chosen canonically, we will from now on omit to
specify them and just denote the normal form by Fu = (Y, fu).

Proposition 6.6. Every stitched Lagrangian fibration (X,B, f) satisfying (1) of Assump-
tion 6.1 has a section σ and a basis γ as in (2) and (3) of Assumption 6.1 such that
(X,B, f, σ, γ) has a normal form (Y, fu) .

Proof. From Proposition 6.3 we can assume there exist open neighbourhoods V ⊂ X of Z
and W ⊆ B of Γ and a proper smooth Lagrangian fibration f̃+ : V →W extending f+. Now,
fixing a basis γ of H1(V,Z) as in (3) of Assumption 6.1 and a smooth Lagrangian section σ

of f̃+, we obtain a unique symplectomorphism

Θ+ : T ∗U/Λ→ V

given by the action-angle coordinates associated to f̃+. Then by defining u to be the pull back
of f̃− under Θ+ one readily sees that f transforms into a fibration of the type (Y, fu). �

Definition 6.7. Let (X,B, f, σ, γ) be a stitched fibration with a normal form (Y, fu). Let
ℓ ∈ LZ̄nor

be the unique sequence determined by u. We denote inv(fu) := (Z̄nor, ℓ) and
we call it the invariants of (Y, fu). The invariants of F = (X,B, f, σ, γ) are defined to be
inv(F ) := inv(fu).

Proposition 6.8. Let F = (X,B, f, σ, γ) and F ′ = (X ′, B′, f ′, σ′, γ′) be stitched fibrations
with normal forms (Y, fu) and (Y ′, fu′) defining invariants inv(F ) and inv(F ′) respectively.
If F and F ′ are fibrewise symplectically equivalent, then inv(F ) = inv(F ′).



24 R. CASTAÑO-BERNARD AND D. MATESSI

Proof. Assume there is a commutative diagram as in Definition 6.2. To keep notation simple,
let us assume W = B and W ′ = B′. We have the diagram with commutative squares:

(46)

Y
Θ←−−−− X

Ψ−−−−→ X ′ Θ′

−−−−→ Y ′

fu





y

f





y
f ′





y





y

fu′

U
a←−−−− B

φ−−−−→ B′ a′

−−−−→ U ′.

Let us concentrate on the outermost square of (46) and define Ψ̃ = Θ′ ◦ Ψ ◦ Θ−1 and φ̃ =
a′ ◦ φ ◦ a−1. We claim that:

(i) inv(fφ̃◦u) = inv(fu); and

(ii) inv(fu′◦Ψ̃) = inv(fu′).

Since φ̃ ◦ fu = fu′ ◦ Ψ̃, (i) and (ii) would imply that inv(F ) = inv(F ′). It is clear that

Z̄nor and Z̄ ′
nor must coincide. Observe that Ψ̃, restricted to Y +, is a symplectomorphism onto

(Y ′)+ which commutes with the projections π and π′ on T ∗U and T ∗U ′ and sends the zero

section to the zero section. Therefore we must have Ψ̃|Y + = φ̃∗.

To prove (i) observe that φ̃∗|T∗U+ must send the lattice Λ′ defining Y ′ to the lattice Λ

defining Y . From this it follows that φ̃|U+ is the identity map and the restriction of Ψ̃ to Y + is

also the identity map. Then φ̃◦u|V + = u|V + . From this and the smoothness of φ̃◦u it follows

that the sequences in SZ̄nor
defined by φ̃ ◦ u and u coincide. Hence inv(fu) = inv(φ̃ ◦ fu).

Similarly, to prove (ii), observe that u′ ◦ Ψ̃|V + = u′|V + . Since u′ and Ψ̃ are smooth it follows
that inv(fu′◦Ψ̃) = inv(fu′). �

Corollary 6.9. The definition of the invariants of F = (X,B, f, σ, γ) is independent on the
choice of normalisation.

Proof. Suppose we have two normalisations (Y, fu) and (Y ′, fu′). Clearly Z̄nor and Z̄ ′
nor must

coincide. We can also assume, w.l.o.g. that Y = Y ′. What may be different are the maps
u and u′ such that fu and fu′ are two different normalisations of f induced from different
extensions f̃+ of f+. Consider the invariants inv(fu) and inv(fu′), respectively. Since fu
and fu′ are symplectically equivalent via Ψ̃ = Θ′ ◦ Θ−1 and φ̃ = a′ ◦ a−1, it follows that
inv(fu) = inv(fu′). �

Proposition 6.10. Let F = (X,B, f, σ, γ) and F ′ = (X ′, B′, f ′, σ′, γ′) be stitched La-
grangian fibrations satisfying Assumption 6.1. If inv(F ) = inv(F ′) then F is fibrewise sym-
plectically equivalent to F ′ .

Proof. Let (Y, fu) and (Y ′, fu′) be normal forms of F and F ′, respectively. We can assume,
w.l.o.g., Y = Y ′. Let Su and Su′ be the series in SZ̄nor

defined by u and u′ respectively. By

assumption Su = Su′ . This allows us to find Lagrangian fibrations (V̄ , ū), (Ṽ , ũ), (Ṽ ′, ũ′) ∈
UZ̄nor

such that

ũ =

{

u on Ṽ −

ū on Ṽ +
and ũ′ =

{

u′ on (Ṽ ′)−

ū on (Ṽ ′)+

where Sū = Sũ = Sũ′ . Now there is a neighbourhood W of Γnor and smooth symplectomor-
phisms Θ : T ∗W/Λ → Ṽ and Θ′ : T ∗W/Λ → Ṽ ′ which are the action-angle coordinate map
of the fibrations ũ and ũ′, respectively. Defining Ψ = Θ′ ◦ Θ−1, it is clear that Ψ|Ṽ + is the

identity. Furthermore, when restricted to Ṽ −, Ψ sends the fibres of ũ|Ṽ − = u|Ṽ − to the fibres
of ũ′|(Ṽ ′)− = u′|(Ṽ ′)− . Therefore Ψ is fibre preserving with respect to fu and fu′ . It follows

that f and f ′ are symplectically equivalent. �

We summarise the previous Propositions in the following:

Theorem 6.11. Let F = (X,B, f, σ, γ) and F ′ = (X ′, B′, f ′, σ′, γ′) be stitched Lagrangian
fibrations satisfying Assumption 6.1, with invariants inv(F ) and inv(F ′), respectively. Then
F and F ′ define the same germ if and only if inv(F ) = inv(F ′). In other words, the set of
germs of stitched fibrations F is classified by the pairs (Z̄nor, ℓ), where ℓ ∈ LZ̄nor

.
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The above provides a semi-global classification of stitched Lagrangian fibrations. In con-
trast to what happens for smooth Lagrangian submersions where no semi-global symplectic
invariants exist, stitched fibrations in general do give rise to non trivial semi-global invariants.

We can now also state a more precise version of Theorem 4.11:

Theorem 6.12. Let (U,Γ) be a pair, where U is an open neighbourhood of 0 ∈ R
n and

Γ = U ∩ {b1 = 0}. Assume (U,Γ) is diffeomorphic to the pair (Dn, Dn−1). Let Λ̄ ⊆ T ∗Γ be
the lattice spanned by {db2, . . . , dbn}, and let Z̄ = T ∗Γ/Λ̄, with projection π̄ : Z̄ → Γ and
bundle L = ker π̄∗. Given integers m2, . . . ,mn and a sequence ℓ = {ℓk}k∈N ∈ LZ̄ such that

(47)

∫

dbj

ℓ1 = mj for all j = 2, . . . , n,

there exists a smooth symplectic manifold (X,ω) and a stitched Lagrangian fibration f :
X → U satisfying the following properties:

(i) the coordinates (b1, . . . , bn) on U are action coordinates of f with µ = f∗b1 the
moment map of the S1 action;

(ii) the periods {db1, . . . , dbn}, restricted to U± correspond to bases γ± = {γ1, γ±
2 , . . . , γ±

n }
of H1(X,Z) satisfying (i) and (ii) of Corollary 4.6;

(iii) there is a Lagrangian section σ of f , such that (Z̄, ℓ) are the invariants of (X, f, U, σ, γ+).

The fibration (X, f, U) satisfying the above properties is unique up to fibre preserving sym-
plectomorphism.

Proof. The construction of (X,ω) is like in the proof of Theorem 4.11, i.e.

X = (X+ ∪ V +) ∪Q̃ (X− ∪ V −).

But now the map u, used to construct Q̃, is chosen so that the fibration fu : X+∪V + → Rn,
defined by

fu =

{

π+ on b1 ≥ 0

u on b1 ≤ 0.

satisfies inv(fu) = (Z̄, ℓ). Such a u exists thanks to Theorem 5.11. The fibration f is again
defined by

f =

{

π+ on X+

π− on X−.

It is clear that by construction (X, f, U) satisfies (i)− (iii). Notice that Q̃ matches the zero
section of π+ to the zero section of π−. Therefore the section σ is just given by the zero
section of π+ on U+ and by the zero section of π− on U−.

It is clear from the results proved in this Section (in particular from the existence of a
normal form) that any stitched Lagrangian fibration (X, f, U) satisfying (i) − (iii) can be
constructed in this way.

Uniqueness of (X, f, U) is proved as follows. The only choice involved in the construction
is the function u. Any other choice u′ must still satisfy inv(fu′) = (Z̄, ℓ). Denote by X and
X ′ the manifolds obtained from choices u and u′ respectively. Let Ψ : X → X ′ be the map
defined to be the identity on X+ and on X−. One can see that Ψ is well defined since the
first order invariants of fu and fu′ coincide. It is clearly a smooth symplectomorphism away
from Z. We need to show that it is smooth on Z. To see this we can use an argument similar
to the one used in Proposition 6.10. If we think of Ψ in the coordinates on X+ ∪ V +, Ψ is a
symplectomorphism sending the fibres of fu to the fibres of fu′ and the zero section to the zero
section. In a neighbourhood of Z and in these coordinates, we can describe Ψ, as follows.
Since inv(fu) = inv(fu′), we can replace u and u′ with ũ and ũ′ as in Proposition 6.10.
Let Θ : T ∗W/Λ → V + and Θ′ : T ∗W/Λ → V + be action angle coordinates of ũ and ũ′

respectively, associated to the zero section and to the basis γ−. Then, in these coordinates,
Ψ coincides with Θ′ ◦Θ−1. It is therefore smooth. �
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7. Stitched Lagrangian fibrations with monodromy

We now study stitched Lagrangian fibrations defined over a non simply connected open set
U . In this case it may be that the fibration has non-trivial monodromy. When the fibration is
smooth, this monodromy is usually detected by the behaviour of the periods of the fibration
expressed in terms of smooth coordinates on the base. In the case of stitched Lagrangian
fibrations there may not exist smooth coordinates on U , i.e. coordinates with respect to
which the fibration is smooth. We will see how to detect monodromy from the behaviour of
the first order invariant ℓ1. This will be done mainly through the discussion of examples.

In Example 3.4, the fibration is topologically isomorphic to a focus-focus fibration. The
singular fibre is over 0 ∈ R2. Restricted to X − f−1(0), f is a stitched Lagrangian fibration
onto U = R2 − {0}. We know that the locally constant presheaf on U given by

W 7→ H1(f
−1(W ),Z)

has monodromy around 0, i.e. the monodromy map

Mb : π1(U)→ H1(Fb,Z)

at a fibre over b ∈ U is non-trivial. In fact, if e is a generator of π1(U), Mb(e) is conjugate
to the matrix

(

1 1
0 1

)

.

We now look at a more general 2-dimensional case.

Example 7.1. Let U ⊂ R
2 be an open annulus in R

2 centred at the origin. As usual denote
U+ = U ∩ {b1 ≥ 0}, U− = U ∩ {b1 ≤ 0} and Γ = U+ ∩U−. This time Γ is disconnected. We
let Γu = Γ ∩ {b2 ≥ 0} and Γd = Γ ∩ {b2 ≤ 0} be the upper and lower parts of Γ respectively.
Now let f : X → R2 be a stitched Lagrangian fibration such that f(X) = U . Observe that
the seam Z has two connected components: Zu = f−1(Γu) and Zd = f−1(Γd). Denote by Z̄u

and Z̄d the respective S1 quotients, i.e. the connected components of Z̄. Given b ∈ Γu and
choosing a curve going anticlock-wise once around 0 as generator e ∈ π1(U), suppose that
with respect to a basis {γ1, γ2} of H1(Fb,Z) the monodromy is

(48) Mb(e) =

(

1 −m
0 1

)

,

for some integer m 6= 0. In this case we must have that γ1 is represented by the orbits of the
S1 action. As usual let X± = f−1(U±). Since U −Γd is contractible we can think of {γ1, γ2}
as a basis of H1(f

−1(U − Γd),Z). Consider the diagrams:

H1(X
+,Z)

((RRRRRRRRRRRRR

H1(f
−1(U − Γd),Z)

66lllllllllllll
j+

// H1(f
−1(U − Γu),Z)

or

H1(f
−1(U − Γd),Z)

((RRRRRRRRRRRRR

j−
// H1(f

−1(U − Γu),Z)

H1(X
−,Z)

66lllllllllllll

induced by inclusions and restrictions. The map j+ identifies {γ1, γ2} with a basis {γ1, γ+
2 }

of H1(f
−1(U − Γu),Z), whereas j− with a basis {γ1, γ−

2 }. Notice that monodromy is given
by j−1

+ ◦ j−. Therefore we must have γ+
2 = mγ1 + γ−

2 . Hence {γ1, γ+
2 } and {γ1, γ−

2 } satisfy
conditions (i) and (ii) of Corollary 4.6. Applying Lemma 4.9 to f restricted to f−1(U − Γu)
we can consider the action coordinates map α constructed by taking action coordinates with
respect to {γ1, γ+

2 } on U+ and with respect to {γ1, γ−
2 } on U−. Denote by (bd1, b

d
2) such

coordinates. Similarly on U − Γd we can consider action angle coordinates with respect to
the basis {γ1, γ2}. Denote by (bu1 , b

u
2 ) these coordinates. In particular we can identify

Z̄d = T ∗Γd / 〈dbd2〉Z
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and

Z̄u = T ∗Γu / 〈dbu2 〉Z
With respect to this choice of coordinates we can construct the first order invariants ℓu1 and
ℓd1 of f on Z̄u and Z̄d respectively, then by applying Remark 4.10 we obtain

∫

dbu
2

ℓu1 = 0 and

∫

dbd
2

ℓd1 = m.

This tells us that monodromy can be read from a jump in cohomology class of the first order
invariant associated to action coordinates.

Using the methods of Theorem 4.11 we can also construct stitched Lagrangian fibrations
with prescribed monodromy and and invariants. In fact we have

Theorem 7.2. Let U ⊂ R2 be an annulus as above with coordinates (b1, b2). Let Z̄d =
T ∗Γd / 〈db2〉Z and Z̄u = T ∗Γu / 〈db2〉Z with projections π̄d and π̄u and bundles Ld = ker π̄d

∗

and Lu = ker π̄u
∗ respectively. Given an integer m and sequences ℓd = {ℓdk}k∈N ∈ LZ̄d

and
ℓu = {ℓuk}k∈N ∈ LZ̄u

such that
∫

db2

ℓu1 = 0 and

∫

db2

ℓd1 = m,

there exists a smooth symplectic manifold (X,ω) and a stitched Lagrangian fibration f : X →
U having monodromy (48) with respect to some basis γ = {γ1, γ2} of H1(f

−1(U − Γd),Z)
and satisfying the following properties:

(i) the coordinates (b1, b2) are action coordinates of f with moment map f∗b1;
(ii) the periods {db1, db2}, restricted to U± correspond to the basis {γ1, γ2};
(iii) there is a Lagrangian section σ of f , such that (Z̄u, ℓ

u) and (Z̄d, ℓ
d) are the invariants

of (f−1(U−Γd), f, U−Γd, σ, γ) and (f−1(U−Γu), f, U−Γu, σ, j+(γ)) respectively.

The fibration (X, f, U) satisfying the above properties is unique up to fibre preserving sym-
plectomorphism.

Proof. We let Λ+ and Λ− be the lattices generated by db1 and db2 in T ∗U+ and T ∗U−

respectively. Define X± = T ∗U±/Λ±, Z
±
u = (π±)−1(Γu) and Z±

d = (π±)−1(Γd). Then,

using ℓu1 and ℓd1, we construct maps

Qu : Z−
u → Z+

u

and

Qd : Z−
d → Z+

d

like in Theorem 4.11. We use these maps to glue X+ and X− topologically along their
boundary and thus form X . For the smooth and symplectic gluing we follow the same
method as in Theorem 6.12, where higher order invariants are used. From the discussion
of Example 7.1 it follows that the fibration has the prescribed monodromy. Uniqueness is
proved like in Theorem 6.12. �

We now discuss a three dimensional example.

Example 7.3. In R3 consider the three-valent graph

∆ = {(0, 0,−t), t ≥ 0} ∪ {(0,−t, 0), t ≥ 0} ∪ {(0, t, t), t ≥ 0}
and let D be a tubular neighbourhood of ∆. Take U = R

3−D and assume we have a stitched
Lagrangian fibration f : X → R3 such that U = f(X). The seam is Z = f−1({b1 = 0} ∩ U).
Again we let U+ = U ∩ {b1 ≥ 0}, U− = U ∩ {b1 ≤ 0} and Γ = U+ ∩ U−. Also let
X± = f−1(U±). This time Γ (and thus Z) has three connected components

Γc = {(0, t, s), t, s < 0} ∩ U,

Γd = {(0, t, s), t > 0, s < t} ∩ U,

Γe = {(0, t, s), s > 0, t < s} ∩ U.

Also denote by Zc, Zd and Ze the corresponding connected components of Z and by Z̄c, Z̄d

and Z̄e their S1 quotients.
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Fix b ∈ Γc and suppose that there is a basis {γ1, γ2, γ3} of H1(Fb,Z) and generators
e0, e1, e2 of π1(U), satisfying e0e1e2 = 1, with respect to which the monodromy transforma-
tions are

(49) Mb(e1) = T1 =





1 0 −m1

0 1 0
0 0 1



 , Mb(e2) = T2 =





1 −m2 0
0 1 0
0 0 1



 .

andMb(e0) = T0 = T−1
1 T−1

2 , for non zero integersm1 andm2. We have that γ1 is represented
by the orbits of the S1 action, since it is the only monodromy invariant cycle. Now, since
U − (Γd ∪ Γe) is contractible, {γ1, γ2, γ3} is a basis of H1(f

−1(U − (Γd ∪ Γe)),Z). Consider
the diagrams:

H1(X
+,Z)

))SSSSSSSSSSSSSSS

H1(f
−1(U − (Γd ∪ Γe)),Z)

55kkkkkkkkkkkkkkk
j+

// H1(f
−1(U − (Γc ∪ Γd)),Z)

or

H1(f
−1(U − (Γd ∪ Γe)),Z)

))SSSSSSSSSSSSSSS

j−
// H1(f

−1(U − (Γc ∪ Γd)),Z)

H1(X
−,Z)

55kkkkkkkkkkkkkkk

induced by inclusions and restrictions. The map j+ identifies {γ1, γ2, γ3} with a basis of
H1(f

−1(U − (Γc ∪ Γd)),Z), which we call {γ1, γ+
2 , γ+

3 }, while j− identifies it with another
basis, which we call {γ1, γ−

2 , γ−
3 }. Notice that the monodromy map Mb(e1) = j−1

+ ◦ j−. We
must have

(50)

{

γ+
2 = γ−

2 ,

γ+
3 = m1γ1 + γ−

3 .

Therefore {γ1, γ+
2 , γ+

3 } and {γ1, γ−
2 , γ−

3 } satisfy conditions (i) and (ii) of Corollary 4.6. Ap-
plying Lemma 4.9 to f restricted to f−1(U − (Γc ∪ Γd)), we can consider the action coor-
dinates map α on U − (Γc ∪ Γd) constructed by taking action coordinates with respect to
{γ1, γ+

2 , γ+
3 } on U+ and with respect to {γ1, γ−

2 , γ−
3 }} on U−. Let us denote these coordinates

by (be1, b
e
2, b

e
3). Similarly we can consider action coordinates on U − (Γd ∪ Γe) with respect to

the basis {γ1, γ2, γ3} of H1(f
−1(U − (Γd ∪ Γe)),Z). We denote them by (bc1, b

c
2, b

c
3). We have

the identifications
Z̄e = T ∗Γe / 〈dbe2, dbe3〉Z

and
Z̄c = T ∗Γc / 〈dbc2, dbc3〉Z.

With respect to these coordinates we can compute the first order invariants ℓe1 and ℓc1 on
Z̄e and Z̄c respectively. From Remark 4.10 and identities (50) applied to ℓc1 and ℓe1 we obtain

∫

dbc
2

ℓc1 =

∫

dbc
3

ℓc1 = 0

and
∫

dbe
2

ℓe1 = 0 and

∫

dbe
3

ℓe1 = m1.

Similarly we construct the first order invariant ℓd1 on Z̄d. It will satisfy
∫

dbd
2

ℓd1 = m2 and

∫

dbd
3

ℓd1 = 0.

Again, monodromy is understood in terms of the difference in the cohomology class of the
first order invariant. Example 3.6 is a special case of this situation, where m1 = m2 = 1.

Again, one can produce stitched Lagrangian fibrations of the type described in this example
with the gluing method Theorem 4.11. In fact we can prove
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Theorem 7.4. Let U ⊂ R3, Γc, Γd and Γe be as in Example 7.3 and let (b1, b2, b3)
be coordinates on U . Define Z̄c = T ∗Γc / 〈db2, db3〉Z, Z̄d = T ∗Γd / 〈db2, db3〉Z and Z̄e =
T ∗Γe / 〈db2, db3〉Z with projections π̄c, π̄d, π̄e and bundles Lc = ker π̄c

∗, Ld = ker π̄d
∗ , Le =

ker π̄e
∗. Suppose we are given integers m1, m2 and sequences ℓc = {ℓck}k∈N ∈ LZ̄c

, ℓd =

{ℓdk}k∈N ∈ LZ̄d
and ℓe = {ℓek}k∈N ∈ LZ̄e

satisfying
∫

db2

ℓc1 =

∫

db3

ℓc1 = 0,

∫

db2

ℓe1 = 0 and

∫

db3

ℓe1 = m1,

∫

db2

ℓd1 = m2 and

∫

db3

ℓd1 = 0.

Then there exists a smooth symplectic manifold (X,ω) and a stitched Lagrangian fibration
f : X → U having the same monodromy of Example 7.3 with respect to some basis γ =
{γ1, γ2, γ3} of H1(f

−1(U − (Γd ∪ Γe)),Z) and satisfying the following properties:
(i) the coordinates (b1, b2, b3) are action coordinates of f with moment map f∗b1;
(ii) the periods {db1, db2, db3}, restricted to U± correspond to the basis γ;
(iii) there is a Lagrangian section σ of f , such that (Z̄c, ℓ

c), (Z̄d, ℓ
d) and (Z̄e, ℓ

e) are the
invariants of (f−1(U − (Γd ∪ Γe)), f, U − (Γd ∪ Γe), σ, γ), (f

−1(U − (Γc ∪ Γe)), f, U −
(Γc ∪ Γe), σ, j+(γ)) and (f−1(U − (Γc ∪ Γd)), f, U − (Γc ∪ Γd), σ, j+(γ)) respectively.

The fibration (X, f, U) satisfying the above properties is unique up to fibre preserving sym-
plectomorphism.

We omit the proof which is simply a repetition of the usual gluing method from Theo-
rems 4.11 and 6.12.

8. More examples?

In this section we would like to propose a conjectural construction generalising the one,
described in [3], which led us to Example 3.6. In [9], Guillemin and Sternberg make the
following observation. Let N = n+m, with n,m positive integers. Consider CN+1 with its
standard symplectic structure, then S1 acts on it, in a Hamiltonian way, via the action given
by,

(51) θ : (z1, . . . , zN+1) 7→ (eiθz1, e
−iθz2, . . . , e

−iθzn+1, zn+2, . . . , zN+1)

with moment map

µ =
|z1|2 − |z2|2 − . . .− |zn+1|2

2
.

The action is singular along Σ = {z1 = . . . = zn+1 = 0}, which can be identified with Cm.
The observation is that for any ǫ ∈ R≥0 the reduced spaces (Mǫ, ωr(ǫ)) can be identified with
(CN , ωCN ) with standard symplectic form, (this includes the case of the critical value ǫ = 0).
While when ǫ ∈ R<0, (Mǫ, ωr(ǫ)) can be identified with the ǫ-blow up of (CN , ωCN ) along the
symplectic submanifold Σ.

The ǫ-blow up can be described as follows. Let L be the total space of the tautological
line bundle on Pn−1. The incidence relation gives L as

L = {(v, l) ∈ C
n × P

n−1 | v ∈ l}.
There are two natural projections: π : L → P

n−1, which is the bundle projection, and
β : L → Cn which is the blow-up map. The latter is a biholomorphism onto Cn − {0} once
the zero section is removed from L. Let ωFS be the standard Fubini-Study symplectic form
on Pn−1. The ǫ-blow up of Cn at 0 is L together with the symplectic form given by

ωǫ = β∗ωCn + ǫ π∗ωFS .

The ǫ-blow up of CN along Σ = Cm can be identified with L × Cm with symplectic form
ωǫ + ωCm .

In the case n = 1 the blow-up is topologically (and holomorphically) trivial, i.e. blowing
up does not do anything. In fact one can also show, by following Guillemin and Sternberg’s
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argument, that the reduced spaces can all be identified with (Cm+1, ωCm+1) for all values of
ǫ. This identification can also be explained as follows. Consider the map γ given in (6) and
define the map p : Cm+2 → C

m+1 given by

(52) p : (z1, z2, z3, . . . , zm+2) 7→ (γ(z1, z2), z3, . . . , zm+2).

Restricted to µ−1(ǫ), this map can be regarded as the quotient map µ−1(ǫ)→Mǫ. It can be
shown that the reduced symplectic form with respect to this map is precisely ωCm+1 .

Example 3.6 comes from this construction in the case m = n = 1. In fact the fibration f
is of the type Log ◦Φ◦p, where Φ is a symplectomorphism of C2 and Log : (C∗)2 → R2 is the
map (v1, v2) 7→ (log |v1|, log |v2|). The fact that f is not smooth is due to the non-smoothness
of p, i.e. the reduced spaces are not identified with C2 in a smooth way.

We think that it may be possible to generalize this construction. The idea is to use
another result of Guillemin and Sternberg proved in the same paper. The result is as follows.
Let X̄ be a compact 2N dimensional symplectic manifold with symplectic form ω and 2m-
dimensional symplectic submanifold Y . Consider now a principal S1 bundle p0 : P → X̄
with a connection one form α. Given an interval I = (−ǫ, ǫ), Guillemin and Sternberg [9]§12
construct a 2(N + 1) symplectic manifold X with the following properties.

(1) There exists a Hamiltonian S1 action on X with proper, surjective moment map
µ : X → I.

(2) For positive t ∈ I, µ−1(t) is equivalent, as an S1 bundle, to P and the reduced
symplectic space (Xt, ωr(t)) is symplectomorphic to (X̄, ω).

(3) The only critical value of Φ is t = 0. If Σ := Crit(µ) ⊂ µ−1(0), i.e. the set of critical
points of µ, then Σ is a smooth symplectic, 2m dimensional submanifold of X and
the S1 action is locally modelled on (51) (in this case 0 is also called a simple critical
value). If X0 denotes the reduced symplectic space at 0, with reduced symplectic
form ωr(0) and quotient map π0 : µ−1(0) → X0, then the triple (X0, π0(Σ), ωr(0))
can be identified with (X̄, Y, ω).

(4) When t ∈ I is negative, then the reduced space (Xt, ωr(t)) can be identified with

the blow-up X̃ of X̄ along Y with symplectic form ωY,t + β∗tdα, where ωY,t is the

t-blow-up form along Y on X̃ and β : X̃ → X̄ is the blow down map.

We are interested in Guillemin-Sternberg’s construction in the case N = m+1, i.e. in the
case Y is a codimension 2 symplectic manifold. For simplicity we also assume that P = X̄×S1

and α = 0. We can make the following observations.

(a) Topologically X̃ is equivalent to X̄, but symplectically (X̃, ωY,t) and (X̄, ω) differ
since the latter one has less area (blowing up removes the area of a small tubular
neighbourhood of Y ).

(b) Consider the quotient p : X → X/S1, then X/S1 can be identified with X̄ × I. If we
restrict p to X − Σ then it becomes an S1 bundle onto (X̄ × I)− (Y × {0}). Let c1
be the first Chern class of this bundle. If S is a small 2-sphere centred at the origin
in a fibre of the normal bundle of Y × {0} inside (X̄ × I), then c1(S) = 1.

As we saw in the beginning of this section, in the non-compact case (X̄, ω) = (Cm+1, ωCm+1)
and Y = Cm, the observation in (a) was not true, in the sense that the identification could
be made also symplectically. This is because, although blowing up locally reduces area, in
this non-compact case the area is infinite so it does not constitute a symplectic invariant. So
the idea is to try to generalize Guillemin and Sternberg’s construction to other non-compact
cases. One interesting situation is if we take (X̄, ω) with X̄ = (C∗)N and

ω =
N
∑

k=1

dzk ∧ dz̄k
|zk|2

.

As symplectic submanifold Y we can take some smooth algebraic hypersurface.
We think it may be possible to generalize Guillemin and Sternberg’s construction to this

case. The hypothesis of compactness was made in order to be able to use the coisotropic
embedding theorem in symplectic topology, but this theorem holds also in non-compact
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situations. The question is whether the reduced spaces can all be identified with ((C∗)N , ω).
Since the space is non-compact, area is not an obstruction.

Why would such a construction be useful? We could use it to construct interesting ex-
amples of piecewise smooth Lagrangian fibrations with singular fibres. In fact suppose the
conjectured symplectic manifold X exists with the above properties and such that all reduced
spaces can be identified with ((C∗)N , ω). Then, on X we could define a piecewise smooth
Lagrangian fibration as follows. On (C∗)N × I define the TN fibration given by

F : (z1, . . . , zN , t)→ (log |z1|, . . . , log |zN |, t).

Clearly Ft = F |(C∗)N×{t} is Lagrangian. Now suppose there exists a map p : X → (C∗)N × I,

equivalent to the quotient X → X/S1 and with respect to which the reduced spaces are all
((C∗)N , ω). Presumably this map would be locally modelled on (52), in particular it would
fail to be smooth on µ−1(0). The piecewise smooth Lagrangian fibration would be

(53) f = F ◦ p.

We expect f to be a stitched Lagrangian fibration when restricted to X − f−1(∆). The
interesting aspect of this map is the structure of the singular fibres. In fact its discriminant
locus is ∆ = F (Y ×{0}), which is Log(Y )×{0}. Images of algebraic hypersurfaces of (C∗)N

by Log are called amoebas and they have shapes of the type pictured in Figure 2

Figure 2. Amoebas with their respective Newton polygons.

The topological property, discussed in the observation (b), of the bundle p : X − Σ →
(X̄ × I) − (Y × {0}), ensures that the fibration f , restricted to X − f−1(∆) has non-trivial
monodromy. In fact one can find examples where monodromy would be of the types discussed
in (7.3). These examples, and the calculation of monodromy, generalize the construction in
[5] of the negative fibre, also called the fibre of type (2, 1), where a circle bundle with the
topological property (b) is used.

In a work in progress [2] the authors use the piecewise smooth Lagrangian fibration in
Example 3.6 as one of the building blocks for the construction of Lagrangian fibrations of
6-dimensional compact Calabi-Yau manifolds. One of the ideas involved is that the invariants
we have defined for stitched Lagrangian fibrations can be used to perturb the fibration in
Example 3.6 away from the singular fibres in order to glue it to other pieces of fibration. In
fact the sequence ℓ = {ℓk}k∈N of fibrewise closed sections of L∗ on Z̄ can be easily perturbed,
for example by multiplying each element by cut-off functions on the base Γ or by summing
to each element other fibrewise closed section and so on.

We believe that the more general construction proposed in this section is interesting be-
cause, if it can be carried through, then these Lagrangian fibrations could be used as building
blocks of more general Lagrangian fibrations of compact symplectic manifolds.
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9. Appendix to Lemma 5.4

We give here a proof of Lemma 5.4 for all m ∈ N. Recall we can write

(54) aj(r) =

N
∑

k=1

aj,k r
k + o(rN ).

The aj ’s are functions of (r, b, y), with (b, y) ∈ Z̄, satisfying
{

u1(r, b2 + a2, . . . , bn + an, y) = r,

uj(r, b2 + a2, . . . , bn + an, y) = bj for all j = 2, . . . , n.

When W is sufficiently small and (r, b) ∈W , the functions aj,m’s can be uniquely determined
using the implicit function theorem. We will now use it to compute the aj,m’s and obtain
formulae (31). We can rewrite the second equation of the above system by applying

(55) uj =

N
∑

k=0

Sj,kb
k
1 + o(bN1 ).

We obtain

bj + aj +

N
∑

k=1

Sj,k(b2 + a2, . . . , bn + an, y)r
k + o(rN ) = bj

which implies

(56) aj +

N
∑

k=1

Sj,k(b2 + a2, . . . , bn + an, y)r
k + o(rN ) = 0.

To express everything as a power series in r we use the Taylor expansion up to a certain order
N ′ of the Sj,k’s, which in the multi-index notation is given by:

Sj,k(b2 + a2, . . . , bn + an, y) =

N ′

∑

l=0

∑

|I|=l

CI ∂
l
ISj,k(b2, . . . , bn) a

i2
2 · . . . · ainn + . . . ,

where I = (i2, . . . , in) is a multi-index and the CI ’s are suitable constants.

Let us introduce the following notation. For every multi-index I = (i2, . . . , in), let us
define the following set

HI = {(H2, . . . , Hn) |Hk ∈ (Z>0)
ik if ik ≥ 1 and Hk = 0 ∈ Z if ik = 0}.

When ik ≥ 1, we also write Hk = (hk,1, . . . , hk,ik). For every m ∈ N, we denote

HI,m =







(H2, . . . , Hn) ∈ HI |
∑

ik 6=0

ik
∑

j=1

hk,j = m







.

Clearly if |I| = 0 and m ≥ 1 or if 0 ≤ m < |I| then HI,m is empty. When ik 6= 0 for all
k = 2, . . . , n, substituting (32) we compute that

ai11 · . . . · ainn =

N ′

∑

m=1





∑

H∈HI,m

a2,h2,1
· . . . · a2,h2,i2

· . . . · an,hn,1
· . . . · a2,hn,in



 rm + o(rN
′

).

Let us introduce another bit of notation. When |I| 6= 0, for all H ∈ HI , let

AH =
∏

ik 6=0

ik
∏

j=1

ak,hk,j
.

When |I| = 0, the only element in HI is 0 ∈ Zn, so we set

A0 = 1.
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Thus for all multi-indices I, we have

ai11 · . . . · ainn =

N ′

∑

m=0





∑

H∈HI,m

AH



 rm + o(rN
′

).

Therefore Sj,k(b2 + a2, . . . , bn + an, y) written as a power series in r becomes

Sj,k(b2 + a2, . . . , bn + an, y) =

N ′

∑

m=0





∑

|I|≤m

∑

H∈HI,m

CI ∂
|I|
I Sj,k(b, y)AH



 rm + o(rN
′

).

Substituting this into (56) we obtain

aj +
N
∑

l=1





l−1
∑

m=0

∑

|I|≤m

∑

H∈HI,m

CI ∂
|I|
I Sj,l−m(b, y)AH



 rl + o(rN ) = 0.

Substituting also (54) we have

N
∑

l=1



aj,l +

l−1
∑

m=0

∑

|I|≤m

∑

H∈HI,m

CI ∂
|I|
I Sj,l−m(b, y)AH



 rl + o(rN ) = 0.

Therefore, for every l ∈ Z>0, we have

aj,l = −
l−1
∑

m=0

∑

|I|≤m

∑

H∈HI,m

CI ∂
|I|
I Sj,l−m(b, y)AH .

When l = 1, this becomes
aj,1 = −Sj,1,

when l ≥ 2 it can also be written as

aj,l = −Sj,l −
l−1
∑

m=1

∑

|I|≤m

∑

H∈HI,m

CI ∂
|I|
I Sj,l−m AH .

Now notice that when 1 ≤ m ≤ l − 1 and H ∈ HI,m, then AH only depends on the aj,k’s
with 1 ≤ k ≤ l − 1. Therefore if we define

Rj,l = −
l−1
∑

m=1

∑

|I|≤m

∑

H∈HI,m

CI ∂
|I|
I Sj,l−m(b, y)AH ,

when l ≥ 2 and Rj,1 = 0, then (31) holds with Rj,m satisfying the required properties.
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