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Abstract

We address a general optimal switching problem over finite horizon for a stochastic system

described by a differential equation driven by Brownian motion. The main novelty is the fact

that we allow for infinitely many modes (or regimes, i.e. the possible values of the piecewise-

constant control process). We allow all the given coefficients in the model to be path-dependent,

that is, their value at any time depends on the past trajectory of the controlled system. The

main aim is to introduce a suitable (scalar) backward stochastic differential equation (BSDE),

with a constraint on the martingale part, that allows to give a probabilistic representation of

the value function of the given problem. This is achieved by randomization of control, i.e. by

introducing an auxiliary optimization problem which has the same value as the starting optimal

switching problem and for which the desired BSDE representation is obtained. In comparison

with the existing literature we do not rely on a system of reflected BSDE nor can we use the

associated Hamilton-Jacobi-Bellman equation in our non-Markovian framework.
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1 Introduction

Stochastic switching control problems arise when a controller acts on a random system by choosing

a piecewise constant control process of the form

α(t) = ξ0 1[0,τ1)(t) +
∑
n≥1

ξn 1[τn,τn+1)(t), t ≥ 0.

Here the switching times τn are an increasing sequence of stopping times with respect to some

given filtration (Ft) and the chosen actions ξn are Fτn-measurable random variables with values

in some set A, called the set of modes (or regimes). Thus, when the initial mode ξ0 = a ∈ A

is fixed, choosing a switching strategy amounts to choosing the double sequence α = (τn, ξn)n≥1.

This special form of the strategies is justified when the controller incurs in some cost whenever the

control action is changed, so that only piecewise constant control processes may have finite cost.

Since optimal switching problems are commonly used as models for management issues, they have

attracted interest since a long time in the economic literature: the interested reader is referred for

instance to [9], [12] or [13].

In the classical framework the set of control actions A is finite, say A = {1, . . . ,m}. Our main

concern is to deal with the case when the set A is arbitrary which is quite natural for many ap-

plications. For instance, each mode a ∈ A may correspond to a working regime of a plant, or

a production level of a firm; one may then conceive a situation when the regime or the produc-

tion level can be chosen freely within an interval of possible values, still retaining the feature that

switching from a value to another one entails some cost.

Let us now describe our framework. In this paper we will only consider stochastic differential

equations in Rn driven by the Brownian motion. Suppose initially that the controlled system is

described by an equation on the time interval [0, T ] of the form

dXα
t = b(Xα

t , α(t)) dt+ σ(Xα
t , α(t)) dWt, t ∈ [s, T ] ⊂ [0, T ], (1.1)

with a given initial condition Xα
s = x ∈ Rn, where W is an Rd-valued Brownian motion and the

coefficients b, σ satisfy standard Lipschitz and growth conditions. The controller maximizes the

reward functional

J(s, x, a, α) = E
[ ∫ T

s
f(Xα

t , α(t)) dt+ g(Xα
T , α(T ))−

∑
n≥1

1τn<T cτn(Xα
τn , ξn−1, ξn)

]
,

where f and g represent the running and terminal rewards and ct(x, a, a
′) is the cost incurred when

switching at time t from the mode a to the mode a′ when the present state is x. The corresponding

(so-called) primal value function of the optimal switching problem, with set of modes equal to A,

is given at time s by

vs(x, a) = sup
α
J(s, x, a, α). (1.2)

Different approaches have been proposed to tackle this problem, that we briefly mention below,

while we refer the reader to [17] for a much more detailed discussion.

The classical dynamic programming approach to this problem consists in studying the associated

Hamilton-Jacobi-Bellman equation, which in this case is a system of partial differential equations
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coupled by an obstacle condition: for a = 1, . . . ,m min

{
−∂svs(x, a)− Lavs(x, a)− f(x, a), vs(x, a)−max

a′ 6=a
[vs(x, a

′)− cs(x, a, a′)]
}

= 0,

vT (x, a) = g(x, a), x ∈ Rn, s ∈ [0, T ],
(1.3)

where

Lavs(x, a) =
1

2
Trace [σ(x, a)σ(x, a)TD2

xvs(x, a)] +Dxvs(x, a)b(x, a)

is the Kolmogorov operator corresponding to the controlled coefficients b(x, a), σ(x, a).

However, such an approach restricts to the Markovian framework. Among first studies relating

the optimal switching problem (with finite number of modes) with a system of quasi-variational

inequalities of the form (1.3) one can cite [29], [37] or [42] and, for general theory concerning

stochastic control problems, the interested reader is referred to [5]. More recently, [38] and [39]

have further investigated these systems in the context of filtrations allowing jumps (in that case, the

Kolmogorov operator involves an extra non local term). Recent results on numerical approximation

can be found in [23] for optimal multiple switching problems or in [6] for impulse control problems.

Another approach is based on the introduction of a system of Backward Stochastic Differential

Equations (BSDEs). Letting the initial time s = 0 for simplicity, one solves a system of reflected BS-

DEs with interconnected obstacles looking for unknown adapted processes (Ȳ x,a
t , Z̄x,at , K̄x,a

t )t∈[0,T ],

parameterized by x ∈ Rn ans a ∈ A and satisfying suitable conditions, such that
Ȳ x,a
t +

∫ T

t
Z̄x,as dWs = g(X̄x,a

T ) +

∫ T

t
f(X̄x,a

s , a) ds+ K̄x,a
T − K̄x,a

t ,

Ȳ x,a
t ≥ max

a′ 6=a
[Ȳ x,a′

t − ct(X̄x,a
t , a, a′)],∫ T

0

[
Ȳ x,a
t −max

a′ 6=a
[Ȳ x,a′

t − ct(X̄x,a
t , a, a′)]

]
dK̄x,a

t = 0,

(1.4)

where, in particular, K̄x,a are non decreasing processes, K̄x,a
0 = 0, and X̄x,a are defined by the

equations

dX̄x,a
t = b(X̄x,a

t , a) dt+ σ(X̄x,a
t , a) dWt, t ∈ [0, T ], X̄x,a

0 = x.

Under suitable conditions this system is well-posed and one has a probabilistic representation for

the value function: v0(x, a) = Ȳ x,a
0 .

In the two last decades, such a BSDE approach has been extensively used to characterize the

primal value function v0(x, a) (corresponding to (1.2) taken at time s = 0). Among the first papers

relating the standard optimal switching problem (with m modes) to system of reflected BSDEs of

the type (1.4) one may refer to [25], [26] or [28]. Some extensions can be found in [10], [24], [27],

[20], this list being non exhaustive. In particular, the authors in [24] and [27] combine the BSDE

and PDE approach in the Markovian setting where, under appropriate conditions, one can show

that the solutions of (1.4) and (1.3) are related through a standard relation of Feynman-Kac type.

Another approach has been devised, also based on the introduction of a suitable BSDE, but

of different type. Suppose that we are given a Poisson random measure (with finite intensity) on

(0,∞) × A, independent of W , and let Ia denote the corresponding piecewise constant A-valued

process starting from a ∈ A. Let further Xx,a be the solution to

dXx,a
t = b(Xx,a

t , Iat ) dt+ σ(Xx,a
t , Iat ) dWt, t ∈ [0, T ], Xx,a

0 = x. (1.5)
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This will be called the randomized equation, since the switching control process has been replaced

by a random (Poisson) process. Let us then consider the BSDE
Y x,a
t +

∫ T

t
Zx,as dWs +

∫
(t,T ]

∫
A
Ux,as (a′)µ(ds da′) = g(Xx,a

T , IaT )

+

∫ T

t
f(Xx,a

s , Ias ) ds+Kx,a
T −Kx,a

t ,

Ux,at (a) ≤ ct−(Xx,a
t , Iat−, a).

(1.6)

Here the solution is (Y x,a
t , Zx,at ,Kx,a

t , Ux,at (a′)) (t ∈ [0, T ], a′ ∈ A) where the additional martingale

term U is a predictable random field needed to solve the equation with respect to the filtration

generated by the Brownian motion W and the Poisson random measure µ. This equation is called

constrained BSDE, with reference to the inequality required to hold in (1.6). Under suitable

assumptions there exists a unique minimal solution (in a sense to be defined) and it is proved that

the value function is also represented by the formula v0(x, a) = Y x,a
0 . This control randomization

method was introduced in [8]. There the author also formulates a corresponding randomized

optimal control problem (i.e. an auxiliary or dual problem) and a stochastic target problem related

to optimal switching. In the framework of switching problems and associated BSDEs the method

was further developed and extended in [16], [17], [18] and later applied to different contexts by

many authors, see for instance [34], [35], [2], [1] [21], [11], [19], [20], [22], [4], [3].

We note that the two approaches based on BSDEs have immediate generalization, which already

appear in many of the references cited above, to the case of path-dependent coefficients (also called

the non-Markovian case), that is when the value at time t of the drift and the diffusion also depend

on the past history (Xα
s )s∈[0,t] of the controlled process. Moreover the approach based on the

contrained BSDE is more promising from a computational point of view since one has to deal with

a single equation instead of a system: as such, numerical methods have been devised to treat this

equation, see [32], [33].

Finally, we cite another special approach to optimal switching developed in [15], which works

both in Markovian and non-Markovian situations, where BSDEs are replaced by an implicit optimal

stopping problem.

As mentioned above, our main concern in this paper is to address the switching problem when

the set A is infinite (not necessarily countable). For greater generality we will consider path-

dependent coefficients and try to generalize the approaches based on BSDEs. While addressing an

infinite system of reflected BSDEs of the form (1.4), or using the approach of [15], seems difficult,

it turns out that a generalization of the approach based on the constrained BSDE is possible, and

this is in fact the main content of the present paper. Another motivation is the fact that we will

still be concerned with a single BSDE even if the number of modes in infinite, so the feasibility of

numerical approximation will be preserved, although we will not deal with this issue in this paper.

Following [8] and [17], we introduce an auxiliary optimization problem, called randomized con-

trol problem (see section 3 for a precise formulation), having the same value as the original switching

problem and we show that this common value can be represented by means of the solution to the

constrained BSDE (1.6), even when the set of modes A is infinite. To this aim we have to find

entirely new proofs. Indeed, in [8] the result was proved by showing that the switching problem

and the randomized problem correspond to the same Hamilton-Jacobi-Bellman equation, since in

that paper only the Markovian case was addressed. On the contrary in [17] the non-Markovian

situation was studied, but the link between the randomized problem and the switching problem
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was proved by means of the system of reflected BSDE (1.4), which does not seem easy to solve in

the case when A is infinite. In fact, we establish a direct link between the switching problem and

the randomized one, and between the latter and the constrained BSDE (1.6). As a consequence

our treatment is almost entirely self-contained, except for some technical results related to the

randomization technique.

A drawback of the randomization method is that it does not immediately provide a description

nor even the existence of an optimal control, but it rather aims at a convenient representation of

the value function. However, it also works in situation where an optimal control may not exist, for

instance without compactness assumptions on the set of modes A.

The model that we formulate for the switching problem is fairly general: all coefficients, includ-

ing the switching costs, are path-dependent and may be unbounded. On the diffusion coefficient

(the volatility), that can also be controlled, we do not impose any nondegeneracy condition which

implies that the case of deterministic optimal switching falls under the scope of our results.

To complete our discussion on the possible approaches to optimal switching with infinitely many

modes we finally mention that results based on Hamilton-Jacobi-Bellman equations have been

obtained, but limited to the Markovian case when there is no path-dependence in the coefficients.

In fact in this case optimal switching can be considered as a special case of optimal impulse problem,

where the state of the system is the pair (Xt, It). The randomization method has been successfully

used in this context as well in [34]. However from a technical point of view these results are not

always satisfactory since they impose stringent assumptions, being designed to hold true in a more

general (or simply different) context. We believe that building on our approach more refined results

can be obtained in the case of Markovian optimal switching with infinitely many modes, and this

will be the object of future research. On the contrary, there are not many results on optimal

impulse control in the non-Markovian context that apply to general models; one example is [14],

which however seems difficult to generalize to the case of an infinite set A.

The plan of the paper is as follows: in section 2 we formulate our assumptions and introduce

the optimal switching problem. In section 3 we formulate the auxiliary randomized optimization

problem and prove that its value coincides with the value of the optimal switching problem. The

proof is rather technical and is presented in section 4. Finally in section 5 we show that a constrained

BSDE of the form (1.6) can be associated to the randomized problem thus giving the desired

representation of the value for the starting optimal switching problem as well.

2 General assumptions and formulation of the optimal switching

problem

2.1 General notations and assumptions

We start this section by an informal description of our optimization problem.

In the following we will consider controlled stochastic equations in Rn of the form

dXα
t = bt(X

α, α(t)) dt+ σt(X
α, α(t)) dWt, (2.1)

for t ∈ [0, T ], where T > 0 is a fixed deterministic and finite terminal time, and an initial condition

Xα
0 = x0, a given deterministic point in Rn. W is a standard Brownian motion with values in Rd.

The control process α(·) is a switching process: it takes values in a set A, called set of modes (or
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regimes), and it is piecewise constant: it starts at a deterministic mode ξ0 ∈ A and at random jumps

times τn it jumps from ξn to ξn+1 (n ≥ 1). τn are stopping times for the filtration (FWt ) generated

by W and modes ξn are also random A-valued variables, each assumed to be FWτn -measurable.

In our framework we include path-dependent (or hereditary) systems, i.e. exhibiting memory

effects with respect to the state. Indeed, the value of the coefficients b, σ at time t depend on the

values Xα
s for s ∈ [0, t]: this non-anticipative dependence will be expressed below in a standard

way by requiring that the coefficients should be progressive with respect to the canonical filtration

on the space of continuous paths.

The reward functional, to be maximized over an appropriate class of switching processes α, has

the form J(α) = J1(α)− J2(α), where

J1(α) = E
[ ∫ T

0
ft(X

α, α(t)) dt+ g(Xα, α(T ))
]
, J2(α) = E

[∑
n≥1

1τn<T cτn(Xα, ξn−1, ξn)
]
.

The functional J1 has a classical form, and also contains real-valued path dependent coefficients

f, g; the functional J2 takes into account the cost of switching: the (path-dependent) nonnegative

function ct(x, a, a
′) is interpreted as the cost incurred when switching at time t from the mode a to

the mode a′ when the trajectory is x(·).

Now let us introduce notations and precise assumptions on the data A, b, σ, f, g, c, x0, ξ0. In the

next paragraph we will formulate the optimization problem by describing in particular the class of

admissible switching strategies.

Let us denote by Cn the space of continuous paths from [0, T ] to Rn, equipped with the usual

supremum norm ‖x‖∞ = x∗T , where we set x∗t := sups∈[0,t] |x(s)|, for t ∈ [0, T ] and x ∈ Cn. We

introduce the filtration (Cnt )t∈[0,T ], where by Cnt we denote the σ-algebra generated by the canonical

coordinate maps Cn → Rn, x(·) 7→ x(s) up to time t, namely

Cnt := σ{x(·) 7→ x(s) : s ∈ [0, t]},

and we denote Prog(Cn) and P(Cn) the progressive and predictable σ-algebra on [0, T ]×Cn with

respect to (Cnt ), respectively. [Indeed, one can prove that these σ-algebras essentially coincide: see

Remark (8.4) in Chapter V of [40], but we will not need this for the sequel.]

We require the space of control actions A to be a Borel space. We recall that a Borel space is a

topological space homeomorphic to a Borel subset of a Polish space The terminology Lusin space,

instead of Borel space, is sometimes used. The space A will be endowed with its Borel σ-algebra

B(A).

Throughout the paper, the following assumptions will be in force.

(A1)

(i) A is a Borel space.

(ii) The functions b, σ, f are defined on [0, T ]×Cn×A with values in Rn, Rn×d and R respectively,

they are assumed to be Prog(Cn)⊗ B(A)-measurable (see also Remark 2.1 below).

The function c is defined on [0, T ] × Cn × A × A, it takes nonnegative real values and it is

assumed to be P(Cn)⊗ B(A)⊗ B(A)-measurable.

The function g is defined on Cn ×A and takes real values.

6



(iii) For every t ∈ [0, T ], the functions g(x, a), bt(x, a), σt(x, a) and ft(x, a) are continuous functions

of (x, a) ∈ Cn ×A (Cn being equipped with the supremum norm).

The function ct(x, a, a
′) is a continuous functions of (t, x, a, a′) ∈ [0, T ]×Cn ×A×A.

(iv) There exist nonnegative constants L and r such that

|bt(x, a)− bt(x′, a)|+ |σt(x, a)− σt(x′, a)| ≤ L(x− x′)∗t , (2.2)

|bt(0, a)|+ |σt(0, a)| ≤ L, (2.3)

|ft(x, a)|+ |g(x, a)|+ |ct(x, a, a′)| ≤ L
(
1 + (x∗t )

r
)
, (2.4)

for all (t, x, x′, a, a′) ∈ [0, T ]×Cn ×Cn ×A×A.

(v) x0 ∈ Rn and ξ0 ∈ A are given: they represent the initial state and mode, respectively.

Remark 2.1 The measurability conditions in (A1)-(ii) entail the following property, which is

easily verified:

(ii)’ Whenever (Ω,F ,P) is a probability space with a filtration F, X is an F-progressive process

with values in Rn, and a, a′ ∈ A, then the processes bt(X, a), σt(X, a), ft(X, a), ct(X, a, a
′),

defined for t ∈ [0, T ], are also F-progressive.

All the results in this paper still hold, without any change in the proofs, if property (ii)’ is assumed

to hold instead of (ii). In some cases (ii)’ is easier to be checked directly.

We finally note that the function g, being continuous, is also Borel measurable (equivalently, it

is CnT ⊗ B(A)-measurable). 2

Remark 2.2 We mention that no non-degeneracy assumption on the diffusion coefficient σ is

imposed. In particular the case of deterministic switching, where σ = 0, is included, and in this

special case there is of course no need to introduce a Wiener process nor a probability space. 2

2.2 Formulation of the optimal switching problem

We assume that A, b, σ, f, g, c, x0, ξ0 are given and satisfy the assumptions (A1). A setting (Ω,

F , P, W ) for the optimization problem consists of a complete probability space (Ω,F ,P) and an

Rd-valued process W which is a standard Wiener process with respect to P.

Let us denote FW = (FWt )t≥0 the right-continuous and P-complete filtration generated by W .

We define the set A of admissible control strategies: its elements are the double sequences of the

form

α = (τn, ξn)n≥1,

where:

(i) each τn is an FW -stopping time;

(ii) each τn takes values in (0,∞] and the sequence (τn)n≥1 is nondecreasing, a.s.;

(iii) if τn <∞ then τn < τn+1, for every n ≥ 1, a.s.;

(iv) each ξn is a random variable with values in A, which is FWτn -measurable;
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(v) τn →∞ a.s. and τn 6= T a.s. for every n ≥ 1.

Remark 2.3 Conditions (i)− (iv) can be restated by saying that α is a marked (or multivariate)

point process in A. It is convenient in the following to use this definition although the control

horizon T is finite. The condition τn → ∞ can be expressed by saying that the explosion time

limn τn is infinite a.s. We comment further on this condition and on the condition τn 6= T in

Remark 2.4. 2

Given α ∈ A, we introduce the associated piecewise constant process, denoted by α(·) (with a

slight abuse of notation) and defined as

α(t) = ξ0 1[0,τ1)(t) +
∑
n≥1

ξn 1[τn,τn+1)(t), t ∈ [0, T ],

where ξ0 is the given starting mode. Notice that the formal sum makes obvious sense even if there

is no addition operation defined in A.

The corresponding trajectory Xα is defined as the solution to the controlled equation

dXα
t = bt(X

α, α(t)) dt+ σt(X
α, α(t)) dWt (2.5)

on the interval [0, T ] with initial condition Xα
0 = x0. Since we assume that (A1) holds, by standard

results (see e.g. [40] Thm V. 11.2, or [31] Theorem 14.23), there exists an almost surely unique

F-adapted strong solution Xα = (Xα
t )t∈[0,T ] to (2.5) with continuous trajectories a.s. and such that

E
[

sup
t∈[0,T ]

|Xα
t |p
]
≤ Cp <∞, (2.6)

for every p ∈ [1,∞), where the constant Cp, depends only on p, T, n, d and the constants L, r

appearing in Assumption (A1). The stochastic optimal control problem under partial observation

consists in maximizing, over all α ∈ A, the reward functional

J(α) = J1(α)− J2(α), (2.7)

where

J1(α) = E
[ ∫ T

0
ft(X

α, α(t)) dt+ g(Xα, α(T ))
]
, (2.8)

J2(α) = E
[∑
n≥1

1τn<T cτn(Xα, ξn−1, ξn)
]
. (2.9)

We define the value of the optimal switching problem as

υ0 = sup
α∈A

J(α). (2.10)

Since we do not impose growth conditions on the cost function c, it is possible that J2(α) =∞
for some admissible α ∈ A. However, we have the following simple result.

Lemma 2.1 There exists a finite constant C, depending only on T, n, d and the constants L, r

appearing in assumptions (A1), such that |υ0| ≤ C.
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Proof. By standard estimates on the state equation (the same ones leading to (2.6)) and the

growth conditions imposed in (A1)-(iv) it is easily shown that |J1(α)| ≤ C for every α ∈ A. Since

c is nonnegative we have J(α) ≤ J1(α) ≤ C for α ∈ A and it follows that υ0 ≤ C.

Now let us consider the strategy ᾱ without switchings (i.e. such that τn =∞ for n ≥ 1). Then

we have J2(ᾱ) = 0 and so

υ0 ≥ J(ᾱ) = J1(ᾱ) ≥ −C,

and we conclude that |υ0| ≤ C.

We end this section with several comments on the previous formulation of the optimization

problem and its possible variants.

Remark 2.4 1. According to large part of the literature on optimal switching, we do not allow

for a switching at initial time t = 0. This is not a real loss of generality, since a switching at

time 0 does not affect the controlled trajectory Xα and it is easy to reduce the problem to

the formulation that we adopt.

2. In our definition of admissible strategy we have imposed the condition of being non-explosive.

This implies that

NT :=
∑
n≥1

1τn≤T

is finite a.s., meaning that infinitely many switchings in the time interval within the control

horizon T are not allowed. Alternatively, one may impose that there exists δ > 0 such that

ct(x, a, a
′) ≥ δ for every t ∈ [0, T ], x ∈ Cn, a, a′ ∈ A, which is a common requirement in

the literature on switching problems. Under this additional assumption, any strategy α with

NT = ∞ has J(α) = −∞ and cannot be optimal. We will not need that ct(x, a, a
′) ≥ δ and

will only assume the weaker conditions that ct(x, a, a
′) ≥ 0 and τn →∞ for every admissible

strategy.

3. Often, the following assumption is imposed on the cost function: for every distinct a1, a2, a3 ∈
A and for every t ∈ [0, T ], x ∈ Cn,

ct(x, a1, a3) < ct(x, a1, a2) + ct(x, a2, a3). (2.11)

This says that switching from mode a1 to mode a3 directly is more convenient than a double

switching from mode a1 to a2 followed immediately by a switching from a2 to a3. This

condition entails that any strategy for which a switching time τn equals τn+1 cannot be

optimal. We will not need the condition (2.11), but we have imposed that τn < τn+1 (whenever

τn is finite).

4. A variant of the optimal switching problem is obtained by allowing for a switching at the

terminal time, that is by removing the requirement that τn 6= T and modifying the functional

J2, introduced in (2.9), in the following way:

J2(α) = E
[∑
n≥1

1τn≤T cτn(Xα, ξn−1, ξn)
]
, (2.12)

in order to take into account the cost of a switching at the final time. In some papers, the

following condition is imposed on the data: for every a ∈ A and x ∈ Cn,

g(x, a) > sup
a′∈A,a′ 6=a

(g(x, a′)− cT (x, a, a′)). (2.13)
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This says that at the final time it is more convenient to remain in the current mode a rather

than switching to any another mode a′, which would give a reward g(x, a′) but would incur

in a cost cT (x, a, a′). If (2.13) is required, the optimization problem has the same value (and

the same optimal control, if it exists) whether J2 is defined by (2.9) or by (2.12).

In this paper we will not impose condition (2.13) but we require that τn 6= T a.s.

2

3 The randomized stochastic optimal control problem

We still assume that A, b, σ, f, g, c, x0, ξ0 are given and satisfy the assumptions (A1). We introduce

an auxiliary optimization problem, that we call randomized optimal control problem, and we will

eventually prove that it has the same value as the optimal switching problem formulated in section

2.2. However, the randomized problem has the advantage that it can be directly related to a

suitable BSDE, as we will see in the following sections.

To this end we need one additional datum, that will play the role of an intensity measure for a

Poisson process:

(A2) Let λ be a finite positive measure on (A,B(A)) with full topological support.

Since A is separable (as a Borel space), such a measure always exists: for instance, one could

choose a convex combination of Dirac measures at points ai ∈ A, where (ai) is a dense sequence

in A. In general there are many possible choices for the measure λ and in any case (A2) is not a

restriction imposed on the original optimization problem. It will be assumed to hold from now on.

3.1 Formulation of the randomized control problem

We say that (Ω̂, F̂ , P̂, Ŵ , µ̂) is a setting for the randomized control problem if (Ω̂, F̂ , P̂) is an

arbitrary complete probability space, the process Ŵ is a standard Wiener process in Rd under P̂,

µ̂ is a Poisson random measure on A with intensity λ(da) under P̂, independent of W . Thus, µ̂ is a

sum of random Dirac measures and it has the form µ̂ =
∑

n≥1 δ(σ̂n,η̂n), where (η̂n)n≥1 is a sequence

of A-valued random variables and (σ̂n)n≥1 is a strictly increasing sequence of random variables with

values in (0,∞), and for any C ∈ B(A) the process µ̂((0, t]× C)− tλ(C), t ≥ 0, is a P̂-martingale.

We also define the piecewise-constant A-valued process associated to µ and starting at the initial

mode ξ0:

Ît = ξ0 1[0,σ̂1)(t) +
∑
n≥1

η̂n 1[σ̂n,σ̂n+1)(t), t ≥ 0. (3.1)

The formal sum in (3.1) makes sense even if there is no addition operation defined in A, but when

A is a subset of a linear space formula (3.1) can be written as

Ît = ξ0 +

∫ t

0

∫
A

(a− Îs−) µ̂(ds da), t ≥ 0.

Let X̂ be the solution to the equation

dX̂t = bt(X̂, Ît) dt+ σt(X̂, Ît) dWt, (3.2)
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for t ∈ [0, T ], starting from X̂0 = x0, the initial state fixed at the beginning.

We introduce the filtration FŴ ,µ̂ = (FŴ ,µ̂
t )t≥0 generated by Ŵ , µ̂ and defined by the formula:

FŴ ,µ̂
t = σ(Ŵs, µ̂((0, s]× C) : s ∈ [0, t], C ∈ B(A)) ∨N , (3.3)

where N denotes the family of P̂-null sets of F̂ . We denote P(FŴ ,µ̂) the corresponding predictable

σ-algebra.

Under (A1) it is well-known (see e.g. Theorem 14.23 in [31]) that there exists an almost surely

unique FŴ ,µ̂-adapted strong solution X̂ = (X̂t)t∈[0,T ] to (3.2), satisfying X̂0 = x0, with continuous

trajectories a.s. and such that for every p ∈ [1,∞),

Ê
[

sup
t∈[0,T ]

|X̂t|p
]
≤ Cp, (3.4)

where Cp is a finite constant whose value depends only on p, T , n, d and the constants L, r occurring

in (A1)-(iv).

We can now formulate the randomized optimal control problem as follows. We introduce the

set V̂ of admissible controls as the set of all ν̂ = ν̂t(ω̂, a) : Ω̂ × R+ × A → (0,∞), which are

P(FŴ ,µ̂) ⊗ B(A)-measurable and bounded. For any ν̂ in V̂, we associate its Doléans exponential

process κν̂t defined as follows

κν̂t = Et
(∫ ·

0

∫
A

(ν̂s(a)− 1) (µ̂(ds da)− λ(da) ds)

)
= exp

(∫ t

0

∫
A

(1− ν̂s(a))λ(da) ds

) ∏
0<σ̂n≤t

νσ̂n(η̂n), t ≥ 0. (3.5)

It is known that κν̂ is a martingale with respect to P̂ and FŴ ,µ̂ and thus we define a new probability

measure by setting P̂ν̂(dω̂) = κν̂T (ω̂) P̂(dω̂). From the Girsanov theorem for multivariate point

processes ([30]) it follows that under P̂ν̂ the FŴ ,µ̂-compensator of µ̂ on the set [0, T ] × A is the

random measure ν̂t(a)λ(da)dt. Moreover, Ŵ remains a standard Wiener process under P̂ν̂ , so that

using both Assumptions (2.2)-(2.3) and standard results we obtain the following generalization of

the estimate (3.4):

sup
ν̂∈V

Êν̂
[

sup
t∈[0,T ]

|X̂t|p
]
≤ Cp, (3.6)

where Êν̂ denotes the expectation with respect to P̂ν̂ and Cp is the same as in (3.4). We finally

introduce the reward functional of the randomized control problem

JR(ν̂) = JR1 (ν̂)− JR2 (ν̂), (3.7)

where

JR1 (ν̂) = Êν̂
[ ∫ T

0
ft(X̂, Ît) dt+ g(X̂, ÎT )

]
, (3.8)

JR2 (ν̂) = Êν̂
[∑
n≥1

1σ̂n<T cσ̂n(X̂, η̂n−1, η̂n)
]
, (3.9)
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where we use the convention η0 = ξ0. We note that

JR(ν̂) = Ê

κν̂T
∫ T

0
ft(X̂, Ît) dt+ g(X̂, ÎT )−

∑
n≥1

1σ̂n<T cσ̂n(X̂, η̂n−1, η̂n)


is always finite: indeed, letting N̂T =

∑
n≥1 1σ̂n≤T and recalling the growth conditions in (2.4) we

see that

0 ≤ κν̂T ≤ exp(Tλ(A) (1 + sup ν)) · (sup ν)N̂T , (3.10)∣∣∣∣∫ T

0
ft(X̂, Ît) dt+ g(X̂, ÎT )

∣∣∣∣+
∑
n≥1

1σ̂n<T cσ̂n(X̂, η̂n−1, η̂n) ≤ C(1 + sup
t∈[0,T ]

|X̂t|)r (1 + N̂T ), (3.11)

for a suitable constant C; noting that N̂T has Poisson law with parameter λ(A)T under P̂ and

recalling (3.4), we see that the right-hand sides in the above expressions lie in Lp(P̂) for every

p ∈ [1,∞) and the finiteness of JR(ν̂) follows.

The randomized stochastic optimal control problem consists in maximizing JR(ν̂) over all ν̂ ∈ V̂.

Its value is defined as

υR0 = sup
ν̂∈V̂

JR(ν̂). (3.12)

Remark 3.1 A comparison between the starting optimal switching problem and the randomized

problem may be useful. In the switching problem, the switching process α(·) is chosen to control

the system. In the randomized problem α(·) is first replaced by the Poisson point process Î(·)
(associated with random measure µ̂) in the coefficients of the equation solved by X̂. In this new

problem, the effect of a control strategy ν̂ is to modify the intensity of Î (more precisely, to change

its compensator from λ(da)dt to ν̂t(a)λ(da)dt) and thus also to affect the law of the process X̂. This

is done by introducing the probabilities P̂ν̂ via the Girsanov theorem, and optimizing the reward

functional JR(ν̂) among this family of equivalent probability measures parameterized by the set

of all bounded predictable random fields ν̂. 2

Remark 3.2 Let us define V̂inf > 0 = {ν̂ ∈ V̂ : infΩ̂×[0,T ]×A ν̂ > 0}. Then we claim that

υR0 = sup
ν̂∈V̂inf > 0

JR(ν̂). (3.13)

Indeed, given ν̂ ∈ V̂ and ε > 0, define ν̂ε = ν̂ ∨ ε ∈ V̂inf > 0 and write the gain (3.7) in the form

JR(ν̂ε) = Ê

κν̂εT
∫ T

0
ft(X̂, Ît) dt+ g(X̂, ÎT )−

∑
n≥1

1σ̂n<T cσ̂n(X̂, η̂n−1, η̂n)

 .
As noted earlier, the expression in curve brackets lies in Lp(P̂) for every p ∈ [1,∞). Moreover we

have κν̂
ε

T → κν̂T a.s. as ε→ 0, and using the estimate (3.10) with νε instead of ν we conclude that

κν̂
ε

T → κν̂T in Lp(P̂) for every p ∈ [1,∞) as well. It follows that JR(ν̂ε)→ JR(ν̂), which implies

υR0 = sup
ν̂∈V̂

JR(ν̂) ≤ sup
ν̂∈V̂inf > 0

JR(ν̂).

The other inequality being obvious, we obtain (3.13). 2
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Remark 3.3 We stress the fact that the value υR0 of the randomized control problem defined in

(3.12) does not depend on the specific setting (Ω̂, F̂ , P̂, Ŵ , µ̂) that is chosen in its formulation.

More precisely, this means that if (Ω̃, F̃ , P̃, W̃ , µ̃) is another setting with the properties described

at the beginning of this section, and if the corresponding value υ̃R0 is defined in analogy with what

was done before then we have the equality υR0 = υ̃R0 .

We do not write down the proof of this statement, since it is entirely analogous to Proposition 3.1

of [2], where a classical optimization problem with continuous control was addressed instead of a

switching problem, but the arguments remain the same.

As a consequence, we obtain the rather intuitive conclusion that the value υR0 is just a functional of

the (deterministic) elements A, b, σ, f, g, c, x0, ξ0, λ appearing in the assumptions (A1) and (A2).

Later on, in Theorem 3.1, we will prove that in fact υR0 does not depend on the choice of λ either.

2

Remark 3.4 Starting from a setting (Ω,F ,P,W ) for the optimal switching problem one can al-

ways obtain a setting for a randomized optimal control problem by the following direct construction.

Take an arbitrary probability space (Ω′,F ′,P′) where a Poisson random measure µ with intensity

λ is defined. Thus in particular, for every ω′ ∈ Ω′, µ(ω′, dt da) is a measure on (0,∞)× A. Let us

define Ω̂ = Ω×Ω′, let us denote by F̂ the completion of the product σ-algebra F ⊗F ′ with respect

to P⊗ P′ and by P̂ the extension of P⊗ P′ to F̂ . One can introduce canonical extensions Ŵ and µ̂

of W and µ to Ω̂ by setting

Ŵt(ω, ω
′) = Wt(ω), µ̂(ω, ω′, dt da) = µ(ω′, dt da),

for every t ≥ 0, ω ∈ Ω, ω′ ∈ Ω′. Then it can be easily checked that, under P̂, Ŵ is a standard Wiener

process and µ̂ is a random Poisson measure on (0,∞)×A with the same intensity λ, independent

of Ŵ . So we see that (Ω̂, F̂ , P̂, Ŵ , µ̂) is a setting for a randomized control problem as formulated

before, that we call product extension of the setting (Ω,F ,P,W ) for the initial optimal switching

problem. This construction will be used again for the proofs of several results below and will be

further studied.

We note that by a classical result, see for instance [43] Theorem 2.3.1, we may take Ω′ = [0, 1], F ′

the corresponding Borel sets and P′ the Lebesgue measure. This shows that the extended setting

is rather “economical” in the loose sense that it does not introduce much randomness with respect

to the original setting.

We also note that the initial formulation of a randomized setting was more general, since it was not

required that Ω̂ should be a product space Ω×Ω′ and, even if it were the case, it was not required

that the process Ŵ should depend only on ω ∈ Ω while the random measure µ̂ should depend only

on ω′ ∈ Ω′. 2

3.2 Equivalence of the optimal switching and the randomized control problems

We can now state one of the main results of the paper.

Theorem 3.1 Assume that (A1) and (A2) are satisfied. Then the values of the optimal switching

problem and of the randomized control problem are equal:

υ0 = υR0 , (3.14)
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where υ0 and υR0 are defined by (2.10) and (3.12) respectively. This common value only depends

on the objects A, b, σ, f, g, c, x0, ξ0 appearing in assumption (A1).

The last sentence follows immediately from Remark 3.3, from the equality υ0 = υR0 and from

the obvious fact that υ0 cannot depend on the measure λ introduced in assumption (A2). The

following section is entirely devoted to the proof of the equality.

4 Proof of Theorem 3.1

4.1 Preliminaries

In this section, (A1) and (A2) are always assumed to hold. We will prove separately the two

inequalities υR0 ≤ υ0 and υ0 ≤ υR0 . In both cases, we need similar constructions, which consist in

starting with a given setting (Ω,F ,P,W ) for the optimal switching problem formulated in section

2.2, building a product space by adding another suitable probability space as an independent

factor and thus arriving at a suitable setting (Ω̂, F̂ , P̂, Ŵ , µ̂) for a randomized control problem as

formulated before. In this paragraph we present this construction and its main properties needed

later.

Let us start with a setting (Ω,F ,P,W ), where (Ω,F ,P) is a complete probability space and W

a d-dimensional standard Wiener process and let (Ω′,F ′,P′) be another arbitrary probability space.

We finally set Ω̂ = Ω× Ω′ and denote by F̂ the completion of the product σ-algebra F ⊗ F ′ with

respect to P⊗P′ and by P̂ the extension of P⊗P′ to F̂ . One can introduce a canonical extension of

W to Ω̂ setting Ŵt(ω, ω
′) = Wt(ω) for every t ≥ 0, ω ∈ Ω, ω′ ∈ Ω′. Then Ŵ is a standard Wiener

process under P̂, as it can be easily checked. More generally, any random element defined in Ω or

Ω′ has an extension defined by similar formulae, whose law under P̂ is the same as the law under

the original probability.

One can formulate an optimal switching problem in the new setting (Ω̂, F̂ , P̂, Ŵ ) in the same way

as before: we let FŴ = (FŴt )t≥0 denote the right-continuous and P̂-complete filtration generated

by Ŵ , and we define the set of admissible strategies Â as the elements of the form α̂ = (τ̂n, ξ̂n)n≥1

satisfying properties analogous to (i)− (v) in section 2.2, but with the filtration FŴ instead of FW .

For any α̂ ∈ Â one finds the corresponding trajectory X̂ α̂ solving the controlled equation

dX̂ α̂
t = bt(X̂

α̂, α̂(t)) dt+ σt(X̂
α̂, α̂(t)) dŴt, X̂ α̂

0 = x0, (4.1)

where α̂(·) is the piecewise constant process associated to α̂, and computes the corresponding

reward:

Ĵ(α̂) := Ê
[ ∫ T

0
ft(X̂

α̂, α̂(t)) dt+ g(X̂ α̂, α̂(T ))
]
− Ê

[∑
n≥1

1τ̂n<T cτ̂n(X̂ α̂, ξ̂n−1, ξ̂n)
]
. (4.2)

Finally, the value is defined as

υ̂0 := sup
α̂∈Â

Ĵ(α̂). (4.3)

One may wish to compare this value with the value of the switching problem formulated in

the original setting (Ω,F ,P,W ). To this end, let us recall that FW = (FWt )t≥0 denotes the right-

continuous and P-complete filtration in Ω generated by W . Every σ-algebra FWt gives rise to a
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σ-algebra in Ω̂ defined as

FWt × Ω′ := {A× Ω′ : A ∈ FWt }.

This way one obtains a new filtration in Ω̂ (which is right-continuous but not P̂-complete in general).

Recalling that FŴ = (FŴt )t≥0 denotes the right-continuous and P̂-complete filtration generated by

Ŵ , and letting N denote the family of P̂-null sets in F̂ , one arrives at the equality

FŴt = (FWt × Ω′) ∨N , t ≥ 0, (4.4)

which can be verified by lengthy but standard arguments.

If τ is an FW -stopping time then its canonical extension defined by τ̂(ω, ω′) = τ(ω) is a FŴ -

stopping time; indeed, for every t ≥ 0, {τ̂ ≤ t} = {τ ≤ t} × Ω′ belongs to FWt × Ω′ and so to FŴt .

Now suppose that A ∈ FWτ ; then for every t ≥ 0,

(A× Ω′) ∩ {τ̂ ≤ t} = (A ∩ {τ ≤ t})× Ω′ ∈ FWt × Ω′ ⊂ FŴt .

This shows that if A ∈ FWτ then A×Ω′ ∈ FŴτ̂ . This property implies that for any FWτ -measurable

random variable ξ, its canonical extension ξ̂(ω, ω′) = ξ(ω) is FŴτ̂ -measurable.

It follows that if we start from an admissible control strategy α ∈ A of the form α = (τn, ξn)n≥1

and denote τ̂n, ξ̂n the canonical extensions of τn, ξn respectively, then α̂ := (τ̂n, ξ̂n)n≥1 is an ad-

missible strategy for the optimal switching problem formulated in the setting (Ω̂, F̂ , P̂ , Ŵ ), hence

an element of Â. Moreover, it is easy to realize that in this case the process X̂ α̂ solution to (4.1)

is the same as the canonical extension of the process Xα defined as the solution to the controlled

equation (2.5) (X̂ α̂
t (ω, ω′) = Xα

t (ω)) and, moreover, the reward (4.2) is the same as the original

one: Ĵ(α̂) = J(α). We deduce that the two values satisfy the inequality

υ0 = sup
α∈A

J(α) ≤ sup
α̂∈Â

Ĵ(α̂) = υ̂0.

Following [2], we next introduce a variant of the optimal switching problem formulated in the

new setting (Ω̂, F̂ , P̂, Ŵ ). We define a new filtration, denoted FŴ ,∞ = (FŴ ,∞
t )t≥0, as follows: we

first introduce

Ω×F ′ := {Ω×B : B ∈ F ′},

which is a σ-algebra in Ω̂, and then set

FŴ ,∞
t := FŴt ∨ (Ω×F ′) = (FWt × Ω′) ∨N ∨ (Ω×F ′), t ≥ 0.

Next we define a new set of admissible strategies, denoted Â∞, consisting of the elements of the

form α̂ = (τ̂n, ξ̂n)n≥1 satisfying properties analogous to (i) − (v) in section 2.2, but with the

filtration FŴ ,∞ instead of FW . For any such α̂ one finds the corresponding trajectory X̂ α̂ solving

the controlled equation (4.1) and computes the corresponding reward Ĵ(α̂) by (4.2) as before. The

corresponding value is defined as

υ̂∞0 := sup
α̂∈Â∞

Ĵ(α̂). (4.5)

Since FŴ is a smaller filtration than FŴ ,∞, we have Â ⊂ Â∞ and we conclude that υ0 ≤ υ̂0 ≤ υ̂
∞
0 .

Actually, it turns out that the three values in fact coincide:
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Lemma 4.1 With the previous notations we have υ0 = υ̂0 = υ̂∞0 .

The intuitive explanation is that in the optimal switching problem for υ̂∞0 the controller has

access to the information coming from the Wiener filtration as well as the one represented by the

σ-algebra Ω×F ′; however, under P̂ the latter is independent of W and so it has no use in getting a

better performance. We do not write down the proof of this Lemma, since it is entirely analogous

to Lemma 4.1 of [2] (there the notation FW,µ′∞ and AW,µ′ was used instead of our notation FŴ ,∞

and Â∞). The conclusion of this lemma will be used in the proof of the inequality υR0 ≤ υ0 below.

4.2 Proof of the inequality υR0 ≤ υ0

We follow closely [2], making use in particular of the basic Proposition 4.2 in that paper.

Let (Ω,F ,P,W ) be a setting for the optimal switching problem formulated in section 2.2.

We construct a setting for a randomized control problem in the form of an appropriate product

extension as described in Remark 3.4.

Let λ be a Borel measure on A satisfying (A2). As a first step, we construct a suitable surjective

measurable map π : R → A and a measure λ′ on the Borel subsets of the real line satisfying the

condition λ = λ′ ◦π−1 (the image measure of λ′ under π) and such that λ′({r}) = 0 for every r ∈ R.

We do not report the details of the construction of π and λ′, for which we refer the reader to

paragraph 4.1 of [2]. We just mention that it is a very simple consequence of the well known fact

that the space of modes A, being a Borel space, is known to be either finite or countable (with the

discrete topology) or isomorphic, as a measurable space, to the real line: see e.g. [7], Corollary

7.16.1.

Next, we choose (Ω′,F ′,P′) to be the canonical probability space of a non-explosive Poisson

point process on (0,∞) × R with intensity λ′. Thus, Ω′ is the set of sequences ω′ = (tn, rn)n≥1 ⊂
(0,∞)×R with tn < tn+1 ↗∞, (σn, ρn)n≥1 is the canonical marked point process (i.e. σn(ω′) = tn,

ρn(ω′) = rn), and µ′ =
∑

n≥1 δ(σn,ρn) is the corresponding random measure. Let F ′ denote the

smallest σ-algebra such that all the maps σn, ρn are measurable, and P′ the unique probability on

F ′ such that µ′ is a Poisson random measure with intensity λ′ (since λ′ is a finite measure, this

probability actually exists). We will also use the completion of the space (Ω′,F ′,P′), still denoted

by the same symbol by abuse of notation. Setting

ηn = π(ρn), µ =
∑
n≥1

δ(σn,ηn),

it is easy to verify that µ is a Poisson random measure on (0,∞)× A with intensity λ, defined in

(Ω′,F ′,P′).
Then we perform the construction described in section 4.1: we define Ω̂ = Ω × Ω′, we denote

by F̂ the completion of F ⊗ F ′ with respect to P ⊗ P′ and by P̂ the extension of P ⊗ P′ to F̂ .

As explained before, W has a canonical extension to a P̂-standard Wiener process Ŵ in Ω̂. The

Poisson random measure µ also has a canonical extension to a random measure µ̂ on (0,∞) × A
defined on Ω̂ setting µ̂ =

∑
n≥1 δ(σ̂n,η̂n), where σ̂n(ω, ω′) := σn(ω′) and η̂n(ω, ω′) := ηn(ω′). It

is immediate to verify that µ̂ is also a Poisson random measure with intensity λ, independent of

Ŵ . We may summarize this construction saying that (Ω̂, F̂ , P̂, Ŵ , µ̂) is a setting for a randomized

control problem.

We can them formulate the corresponding randomized optimization problem as in section 3.1:

we define the P̂-completed filtration FŴ ,µ̂ = (FŴ ,µ̂
t )t≥0 generated by Ŵ and µ̂ as in formula (3.3), we
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introduce the classes V̂, V̂inf > 0 and, for any admissible control ν̂ ∈ V̂, the corresponding martingale

κν̂ , the probability P̂ν̂(dω dω′) = κν̂T (ω, ω′) P̂(dω dω′), the processes Î, given by formula (3.1) and

solution to (3.2) respectively, the reward JR(ν̂) given by (3.7)-(3.8)-(3.9) and the value υR0 defined

in (3.12). We recall that this value does not depend on the specific setting chosen above for the

randomized optimal control problem, as noticed in Remark 3.3.

We mention that we have the following alternative description of the filtration FŴ ,µ̂=(FŴ ,µ̂
t )t≥0.

We first introduce in (Ω′,F ′) the P′-complete right-continuous filtration Fµ = (Fµt )t≥0, generated

by µ and defined by

Fµt = σ
(
µ((0, s]× C) : s ∈ [0, t], C ∈ B(A)

)
∨N ′,

where N ′ denotes the family of P′-null sets of F ′. Next we introduce the σ-algebra in Ω̂ defined as

Ω×Fµt := {Ω×B : B ∈ Fµt }.

Then we have the equality

FŴ ,µ̂
t = (FWt × Ω′) ∨ (Ω×Fµt ) ∨N , t ≥ 0, (4.6)

which is analogous to formula (4.4) and can be proved by similar arguments.

At this point we make use of the following technical result, which is a special case of Proposition

4.2 in [2]:

Proposition 4.1 For every ν̂ ∈ V̂inf > 0 there exists α̂ν̂ ∈ AŴ ,∞ such that

LP̂ν̂ (Ŵ , Î) = LP̂(Ŵ , α̂ν̂), (4.7)

i.e., the law of (Ŵ , Î) under P̂ν̂ is the same as the law of (Ŵ , α̂ν̂) under P̂.

The proof of the inequality υR0 ≤ υ0 is now finished as follows. Take ν̂ ∈ V̂inf > 0 and construct

α̂ν̂ ∈ AŴ ,∞ as in Proposition 4.1. Since X̂ is obtained solving equation (3.2) and X̂ α̂ν̂ is obtained

solving equation (4.1) (with α̂ν̂ instead of α̂) it is a well-known fact that under the conditions in

Assumption (A1) the equality (4.7) implies that

LP̂ν̂ (X̂, Î) = LP̂(X̂ α̂ν , α̂ν̂). (4.8)

This immediately entails that JR(ν̂) = Ĵ(α̂ν̂). It follows that JR(ν̂) ≤ υ̂∞0 , where the latter was

defined in (4.5). From the arbitrariness of ν̂ we deduce that supν̂∈V̂inf > 0
JR(ν̂) ≤ υ̂∞0 . From (3.13)

it follows that υR0 ≤ υ̂
∞
0 . Since by Lemma 4.1 we have υ0 = υ̂∞0 we arrive at the desired conclusion

υR0 ≤ υ0. 2

4.3 Proof of the inequality υ0 ≤ υR0

In this proof we borrow some constructions from [21] and [2], but an entirely new proof is needed in

order to take into account the occurrence of the switching costs that were not considered in those

papers.

Suppose we are given a setting (Ω,F ,P,F,W ) for the optimal switching problem as described

in section 2.2, and consider the controlled equation (2.5) and the reward (2.7).
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Lemma 4.2 For any δ > 0 there exists an admissible switching strategy α = (τn, ξn)n≥1 ∈ A such

that

J(α) ≥ υ0 − δ

and moreover

(i) there exists an integer N ≥ 1 such that τn = +∞ as soon as n > N ,

(ii) the set {ξn(ω) : ω ∈ Ω, n = 1, . . . , N} is finite.

For the proof of this Lemma, we need the following stability result, that will be used several

times below. Following [36], for any pair α1, α2 : Ω× [0, T ]→ A of measurable processes we define

a distance ρ̃(α1, α2) setting

ρ̃(α1, α2) = E
[ ∫ T

0
ρ(α1

t , α
2
t ) dt

]
.

where ρ is an arbitrary metric compatible with the topology of A and satisfying ρ < 1. Using in

particular the continuity condition (A1)-(iii) one can show the following.

Lemma 4.3 Suppose we have a probability space (Ω̂, F̂ ,Q) with filtrations Gk = (Gkt )t≥0 (k ≥ 0)

and a process B which is a Wiener process with respect to each Gk. Consider the equations

dY k
t = bt(Y

k, γk(t)) dt+ σt(Y
k, γk(t)) dBt, Ŷ k

0 = x0,

where each γk is an admissible switching strategy with respect to Gk (i.e., satisfying properties

(i)− (v) in section 2.2, but with the filtration Gk instead of FW ). Suppose that

ρ̃(γk, γ0)→ 0, and γk(T )→ γ0(T ) Q− a.s. (4.9)

as k →∞. Then for every p ∈ [1,∞),

EQ sup
t∈[0,T ]

|Y k
t − Y 0

t |p → 0, EQ
[ ∫ T

0
ft(Y

k, γk(t)) dt
]
→ EQ

[ ∫ T

0
ft(Y

0, γ0(t)) dt
]
. (4.10)

EQ
[
g(Y k, γk(T ))

]
→ EQ

[
g(Y 0, γ0(T ))

]
, (4.11)

so that in particular J1(γk)→ J1(γ0).

Proof. The convergence result (4.10) was first proved in [36] in the standard diffusion case. The

simple extension to the non-Markovian case is presented in [21], Lemma 4.1 and Remark 4.1. This

holds under the condition ρ̃(γk, γ0)→ 0 alone. Using the second assumption in (4.9), the continuity

assumption (A1)-(iii) and the growth conditions (2.4), the convergence (4.11) follows easily. 2

Proof of Lemma 4.2. By the definition of υ0, for any δ > 0 there exists an admissible switching

strategy α = (τn, ξn)n≥1 ∈ A such that J(α) ≥ υ0 − δ/3. Next we modify α in two steps, in order

to satisfy the additional requirements in the statement of the Lemma.

In a first step we consider the strategy obtained by taking only the first N switchings in α, that

we denote αN = (τn, ξn)Nn=1. Formally, we use this notation to indicate the strategy where we have

modified the pairs (τn, ξn) for n > N setting them equal to (∞, ξ̄) where ξ̄ ∈ A is fixed arbitrarily.

We claim that J(αN ) ≥ J(α)− 2δ/3 for N sufficiently large.
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To verify the claim we first note that, for the piecewise constant processes αN (·), α(·) associated

to αN and α we have αN (t) = α(t) for t ∈ [0, T ∧ τN ] and so

ρ̃(αN (·), α(·)) = E
[ ∫ T

0
ρ(αN (t), α(t)) dt

]
= E

[ ∫ T

τN∧T
ρ(αN (t), α(t)) dt

]
≤ E [T − (τN ∧ T )]→ 0,

since τN → ∞. Since {τN > T} ⊂ {αN (T ) = α(T )} we also have P(αN (T ) = α(T )) ≥ P(τN >

T )→ 1, so that αN (T )→ α(T ) in P-probability and, passing to a subsequence if necessary, we may

assume αN (T ) → α(T ) P-a.s. Applying Lemma 4.3 to the controlled equations satisfied by XαN

and Xα and setting B = W , Y k = Xαk , γk(·) = αk(·) and Y 0 = Xα, γ0(·) = α(·), we conclude

that J1(αN )→ J1(α).

Since αN (t) = α(t) for t ∈ [0, T ∧ τN ] we also have XαN
t = Xα

t for t ∈ [0, T ∧ τN ] and therefore

for n = 1, . . . , N we have

1τn<T cτn(XαN , ξn−1, ξn) = 1τn<T cτn(Xα, ξn−1, ξn).

If N is chosen so large that |J1(αN ) − J1(α)| < δ/3 then, taking into account the fact that costs

are nonnegative, we obtain

J(α) = J1(α)− J2(α) ≤ J1(α)− E
[ N∑
n=1

1τn<T cτn(Xα, ξn−1, ξn)
]

= J1(α)− E
[ N∑
n=1

1τn<T cτn(XαN , ξn−1, ξn)
]

≤ J1(αN ) + δ/3− E
[ N∑
n=1

1τn<T cτn(XαN , ξn−1, ξn)
]

= J(αN ) + δ/3,

and since we have J(α) ≥ υ0 − δ/3 we obtain J(αN ) ≥ υ0 − 2δ/3 as claimed.

As a second step we fix N and we further modify αN in the following way. Since A is a Borel

space, it is separable. Let us fix a dense sequence (ai)i≥1 and define, for each integer k ≥ 1, a map

Πk : A→ A that assigns to each b ∈ A its nearest point in {a1, . . . , ak}, more precisely

Πk(b) = ai(b), where i(b) := min{j ∈ {1, . . . , k} : ρ(b, aj) ≤ ρ(b, ai) for all i ∈ {1, . . . , k}}.

It is easy to see that Πk : A→ A is Borel measurable and ρ(Πk(a), a) ↓ 0 as k →∞.

Starting from the strategy αN = (τn, ξn)Nn=1 constructed above we define αN,k = (τn,Πk(ξn))Nn=1.

We note that each strategy αN,k satisfies the conditions stated in the Lemma. To finish the proof

it is therefore enough to prove that J(αN,k)→ J(αN ) as k →∞: indeed, taking any k sufficiently

large we have J(αN,k) ≥ J(αN )− δ/3 so that any such strategy satisfies J(αN,k) ≥ υ0 − δ.
In order to prove that J(αN,k) → J(αN ) we start noting that ρ(αN,k(t), αN (t)) → 0 P-a.s. for

every t ∈ [0, T ]. In particular αN,k(T ) → αN (T ) P-a.s. and we also have ρ̃(αN,k(·), αN (·)) → 0.

Another application of Lemma 4.3 shows that J1(αN,k)→ J1(αN ) and we also have

∀ p ∈ [1,∞), E sup
t∈[0,T ]

|XαN,k

t −XαN

t |p → 0.
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Passing to a subsequence if necessary, we may assume that supt∈[0,T ] |XαN,k
t −XαN

t | → 0 P-a.s. and

for every n = 1, . . . , N we have, by the continuity assumptions in (A1)-(iii),

1τn<T cτn(XαN,k ,Πk(ξn−1),Πk(ξn))→ 1τn<T cτn(XαN , ξn−1, ξn), P− a.s.

From the growth condition (2.4) we obtain the inequality

0 ≤ 1τn<T cτn(XαN,k ,Πk(ξn−1),Πk(ξn)) ≤ 1τn<T L (1 + sup
t∈[0,T ]

|XαN,k |)r

and by (2.6) we conclude that the right-hand side is bounded in Lp(P) for every p ∈ [1,∞). It

follows that

E
[
1τn<T cτn(XαN,k ,Πk(ξn−1),Πk(ξn))

]
→ E

[
1τn<T cτn(XαN , ξn−1, ξn)

]
,

and we conclude that J2(αN,k) → J2(αN ) since the number of switchings is bounded by N . This

way we have proved that J(αN,k)→ J(αN ), which ends the proof of the Lemma. 2

In order to proceed further we need to construct a product probability space as explained in

section 4.1, making use of a properly chosen auxiliary probability space denoted (Ω′,F ′,P′). This

can be taken as an arbitrary probability space where appropriate random objects are defined. For

integers m,n, k ≥ 1, we assume that real random variables Umn , Smn and random measures πk are

defined on (Ω′,F ′,P′) and satisfy the following conditions:

1. every Umn is uniformly distributed on (0, 1);

2. every Smn admits a density (denoted fmn (t)) with respect to the Lebesgue measure, and we

have 0 < Sm1 < Sm2 < Sm3 < . . . for every m, and Smn → 0 as m→∞ for every n;

3. every πk is a Poisson random measure on (0,∞) × A, admitting compensator k−1λ(da) dt

with respect to its natural filtration;

4. the random elements Umn , S
h
j , πk are all independent.

The inequalities required in point 2. above can be satisfied for instance by choosing the support

of each density fmn inside the interval ((1 − 2−n)/m, (1 − 2−n−1)/m). The role of these random

elements will become clear in the constructions that follow. Notice that for the construction of

the space (Ω′,F ′,P′) only the knowledge of the measure λ is required. Moreover by a classical

result, see [43] Theorem 2.3.1, we may take Ω′ = [0, 1], F ′ the corresponding Borel sets and P′ the

Lebesgue measure.

Next we perform the construction described in section 4.1. Let us define Ω̂ = Ω × Ω′, let us

denote by F̂ the completion of the product σ-algebra F ⊗ F ′ with respect to P⊗ P′ and by Q the

extension of P⊗ P′ to F̂ (the notation P̂ will be used for a different probability introduced below).

As before we denote Ŵt, Û
m
n , Ŝhj , π̂k the canonical extensions of W , Umn , S

h
j , πk to Ω̂.

Since Ŵ is a standard Wiener process under P̂ we can consider the optimal switching problem

in the setting (Ω̂, F̂ , P̂, Ŵ ) as in section 4.1: we define the set of admissible strategies Â as the

elements of the form α̂ = (τ̂n, ξ̂n)n≥1 satisfying properties analogous to (i)− (v) in section 2.2, but

with the filtration FŴ instead of FW . For any α̂ ∈ Â one finds the corresponding trajectory X̂ α̂
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solving the controlled equation (4.1) and computes the corresponding reward Ĵ(α̂) given in (4.2),

namely

Ĵ(α̂) = Ĵ1(α̂)− Ĵ2(α̂) = EQ
[ ∫ T

0
ft(X̂

α̂, α̂(t)) dt+ g(X̂ α̂, α̂(T ))
]
−EQ

[∑
n≥1

1τ̂n<T cτ̂n(X̂ α̂, ξ̂n−1, ξ̂n)
]
,

(4.12)

where EQ denotes the expectation under Q. It was explained in Remark 2.3 that any switching

strategy can be viewed as a marked point process in A. In the following it will be convenient

to identify any α̂ ∈ Â of the form α̂ = (τ̂n, ξ̂n)n≥1 with the corresponding random measure on

(0,∞)×A defined as

α̂ =
∑
n≥1

δ(τ̂n,ξ̂n) 1τ̂n<∞

where δ denotes the Dirac measure. We will use the same symbol to denote the strategy and the

corresponding measure. We will also need the corresponding natural filtration Fα̂ = (F α̂t )t≥0 in

(Ω̂, F̂) defined by the formula:

F α̂t = σ(α̂((0, s]× C) : s ∈ [0, t], C ∈ B(A)), (4.13)

and also the filtration FŴ ∨Fα̂ := (FŴt ∨F α̂t )t≥0. We denote P(Fα̂), P(FŴ ∨Fα̂), the corresponding

predictable σ-algebras.

A basic role in the arguments below will be played by the concept of compensator (or dual

predictable projection) of this random measure, as presented for instance in [30].

Lemma 4.4 For any δ > 0 there exists an admissible switching strategy β̂ ∈ Â such that

Ĵ(β̂) ≥ υ0 − 2δ

and moreover the Q-compensator of the corresponding random measure on (0, T ] × A with respect

to FŴ ∨ Fβ̂ is absolutely continuous with respect to the measure λ(da) dt and it has the form

ν̂β̂t (ω, ω′, a)λ(da) dt

where ν̂β̂ : Ω̂× [0, T ]×A→ [0,∞) is a P(FŴ ∨ Fβ̂)⊗ B(A)-measurable function.

Proof. Given δ > 0, let us consider the strategy α constructed in Lemma 4.2 and let us

denote α̂ = (τ̂n, ξ̂n)n≥1 its canonical extension. We have seen in section 4.1 that α̂ ∈ Â and

J(α) = Ĵ(α̂). By construction of α̂ it holds that Ĵ(α̂) ≥ υ0 − δ, τ̂n = ∞ as soon as n > N , and

the set {ξ̂n(ω) : ω ∈ Ω, n = 1, . . . , N} is finite. The corresponding random measure and piecewise

constant process are

α̂ =
N∑
n=1

δ(τ̂n,ξ̂n) 1τ̂n<∞, α̂(t) = ξ01[0,τ̂1)(t) +
N∑
n=1

ξ̂n1[τ̂n,τ̂n+1)(t),

where ξ0 ∈ A is the given starting mode.

The idea of the proof is to perturb this random measure slightly in such a way that the corre-

sponding reward will not be changed too much and at the same time its compensator will have the

desired properties.
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Let ρ be a metric inducing the topology of A and satisfying ρ < 1. For every m ≥ 1, let

B(b, 1/m) denote the open ball of radius 1/m, with respect to the metric ρ, centered at b ∈ A.

Since λ(da) has full support, we have λ(B(b, 1/m)) > 0 and we can define a transition kernel

qm(b, da) in A setting

qm(b, da) =
1

λ(B(b, 1/m))
1B(b,1/m)(a)λ(da).

We recall that we require A to be a Borel space, and we denote by B(A) its Borel σ-algebra.

There exists a Borel measurable function qm : A × [0, 1] → A such that for every b ∈ A the

measure B 7→ qm(b, B) (B ∈ B(A)) is the image of the Lebesgue measure on [0, 1] under the

mapping u 7→ qm(b, u). Thus, if U is a random variable defined on some probability space and

having uniform law on [0, 1] then, for fixed b ∈ A, the A-valued random variable qm(b, U) has law

qm(b, da). The use of the same symbol qm should not generate confusion. The existence of the

function qm (even for a general transition kernel on A) is well known when A is a separable complete

metric space, in particular, when A is the unit interval [0, 1], (see e.g. [43], Theorem 3.1.1) and the

general case reduces to this one, since it is known that any Borel space is either finite or countable

(with the discrete topology) or isomorphic, as a measurable space, to the interval [0, 1]: see e.g. [7],

Corollary 7.16.1.

For fixed m ≥ 1, define R̂m0 = 0 and

R̂mn = τ̂n + Ŝmn , β̂mn = qm(ξ̂n, Û
m
n ), n ≥ 1.

Since τ̂n < τ̂n+1 and since Ŝmn > 0 we see that α̂m := (R̂mn , β̂
m
n )n≥1 is an admissible strategy (the

property that Q(R̂mn = T for some n) = 0 comes from the fact that Ŝmn have absolutely continuous

laws and are independent of τ̂n). Let

α̂m =
N∑
n=1

δ(R̂mn ,β̂
m
n ), α̂m(t) = ξ01[0,R̂m1 )(t) +

N∑
n=1

β̂mn 1[R̂mn ,R̂
m
n+1)(t),

denote the corresponding random measure and the associated piecewise constant process.

It is possible to compute explicitly the Q-compensator of these random measures with respect

to FŴ ∨ Fα̂m , which is given by the formula

N∑
n=1

1(τ̂n∨R̂mn−1,R̂
m
n ](t) q

m(ξ̂n, da)
fmn (t− τ̂n)

1− Fmn (t− τ̂n)
dt,

where we denote by Fmn (s) =
∫ s
−∞ f

m
n (t)dt the cumulative distribution function of Smn , with the

convention that fmn (s)
1−Fmn (s) = 0 if Fmn (s) = 1. The proof of this result is given in Lemma A.11 in [21].

We can write this formula in the form[
N∑
n=1

1(τ̂n∨R̂mn−1,R̂
m
n ](t)

1

λ(B(ξ̂n, 1/m))
1B(ξ̂n,1/m)(a)

fmn (t− τ̂n)

1− Fmn (t− τ̂n)

]
λ(da) dt

where the function in square brackets is a nonnegative P(FŴ ∨ Fα̂m)⊗B(A)-measurable function.

To finish the proof it is enough to show that Ĵ(α̂m) → Ĵ(α̂) as m → ∞ (or at least for a

subsequence mk). Indeed, since Ĵ(α̂) ≥ υ0 − δ, for large m we will have Ĵ(α̂m) ≥ υ0 − 2δ and we
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can take β̂ = α̂m for such m in the statement of the Lemma, since its compensator satisfies the

required conditions.

To prove the required convergence Ĵ(α̂m)→ Ĵ(α̂) we first note that

0 < R̂mn − τ̂n = Ŝmn → 0, Q− a.s.

We deduce that Q-a.s., α̂m(t) → α̂(t), except perhaps at points τ̂n, and so dt-a.s. In particular,

since there are no switchings at the terminal time T , we have Q(τ̂n = T for some n) = 0 and we

conclude that α̂m(T ) → α̂(T ) Q-a.s. We also note that by the choice of the kernel qm(b, da) we

have ρ(ξ̂n, β̂
m
n ) < 1/m→ 0 and therefore for the distance already considered above we have

ρ̃(α̂, α̂m) = EQ
[ ∫ T

0
ρ(α̂(t), α̂m(t)) dt

]
→ 0, m→∞. (4.14)

Applying Lemma 4.3 to the controlled equations satisfied by X̂ α̂m and X̂ α̂ and setting B = Ŵ ,

Y k = X̂ α̂k , γk(·) = α̂k(·) and Y 0 = X̂ α̂, γ0(·) = α̂(·) we conclude that Ĵ1(α̂m)→ Ĵ1(α̂).

It remains to study the convergence of Ĵ2(α̂m). Since it is a finite sum, it is enough to check

that for every n = 1, . . . , N

EQ
[
1R̂mn <T

cR̂mn
(X̂ α̂m , β̂mn−1, β̂

m
n )
]
→ EQ

[
1τ̂n<T cτ̂n(X̂ α̂, ξ̂n−1, ξ̂n)

]
, (4.15)

as m→∞. By the growth condition (2.4) in (A1) we have

|cR̂mn (X̂ α̂m , β̂mn−1, β̂
m
n )| ≤ L (1 + sup

t∈[0,T ]
|X α̂m

t |)r

and the right-hand side is bounded in all Lp(Q) spaces, by the estimate (2.6). So it is enough to

check that we have convergence Q-almost surely for the terms in right brackets in (4.15). Once

again, since ρ̃(α̂, α̂m)→ 0, the application of Lemma 4.3 gives that, for any p ∈ [1,∞)

EQ[ sup
t∈[0,T ]

|X α̂m

t −X α̂
t |p → 0,

and so, at least for a subsequence, we have ‖X α̂m − X α̂‖∞ → 0 Q-a.s. We have already checked

above that, Q-a.s., R̂mn → τ̂n, β̂mn → ξ̂n and so we have 1R̂mn <T
→ 1τ̂n<T and finally

1R̂mn <T
cR̂mn

(X̂ α̂m , β̂mn−1, β̂
m
n )→ 1τ̂n<T cτ̂n(X̂ α̂, ξ̂n−1, ξ̂n),

by the continuity properties of the coefficient c stated in Assumption (A1). The required conver-

gence (4.15) is proved and the proof of the Lemma is finished. 2

Lemma 4.5 For any δ > 0 there exists an admissible switching strategy α̂ ∈ Â such that

Ĵ(α̂) ≥ υ0 − 3δ

and moreover the Q-compensator of the corresponding random measure on (0, T ] × A with respect

to FŴ ∨ Fα̂ is absolutely continuous with respect to the measure λ(da) dt and it has the form

ν̂t(ω, ω
′, a)λ(da) dt

where ν : Ω̂× [0, T ]×A→ [0,∞) is a P(FŴ ∨Fα̂)⊗B(A)-measurable function satisfying inf ν > 0.

Moreover, denoting by NT the number of jump times of α̂ in [0, T ], we have NT ∈ Lp(Q) for every

p ∈ [1,∞).
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Proof. Let β̂ ∈ Â be the switching strategy constructed in Lemma 4.4, that we write in the

form of a random measure β̂ =
∑N

n=1 1R̂n<∞δ(R̂n,β̂n) having at most N summands. The idea of the

proof is to modify the associated random measure by adding an independent Poisson process with

“small” intensity. This will not affect the reward too much and will produce a random measure

whose compensator remains absolutely continuous with respect to the measure λ(da) dt with a

bounded density which, in addition, is bounded away from zero.

Recall that on the space (Ω′,F ′,P′) we assumed that for every integer k ≥ 1 there existed a

Poisson random measure πk on (0,∞)×A, admitting compensator k−1λ(da) dt with respect to its

natural filtration. We denoted π̂k its canonical extension to (Ω̂, F̂), that we write in the form of a

random measure on (0,∞)×A:

π̂k =
∑
n≥1

δ(σ̂kn,η̂
k
n),

for a marked point process (σ̂kn, η̂
k
n)n≥1. Let us define other random measures setting

µ̂k = β̂ + π̂k.

Note that the jumps times (R̂n)n≥1 are independent of the jump times (σ̂kn)n≥1, and the latter

have absolutely continuous laws. It follows that, except possibly on a set of Q probability zero,

their graphs are disjoint, i.e. β̂ and π̂k have no common jumps, and µ̂k do not charge the terminal

time T . Therefore, the random measures µ̂k can be identified with admissible switching strategies

(they belong to Â) and, together with their associated piecewise constant processes (denoted µk(·))
admit a representation of the form

µ̂k =
∑
n≥1

δ(τ̂kn ,ξ̂
k
n), µ̂k(t) = ξ01[0,τ̂k1 )(t) +

∑
n≥1

ξkn1[τ̂kn ,τ̂
k
n+1)(t), t ∈ [0, T ],

where ξ0 is the starting mode, (τ̂kn , ξ̂
k
n)n≥1 is a marked point process, each τ̂kn coincides with one of

the times R̂n or one of the times σ̂kn, and each ξ̂kn coincides with one of the random variables η̂kn or

one of the random variables β̂n.

We recall that β̂ had at most N switchings, and we define Nk
T :=

∑
n≥1 1σ̂kn≤T which has

Poisson law with parameter λ(A)T/k. It follows that the number of jump times τ̂kn in [0, T ] of each

µ̂k cannot exceed N +Nk
T and therefore it belongs to Lp(Q) for every p ∈ [1,∞).

Let us verify that the Q-compensator of each µ̂k with respect to FŴ ∨Fµ̂k satisfies the properties

in the statement of the Lemma. We first note that, since β̂ and π̂k are independent, it is easy to

prove that µ̂k = β̂ + π̂k has compensator (ν̂β̂t (ω, ω′, a) + k−1)λ(da) dt with respect to the filtration

FŴ ∨Fβ̂ ∨Fπ̂k=(FŴt ∨F
β̂
t ∨F π̂

k

t )t≥0. Let us denote Fπ̂k = (F π̂kt ) the natural filtration of π̂k defined

as in (4.13). We wish to compute the Q-compensator of µ̂k with respect to the filtration FŴ ∨ Fµ̂k

= (FŴt ∨ F
µ̂k

t )t≥0, which is smaller than FŴ ∨ Fβ̂ ∨ Fπ̂k . To this end, consider the measure space

([0,∞)×Ω×A,B([0,∞))⊗F⊗B(A), dt⊗Q(dω)⊗λ(da)). Although this is not a probability space,

one can define in a standard way the conditional expectation of any positive measurable function,

given an arbitrary sub-σ-algebra. Let us denote by ν̂kt (ω, ω′, a) the conditional expectation of the

random field ν̂β̂t (ω, ω′, a) + k−1 with respect to the σ-algebra P(FŴ ∨ Fµ̂k)⊗B(A). It is then easy

to verify that the compensator of µ̂k with respect to FŴ ∨ Fµ̂k coincides with ν̂k. Moreover, since

ν̂β̂t is nonnegative, we can take a version of ν̂k satisfying

inf
Ω̂×[0,T ]×A

ν̂k ≥ k−1 > 0.
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To finish the proof of Lemma 4.5 it is enough to show that Ĵ(µ̂k)→ Ĵ(β̂) as k →∞ (or at least

for a subsequence). Indeed, since Ĵ(β̂) ≥ υ0 − 2δ, for large k we will have Ĵ(µ̂k) ≥ υ0 − 3δ and

we can take α̂ = µ̂k for such k in the statement of the Lemma, since its compensator satisfies the

required conditions.

We first claim that, for large k, µ̂k(·) is close to β̂(·) with respect to the metric ρ̃, namely that

ρ̃(µ̂k(·), β̂(·)) := EQ
[ ∫ T

0
ρ(µ̂k(t), β̂(t)) dt

]
→ 0, k →∞. (4.16)

Recall that the jump times of π̂k are denoted σ̂kn. Since σ̂k1 has exponential law with parameter

λ(A)/k the event Bk = {σ̂k1 > T} has probability e−λ(A)T/k, so that Q(Bk) → 1 as k → ∞. We

note that, on the set Bk, we have µ̂k(t) = β̂(t) for all t ∈ [0, T ]. Since we assume ρ < 1, we have

ρ̃(µk(·), β̂(·)) ≤ T (1−Q(Bk)) and the claim (4.16) follows immediately.

Similarly, since µ̂k(T ) = β̂(T ) on Bk, we have µ̂k(T )→ β̂(T ) in Q-probability, and passing to a

subsequence (denoted by the same symbol) if necessary we can assume µ̂k(T )→ β̂(T ) Q-a.s.

Applying Lemma 4.3 to the controlled equations satisfied by X̂ µ̂k and X̂ β̂ and setting B = Ŵ ,

Y k = X̂ α̂k , γk(·) = α̂k(·) and Y 0 = X̂ α̂, γ0(·) = α̂(·)) we conclude that Ĵ1(µ̂k)→ Ĵ1(β̂). It remains

to study the convergence of

Ĵ2(µ̂k) = EQ
[∑
n≥1

1τ̂kn<T cτ̂kn (X̂ µ̂k , ξ̂kn−1, ξ̂
k
n)
]
.

We recall that β̂ had at most N switchings, and we defined Nk
T =

∑
n≥1 1σ̂kn≤T which has Poisson

law with parameter λ(A)T/k. By the growth conditions in Assumption (A1) we have∑
n≥1

1τ̂kn<T cτ̂kn (X̂ µ̂k , ξ̂kn−1, ξ̂
k
n) ≤ (N +Nk

T )L (1 + sup
t∈[0,T ]

|X̂ µ̂k

t |)r

and recalling (2.6) we see that for every p ∈ [1,∞) the right-hand side is bounded in Lp(Q) by a

constant independent of k. Setting again Bk = {σ̂k1 > T} and recalling that Q(Bk) → 1, by the

Hölder inequality we conclude that

EQ
[
1Bck

∑
n≥1

1τ̂kn<T cτ̂kn (X̂ µ̂k , ξ̂kn−1, ξ̂
k
n)
]
→ 0, k →∞.

Next we note that on the event Bk the measures µ̂k and β̂ coincide on (0, T ]×A and therefore on

Bk × [0, T ] we also have µ̂k(·) = β̂(·) and X̂ µ̂k = X̂ β̂ Q-a.s. It follows that

Ĵ2(µ̂k) = EQ
[
1Bk

∑
n≥1

1τ̂kn<T cτ̂kn (X̂ µ̂k , ξ̂kn−1, ξ̂
k
n)
]

+ EQ
[
1Bck

∑
n≥1

1τ̂kn<T cτ̂kn (X̂ µ̂k , ξ̂kn−1, ξ̂
k
n)
]

= EQ
[
1Bk

N∑
n=1

1R̂n<T cR̂n(X̂ β̂, β̂n−1, β̂n)
]

+ EQ
[
1Bck

∑
n≥1

1τ̂kn<T cτ̂kn (X̂ µ̂k , ξ̂kn−1, ξ̂
k
n)
]

≤ Ĵ2(β̂) + EQ
[
1Bck

∑
n≥1

1τ̂kn<T cτ̂kn (X̂ µ̂k , ξ̂kn−1, ξ̂
k
n)
]
.

Since we clearly have Ĵ2(β̂) ≤ Ĵ2(µ̂k) it follows that Ĵ2(µ̂k) → Ĵ2(β̂). Now we have verified that

Ĵ(µ̂k)→ Ĵ(β̂) and the proof of Lemma 4.5 is finished. 2
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We are now able to end the proof of the inequality υ0 ≤ υR0 .

Let δ > 0 be given and denote α̂ =
∑

n≥1 δ(σ̂n,η̂n) 1σ̂n<∞ the random measure corresponding to

the strategy α̂ given by Lemma 4.5.

Let N denote the family of Q-null sets of (Ω̂, F̂). Then the filtration (FŴt ∨F α̂t ∨N )t≥0 coincides

with the filtration previously denoted by FŴ ,α̂ = (FŴ ,α̂
t )t≥0 (compare with formula (3.3) or (4.6)).

It is easy to see that ν̂t(ω, ω
′, a)λ(da) dt is the Q-compensator of α̂ with respect to FŴ ,α̂ as well.

Using the Girsanov theorem for point processes (see e.g. [30]) we next construct an equivalent

probability under which α̂ becomes a Poisson random measure with intensity λ. Since the function

ν̂ occurring in Lemma 4.5 is a strictly positive P(FŴ ,α̂) ⊗ B(A)-measurable random field with

bounded inverse, the Doléans exponential process

Mt := exp
(∫ t

0

∫
A

(1− ν̂s(a)−1) ν̂t(a)λ(da) ds
) ∏
σ̂n≤t

ν̂σ̂n(η̂n)−1, t ∈ [0, T ], (4.17)

is a strictly positive martingale (with respect to FŴ ,α̂ and Q), and we can define an equivalent

probability P̂ on the space (Ω̂, F̂) setting P̂(dω dω′) = MT (ω, ω′)Q(dω dω′). The expectation under

P̂ will be denoted Ê. By the Girsanov theorem, the restriction of α̂ to (0, T ] × A has (P̂,FŴ ,α̂)-

compensator λ(da) dt, so that in particular it is a Poisson random measure. It can also be proved

by standard arguments (see e.g. [21], page 2155, for detailed verifications in a similar framework)

that Ŵ remains a (P̂,FŴ ,α̂)-Wiener process and that Ŵ and α̂ are independent under P̂. We have

thus constructed a setting (Ω̂, F̂ , P̂, Ŵ , α̂) for a randomized control problem as in section 3.1.

Although the random field ν is not bounded in general, so in particular it does not belong to

the class V̂ of admissible controls for the randomized control problem, we can still introduce the

Doléans exponential process κν̂ corresponding to ν̂ by the formula (3.5), namely:

κν̂t = exp

(∫ t

0

∫
A

(1− ν̂s(a))λ(da) ds

) ∏
σ̂n≤t

νσ̂n(η̂n), t ∈ [0, T ]. (4.18)

Comparing (4.17) and (4.18) shows that κν̂T MT ≡ 1. It follows that Ê[κν̂T ] = EQ[MTκ
ν̂
T ] = 1,

so that κν̂ is indeed a P̂-martingale on [0, T ] and we can define the corresponding probability

P̂ν̂(dω) := κν̂T (ω)P̂(dω). Since κν̂T MT ≡ 1, the Girsanov transformation P̂ 7→ P̂ν̂ is the inverse

of the transformation Q 7→ P̂ made above, and changes back the probability P̂ into Q considered

above, so that we have P̂ν̂ = Q.

Let X̂ be the solution to the equation

dX̂t = bt(X̂, Ît) dt+ σt(X̂, Ît) dŴt, X̂0 = x0, (4.19)

where Î is the piecewise constant A-valued process associated to α̂ and starting at the initial mode

ξ0 (the same as in formula (3.1), and elsewhere indicated α̂(·)):

Ît = ξ0 1[0,σ̂1)(t) +
∑
n≥1

η̂n 1[σ̂n,σ̂n+1)(t), t ≥ 0. (4.20)

The corresponding reward of the switching problem is then

Ĵ(α̂) = EQ

∫ T

0
ft(X̂, Ît) dt+ g(X̂, ÎT )−

∑
n≥1

1σ̂n<T cσ̂n(X̂, η̂n−1, η̂n)
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= Êν̂
∫ T

0
ft(X̂, Ît) dt+ g(X̂, ÎT )−

∑
n≥1

1σ̂n<T cσ̂n(X̂, η̂n−1, η̂n)

 , (4.21)

where we have used P̂ν̂ = Q in the last equality.

For any integer k ≥ 1 define ν̂kt (a) = ν̂t(a) ∧ k. Therefore ν̂k ∈ V̂, we can define the corre-

sponding process κν̂
k

by formula (3.5), the probability P̂ν̂k(dω) = κν̂
k

T (ω) P̂(dω), and compute the

reward JR(ν̂k) of the corresponding randomized problem. Since equation (4.19) coincides with the

randomized equation (3.2), this is given by

JR(ν̂k) = Êν̂
k

∫ T

0
ft(X̂, Ît) dt+ g(X̂, ÎT )−

∑
n≥1

1σ̂n<T cσ̂n(X̂, η̂n−1, η̂n)

 , (4.22)

where Êν̂k denotes the expectation under P̂νk .

We claim that JR(ν̂k)→ Ĵ(α̂) as k →∞. Assuming this for a moment, since Ĵ(α̂) ≥ υ0 − 3δ,

we will have JR(ν̂k) ≥ υ0− 4δ for large k, and since JR(ν̂k) is the reward of a randomized control

problem, by Remark 3.3 it can not exceed the value υR0 defined in (3.12), whatever the setting

where the randomized problem is formulated. It follows that υR0 ≥ υ0−4δ and by the arbitrariness

of δ we obtain the required inequality υR0 ≥ υ0.

It remains to prove the claim that JR(ν̂k)→ Ĵ(α̂). Setting

Φ =

∫ T

0
ft(X̂, Ît) dt+ g(X̂, ÎT )−

∑
n≥1

1σ̂n<T cσ̂n(X̂, η̂n−1, η̂n)

and comparing (4.21) with (4.22), proving the claim amounts to showing that Êν̂k [Φ] → Êν̂ [Φ] or

equivalently Ê[κν̂
k

T Φ]→ Ê[κν̂TΦ]. Using the growth condition (2.4) in Assumption (A1) we see that

|Φ| ≤ c (1 +NT ) (1 + sup
t∈[0,T ]

|X̂t|)r

for a suitable constant c, where NT denotes the number of jump times σ̂n of α̂ in [0, T ]. From Lemma

4.5 we know that NT ∈ Lp(Q) for every p ∈ [1,∞) and by (3.6) we conclude that Φ ∈ Lp(Q) for

every p ∈ [1,∞) as well. The required convergence Ê[κν̂
k

T Φ] → Ê[κν̂TΦ] can now be verified by

standard arguments, exactly the same as in [21], pages 2156-2157.

2

5 The randomized BSDE

In this section the assumptions (A1) and (A2) are assumed to hold. We start from the formulation

of the randomized control problem introduced in section 3.1. For simplicity of notation, from now

on we drop all superscripts ˆ and start from a setting, denoted (Ω,F ,P,W, µ), where (Ω,F ,P)

is a complete probability space, W is a standard Wiener process in Rd, µ =
∑

n≥1 δ(σn,ηn) is a

Poisson random measure on A with intensity λ, independent of W . We consider the piecewise

constant process I in A associated with µ defined in (3.1), the corresponding trajectory X solution

to equation (3.2) and the P-complete right-continuous filtration FW,µ = (FW,µt )t≥0 generated by
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W,µ and defined by formula (3.3). We recall the estimate E
[

supt∈[0,T ] |Xt|p
]
<∞ for all p ∈ [1,∞)

(compare (3.4)).

Our aim is to show that the value of the randomized problem can be represented in terms of a

constrained BSDE, that we will call randomized. From Theorem 3.1 it follows that the randomized

BSDE also represents the value of the original switching problem.

On the space (Ω,F ,P) equipped with the filtration FW,µ, let us consider the following con-

strained BSDE on the time interval [0, T ]:
Yt = g(X, IT ) +

∫ T

t
fs(X, Is) ds+KT −Kt −

∫ T

t
Zs dWs −

∫
(t,T ]

∫
A
Us(a)µ(ds da),

Ut(a) ≤ ct(X, It−, a).

(5.1)

We look for a (minimal) solution to (5.1) in the sense of the following definition.

Definition 5.1 A quadruple (Yt, Zt, Ut(a),Kt) (t ∈ [0, T ], a ∈ A) is called a solution to the BSDE

(5.1) if

1. Y ∈ S2(FW,µ), the set of real-valued càdlàg FW,µ-adapted processes satisfying ‖Y ‖2S2 :=

E[supt∈[0,T ] |Yt|2] < ∞;

2. Z ∈ L2
W (FW,µ), the set of FW,µ-predictable processes with values in Rd satisfying ‖Z‖2

L2
W

:=

E
[ ∫ T

0 |Zt|
2dt
]
<∞;

3. U ∈ L2
µ(FW,µ), the set of real-valued P(FW,µ)⊗ B(A)-measurable processes satisfying ‖U‖2L2

µ

:= E
[ ∫ T

0

∫
A |Ut(a)|2λ(da)dt

]
< ∞;

4. K ∈ K2(FW,µ), the subset of S2(FW,µ) consisting of FW,µ-predictable nondecreasing processes

with K0 = 0;

5. P-a.s. the equality in (5.1) holds for every t ∈ [0, T ], and the constraint Ut(a) ≤ ct(X, It−, a)

is understood to hold P(dω)λ(da)dt-almost everywhere.

A minimal solution (Y,Z, U,K) is a solution to (5.1) such that for any other solution (Y ′, Z ′,

U ′,K ′), we have P-a.s., Yt ≤ Y ′t for all t ∈ [0, T ].

We now state the main result of this section.

Theorem 5.1 There exists a unique minimal solution (Y, Z, U,K) ∈ S2(FW,µ) × L2
W (FW,µ) ×

L2
µ(FW,µ) × K2(FW,µ) to the randomized BSDE (5.1). Moreover, we have Y0 = supν∈V J

R(ν),

and, more generally (setting η0 = ξ0 for convenience)

Yt = ess sup
ν∈V

Eν
[ ∫ T

t
fs(X, Is) ds+ g(X, IT )−

∑
n≥1

1t<σn<T cσn(X, ηn−1, ηn)

∣∣∣∣FW,µt

]
. (5.2)

Remark 5.1 From Theorems 3.1 and 5.1 we deduce the BSDE representation for the original

optimal switching problem:

Y0 = sup
α∈A

J(α).

2
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We need the following preliminary result.

Lemma 5.1 For every ν ∈ V and t ∈ [0, T ], we have P-a.s.

Eν
[∑
n≥1

1t<σn<T cσn(X, ηn−1, ηn)

∣∣∣∣FW,µt

]
= Eν

[∑
n≥1

1t<σn≤T cσn(X, ηn−1, ηn)

∣∣∣∣FW,µt

]
(5.3)

= Eν
[ ∫ T

t

∫
A
cs(X, Is−, a) νs(a) λ(da) ds

∣∣∣∣FW,µt

]
.(5.4)

In particular, for t = 0, we have JR2 (ν) = Eν
[ ∫ T

0

∫
A cs(X, Is−, a) νs(a) λ(da) ds

]
.

Proof. The equality in (5.3) is obvious since P(σn = T for some n) = 0. Since the Pν-

compensator of µ(ds da) is νs(a)λ(da) ds, and by (A1)-(ii) the random field cs(X, Is−, a) is P(FW,µ)

⊗ B(A)-measurable and nonnegative, we obtain the second equality (5.4):

Eν
[∑
n≥1

1t<σn≤T cσn(X, ηn−1, ηn)

∣∣∣∣FW,µt

]
= Eν

[ ∫
(t,T ]

∫
A
cs(X, Is−, a) µ(da ds)

∣∣∣∣FW,µt

]
.

= Eν
[ ∫ T

t

∫
A
cs(X, Is−, a) νs(a) λ(da) ds

∣∣∣∣FW,µt

]
.

2

Remark 5.2 It follows from the Lemma that formula (5.2) can written

Yt = ess sup
ν∈V

Eν
[ ∫ T

t
fs(X, Is) ds+ g(X, IT )−

∫ T

t

∫
A
cs(X, Is−, a) λ(da) ds

∣∣∣∣FW,µt

]
.

Similar remarks apply to several formulae that follow below.

Proof (of Theorem 5.1) Let us introduce for every n ∈ N the following penalized BSDE on

[0, T ]:

Y n
t = g(X, IT ) +

∫ T

t
fs(X, Is) ds+Kn

T −Kn
t −

∫ T

t
Zns dWs −

∫ T

t

∫
A
Uns (a)µ(ds da), (5.5)

where

Kn
t = n

∫ t

0

∫
A

(
Uns (a)− cs(X, Is−, a)

)+
λ(da) ds.

By (2.4) and (3.4) we have E|g(X, IT )|2 < ∞ and E
∫ T

0 |ft(X, It)|
2 dt < ∞, so it follows from

Lemma 2.4 in [41] that, for every n ∈ N, there exists a unique solution (Y n, Zn, Un) ∈ S2(FW,µ)×
L2
W (FW,µ)× L2

µ(FW,µ) to the above penalized BSDE.

Next we claim that for every t ∈ [0, T ] we have, P-a.s.

Y n
t = ess sup

ν∈Vn
Eν
[ ∫ T

t
fs(X, Is) ds+ g(X, IT )−

∑
n≥1

1t<σn<T cσn(X, ηn−1, ηn)

∣∣∣∣FW,µt

]
, (5.6)

where Vn = {ν ∈ V : ν takes values in (0, n]}. To prove the claim we take any ν ∈ Vn and we first

notice that

Eν
[ ∫

(t,T ]

∫
A
Uns (a)µ(ds da)

∣∣∣∣FW,µt

]
= Eν

[ ∫ T

t

∫
A
Uns (a) νs(a)λ(da) ds

∣∣∣∣FW,µt

]
,
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because the Pν-compensator of µ(ds da) is νs(a)λ(da) ds. Next we note that the process
∫ ·

0 Z
n
s dWs

is a Pν-local martingale, since W is a Wiener process under Pν ; recalling that dPν = κνTdP and

using the estimates (3.10) it is easy to prove that it is in fact a Pν-martingale, so that in particular

Eν
[ ∫ T

t
Zns dWs

∣∣∣∣FW,µt

]
= 0.

So taking expectation Eν in (5.5), adding and subtracting both sides of equality (5.4) and rear-

ranging terms we obtain

Y n
t = Eν

[ ∫ T

t
fs(X, Is) ds+ g(X, IT )−

∑
n≥1

1t<σn<T cσn(X, ηn−1, ηn)

∣∣∣∣FW,µt

]
(5.7)

+ Eν
[ ∫ T

t

∫
A

{
n
(
Uns (a)− cs(X, Is−, a)

)+ − (Uns (a)− cs(X, Is−, a)
)
νs(a)

}
λ(da) ds

∣∣∣∣FW,µt

]
.

This is sometimes called the fundamental relation for the penalized control problem corresponding

to admissible controls Vn. The term in curly brackets
{
. . .
}

is nonnegative, since νs(a) takes values

in (0, n] and we have the numerical inequality nx+ ≥ xν for every x ∈ R and ν ∈ (0, n]. It follows

that

Y n
t ≥ Eν

[ ∫ T

t
fs(X, Is) ds+ g(X, IT )−

∑
n≥1

1t<σn<T cσn(X, ηn−1, ηn)

∣∣∣∣FW,µt

]
, ν ∈ Vn.(5.8)

Now we show that the term in curly brackets can be made as small as we wish for an appropriate

choice of ν ∈ Vn. We note that, given 0 < ε < n and x ∈ R and choosing

ν̄ = n 1{x≥0} + ε 1{−1<x<0} − (ε/x) 1{x≤−1}

we have ν̄ ∈ [ε, n] and nx+ − xν̄ ≤ ε. So it follows that setting

νε,ns (a) = n 1{Uns (a)−cs(X,Is−,a)≥0} + ε 1{−1<Uns (a)−cs(X,Is−,a)<0}

−ε (Uns (a)− cs(X, Is−, a))−1 1{Uns (a)−cs(X,Is−,a)≤−1},

we have νε,n ∈ Vn and{
n
(
Uns (a)− cs(X, Is−, a)

)+ − νε,nr (a)(Uns (a)− cs(X, Is−, a))
}
≤ ε

(νε,ns (a) is an approximation of n 1{Uns (a)−cs(X,Is−,a)≥0} which is not in Vn since it can take the value

zero). From (5.7) it follows that

Y n
t ≤ Eν

ε,n

[ ∫ T

t
fs(X, Is) ds+ g(X, IT )−

∑
n≥1

1t<σn<T cσn(X, ηn−1, ηn)

∣∣∣∣FW,µt

]
+ ε (T − t)λ(A),

which, together with (5.8), proves the claim (5.6).

Recalling that dPν = κνTdP, using the estimates (3.10), (3.11) and recalling (2.4) and (3.4), we

deduce that

sup
n
Y n
t < ∞, for all 0 ≤ t ≤ T. (5.9)
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Let us define ǧ, Y̌ and Ǔ by the equalities
Y̌t = Yt −

∫ t

0

∫
A
cs(X, Is−, a)µ(ds, da),

ǧ = g(X, IT )−
∫ T

0

∫
A
cs(X, Is−, a)µ(ds, da)

Ǔt(a) = Ut(a)− ct(X, It−, a),

so that equation (5.1) can be written as follows:
Y̌t = ǧ +

∫ T

t

(
fs(X, Is)−

∫
A
Ǔs(a)λ(da)

)
ds+KT −Kt −

∫ T

t
Zs dWs −

∫ T

t

∫
A
Ǔs(a) µ̃(ds da),

Ǔt(a) ≤ 0,

(5.10)

where µ̃(dt da) = µ(dt da) − λ(da) dt denotes the compensated Poisson measure. Let us check

that (Y, Z, U,K) belongs to the space S2(FW,µ)× L2
W (FW,µ)× L2

µ(FW,µ)×K2(FW,µ) if and only if

(Y̌ , Z, Ǔ ,K) does. In fact, noting that the process ct(X, It−, a) is P(FW,µ)⊗B(A)-measurable and

non-negative, it is enough to verify that

E

[∣∣∣∣∫ T

0

∫
A
cs(X, Is−, a)µ(ds, da)

∣∣∣∣2
]
<∞,

which is equivalent to

E
[∫ T

0

∫
A
cs(X, Is−, a)2 λ(da) ds

]
<∞.

This last inequality follows from the growth assumption (2.4) and the estimate (3.4), taking into

account that the random measure µ((0, T ] × A) has Poisson law with parameter λ(A)T . It also

follows that ǧ also belongs to L2 and it is FW,µ-measurable. We conclude that (Y,Z, U,K) is the

minimal solution to (5.1) if and only if (Y̌ , Z, Ǔ ,K) is the minimal solution to (5.10).

Next we also note that equation (5.10) is a particular case of a backward stochastic differen-

tial equation studied in a general non-Markovian framework in [35]. In particular, existence and

uniqueness of the minimal solution to equation (5.10) (or, equivalently, to equation (5.1)) follow

from Theorem 2.1 in [35]. Indeed, Assumption (H0) in [35] is clearly satisfied. Concerning As-

sumption (H1), this is only used in Lemma 2.2 of [35] to prove that the sequence (Y n)n satisfies

(5.9), a property that in our setting has been proved by different arguments. Finally, from Theorem

2.1 in [35] we also have that Y n
t (ω) converges increasingly to Yt(ω) as n → ∞, P(dω)-a.s. Since

V = ∪nVn, letting n→∞ in (5.6) we obtain (5.2).

Formula (5.2) shows that the process Y constructed in Theorem 5.1 can be seen as the value of

an optimization problem. Our final result shows that it satisfies a version of dynamic programming

principle in the randomized context. We omit the proof which is very similar to Lemma 4.8 in [21]

or Theorem 5.3 of [2], after obvious changes of notation.

Theorem 5.2 For all 0 ≤ t ≤ T , we have

Yt = ess sup
ν∈V

ess sup
τ∈Tt

Eν
[ ∫ τ

t
fr(X, Ir) dr −

∑
n≥1

1t<σn<T cσn(X, ηn−1, ηn) + Yτ

∣∣∣∣FW,µt

]
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= ess sup
ν∈V

ess inf
τ∈Tt

Eν
[ ∫ τ

t
fr(X, Ir) dr −

∑
n≥1

1t<σn<T cσn(X, ηn−1, ηn) + Yτ

∣∣∣∣FW,µt

]
, (5.11)

where Tt denotes the class of [t, T ]-valued FW,µ-stopping times.
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modes switching problem driven by Lévy process. NoDEA Nonlinear Differential Equations Appl.,

22(6):1607–1660, 2015.

[28] Ying Hu and Shanjian Tang. Multi-dimensional BSDE with oblique reflection and optimal switching.

Probab. Theory Related Fields, 147(1-2):89–121, 2010.

[29] Hitoshi Ishii and Shigeaki Koike. Viscosity solutions of a system of nonlinear second-order elliptic PDEs

arising in switching games. Funkcial. Ekvac., 34(1):143–155, 1991.

[30] J. Jacod. Multivariate point processes: predictable projection, Radon-Nikodým derivatives, represen-

tation of martingales. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 31(3):235–253, 1975.
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[32] I. Kharroubi, N. Langrené, and H. Pham. A numerical algorithm for fully nonlinear HJB equations: an

approach by control randomization. Monte Carlo Methods Appl., 20(2):145–165, 2014.
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