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Once generated during an infection, memory CD8+ T cells can provide long-lasting protec-
tion against reinfection with an intracellular pathogen, but the longevity of this defense
depends on the ability of these pathogen-specific memory cells to be maintained. It is
generally believed that the bone marrow plays an important role in this respect, where
memory CD8 T cells receive reinvigorating signals from cytokines that induce homeo-
static proliferation. However, in the current issue of the European Journal of Immunology,
Siracusa et al. (Eur. J. Immunol. 2017. 47: 1900–1905) argue against this dogma, as they
provide evidence that CD8 memory T cells in murine bone marrow are not proliferat-
ing, but largely quiescent, which protects them from elimination by the cytostatic drug
Cyclophosphamide. Interestingly, this is in sharp contrast to the proliferating cell coun-
terparts in the spleen, which are eliminated by this treatment. Here, we will discuss the
impact of these results, how they relate to opposing findings by others in the field, and
what the relevance of these findings is for humans and clinical applications.
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The body’s ability to keep a fraction of pathogen-specific T cells
alive after an infection is a key feature of the adaptive immune
system, as these memory cells provide rapid protection upon rein-
fection with the same pathogen. Long-term maintenance of these
memory T cells occurs in the absence of antigen [1, 2] and is con-
sidered to depend on homeostatic proliferation driven by cytokines
such as IL-7 and IL-15 [3–5]. Although memory T cells are present
throughout the body, both in lymphoid and non-lymphoid organs,
the bone marrow (BM) is a major player in this respect [6–8].
The BM contains many stromal cells that express IL-7 and IL-
15 [9–11] and it was concluded, based on in vivo Bromodeoxyuri-
dine (BrdU) labeling experiments and adoptive transfer of CFSE-
labeled memory T cells, that homeostatic proliferation of memory
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CD8 T cells is most profound in the BM [12]. However, this dogma
has been challenged by the group of Andreas Radbruch. This group
first described that memory CD8 T cells in the BM express only
very low levels of the Ki-67 protein, which indicates that these
cells are quiescent, rather than actively cycling [10]. Further-
more, they showed that BrdU-incorporation not only reflects, but
could also induce cell cycle progression, which provides a proper
explanation for their opposing results with previous reports. In
a new manuscript in the current issue of the European Journal
of Immunology [13], the same group corroborates their findings
using the cytostatic drug Cyclophosphamide (CyP), which induces
apoptosis in proliferating cells due to DNA crosslinking [14]. They
show that treatment of mice with CyP induces DNA crosslinking in
memory CD8 T cells in the BM, but this does not kill the cells unless
proliferation is induced by TCR triggering [13]. This is in strong
contrast with the non-quiescent memory CD8 T cells in the spleen,

C© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.eji-journal.eu

http://orcid.org/0000-0002-5447-0839


1876 Martijn A. Nolte et al. Eur. J. Immunol. 2017. 47: 1875–1879

Figure 1. Siracusa et al. [13] show that in the spleen, CD8 memory T cells are rapidly depleted upon CyP treatment, as they undergo homeostatic
proliferation. In contrast, CD8 memory T cells in the BM are mostly quiescent, and thus protected from immediate depletion by CyP. These
differences could be due to the supporting cell types that are present in spleen and bone marrow (e.g, more dendritic cells in the spleen), and/or
differential expression of homeostatic cytokines.

which are rapidly killed by CyP treatment (Fig. 1). Importantly,
by treating mice with the drug FTY720, which inhibits egress of
lymphocytes from lymphoid organs, the authors demonstrate that
maintenance of memory CD8 T cells in the BM upon CyP treat-
ment is not caused by a compensatory influx of peripheral CD8
T cells. A caveat of the study is that CyP also has some non-specific
side-effects: CyP can deplete proliferating Tregs that in turn affect
T cell homeostasis [15], and CyP has been shown to induce type
1 interferon and thereby increase proliferation of CD8+ memory
T cells [16]. Nevertheless, the findings of Siracusa et al. [13] chal-
lenge our view on how memory CD8 T cells are maintained and
suggest that the underlying mechanism may differ per organ.

The conclusion that CD8 memory T cells in the BM are quies-
cent and do not proliferate, opposes previous studies from other
groups regarding the maintenance of CD8 memory T cells in the
BM. The group of Francesca di Rosa has published two papers
showing that BM CD8 memory T cells contain a higher percentage
of proliferating cells than their counterparts in either the spleen
or lymph nodes, and this group proposed that the BM acts as
a niche for antigen-independent proliferation of CD8 memory
T cells [17, 18]. Two other studies, of which one was in non-human
primates, came to the same conclusion that homeostatic prolifer-
ation of memory CD8 T cells is most profound in the BM [12, 19].
The discrepancies between the results of the Radbruch group and
other groups regarding the proliferation of CD8 memory T cells
in the BM remain unresolved, and could be due to many different
factors. One key issue is the suspected induction of proliferation
by BrdU treatment [10, 18]. Most studies that have claimed higher
proliferation of CD8 memory T cells in the BM as compared to the
spleen, have done so based on BrdU incorporation by CD8 memory
T cells [12, 17, 18]. In their 2015 study, Radbruch and colleagues
showed that a 3 day treatment of 1 mg/mL BrdU in drinking
water supplemented with sugar (which increases water consump-
tion [20]) is sufficient to induce CD8 memory T-cell proliferation,

with up to 75% of all CD8 memory T cells in the BM and spleen
proliferating [10]. Of note, these percentages were much higher
than those reported by the aforementioned studies [12, 17, 18].
In contrast, Di Rosa and colleagues showed that their standard
treatment regimen of 3 days with 0.8 mg/mL BrdU in the drinking
water does not increase the total number of divided CD8 mem-
ory T cells [18]. However, their readout for proliferation was the
fraction of T cells that had diluted their CFSE content, rather than
the Ki-67 expression measured by Radbruch and colleagues [10],
which could also make a difference. Thus, BrdU might affect pro-
liferation of CD8 memory T cells, but the threshold for and/or the
extent of the effect may depend on the dosage and, most likely,
the duration of BrdU treatment. The effect of BrdU on cell prolif-
eration is not limited to CD8 memory T cells as it also induces the
cell cycle progression of quiescent HSCs [21] and possibly affects
a myriad of other cell types as well. Therefore, it is of great impor-
tance to control for the direct effect of BrdU on proliferation and
to also calculate the BrdU intake in individual mice in future pro-
liferation studies. Alternatively, using DNA-labeling agents with
lower toxicity, or incorporating deuterated glucose in the DNA of
dividing cells, may prove more reliable to measure CD8 memory
T-cell proliferation [22–24].

Besides in vivo administered DNA-labeling agents, proliferation
can also be measured ex vivo by staining for Ki-67, which labels all
cells in all phases of the cell cycle except those in G0 [25], and/or
a staining for DNA content that detects cells actively proliferating
in S/G2/M phase. Of note, both the group of Radbruch [10, 12]
and an earlier study by Becker et al. [10, 12] show that the fre-
quency of actively dividing cells is in fact higher in the BM than the
spleen in mice not treated with BrdU. Interestingly, proliferation
of CD8 memory T cells is also markedly higher in the BM than
in the spleen and lymph nodes when homeostasis is disturbed
by high doses of BrdU or with the double-stranded RNA-mimic
polyI:C [10, 12]. Thus, although most CD8 memory T cells in the
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BM rest in terms of proliferation under homeostatic conditions,
the BM seems particularly capable of supporting their prolifera-
tion when homeostasis is disturbed. Herein may also lie an expla-
nation for the high proliferation rates of CD8 memory T cells in
the BM that other groups have reported [12, 17, 18] as compared
with the findings from the group of Radbruch [10], as mice from
different housing facilities have a differential microbial make-up,
and the microbiome has substantial influence on the murine T-cell
compartment [26].

Beyond the proliferation issue, Siracusa et al. [13] show that
when T-cell recirculation is blocked with FTY720, CD8 memory
T-cell numbers in the BM remain unaltered by CyP treatment.
From these findings they conclude that both CD69+ and CD69−

CD8 memory T cells, as well as CCR7+ and CCR7− CD8+ mem-
ory T cells, must be resident [13]. However, this conclusion can
be questioned, as FTY720 blocks egress of T cells from various
tissues, including the BM [27]. Therefore, an alternative expla-
nation for these findings is that there is an equilibrium between
BM entry and exit under homeostatic conditions, and that block-
ing T-cell circulation merely provides a snapshot of CD8 memory
T cells present in the BM at a specific moment. In fact, there is
ample evidence for continuous migration of memory T cells to and
from the BM, and this has been demonstrated to be important for
homeostatic maintenance [28–30]. The recirculation of memory
T cells from the BM to the lymph nodes or spleen is probably also
important for efficient recall responses, as their residency in the
BM will most likely not be beneficial for their protective role upon
re-infection.

The observed difference in CyP-sensitivity between CD8 mem-
ory T cells in the BM versus spleen [13] raises the question why
these cells should undergo homeostatic proliferation in the spleen
rather than the BM. It is conceivable that quantitative and/or
qualitative differences exist between these organs in supporting
cell types and expression of the homeostatic cytokines on which
memory T cells depend. IL-15 is a potent proliferative agent for
CD8 memory T cells [31], whereas IL-7 rather ensures T-cell sur-
vival [32]. It could thus be that CD8 memory T cells in the BM
are mostly exposed to IL-7, whereas a splenic environment may
be richer in IL-15 and induce proliferation. Indeed, CD8+ mem-
ory T cells in the BM are located close to VCAM-1+ IL-7+ stromal
cells [10]; however, these cells also express IL-15 [11]. Jung et al.
showed that the opposite is in fact true and that IL-7 is important
for CD8 memory T cells in the spleen, whereas IL-15 plays a major
role in the BM [33]. Furthermore, in human BM most CD8 mem-
ory T cells localize close to IL-15 producing cells [34]. This means
that the difference in homeostatic proliferation between memory
CD8 T cells in the BM and spleen cannot simply be explained by
differential expression of IL-7 and IL-15. However, the context
in which these cytokines are presented could also be important,
as it has been suggested that memory CD8 T cells may depend
for their homeostasis on IL-15 that is trans-presented by dendritic
cells [35], which are more abundant in the spleen than BM [36]
(Fig. 1). Taking all these considerations into account, it would be
interesting to examine the impact of CyP on CD8 memory T cells in
the spleen versus BM in IL-7−/− or IL-15−/− mice. Other cytokines

could also be of interest, such as IL-10, which has an incom-
pletely understood positive effect on CTL responses in humans
and mice [37–39]; in particular IL-10 strongly enhances IL-15-
driven, TCR-independent “homeostatic” proliferation of human
CD8+ memory T cells [40], although it is not known whether there
are differences in IL-10 signaling in CD8+ memory T cells in the
BM vs spleen. Another thought-provoking concept is that memory
T cells not only migrate to the BM to receive maintenance signals,
but that they actually have a purpose there and that they are able
to modulate the local blood-forming process. T-cell activation can
directly affect the differentiation and proliferation of hematopoi-
etic stem and progenitor cells (HSPCs), whereas memory CD8
T cells can support HSPC engraftment upon transplantation [41].
Moreover, unpublished observations from the group of Nolte indi-
cate that memory CD8 T cells have a beneficial effect on the sur-
vival and maintenance of HSPCs. Addressing the importance of
the interplay between adaptive immunity and hematopoiesis in
the BM will be an exciting new avenue of future research.

What are the implications of the concept proposed by Rad-
bruch and colleagues for the maintenance of human memory
T cells and for the clinic? There is clear evidence from vaccinia
virus-experienced individuals that human T-cell memory can be
maintained in the absence of antigen for several decades, i. e. for
a lifetime. This is not a trivial finding, because human beings are
continuously exposed to pathogens that trigger T-cell responses,
and memory T cells with new specificities need therefore to be
continuously added to the memory pool. How this is achieved is
rather difficult to address in the human system, but the available
evidence suggests that the mechanisms controlling T-cell home-
ostasis in humans and mice are similar. Thus, early studies have
shown that human blood CD8+ memory T cells from healthy indi-
viduals proliferate with IL-7 and IL-15 in a TCR-independent man-
ner in vitro, and some spontaneously incorporated BrdU ex vivo,
suggesting that human CD8+ memory T cells also proliferate in
the steady state in vivo [42]. Consistently, in an elegant study
with deuterated glucose to label DNA of dividing cells in vivo, it
was shown that human blood CD8+ memory T cells proliferated
in healthy individuals, and proliferation dramatically increased in
patients with acute EBV infection [24]. It is, however, unclear if
this turn-over in the steady state is driven exclusively by home-
ostatic cytokines or due to antigens from persistent pathogens.
Human CD8+TCM and TEM subsets express different levels of IL-
7Rα and IL-2/15Rβ [42] suggesting that they respond preferen-
tially to IL-7 and IL-15, respectively. This notion is supported by
the different proliferation rates of CCR7-deficient and -sufficient
CTL in mice that lack either IL-7 or IL-15, respectively [33].
Notably, TEM and TCM in human peripheral blood had a higher
turnover as compared with the terminally differentiated TEMRA

subset [42], and similar findings were reported for CD8+ T-cell
subsets analyzed by Ki-67 staining in human BM [43]. Radbruch
and colleagues reported that the fraction of Ki-67+ proliferating
cells was significantly higher in CD4+ and CD8+ human memory T
cells in peripheral blood, compared to the BM of the same individ-
uals [44], and more prominent in cells that lacked IL-7Rα or CD69
expression. These data suggest that also in humans the majority

C© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.eji-journal.eu



1878 Martijn A. Nolte et al. Eur. J. Immunol. 2017. 47: 1875–1879

of memory cells in the BM are resident cells that survive in the
absence of proliferation with IL-7, but it could also be explained by
the two-niche hypothesis proposed by di Rosa [45]. Intriguingly,
in the same study the authors reported that CD4+ memory T cells
responding to systemic pathogens were enriched in the BM [44].
However, the increased responsiveness of human T cells in the BM
to antigenic stimulation [46] is a possible caveat here, and MHC
multimer staining for antigen-specific T cells should be performed
to corroborate this important concept.

Finally, it should be stressed that the question of whether
the maintenance of T-cell memory requires proliferation is not
a purely academic debate, but is also a relevant issue for the
clinic. For example, it has obvious implications for protective mem-
ory against pathogens in cancer patients undergoing chemother-
apy [47]. Moreover, depleting proliferating T-lymphocytes with
CyP could prevent graft-versus-host disease following transplan-
tations [48]. In addition, cladribine, a drug that depletes prolifer-
ating lymphocytes and leukemia cells, has been recently approved
as a therapy for relapsing-remitting multiple sclerosis [49]. As the
BM contains also auto-reactive T cells, the presence of resting,
but potentially pathogenic, T cells [50] in the BM could lead to
long-term resistance to this new promising therapy. In conclusion,
the results of Siracusa et al. [13] are important for stimulating
discussion and research in the field to resolve these key issues.
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