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SUMMARY
Fibrosis and fat replacement in skeletal muscle are major complications that lead to a loss of mobility in
chronic muscle disorders, such as muscular dystrophy. However, the in vivo properties of adipogenic
stem and precursor cells remain unclear, mainly due to the high cell heterogeneity in skeletal muscles.
Here, we use single-cell RNA sequencing to decomplexify interstitial cell populations in healthy and dystro-
phic skeletal muscles. We identify an interstitial CD142-positive cell population in mice and humans that is
responsible for the inhibition of adipogenesis through GDF10 secretion. Furthermore, we show that the inter-
stitial cell composition is completely altered in muscular dystrophy, with a near absence of CD142-positive
cells. The identification of these adipo-regulatory cells in the skeletal muscle aids our understanding of the
aberrant fat deposition in muscular dystrophy, paving the way for treatments that could counteract degen-
eration in patients with muscular dystrophy.
INTRODUCTION

The skeletal muscle exists out of muscle fibers, multinucleated

contractile units that are structured in bundles or fascicles, sur-

rounded by connective tissue, also called the interstitium (Fron-

tera and Ochala, 2015). Upon acute injury, progenitors swiftly

activate their repair mechanisms and completely regenerate

the skeletal muscle in a time span of weeks (Wosczyna and

Rando, 2018). An abundant assembly of cells has been reported

to be involved in this repair process, of which muscle satellite

cells (MuSCs) are the predominant cell type (Sacco et al.,

2008). MuSCs are skeletal muscle stem cells located beneath

the basal lamina of muscle fibers (Mauro, 1961). In homeostatic

conditions, they remain quiescent, although upon injury they

proliferate, differentiate, and fuse into new or existing myofibers

(Feige et al., 2018). Besides MuSCs, fibro/adipogenic progeni-

tors (FAPs) (Joe et al., 2010), mesenchymal progenitors (Uezumi
This is an open access article under the CC BY-N
et al., 2010), mesoangioblasts (MABs) (Dellavalle et al., 2007),

Pw1+/Pax7+ interstitial cells (PICs) (Mitchell et al., 2010), and

TWIST2+ progenitors (Liu et al., 2017a) have been reported as

stem cell populations that directly or indirectly support myogenic

regeneration. However, the current characterization of these

cells does not suffice, as many of these cell types share overlap-

ping markers and functions.

In chronic injury, regeneration deteriorates, leading to

increased adipogenesis and fibrosis at the expense of the mus-

cle fibers (Hamrick et al., 2016; Mann et al., 2011). This deposi-

tion of fat and extracellular matrix (ECM) leads to progressive

muscle weakening and dysfunction, leading to the loss of ambu-

lation and respiratory complications (Mercuri and Muntoni,

2013). Although the mechanisms of fibrosis in muscular dystro-

phy are generally understood (Joe et al., 2010; Lemos et al.,

2015; Mueller et al., 2016; Uezumi et al., 2011), it is still unclear

how adipogenesis arises in chronic muscle regeneration. FAPs
Cell Reports 31, 107597, May 5, 2020 ª 2020 The Authors. 1
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are described as themain players (Joe et al., 2010; Uezumi et al.,

2011), although it has been shown that MuSCs are also able to

participate in adipogenesis (Pasut et al., 2016). Most studies

aimed at understanding muscle adipogenesis through extended

molecular characterization of the resident cell types in physio-

logical and pathological conditions. However, current methods

using bulk-cell populations isolated based on a small set of

surface markers are limited in resolving the heterogeneity,

niche specificity, and complexity of interstitial cell types within

the skeletal muscle (Costamagna et al., 2015; Pannérec et al.,

2013; Wosczyna and Rando, 2018). Single-cell technology

allows for unbiased characterization of skeletal muscle

cell types as well as their transition from a healthy to a diseased

state.

Despite the wealth of information, it is still not well understood

how cell types in skeletal muscle cope with chronic injury and

how they switch toward an adipogenic phenotype. Importantly,

the cell types that play a role in disease progression are

numerous, and their specific involvements remain controversial.

Here, we combine unbiased single-cell RNA sequencing, exten-

sive cell fate characterization, genetic perturbation, and compu-

tational modeling to comprehensively characterize the alteration

of the interstitial landscape in the skeletal muscle exposed to

chronic injury. Using amousemodel of limb-girdlemuscular dys-

trophy (LGMD) that closely resembles symptoms of human skel-

etal muscle deterioration (Durbeej et al., 2000), we uncovered an

interstitial cell subpopulation in the SCA-1 and PDGFRA-positive

population that controls adipogenesis in the skeletal muscle.

Further analysis showed that this population is also present in

healthy human skeletal muscle and that its presence is drasti-

cally decreased in dystrophic muscle. Upon isolation of this

cell type, we found that this population controls adipogenesis

in a cell-number-dependent manner. Furthermore, dystrophic

muscle showed a reduced number of CD142+ cells compared

to healthy muscle, resulting in an increased adipogenic differen-

tiation of the SCA-1+ cells. Knockdown and overexpression

of Gdf10 showed the importance of this paracrine mediator in

the blocking of adipogenesis by CD142+ cells. Lastly, in vivo

absence of GDF10 led to an increased adipogenesis in the

skeletal muscle that exacerbated upon injury. Overall, our study

identified an adipo-regulatory cell (Areg) in the skeletal muscle

and portrays its importance in sustaining skeletal muscle func-

tion by providing evidence that this population is absent in

chronic muscle injuries, such as LGMD, due to pathological re-

modeling of the interstitial landscape.

RESULTS

Single-Cell RNA Sequencing Resolves the Skeletal
Muscle Interstitial Heterogeneity
To molecularly characterize intra-muscular fat deposition and

the responsible stem cell populations, we performed unbiased

single-cell RNA sequencing (scRNA-seq) from the hindlimbs of

C57Bl6 (healthy) and Sgcb-null (dystrophic) mice (Figures 1A

and S1A). Endothelial and hematopoietic cells were excluded

through sorting of LIN�(CD31�CD45�TER119�) cells. After thor-
ough quality control, we retained 256 high-quality cells (Figures

S1B and S1C) and confirmed the effectiveness of our sorting
2 Cell Reports 31, 107597, May 5, 2020
strategy by showing that all cells were negative for endothelial

and hematopoietic markers (Figure S1D). Clustering resulted in

seven groups that were annotated as MuSCs, smooth muscle

cells (SMCs), Schwann cells, fibroblasts, and three clusters of

interstitial stromal cells (ISCs) (Figures 1B and S1E–S1G). Every

cluster was characterized by the expression of marker genes like

Fmod and Tnmd for fibroblasts (Westergren-Thorsson et al.,

1991; Yamana et al., 2001), Myl9 and Tpm2 for smooth muscle

cells (Dube et al., 2014; Licht et al., 2010), Myf5 and Cd82 for

MuSCs (Alexander et al., 2016; Nervi et al., 1995), Plp1 and

Sox10 for Schwann cells (Kuhlbrodt et al., 1998; Nave et al.,

1987), and the co-expression of Ly6a, Pdgfra, and Cd34 for

ISCs (Figures 1C and 1D; Table S1). Furthermore, we checked

the validity of common marker genes and proposed improved

markers for these populations in the skeletal muscle (Fig-

ure S1H). Checking the top area under the receiving operator

curve (AUROC) showed us that Cd82 and Fgfr4 are better

markers for MuSCs than Desmin and Myf5 (Figure S1H). CD82

has already shown to be an excellent marker for human satellite

cells (Alexander et al., 2016).

The ISCs subclustered into three groups, which demonstrates

the heterogeneity of this population (Figures 1C and 1D). Every

ISC population expressed specific markers, like Ly6c1 and

Cd55 for ISC 1, Gdf10 and Meox2 for ISC 2, and Thbs4 and

Fbln7 for ISC 3. The latter markers were also observed in

the fibroblast population (Figure 1D). ISC 1 had the highest

expression of the stem-cell-related genes Ly6a and Cd34. In

addition, gene set enrichment analysis revealed signaling

pathways, such as transforming growth factor b (TGF-b) and

Wnt, and a high correlation to blood vessels and adipose tissue

(Figures 1D, 1E, and S1I; Table S2). ISC 2 correlated to TGF-b

regulators and Wnt signaling pathways and was linked to

blood vessels (Figure S1I). ISC 3 was highly enriched for

ECM organization and metallopeptidase activity and is linked

to skin tissue (Figure S1I).

Recently, the Tabula Muris Consortium (Schaum et al., 2018)

and Giordani et al. (2019) published scRNA-seq data of mouse

limb muscle based on the 10X Genomics platform. By

comparing sequencing metrics, we found that our dataset

was sequenced with more depth and detected more than dou-

ble the number of genes compared to the other datasets (Fig-

ure S2A). Raw counts were retrieved for the Giordani data

(n = 12,441); therefore, we reannotated the cell types based

on their annotation (Figure S2B). We were able to retrieve all

clusters plus three small unannotated clusters that we named

after their top DE marker (Figure S2C). In addition, the Schaum

data for hindlimb muscles (n = 4,543) were filtered and reana-

lyzed, although here, cluster names were already provided by

the authors (Figure S2D). To compare the validity of our clus-

ters, we measured the percentage of matched cell type

markers (STAR Methods) between our data and the Giordani

(Figure S2E) and Schaum dataset (Figure S2F). Data integration

showed that all datasets smoothly overlapped and no specific

dataset clusters arose (Figure S2G). As all our cell clusters over-

lapped with clusters of the public data (Figure S2H), we could

label all clusters accordingly (Figure S2I). In summary, we per-

formed scRNA-seq on healthy and dystrophic skeletal muscle

and identified five cell types, which were validated in public
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Figure 1. Single-Cell RNA Sequencing Reveals the Cellular Heterogeneity in Healthy and Dystrophic Skeletal Muscle

(A) Schematic diagram showing the isolation of single cells from the hindlimbs of healthy and dystrophic mice with SMART-seq2.

(B) t-SNE plot and k-means clustering of 256 cells from healthy and dystrophic skeletal muscle. Every point represents one cell.

(C and D) Heatmap of k-means clusters with 237 marker genes (C). Bar plot showing the expression level (log-normalized counts) of selected marker genes (D).

(E) Violin plot with median visualizing marker genes for ISC clusters. The expression is shown as log-normalized counts. ***p % 0.001.

(F) Bar plot showing the percentage of ISC clusters in healthy and dystrophic skeletal muscle.

See also Figures S1 and S2 and Tables S1 and S2.
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scRNA-seq data. In addition, we observed a distinction of ISCs

into three clusters.

A Dystrophy-Specific Activated Satellite Cell Cluster
To check how cell types adapt to muscular dystrophy, we exam-

ined whether any clusters were enriched for a specific genotype

(Figures S1J and S1K). The most striking difference between

healthy and dystrophic cells was found in the ISCs. Although

ISC 1 and 2 are mainly present in healthy muscle, ISC 3 domi-
nates in dystrophic muscle (Figure 1K). Surprisingly, we did not

find obvious changes in the MuSCs. Nevertheless, when we

clustered MuSCs separately, we found that they group accord-

ing to different differentiation stages (Figure S3A; Table S3).

Despite the limited number of cells (n = 40), we identified a clus-

ter of quiescent and activated MuSCs, as well as myoblasts

through the expression of essential myogenic transcription

factors Pax7, Myf5, Myod1, and Myog and through pseudotem-

poral ordering (Figures S3B and S3C). Furthermore, we found
Cell Reports 31, 107597, May 5, 2020 3
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a cluster of activated MuSCs that was only present in the

dystrophic muscle. This group of dystrophic activated MuSCs

expressed unique markers, such as Angptl4, Arhgap5, Grsf1,

and Dpysl3 (Figure S3D). Many of these genes are linked to lipid

metabolism and cytoskeletal remodeling (Aryal et al., 2016;

Hinge et al., 2017). We checked these genes in the satellite cell

cluster of the Tabula Muris Consortium dataset and could

confirm that, in healthy satellite cells, these genes are rarely ex-

pressed (Figures S3E and S3F). Nevertheless, additional exper-

iments are necessary to verify whether this population is present

in muscular dystrophy and what its effect is on satellite cell

differentiation.

Projection of Known Interstitial Progenitor Markers
To check the presence of previously identified progenitor

populations, we checked the expression of their key markers in

our clusters: Ly6a for FAP (Joe et al., 2010); Pdgfra for mesen-

chymal progenitors (Uezumi et al., 2010); Alpl for MABs (Della-

valle et al., 2007); and Peg3 or Pw1 for PICs (Mitchell et al.,

2010). Except for Peg3, we found that all markers were located

only within the ISC clusters (Figures 2A and 2B). Ly6awasmainly

expressed in ISC 1, although ISC 2 had a higher expression of

Pdgfra. Furthermore, Alpl was limited to ISC 2 and ISC 3,

although the expression of Peg3 increased from ISC 1 to ISC

3, which could implicate that it plays a more important role in

muscular dystrophy (Figure 2C; Table S3).

Because we could not connect these progenitors to a specific

ISC cluster, we asked whether these cell types are functionally

distinct. Therefore, we sorted MABs as LIN�ALPL+ and FAPs

as LIN�SCA-1+ cells and subjected them to a co-culture

together with freshly isolated MuSCs to check their myogenic

potential. We found that both MABs and FAPs possess the

ability to fuse withMuSCs (Figure 2D). In addition, because these

progenitors are known to be multipotent, we checked for

adipogenic differentiation potential and did not find any differ-

ences in their potency to differentiate toward adipocytes

(Figure 2E).

Although MABs and FAPs are transcriptionally not as distinct

from each other as previously thought, we nonetheless wanted

to assess the possibility of a hybrid transition phase between

these markers during muscle development. Therefore, we

checked whether MABs could become FAPs by lineage tracing

with a tamoxifen-inducible Cre-lox system under the Alpl pro-

moter (Dellavalle et al., 2007). By fluorescence-activated cell

sorting (FACS) analysis for Alpl-YFP, we showed that the per-

centage of SCA-1 in ALPL+ cells increases over age (Figures

S3G and S3H). This suggests that, upon the development of

the skeletal muscle, there is a tight connection between MABs

and FAPs. In summary, we show that four specific markers for

previously reported progenitor populations—although being ex-

pressed at different levels—are not allocated to a specific cluster

and that MABs and FAPs share similar differentiation potential

in vitro and in vivo.

ISC Dynamics in Muscular Dystrophy
Because ISC 1, ISC 2, and ISC 3 did not specifically relate to

any predefined muscle stem cell population, we wanted to

determine the distinction that exists between these clusters.
4 Cell Reports 31, 107597, May 5, 2020
A first distinction of heterogeneity was observed in Vcam1

and Tek expression. Although Vcam1 is expressed in ISC 2

and ISC 3, Tek is exclusively expressed in ISC 1 (Figures

S4A and S4B). As this does not explain the difference be-

tween ISC 2 and ISC 3, we selected all cells defined as ISC

1, ISC 2, and ISC 3 and performed clustering after quality con-

trol to get rid of technical variability due to External RNA Con-

trols Consortium (ERCC) levels (Figure S4C). We could find

five clusters, supported by a consensus plot, silhouette plot,

and the stability index (Figures S4D–S4F). All cells maintained

the same annotation that was observed in clustering of all

LIN� cells (Figure S4G). We found that ISC 3 consists of three

different subgroups: ISC 3a; ISC 3b; and ISC 3c (Figure 3A).

The ISC 3 clusters expressed variability in ISC 3 markers,

such as Thbs4. Furthermore, specific markers were expressed

per cluster, such as G0s2 for ISC 3a, Ptx3 for ISC 3b, and

Cthrc1 for ISC 3c (Figure 3B; Table S4). The markers PTX3

and CTHRC1 were validated through immunofluorescent

staining of healthy and dystrophic skeletal muscle, observing

a drastic increase of both markers in dystrophic mice (Figures

3C–3F).

Considering that we observed a fractional increase in

expression of specific ISC 3 markers and a smooth transition

in genotype from ISC 1 to ISC 3c (Figure S4H), we wondered

whether the ISC clusters we observed are transitional states.

Therefore, we build single-cell trajectories that show three

branches, each belonging to an ISC type. We can observe

ISC 1, ISC 2, and ISC 3c at the ends of their respective

branches, although ISC 3a and 3b are intermittent (Figure 3G).

Ordering these trajectories in pseudotime showed a conversion

from ISC 1 and ISC 2 to ISC 3a and ISC 3b, with ISC 3c as the

end state (Figure S4I). RNA velocity analysis confirmed the di-

rection from ISC 1 and ISC 2 to ISC 3 (Figure 3H). Through

branched expression analysis modeling (BEAM) analysis,

four-gene cluster could be identified that showed high vari-

ability between these cell states (Figure S4J). Here, several ma-

trix metalloproteases, such as Mmp3 and Mmp14, were found

to be responsible for the transition from ISC1 to ISC3 (Fig-

ure S4K). Combined with a high expression of Timp3 in ISC

1, our data correlated with a recent publication where TIMP3

was shown to repress injury-induced adipogenesis through in-

hibition of MMP14 (Kopinke et al., 2017). In addition, we found

a high expression of Il6 and Arid5b in ISC 3 compared to ISC 1

(Figure S4L). Both genes are important mediators of a muscular

dystrophy phenotype and adipogenesis (Liu et al., 2017b;

Wada et al., 2017). We observed a major remodeling of ISC

clusters between healthy and dystrophic muscle. More specif-

ically, we saw an increase in ISC 3 in dystrophic muscle with

the emergence of ISC 3c, while at the same time, ISC 1 and

ISC 2 are highly reduced but still present (Figure 3I). Further,

Gene Ontology (GO) analysis showed that ISC 3b is enriched

for lipid storage and localization—and in general relates the

most to adipose tissue—although ISC 3c relates to wound

healing and ECM assembly and is highly correlated to skin tis-

sue (Figure S4M; Table S5). However, we would like to highlight

that, in order to confirm our pseudotime results, lineage-tracing

studies should be performed to prove the conversion from ISC

1 to ISC 3.
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Figure 2. Most Interstitial Stem Cell Markers Are Localized in One Large Interstitial Stem Cell Cluster

(A–C) Expression of stem cell marker genes.

(A) t-SNE plot of healthy and dystrophic skeletal muscle. Every point represents one cell. Gene expression is shown as log-normalized counts.

(B) Bar plot of the number of cells per cluster positive for genes shown in (A).

(C) Boxplot per cluster. *p % 0.05; **p % 0.01; ***p % 0.001.

(D) Microscopy images of myogenic differentiation in co-culture with MuSCs and GFP+ MABs and GFP+ FAPs. Myotubes stained with MyHC (red), MABs, FAPs

stained with GFP (green), and nuclei stained with Hoechst 33258 (blue) are shown.

(E) Microscopy images of adipogenic differentiation fromMABs (ALPL+), FAPs (SCA-1+), andMuSCs. Adipocytes are stained with Oil Red O (red) and PERILIPIN-

1 (green), and nuclei are stained with Hoechst 33258 (blue).

(F) Fraction of differentiated cells per population shown in (E) (n = 12). Data are represented as mean ± SEM.

Scale bars, 50 mm. See also Figure S3 and Table S3.
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Because our scRNA-seq data are made up out of healthy

and dystrophic cells, we wanted to make sure that genotype

did not have an influence on clustering of the ISCs. Therefore,

we regressed out the genotype and reanalyzed the data. In low

dimensionality, we can observe that all ISC clusters are still

located together. For that reason, we can conclude that geno-

type did not influence clustering (Figure S5A). In addition, to

make sure that the ISC clusters we found are generally present

in mouse limb muscle, we integrated ‘‘FAPs’’ of the Giordani

data (n = 1,517) and ‘‘mesenchymal stem cells’’ of the Schaum

data (n = 1,127) together with our ISC data and observed perfect

overlap between the datasets (Figure S5B). ISC clusters still

localized together, which is also shown by the expression of
typical marker genes (Figures S5C and S5D). We reclustered

the data and were able to find clusters relating to ISC 1, ISC 2,

ISC 3a, and ISC 3b, although we did not find a cluster relating

to ISC 3c, which is expected because this cluster was specific

to dystrophic muscle (Figure S5E). In addition, there was one

ISC cluster that we did not find in our data as well as two more

distinct clusters: one we annotated as SCA-1 negative and the

other one as endothelial-like (Figure S5E). We checked the pres-

ence of cells from every dataset per cluster and were able to

observe cells from our dataset in the unannotated cluster (Fig-

ures S5F and S5G). This is most likely because of the low number

of cells in our dataset. In summary, we showed that ISC 3 con-

sists of three subtypes, all of which express subtype-specific
Cell Reports 31, 107597, May 5, 2020 5
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Figure 3. Different ISC Subtypes Arise in Muscular Dystrophy

(A) PCA plot and k-means clustering (k = 5) of 125 ISCs. Every point represents a cell as ISC.

(B) Violin plot visualizing the expression of marker genes per ISC 3 cluster plotted. Expression is shown as log-normalized counts together with the median.

(C–E) Microscopy images of the skeletal muscle of healthy and dystrophic mice. ISCs are stained for PDGFRA (red), Hoechst 33258 (blue), and THBS4 (C),

CTHRC1(D), and PTX3 (E; all in green).

(F) Fraction of PDGFRA-positive cells that are THBS4, CTHRC1, and PTX3 positive in healthy and dystrophic mice (mean ± SEM).

(G) Minimum spanning tree of healthy and dystrophic ISCs based on the expression pattern of 1,000 genes with the first two dimensions of PCA on k-means

clusters (k = 5). Each point represents one cell; the solid black line represents the pseudotime ordering. Cells are colored based on k-means clustering from (A).

(H) Observed and extrapolated future cell states (arrows) are shown using Gaussian smoothing on a regular grid on the first two Monocle components from (G).

RNA velocity was estimated without cell or gene pooling. Cells are colored based on k-means clusters from (A).

(I) Bar plot showing the percentage of each ISC cluster in healthy and dystrophic muscle.

Scale bars, 50 mm. *p % 0.05; ***p % 0.001. See also Figures S4 and S5 and Tables S4 and S5.
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marker genes and are also present in other public datasets.

Moreover, we showed that these subtypes likely transition

from ISC 1 and ISC 2 to ISC 3 and that, in muscular dystrophy,

an ISC 3c population arises.
6 Cell Reports 31, 107597, May 5, 2020
Identification of an Interstitial Population that Controls
Adipogenesis
As these ISC groups did not relate to markers of dedicated

progenitor populations, we questioned whether there is an
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Figure 4. CD142+ ISCs Inhibit Adipogenesis

(A) Expression of F3 (CD142) assessed by scRNA-seq. *p % 0.05.

(B) Microscopy images of CD142� and CD142+ after the induction of adipogenesis.

(C) Fraction of differentiated cells per population shown in (B) (n = 6).

(D) qPCR analysis of key adipogenic transcription factors during adipogenesis. Expression is relative to Rpl13a. Loess curve is fitted through data points; un-

certainty is displayed as 95% confidence interval (n = 3).

(E) Microscopy images of transwell assays with distinct ratios of CD142� (bottom) and CD142+ ISCs (top).

(F) Fraction of differentiated cells per ratio in (E) (n = 4).

(G) Microscopy images of transwell assays stained for Oil Red O (red) and PDGFRA (green).

(H) Fraction of PDGFRA+ cells per population shown in (G) (mean ± SEM; n = 3).

(legend continued on next page)
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adipogenic function linked to any of the ISC clusters.

Recently, a cell population has been discovered in fat depots

that inhibits adipogenesis (Schwalie et al., 2018). These

Aregs comprise a population inside LIN�SCA-1+ cells from

subcutaneous stromal vascular fractions. By comparing the

top 200 marker genes, we found striking similarities,

especially for ISC 1 and ISC 2 (Figure S6A). In addition, we

could observe adipogenic genes, Pparg and Fabp4, in every

ISC cluster except for ISC 2 (Figure S6B). We sorted these

populations based on selected marker genes: Cd55 for ISC

1; F3 (encoding CD142) for ISC 2; and Sdc1 for ISC 3 (Figures

4A and S6C). We were able to sort for CD55 and CD142,

however, not for SDC1 (Figure S6D; data not shown).

When we subjected these sorted cell populations to an adipo-

genic differentiation assay in vitro, we observed a lack of

adipogenic response from CD142+ ISCs, although CD142�

ISCs showed an increased adipogenic response compared

to bulk ISCs (Figures 4B and 4C). Furthermore, CD55+

ISCs showed a high adipogenic response, although the

adipogenic capacity of CD55� ISCs was lower compared to

bulk ISCs (Figures S6E and S6F). These observations were

confirmed by qPCR analysis of adipogenic genes (Figures

4D and S6G). Because of the opposite effects in adipogen-

esis that we observe between CD142+ and CD55+ ISCs, we

hypothesized that CD142+ ISCs inhibit adipogenesis. To vali-

date this hypothesis, we conducted a titration experiment,

seeding CD142� ISCs at the bottom and CD142+ ISCs at

the top of a transwell plate in different ratios. We observed

a negative linear relationship between adipogenesis in

CD142� ISCs and the amount of CD142+ ISCs (Figures 4E

and 4F). Thus, we can conclude that we found compelling

evidence for the existence of Aregs in the murine skeletal

muscle.

Next, we wanted to know whether the CD142+ cells kept the

CD142� ISCs in their progenitor state or pushed them toward

another cell fate. Therefore, we performed an adipogenic dif-

ferentiation of CD142�, CD142+, and a transwell assay, seed-

ing CD142� ISCs (bottom) and CD142+ ISCs (top). After differ-

entiation, practically all CD142+ cells remained positive for

PDGFRA, although CD142� ISCs, which differentiate to adi-

pocytes, became negative for PDGFRA (Figures 4G and 4H).

When CD142� and CD142+ ISCs were incubated together,

we could clearly observe a decrease in adipocytes and an in-

crease in PDGFRA+ cells, marking progenitors (Figures 4G

and 4H). In addition, we could find a small number of

a-smooth muscle actin (ACTA2)+ cells, marking fibroblasts,

mostly in the CD142+ population (Figure 4I). These cells lost

PDGFRA expression during differentiation (Figure 4J). From

these results, we can conclude that, upon adipogenic differ-

entiation, CD142+ ISCs stayed nearly all PDGFRA+—although

a small fraction becomes positive for ACTA2—and that, when

incubated with CD142� ISCs, they are kept in a progenitor

state.
(I) Microscopy images of transwell assays stained for ACTA2 (red) to indicate sm

(J) A microscopy image of transwell assays stained for ACTA2 (red) and PDGFRA

0.001. See also Figure S6.
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A Deficiency of Adipo-regulatory Cells in Dystrophic
Muscle Is Directly Proportional to an Increased
Adipogenesis
Based on our scRNA-seq data, we found a vast reduction of

Aregs in dystrophic muscle. Therefore, we wondered whether

this results in an increased adipogenic potency of dystrophic

ISCs. Therefore, we isolated bulk ISCs (LIN�PDGFRA+SCA-

1+), CD142+ ISCs, and CD142� ISCs from the skeletal muscle

of healthy and dystrophic mice (Figures 5A and 5B). We could

validate the findings from our scRNA-seq experiment, as there

was a significantly lower number of CD142+ ISCs in dystrophic

mice (Figure 5C), and we observed an increased adipogenic

propensity in bulk dystrophic ISCs compared to healthy ISCs.

However, this difference was completely abolished when

CD142� ISCs and CD142+ ISCs were separated (Figures 5D

and 5E). Therefore, we conclude that the increased adipogenic

potency of ISCs from dystrophic muscle is linked to the

decreased ratio of CD142+/CD142� ISCs that is present in the

skeletal muscle of Sgcb-null mice.

To find out whether Aregs are not only restricted to murine

skeletal muscle, we isolated CD142+ and LIN� ISCs from hu-

man skeletal muscle biopsies of healthy and dystrophic pa-

tients. Like in murine muscle, we observed a lower number of

CD142+ ISCs in the samples of dystrophic patients, compared

to healthy muscle biopsies (Figure 5F). Transwell assays with

CD142+ and CD142� ISCs incubated together with healthy

and dystrophic muscle in the insert resulted in an increased

adipogenesis in CD142� ISCs compared to CD142+ ISCs (Fig-

ures 5G, 5H, and S6H–S6J). In addition, we also tested the

myogenic commitment of human CD55+ ISCs and found that

these cells showed a higher myogenic propensity compared

to the CD55� ISCs in vitro and in vivo (Figures S6K and S6L).

In summary, we show that Aregs and CD55+ ISCs are present

in human skeletal muscle and are functionally similar to their

murine equivalent.

Aregs Suppress Adipogenesis via GDF10
To resolve themechanism by which Aregs exert their adipogenic

inhibition, our interest fell upon Gdf10, one of the highest-ex-

pressed markers of this population (Figure 6A). In addition, we

found that Gdf10 expression increased up to 5-fold in CD142+

ISCs during adipogenic differentiation (Figure 6B). We subjected

CD142+ ISCs to small interfering RNA (siRNA)-mediated Gdf10

reduction, lowering the expression ofGdf10 (Figure S7A) without

affecting cell viability (Figures S7B and S7C). A transwell assay

was performed with CD142� ISCs (bottom) and Gdf10-silenced

or scramble control CD142+ ISCs (top). Here, we observed an

increased adipogenesis of CD142� ISCs that were incubated

together with Gdf10-silenced CD142+ ISCs compared to

scramble control (Figures 6C and 6D). In addition, overexpress-

ing Gdf10 in CD142� ISCs (Figures S7D and S7E) resulted in a

decrease of adipogenic differentiation in CD142� ISCs (Figures

6E and 6F). From these results, we can conclude that GDF10
ooth muscle cells/myofibroblasts.

(green). Scale bars, 50 mm (B and E) and 100 mm (G, I, and J). *p% 0.05; ***p%
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Figure 5. Dystrophic ISCs Possess an Increased Adipogenic Potency due to a Deficit of CD142+ ISCs

(A and B) FACS-based sorting strategy to isolate bulk (LIN�SCA-1+; A), CD142�, and CD142+ ISCs isolated from healthy and dystrophic mice (B).

(C) Fraction of CD142+ ISCs shown in (B) (n = 3).

(D) Microscopy images of bulk, CD142�, and CD142+ ISCs isolated from healthy and dystrophic mice after the induction of adipogenesis. Nuclei are stained with

Hoechst 33258 (blue), and lipids are stained with Oil Red O (red).

(E) Fraction of differentiated cells per population shown in (D) (n = 6).

(F) FACS analysis of the CD142+ fraction of LIN�(CD45�, CD31�, CD119�) skeletal muscle cells from a healthy donor and a 6-, 13-, and 15-year-old patient with

Duchenne muscular dystrophy.

(G) Microscopy images of transwell assays with human CD142� and CD142+ cells (bottom) incubated with healthy or dystrophic muscle (top). Lipids are stained

with Oil Red O (red).

(H) Quantification of optical density at 490 nm (OD490) per population shown in (G) (n = 9).

Scale bars, 50 mm. Data are represented as mean ± SEM. **p % 0.01; ****p % 0.0001. See also Figure S6.
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Figure 6. GDF10, Secreted by CD142+ ISCs,

Is Responsible for the Suppression of Adi-

pogenesis

(A) Expression of ISC 2 marker, Gdf10 (Bmp-3b)

determined by scRNA-seq (values represent log-

normalized counts). ***p % 0.001.

(B) Expression of Gdf10, relative to Rpl13a, in

CD142� and CD142+ ISCs during adipogenesis

(n = 3–6).

(C) Microscopy images of a transwell assay with

CD142� ISCs (bottom) co-cultured with CD142+

control or Gdf10 siRNA-transfected ISCs (top) after

the induction of adipogenesis.

(D) Fraction of differentiated cells per population

shown in (C) (n = 4).

(E) Microscopy images after the induction of adi-

pogenesis of CD142�ISCs transduced with EGFP-

control or Gdf10-expressing lentivirus.

(F) Fraction of differentiated cells per population

shown in (E) (n = 3).

In (B), (D), and (F), t test, *p% 0.05; ***p% 0.001. In

all panels, nuclei are stained with Hoechst 33258

(blue) and lipids are stained with Oil Red O (red).

Data are represented as mean ± SEM. Scale bars,

50 mm. See also Figure S7.

Article
ll

OPEN ACCESS
plays a substantial part in the ability of skeletal muscle Aregs to

suppress adipogenic differentiation.

In vivo, GDF10 is highly present in themuscle of wild-typemice

although this abundance is decreased in dystrophic mice (Fig-

ure 7A). Therefore, we wanted to investigate the importance of

GDF10 in vivo. We injured five wild-type and five Gdf10�/�

mice (Zhao et al., 1999) through a glycerol injection in the tibialis

anterior. The contralateral leg was used as a control (saline in-

jected). After 2 weeks, an increased fibrosis was seen upon

injury, irrespective of the presence of GDF10 in the skeletal mus-

cle (Figures 7B and 7C). However, the amount of fat deposition

increased in the Gdf10�/� compared to the wild type in both

the saline- and glycerol-injected muscles (Figures 7D and 7E).

This suggests that the absence of GDF10 leads to an increase

of fat depots within the skeletal muscle.

DISCUSSION

Interstitial cells are frequently implicated in skeletal muscle dis-

orders (Lemos et al., 2015; Mozzetta et al., 2013; Mueller et al.,

2016; Saccone et al., 2014). However, it is still debated whether

skeletal muscle regeneration is mediated only by a dedicated

population of stem cells, namely MuSCs, or whether the intersti-

tial cells actively participate tomyogenesis.We and other groups

provided evidence that the ISCs are therapeutically useful in

stem-cell-based treatments (Judson et al., 2018; Mitchell et al.,

2010; Périé et al., 2014; Sampaolesi et al., 2003, 2006). However,

the use of marker-based approaches to analyze heterogeneous

cell populations makes it difficult to accurately define interstitial

populations. This generated a partial overlap among the different

cell types in terms of shared markers and functions. In order to

clarify whether these different cell types could be analogous or

at different differentiation stages, there is an urgent need to

distinguish the different populations of the muscle interstitium.

In this direction, a recent study of singe-cell qPCR on FAPs re-
10 Cell Reports 31, 107597, May 5, 2020
veals interesting information regarding the differential expres-

sion levels of Tie2 and Vcam1 in response to an acute injury or

in a dystrophic environment (Malecova et al., 2018). However,

the use of biased markers to isolate single cells limited the infor-

mation and does not provide a full picture of the entire muscle

interstitial cell composition. Another study provided clear infor-

mation regarding the main cell population in healthy skeletal

muscles using 10X Genomics and cytometry by time of flight

(CyTOF) approaches (Giordani et al., 2019). However, it did not

assess the heterogeneity of SCA-1+ ISCs and did not consider

the consequence of pathological conditions on the cellular

landscape.

Our single-cell transcriptomics-based approach overcomes

many of these complications and unveils at least three popula-

tions in the interstitial progenitor pool of the skeletal muscle.

Although all ISCs could be annotated as FAPs, we showed

that there is more heterogeneity inside this population and that

MABs belong to the ISC 2 and ISC 3 population. Furthermore,

we demonstrate that there is more resemblance between

these two populations as previously thought, which urges us to

look differently to interstitial progenitor heterogeneity. One pop-

ulation that we describe consisted of CD55+ cells (ISC 1) that are

enriched for TGF-b signaling GO terms (Table S2). ISC 1 also

expressed the highest levels of stemness markers Ly6a and

Cd34 and retained high adipogenic potency in vitro. ISC 2 was

characterized by F3 and Gdf10 expression and can block

adipogenesis by paracrine signaling, of which GDF10 is an

important secreted factor. It has been suggested that GDF10

acts through the TGF-b pathway in cancer cells (Upadhyay

et al., 2011). Furthermore, Platko et al. (2019) showed that perox-

isome proliferator-activated receptor g (PPARg) is antagonized

by GDF10 in hepatocytes through the TGF-b/SMAD3 pathway.

More research will be necessary to find out whether ISC 2

controls adipogenesis via the same mechanism. ISC 3 is a

more heterogeneous population and is characterized by the
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Figure 7. GDF10 Suppresses In Vivo Adipo-

genesis

(A) Microscopy images of the skeletal muscle of

healthy (C57Bl6) and dystrophic (Sgcb-null) mice

stained for GDF10 (red).

(B and D) Microscopy images of the skeletal

muscle of healthy (C57Bl6) and dystrophic (Sgcb-

null) mice 2 weeks after intra-muscular injection

with either saline or glycerol. Sections were

stained for fibrosis using a-smooth muscle actin

(ACTA2, red; B) and adipocytes using oil red O

(red; D).

(C) Fraction ACTA2+ cells shown in (B) (n = 5–6).

(E) Fraction of oil red O+ cells shown in (D) (n = 5–6).

In (C) and (E), *p < 0.05; **p < 0.01. In all panels,

nuclei are stained with Hoechst 33258 (blue). Data

are represented as mean ± SEM. Scale bars,

200 mm.
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expression of Thbs4. In dystrophic muscles, ISC 3 contains

three clusters that express specific genes like Ptx3, involved in

acute inflammation (Bottazzi et al., 2016), and Cthrc1, which is

important in tissue remodeling (Wu et al., 2017). Moreover, pseu-

dotemporal ordering of interstitial cell populations conceded a

theoretical transitioning pattern between ISC 1, ISC 2, and ISC

3, as well as a shift from healthy to dystrophic muscle. ISC 3

could be heavily affected by the loss of tissue homeostasis

and potentially dictates the disastrous changes during muscle

degeneration. In summary, we disentangled the heterogeneity

of skeletal muscle interstitial cells in pathophysiological condi-

tions and found evidence that one specific population could be

responsible for blocking aberrant fat deposition.

Within the adipogenesis, PPARg has been identified as the

master regulator. Therefore, inhibiting PPARg is essential in or-

der to block adipogenesis within the skeletal muscle, indirectly

suggesting an effect of GDF10 on PPARg. Contradictory to its

role in fat accumulation, PPARg is also important for mitochon-

drial biogenesis, switching to oxidative fiber types, myogenesis,

and angiogenesis, all contributing to better muscle performance
(Amin et al., 2010; Phua et al., 2018).

Thus, although GDF10 can reduce the

replacement of myofibers with adipose

tissue, it should be noted that it might

also have a negative effect on the muscle

function itself.

Furthermore, as PPARg is considered a

master regulator, its expression is

controlled through multiple mechanisms,

including hedgehog, Wnt/b-catenin, and

bone morphogenesis protein (BMP)-

mediated signaling pathways (Du et al.,

2010; Platko et al., 2019; Yao et al.,

2019). From our data, it is likely that

GDF10 acts through one of these mecha-

nisms, as the overexpression of GDF10

does not fully block adipogenesis. Within

the CD142+ ISCs, GDF10 most likely

works together with other factors to
inhibit PPARg completely and thus the adipogenic differentiation

of CD142� ISCs. Nevertheless, GDF10 absence in the Gdf10�/�

mice resulted in fat depots within skeletal muscles that can be

exacerbated by glycerol treatment. These in vivo results fully

support the critical role of GDF10 in controlling aberrant fat

depots in muscle tissues.

It remains to be determined how this interstitial remodeling

takes place in dystrophic skeletal muscle and what the driving

factors are. In recent light, a similar CD142+ cell population

that is essential for colonic epithelial stem cell functionwas found

to be highly reduced in colitis, suggesting its broad implications

in tissue homeostasis (Kinchen et al., 2018). We hypothesize that

inflammation could be an essential factor of this remodeling,

which suggests an important role for immune cells. We know

that ISCs can be affected by the immune system because it

was shown that macrophages, by secreting TGF-b, are able to

inhibit the apoptosis of FAPs in muscular dystrophy (Lemos

et al., 2015).

Taken together, our results shed light on the interstitial cell

types of the murine skeletal muscle in health and chronic muscle
Cell Reports 31, 107597, May 5, 2020 11
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injuries and provide evidence that there is a cell population that

inhibits adipogenesis. We hypothesize that the fact that this pop-

ulation is reduced in dystrophic muscle could be a potential

cause for aberrant fat deposition that arises in patients with

muscular dystrophy, although further research is necessary to

be able to provide a causal link. Nevertheless, these findings

are a potential explanation and might aid in developing future

therapeutic approaches that block adipogenesis in the skeletal

muscle and prolong the ambulation of muscular dystrophy

patients.
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Ryan, T., Rojas-Muñoz, A., Madaro, L., Fasanaro, P., et al. (2014). HDAC-regu-

lated myomiRs control BAF60 variant exchange and direct the functional

phenotype of fibro-adipogenic progenitors in dystrophic muscles. Genes

Dev. 28, 841–857.
Cell Reports 31, 107597, May 5, 2020 13

http://refhub.elsevier.com/S2211-1247(20)30546-5/sref15
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref15
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref16
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref16
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref16
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref17
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref17
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref17
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref18
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref18
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref18
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref18
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref19
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref19
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref19
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref20
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref20
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref20
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref20
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref21
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref21
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref21
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref21
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref22
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref22
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref22
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref23
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref23
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref24
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref24
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref24
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref25
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref25
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref25
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref25
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref26
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref26
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref26
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref27
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref27
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref27
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref27
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref28
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref28
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref28
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref28
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref28
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref29
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref29
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref29
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref30
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref30
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref30
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref30
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref31
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref31
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref31
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref31
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref32
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref32
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref32
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref33
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref33
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref33
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref33
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref34
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref34
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref34
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref35
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref35
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref36
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref36
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref37
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref37
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref37
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref38
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref38
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref39
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref39
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref39
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref39
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref40
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref40
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref40
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref40
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref40
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref41
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref41
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref41
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref42
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref42
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref42
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref42
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref43
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref43
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref43
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref44
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref44
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref44
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref45
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref45
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref45
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref45
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref46
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref46
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref46
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref46
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref46
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref47
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref47
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref47
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref48
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref48
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref48
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref49
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref49
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref49
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref49
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref50
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref50
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref50
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref51
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref51
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref51
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref51
http://refhub.elsevier.com/S2211-1247(20)30546-5/sref51


Article
ll

OPEN ACCESS
Sampaolesi, M., Torrente, Y., Innocenzi, A., Tonlorenzi, R., D’Antona, G., Pel-

legrino, M.A., Barresi, R., Bresolin, N., De Angelis, M.G.C., Campbell, K.P.,

et al. (2003). Cell therapy of alpha-sarcoglycan null dystrophic mice through

intra-arterial delivery of mesoangioblasts. Science 301, 487–492.

Sampaolesi, M., Blot, S., D’Antona, G., Granger, N., Tonlorenzi, R., Innocenzi,

A., Mognol, P., Thibaud, J.-L., Galvez, B.G., Barthélémy, I., et al. (2006). Mes-
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Mouse: Sgcb–/– (B6.129-

Sgcbtm1Kcam/2J)

The Jackson Laboratory JAX: 006833

Mouse: 129-Alpltm1(cre)Nagy The Jackson Laboratory JAX: 008569

Mouse: C57BL/6J Gdf10–/– mice Prof. Se-Jin Lee Laboratory N/A

B6.129X1-Gt(ROSA)26Sortm1(EYFP)Cos The Jackson Laboratory JAX: 006148

TNAP-CreERT mice Prof. Giulio Cossu Laboratory N/A

Oligonucleotides

Stealth siRNA GDF10 (#97) Thermo Fisher MSS236597

Stealth siRNA GDF10 (#98) Thermo Fisher MSS236598

Software and Algorithms

FlowJo software v10.6.2 Becton, Dickinson and

Company

https://www.flowjo.com/solutions/

flowjo/downloads

ImageJ/Fiji (Schneider et al., 2012) https://imagej.nih.gov/ij/

Cutadapt 1.5 (Martin, 2011) https://github.com/marcelm/cutadapt

htseq-count 0.6.0 (Anders et al, 2015) https://pypi.org/project/HTSeq/

Scater 1.8.4 (McCarthy et al., 2017) https://bioconductor.org/packages/

release/bioc/html/scater.html

Scran 1.8.4 (Lun et al, 2016) https://bioconductor.org/packages/

release/bioc/html/scran.html

t-SNE (van der Maaten and Hinton, 2008) https://lvdmaaten.github.io/tsne/

SC3 1.8.0 (Kiselev et al., 2017) https://bioconductor.org/packages/

release/bioc/html/SC3.html

Monocle2 2.12.0 (Trapnell et al., 2014) http://cole-trapnell-lab.github.io/

monocle-release/

Ensembl 84 N/A http://mar2016.archive.ensembl.org/

index.html
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Maurilio

Sampaolesi (maurilio.sampaolesi@kuleuven.be).

Materials Availability
The viral vectors used for this study (MLV_EF1a-Gdf10-myc andMLV_SF-eGFP) were were cloned and produced by the Leuven Viral

Vector Core.

Data and Code Availability
The single cell RNA-seq data generated during this study are available at NCBI Gene Expression Omnibus database GSE147883.

Code available on github under https://github.com/campsj/scRNAseq_interstitium and https://github.com/campsj/

scRNAseq_ISC_public.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
All mouse experiments were conducted in strict accordance with European law and were approved by the Animal Ethics Committee

of KU Leuven (P150/2014 and P169/2017). All mice were kept in specific pathogen-free conditions in individually ventilated cages.

Themouse strains used were C57BL/6J and C57BL/6J Sgcb�/� and C57BL/6JGdf10�/�mice. All mice used in these experiments

were male and between four and eight weeks old, unless specified otherwise. For lineage tracing studies, C57BL/6J Alpl-Cre were

crossed with C57BL/6J R26-YFP. Afterward, cells from the hindlimbs were collected at two, five and eleven weeks of age (n = 4-8).

Human samples
Humanmale skeletal muscle biopsies were obtained from healthy (n = 3) andDMD (n = 3) subjects (ranging 14–35 years of age) during

elective orthopedic surgery performed at the Department of Orthopedic Surgery of the Istituto Ortopedico Galeazzi IRCCS Milan

Italy, after patient informed consent.

Cell lines
All cultured cells were isolated from male mice and cultured in high glucose DMEM medium supplemented with 20% fetal bovine

serum (FBS), 10% Horse serum (HS) and 1% penicillin-streptomycin (pen-strep, all from GIBCO) (Growth Medium) on collagen-

coated plates (Sigma-Aldrich). Cells were kept in a humified incubator under hypoxic conditions (5% O2, 5% CO2 and 37�C).

METHOD DETAILS

Isolation and digestion of hindlimbs
Tissue collection was carried out in accordance with the protocol published by Liu et al. (2015) with small alterations. In short, all

hindlimb muscles were isolated by surgical dissection and finely minced. Minced muscles were digested with Collagenase II

(Sigma-Aldrich, 700-800 U/ml in PBS) supplemented with 10% HS, 25 mM CaCl2 and 100 U/ml pen-strep (all from GIBCO), for

90 min at 37�C in a warm water bath with agitation (60-70 rpm). At 60 and 90 min, the tissue was homogenized with an 18 and

20-gauge needle, respectively. Next, a red blood cell lysis was performed by incubating the cell pellet in the red blood cell lysis buffer

(154 mM NH4Cl, 10 mM KHCO3, 0.1 mM EDTA) for 5 min, followed by a PBS wash, filtration through a 40 mm cell strainer (Corning)

and centrifugation for 5 min at 400 g at 4�C.

scRNA-seq
Library preparation

LIN- muscle cells were sorted single-cell by FACS in 96 well plates (4titude). Each well contained 4 ml lysis buffer (0.4% Triton X-100 in

RNase-free water supplemented with 10 mM biotinylated Oligo-dT (IDT), 10 mM dNTPs (Thermo Scientific) and 0.5 U/ml RNase in-

hibitor (Takara)). cDNA libraries were generated based on the SMART-seq2 protocol (Picelli et al., 2014). Briefly, before mRNA was

reverse transcribed, lysed cells were incubated at 72�C for 3 min and cDNA was amplified via PCR for 22 cycles. Amplification was

done with KAPA HIFI Hot Start ReadyMix and purification by magnetic beads. Quantity and quality of cDNA were assessed with a

Qubit fluorometer (Thermo Scientific) and Agilent 2100 BioAnalyzer with a high-sensitivity chip, respectively. Library preparation

was done with the Nextera XT library prep and index kit. 100 pg of cDNA was tagmented by transposase Tn5 and amplified with

dual-index primers (i7 and i5, 14 cycles). Reagents were mixed together by the Echo 555 (Labcyte) and pooled Nextera XT libraries

were purified. 384 single-cell libraries were pooled together and sequenced single-end 50 bp on a single lane of a Hiseq2500 or Hi-

Seq4000 (Illumina). All results related to scRNA-seq are based on freshly isolated muscle cells from C57Bl6 (healthy cells, n = 115)

and Sgcb null (dystrophic cells, n = 141) mice, experiments were performed on the same day.

FACS isolation of the interstitial stromal cells
The single-cell suspension was diluted to 13 106 cells/ml with FACS buffer (2%FBS, 10mMHEPES and 10mMNaN3 at a pH of 7.2).

Cells were incubated with the primary antibodies 30 min at 4�C protected from light. The following antibodies were used: TER-119-

FITC (0.5 mg/106 cells), CD31-FITC (0.25 mg/106 cells) and CD45-FITC (0.25 mg/106 cells) for selecting the LIN- population; SCA-1-

SB436 (0.5 mg/106 cells) and/or CD140a-APC (1 ml/106 cells) to enrich for ISCs, ALPL-PE (0.25 mg/106 cells) to enrich the LIN-

population for MABs, Itga7-PE-Vio770 (0.15ng/106 cells) and CD34-eFluor660 (2.5 mg/106 cells) to enrich for MuSCs; CD55-PE

(0.5 mg/106 cells) and CD142-PE (2 ml/106 cells) to separate the ISC populations. The cells were washed twice and stained with

SYTOX green dead cell stain (1ml/ ml) to assess viability. The analysis was performed on a BD FACSCanto II HTS (BD Biosciences).

Sorting was performed on the BD FACSAria III (BD Biosciences), using a 100 mm nozzle at 18 PSI or on the BD FACSMelody (BD

Biosciences), using a 100 mm nozzle at 22 PSI (n = 3-4). Compensation measurements were performed for single cell stains with

UltraComp eBeads compensation beads (Invitrogen #01-2222-41). Data were collected with the FacsDIVA software and analysis

was performed using FlowJo software.
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Ex vivo adipogenic and myogenic differentiation
Murine interstitial stromal cells

The same number of cells was sorted and seeded into flat-bottom 24 well cell culture plates (Corning #3738) coated with Collagen

(Sigma-Aldrich). For adipogenic differentiation cells, we used the StemPro Adipogenesis Differentiation kit with medium changes

every 3 to 4 days. Differentiation was carried out for 10 to 12 days after induction at which point the cells were stained for imaging

or collected for RNA isolation. For myogenic differentiation cells MAB, FAP and MuSCs (transduced with GFP transgenic MLV viral

vectors (3.325 3 106 TU/ml)) were mixed with control MuSCs at a 1:2 ratio in growth medium. The culture was carried out for 3 to

4 days after induction.

For the human ISCs, 53 103 CD142+ andCD142- ISCswere sorted from healthy (n = 3) andDMD (n = 3)muscles and co-cultured at

the bottom chamber of the transwell. For myogenic differentiation, after seeding cells on a laminin-coated surface, serum-starvation

was performed for five days.

Quantification of ex vivo differentiation

Differentiated cells were fixed with 4% paraformaldehyde before staining with Hoechst33342 (Sigma-Aldrich #14533), Oil Red O

(Sigma-Aldrich) and Perilipin-1 A/B (1:100) with secondary antibody anti-rabbit AF488 (Sigma-Aldrich #SAB4600234) (n = 3). Image

analysis was performed in ImageJ/Fiji, lipid droplets (red) and nuclei (blue) images were filtered using a Gaussian blur (sigma equal to

2) before automatic thresholding. For myogenic differentiation, cells were stained with Hoechst33342, Desmin (1:100), and MF20

(1:20). Fluorescence images were acquired via Eclipse Ti inverted microscope (Nikon).

In vivo experiments
Myogenic differentiation potential of ISCs

53 106 CD55+ (n = 5) and CD55- (n = 5) ISCs in 8 ml of HBSS (GIBCO) were transplanted in the Tibialis anterior of Sgcb�/� mice. The

grafted muscles were harvested five weeks after transplantation and were snap frozen in liquid nitrogen. Serial transverse 12 mm

cryostat sections were obtained from cell injected muscles and stained for human SGCB (1:50) and LAMININ (1:100).

Effect of GDF10 upon injury

C57BL/6 and C57BL/6 Gdf10�/� mice (n = 5) were injected with 50 ml of 50% glycerol in the right Tibialis anterior, the contralateral

muscle was injected with an equivalent amount of PBS. The muscle was harvested two weeks after injury and snap frozen in liquid

nitrogen. Serial transverse 8 mm cryostat sections were obtained made and stained for ACTA2 (1:200) or Oil red O and LAMININ

(1:100).

Transwell titration experiment
CD142- ISCs were seeded at the bottom of a 24w transwell plate at 10,000 cells/cm2 and CD142+ ISCs in the top insert at different

ratios (ranging from 5,000 to 30,000 for the titration experiment and 20,000 for other transwell experiments). Cells were differentiated

as described above (n = 4).

siRNA-mediated knockdown of Gdf10
For Gdf10 silencing, a pool of two siRNA probes (#98, #99; Thermo Scientific #1320003) was reverse-transfected to CD142+ ISCs

(Figure S7). 10,000 cells/cm2 were plated with 100 nM of siRNA dissolved in 1.5% Lipofectamine RNAi MAX (Invitrogen) in Opti-

MEM I reduced serum medium (Invitrogen). After 8 hours, the medium was changed normal growth medium and after 12 hours

the cells were collected for determining knockdown efficiency, seeded in collagen-coated 24well plates at a density of 10,000

cells/cm2 or seeded in collagen-coated 24well transwell inserts together with CD142- ISCs at the bottom. After 48 hours, all cell pop-

ulations were treated with adipogenic differentiation medium (n = 4).

Viral vector-mediated overexpression of Gdf10
ForGdf10 overexpression, CD142- ISCs were plated 10,000 cells/cm2 in growth medium together with MLV-based vectors express-

ing Gdf10 (MLV_EF1a-Gdf10-myc) or a control vector (MLV_SF-eGFP). After 48 hours, cells were collected for determining overex-

pression efficiency or subjected to adipogenic differentiation and imaged at day 10 after induction (n = 6).

RNA isolation and quantitative PCR
RNA isolation of sorted and differentiated cells. Live cells were collected in RLT lysis buffer (QIAGEN) and snap frozen on dry ice.

Cell lysates were homogenizedwith 21G syringes before RNA isolation using the RNeasy PlusMicro Kit (QIAGEN). Reverse transcrip-

tion was performed using the Superscript III reverse transcriptase (Invitrogen), following the manufacturer’s recommendations.

Expression levels of mRNA were assessed by real-time PCR using the Platinum SYBR Green qPCR SuperMix-UDG (Invitrogen)

on the fast run mode of the Viia7 Real-Time PCR system (Thermo Scientific). mRNA expression was normalized to Rpl13a (for all

mouse experiments, if not otherwise specified) (n = 6).
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QUANTIFICATION AND STATISTICAL ANALYSIS

scRNA-seq data analysis
Fastq files contained 50-bp-long single-end sequenced tags (reads) from 384 cells each were trimmed with cutadapt 1.5 (Martin,

2011). The number of tags per gene was calculated using htseq-count 0.6.0 (Anders et al., 2015). Quality control on aligned and

counted reads was done with Scater 1.8.4 (McCarthy et al., 2017), cells with < 150,000 reads; < 1,500 detected genes; > 6% mito-

chondrial DNA and > 10% of spike-in ERCCs (Figure S1B). Cell cycle selection and read normalization were done with Scran 1.8.4

(Lun et al., 2016), cells were selected for G1 cell cycle phase and reads were normalized separately from ERCCs with parameters

‘min.size = 30’ (Figure S1C). For each gene, expression estimates per gene were expressed as log-transformed counts by taking

the log2(counts + 1). We used the top 500 highest variable genes to obtain a 2D representation of the cells while maintaining the

similarity relationships between them using t-SNE (van derMaaten andHinton, 2008) with a perplexity of 6. Clustering was performed

with SC3 1.8.0 (Kiselev et al., 2017) using k = 7 (Figures S1E–S1G). Differential expression between clusters was calculated using

the nonparametric Kruskal–Wallis test, p < 0.01 corrected for multiple testing with a Benjamini-Hochberg False Discovery Rate

(FDR) correction (Tables S1 and S4). Marker genes were selected by a binary classifier for each gene that was constructed based

on the mean cluster-expression values. The area under the receiver operating characteristic (AUROC) curve was used to quantify

the accuracy of the prediction. A P-value was assigned to each gene using the Wilcoxon signed-rank test, comparing gene ranks

in the cluster with the highest mean expression with all others. Genes with AUROC > 0.85 and with p < 0.01, were defined as marker

genes. Heatmaps were generated using pheatmap_1.0.10 with marker genes filtered for AUROC > 0.8 and adjusted P-value < 0.01

(Wilcoxon signed-rank test, holm correction).

For further analysis of ISCs, we additionally removed cells with > 6% of spike-in ERCCs (Figure S6C). Clustering on ISCs was per-

formed with SC3 1.8.0 (Kiselev et al., 2017) using k = 5. Consensus, silhouette analysis and well-known marker genes supported a

five-partitioning clustering (Figures S6D–S6F). We used PCA on the top 500 most variable genes to visualize the distinction between

the clusters. Differentially expressed andmarker genes between clusters were calculated with SC3 asmentioned above. Regressing

out the genotype was done with Seurat 3.1. SCEset object was converted to a Seurat object and the scaledata function was used to

regress out cell genotype (Figure S5A). The pseudotime and BEAM analysis were done with Monocle2 2.12.0 (Trapnell et al., 2014)

with selected genes based on DE (standard Wilcoxon test with Holm correction) of SC3 clusters. For the pseudotime analysis a

minimum spanning tree was constructed of healthy and dystrophic ISCs based on the expression pattern of 1000 genes with the

first two dimensions of PCA on k-means clusters (k = 5). BEAM analysis fitted a negative binomial generalized linear model (GLM)

from the ISC 2 branch to ISC 1 and ISC 3 (Figures S6K and S6L). The RNA velocity analysis was performed using velocyto. We filtered

genes with a minimum average expression count lower than 0.05, fit gammas on the top/bottom 10% quantiles based and used the

20 k-nearest-neighbors in slope calculation smoothing (Figure 3F).

scRNA-seq data analysis of public datasets
scRNA-seq data of healthy murine skeletal muscle from Giordani et al. (2019) (n = 12,441) was downloaded from the NCBI Gene

Expression Omnibus database (GEO, GSE110878’). The data was reanalysed with Seurat 3.1. Cells with more than 10% mitochon-

drial DNA were removed. Further, counts were log-normalized, the 2000 most variable features selected, data was scaled and 20

PCA dimensions were taken to perform clustering at a resolution of 0.5 and UMAP dimensionality reduction. Differential expression

analysis was done by a Wilcoxon test, selected genes were at least expressed in 25% of the cells in each cluster and had a logFC

treshold of 0.25. Cell type annotation was done by the following marker genes: CD3g (T); CD79a (B); CD14 (Monocyte); CD14, IL1b

(Macrophage); Retnlg (DC), Pecam1 (endothelial), Ly6a, Pdgfra (FAP),Myod1 (satellite),Myl9 (SMMC), Thbs4 (Tenocyte), Plp1 (Glial)

(Figure S2C). scRNA-seq data from the Tabula Muris Consortium (Schaum et al., 2018) was downloaded through the ExperimentHub

package and filtered for limb muscle data (n = 4,543), cell annotation was provided by the authors. Analyzing the percentage of

matching markers was done by calculating the amount of DE genes that were found per cluster in our dataset compared to the Gior-

dani or Schaum dataset, divided by the total amount of marker genes per cluster defined in our data (Figures S2E and S2F). Integra-

tion of all datasets was done by canonical correlation analysis (CCA) with Seurat 3.1. All datasets were merged into one Seurat

object, data was normalized, the 2000most variable features were selected, and integration anchors were defined for 30 dimensions

(Figures S2G–S2I). For integration of all ISC clusters, we selected the ‘FAP’ cluster of the Giordani data (n = 1,517) and the ‘mesen-

chymal stem cell’ cluster of the Schaum data (n = 1,127). Integrating all datasets was done in the same way as for the limb muscle

data with the only difference that we used 10 dimensions to integrate anchors (Figures S5B–S5G).

Annotation and functional enrichment analyses
Enrichment analysis was performed for DE genes for LIN- and ISC clusters (Table S1) using the web server Enrichr with default

parameters (Kuleshov et al., 2016) and annotations provided by GO cellular biology (Ashburner et al., 2000; Carbon et al., 2017),

Wikipathways (Slenter et al., 2018), or gene expression data provided by the GTEx project (GTEx Consortium, 2015) and ARCHS4

tissues (Lachmann et al., 2018) (Tables S2, S3, and S5). The combined score value is computed by multiplication of the log p-value

from the Fisher’s exact test by the z-score of the deviation from the expected rank.
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General statistics and plots
All t tests and Wilcoxon rank-sum tests were unpaired and two-sided, if not otherwise specified. All boxplots were generated

and displayed in R, using the geom_boxplot() function of ggplot2 with default parameters. The median value is indicated with a

black line, and a colored box (hinges) is drawn between the 1st and 3rd quartiles (interquartile range, IQR). The whiskers correspond

to approximately 1.5x interquartile range (±1.58 interquartile range divided by the square root of n) and outliers are drawn as

individual points. All violin plots are generated and displayed in R, using the geom_violin() function of ggplot2. Individual points or

median value is portrayed by a point. All bar plots display mean values as centers and the standard deviation as error bars. All

included microscopy images and macroscopic images are representative.
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Figure S1: Quality control and gene set enrichment of single-cell RNA sequencing from 

healthy and dystrophic skeletal muscle (Related to Figure 1) 

a, Number of isolated cells after hindlimb digestion of one-month-old healthy and dystrophic 

mice. * P ≤ 0.05. b, Quality control of scRNA-seq data with cut-offs for aligned reads/cell, 

detected genes per cell, percentage of mitochondrial genes, percentage of ERCCs. c, Cell-cycle 

phase per genotype, h: healthy, d: dystrophic. d, Box plot of ubiquitous (Actb), endothelial 

(Cd31, Kdr and Cdh5) and haematopoietic markers (Cd45, C-kit, Flk2), values shown as log-

normalised counts. e-g, Quality control measures of k-means clustering, consensus matrix (e), 

silhouette plot (f) and stability index (g). h, Top 10 marker genes per cluster ordered by 

AUROC. i, Top 5 GO biological processes, wikipathways, ARCH4S and GtEX tissues 

significantly enriched among DE genes per cluster. j, t-SNE plot of 256 cells from healthy and 

dystrophic murine muscle every point represents one cell. k, Bar plot showing percentage per 

cluster per genotype, cluster-specific cell counts visualised in the bar. AUROC: area under 

receiving operator characteristic.  



 

 

Figure S2: Integration with public scRNA-seq data (Related to Figure 1) 

a, Boxplot of sequencing metrics (total detected genes per cell and log(total counts) per cell) 

comparing our interstitial scRNA-seq data (n=256), represented as Camps with scRNA-

seq data of the murine limb muscle by Giordani et al. (n=12,441) and Schaum et al. 

(n=4,543). b-c, Cell type annotation of Giordani data. Clustering visualisation on UMAP 

dimensionality reduction. (b). Dotplot visualising top markers per cell type, average 

expression respresented by colour and percentage of expression by size (c). d, Cluster 

annotation, provided by authors, visualised on UMAP dimensionality reduction 

of Schaum dataset. e-f, Marker genes comparison, showing the percentage of matching markers 

per cell type of our dataset with the Giordani (e) and Schaum (f) dataset. g-h, Unsupervised 

integration of Camps, Giordani and Schaum datasets. UMAP visualisation (n=17,240) shows 



that there is no batch artefact after integration. (g). UMAP visualisation of cell type annotation 

per cluster split per dataset demonstrates matching clusters between the datasets (h). i, 

UMAP visualisation of integrated datasets with corrected cell type annotation based on h. For 

b, d , g-i: every point represents one cell.  

 

 

 

 
 

Figure S3: scRNA-seq analysis of satellite cells and lineage tracing of 

ALPL+ cells (Related to Figure 2) 

a, k-means clustering of MuSCs form healthy and dystrophic muscle (n=40). PCA plot with 

SC3 clusters (k = 4) annotated as colour. b, Minimum spanning tree of healthy and 

dystrophic MuSCs based on the expression pattern of 243 genes with the first two dimensions 

of PCA on k-means clusters (k = 4). The solid black line represents the pseudotime ordering. c-

d, Violin plot visualising essential myogenic transcription factors (c) and marker genes of the 

dystrophic activated cluster (d) as log-normalised counts per MuSC cluster. e-f, Violin 

plot visualising essential myogenic transcription factors (e) and marker genes of the dystrophic 

activated cluster (f) as log-normalised counts of skeletal muscle satellite cells of the limb 

muscle from the Tabula Muris Consortium scRNA-seq data (n=354). g, Flow cytometry 

images of SCA-1 (Superbright 436) and ALPL (YFP) of LIN-(CD31-CD45-TER-119-) cells 

isolated from hindlimbs of Alpl-Cre-R26-YFP mice. h, Quantification of SCA-1+ cells in 

ALPL-YFP+ population (n=4-8). *P ≤ 0.05. For a-f: every point represents one cell.  

  



 

  

 

 



Figure S4: Quality control, gene enrichment and trajectory analysis of single-cell RNA 

sequencing of ISCs (Related to Figure 3) 

a-b, Gene expression visualised as log-normalised counts on t-SNE plot (n=125) of healthy and 

dystrophic muscle (a) and box plot per ISC cluster (b). c, Quality control of scRNA-seq data 

with cut-offs for aligned reads/cell, detected genes per cell, percentage of mitochondrial genes, 

percentage of ERCCs. d-f, Quality control measures of k-means clustering. Consensus matrix 

(d), silhouette plot (d) and stability index (f). g, Bar plot comparing ISC cluster annotation to 

previous annotation in all LIN- cells. h, Bar plot of genotype fraction per ISC 

cluster. i, Pseudotime ordering of ISCs on a minimum spanning tree. j, Top 5 GO biological 

processes, Wikipathways and GtEX tissues that are significantly enriched among DE genes per 

cluster. k, Branched expression analysis modelling (BEAM) on branch-dependent expressed 

genes between ISC states. Solid lines represent ISC 2 to ISC 1 trajectory, dashed line represents 

ISC 2 to ISC 3 trajectory. Negative binomial GLM, ***: adjusted p-value < 0.0001. For a, i, k, 

l: every point represents a single cell.  

 



 

  

Figure S5: Integration of ISCs with public scRNA-seq data (Related to Figure 3) 

a, UMAP visualisation of ISC clusters with genotype regressed out. b-d, Integration of ISCs 

(n=114) represented as Camps together with ISCs from two public datasets from Giordani et 

al. (n=1,517) and Schaum et al. (n=1,127), represented as Giordani and Schaum respectively. 

UMAP visualisation (n=2,758) shows that there is no batch artefact after integration (b). c, 

Gene expression of important ISC markers visualised on UMAP coordinates. d, Graph-based 



clustering on integrated ISC data, annotations based on marker genes and the localisation of the 

ISC cluster from Camps dataset on the UMAP coordinates. f, Cell count per cluster grouped by 

dataset. g, Gene expression of ISC marker genes visualised on UMAP coordinates. d and g: 

gene expression levels visualised as log-normalised counts. Every point represent a single cell. 

UMAP: uniform manifold approximation and projection.  

 

 
  



Figure S6: CD55- ISCs show an inferior adipogenic differentiation capacity (Related to 

Figure 4 and 5) 

a, Number of overlapping markers between ISCs and stromal clusters found in LIN-SCA-

1+ cells of subcutaneous stromal vascular fractions by Schwalie et al. b, Expression (as log-

normalised counts) of adipogenic genes Pparg and Fabp4, as determined by scRNA-seq. c, 

Expression (as log-normalised counts) of Cd55, F3 and Sdc1 determined by scRNA-seq. 

***P ≤ 0.001. d, FACS-based sorting strategy to isolate ISC 1 and ISC 2 populations. e-

g, Adipogenic differentiation of CD55- and CD55+ ISCs. e, Immunostaining images: Hoechst 

33258 (blue), PERILIPIN-1 (green) and Oil red O (red). Scale bar = 50 µm. f, Percentage of 

PERILIPIN-1+ cells. g, qPCR analysis of stemness and adipogenic markers, expression as Delta 

CT, normalised to Rpl13a, Rab35 and Gapdh. h, Microscopy images of CD142+ and 

CD142- ISCs isolated from skeletal muscles of healthy human subjects after the induction of 

adipogenesis. PERILIPIN-1 (green), FABP4 (red) and Hoechst (blue). i-j, Fraction of 

differentiated cells per population as shown in h, stained for PERILIPIN-1 (i) and FABP4 

(j) (n=3). k, Representative microscopy images of CD55+ and CD55- ISCs differentiated in 

myogenic condition. MyHC (red), DESMIN (green) and Hoechst (blue) (n=3). l, Localisation 

of SGCB (red) and LAMININ (green) in Sgcb-null muscles transplanted with CD55+ and 

CD55- ISCs (n=5). In e-g (n=3). Scale bars, 50 µm and 200µm. *P ≤ 0.05, **P ≤ 0.01.  
 

 
 

Figure S7: Quality control of Gdf10 silencing and overexpression (Related to Figure 6) 

a, Expression of Gdf10, relative to Rpl13a, in CD142+ ISCs after transfection 

with Gdf10 or scramble siRNA. b-c, Viability assessment of CD142+ ISCs after transduction 

with Gdf10 siRNA through flow cytometry analysis with 7AAD (b) and Calcein blue (c). 

Unstained sample as control (n=3). d, Expression of Gdf10, relative to Rpl13a, in CD142- ISCs 

after transduction with Gdf10-myc or eGFP control viral vectors. e, western blot for MYC of 

transduced CD142- ISCs in d.  
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