
libGroomRL: Reinforcement Learning for Jets

Stefano Carrazza
TIF Lab, Dipartimento di Fisica, Università degli Studi di Milano and INFN Milan,

Via Celoria 16, 20133, Milano, Italy

Frédéric A. Dreyer
Rudolf Peierls Centre for Theoretical Physics, University of Oxford,

Clarendon Laboratory, Parks Road, Oxford OX1 3PU

In these proceedings, we present a library allowing for straightforward calls in C++ to jet grooming
algorithms trained with deep reinforcement learning. The RL agent is trained with a reward function
constructed to optimize the groomed jet properties, using both signal and background samples in
a simultaneous multi-level training. We show that the grooming algorithm derived from the deep
RL agent can match state-of-the-art techniques used at the Large Hadron Collider, resulting in
improved mass resolution for boosted objects. Given a suitable reward function, the agent learns
how to train a policy which optimally removes soft wide-angle radiation, allowing for a modular
grooming technique that can be applied in a wide range of contexts. The neural network trained
with GroomRL can be used in a FastJet analysis through the libGroomRL C++ library.

I. INTRODUCTION

Jets are one of the most common objects appearing in
proton-proton colliders such as the Large Hadron Col-
lider (LHC) at CERN. They are defined as collimated
bunches of high-energy particles, which emerge from the
interactions of quarks and gluons, the fundamental con-
stituents of the proton. In modern analyses, final-state
particle momenta (i.e. the product of mass and velocity of
the outgoing particles) are mapped to jet momenta using
a sequential recombination algorithm with a single free
parameter, the jet radius R, which defines up to which
angle particles can get recombined into a given jet [3].

Due to the very high energies of its collisions, the LHC
is routinely producing heavy particles with transverse
momenta, the momentum component transverse to the
beam axis, far greater than their rest mass. When these
objects are sufficiently energetic (or boosted), they can
often generate very collimated decays, which are then re-
constructed as a single fat jet, whose radiation patterns
differ from standard quark or gluon jets. Since the ad-
vent of the LHC program, the study of the substructure
of jets has matured into a remarkably active field of re-
search that has become notably conducive to applications
of recent Machine Learning techniques [8, 9, 14].

A particularly useful set of tools for experimental anal-
yses are jet grooming algorithms, defined as a post-
processing treatment of jets to remove unenergetic wide-
angle radiation which is not associated with the underly-
ing hard substructure. Grooming techniques play a cru-
cial role in Standard Model measurements [1, 17] and in
improving the boson- and top-tagging efficiencies at the
LHC.

In these proceedings, we describe the GroomRL frame-
work [4], which is used to train a grooming algorithm
using reinforcement learning (RL), and introduce the
libGroomRL C++ library which makes it straightforward
to use the resulting grooming strategy in a real analysis.

To train the RL agent, we decompose the problem of jet
grooming into successive steps for which a reward func-
tion can be designed taking into account the physical
features that characterize such a system. We then use
a modified implementation of a Deep Q-Network (DQN)
agent [15, 16] and train a dense neural network (NN) to
optimally remove radiation unassociated from the core
of the jet. The trained model can then be applied on
other data sets, showing improved resolution compared
to state-of-the-art techniques as well as a strong resilience
to non-perturbative effects. The framework and data
used in this paper are available as open-source and pub-
lished material in [5–7].1

II. JET REPRESENTATION

Let us start by introducing the representation we use
for jets. We take the particle constituents of a jet, as
defined by any modern algorithm, and recombine them
using a Cambridge/Aachen (CA) sequential clustering al-
gorithm [10]. The CA algorithm does a pairwise recombi-
nation, adding together the momenta of the two particles
with the closest distance as defined by the measure

∆2
ij = (yi − yj)2 + (φi − φj)2 , (1)

where yi is the rapidity, a measure of relativistic velocity
along the beam axis, and φi is the azimuthal angle of
particle i around the same axis. This clustering sequence
is then used to recast the jet as a full binary tree, where
each of the nodes contains information about the kine-
matic properties of the two parent particles. For each

1 The code is available at https://github.com/JetsGame/GroomRL,
along with a C++ library at https://github.com/JetsGame/

libGroomRL.

ar
X

iv
:1

91
0.

00
41

0v
1

 [
ph

ys
ic

s.
da

ta
-a

n]
 1

5
Se

p
20

19

https://github.com/JetsGame/GroomRL
https://github.com/JetsGame/libGroomRL
https://github.com/JetsGame/libGroomRL

2

node i of the tree we define an object T (i) containing the
current observable state st, as well as a pointer to the two
children nodes and one to the parent node. The children
nodes a and b are ordered in transverse momentum such
that pt,a > pt,b, and we label a the “harder” child and b
the “softer” one. The set of possible states is defined by
a five dimensional box, such that the state of the node is
a tuple

st = {z,∆ab, ψ,m, kt} , (2)

where z = pt,b/(pt,a + pt,b) is the momentum fraction of

the softer child b, ψ = tan−1
(
yb−ya
φa−φb

)
is the azimuthal

angle around the i axis, m is the mass, and kt = pt,b∆ab

is the transverse momentum of b relative to a.

A. Grooming algorithm

A grooming algorithm acting on a jet tree can be de-
fined by a simple recursive procedure which follows each
of the branches and uses a policy πg(st) to decide based
on the values of the current tuple st whether to remove
the softer of the two branches. This is shown in Algo-
rithm 1, where the minus sign is understood to mean the
update of the kinematics of a node after removal of a soft
branch. The grooming policy πg(st) returns an action
at ∈ {0, 1}, with at = 1 corresponding to the removal
of a branch, and at = 0 leaving the node unchanged.
The state st is used to evaluate the current action-values
Q∗(s, a) for each possible action, which in turn are used
to determine the best action at this step through a greedy
policy.

It is easy to translate modern grooming algorithms
in this language. For example, Recursive Soft Drop
(RSD) [11] corresponds to a policy

πRSD(st) =

{
0 if z > zcut

(
∆ab

R0

)β
,

1 else ,
(3)

where zcut, β and R0 are the parameters of the algorithm,
and 1 corresponds as before to the action of removing the
tree branch with smaller transverse momentum.

III. SETTING UP A GROOMING
ENVIRONMENT

In order to find an optimal grooming policy πg, we
introduce an environment and a reward function, formu-
lating the problem in a way that can be solved using a
RL algorithm.

We initialize a list of all trees used for the training,
from which a tree is randomly selected at the beginning
of each episode. Each step consists in taking the node
with the largest ∆ab value and taking an action on which
of its branches to keep based on the state st of that node.
Once a decision has been taken on the removal of the

Algorithm 1 Grooming

Input: policy πg, binary tree node T (i)

at = πg(T (i) → st)
if at == 1 then
T (j) = T (i)

while T (j) = (T (j) → parent) do

T (j) → st = (T (j) → st) − (T (i) → b→ st)
end while
T (i) = (T (i) → a)

Grooming(πg, T (i))
else

Grooming(πg, T (i) → a)

Grooming(πg, T (i) → b)
end if

softer branch, and the parent nodes have been updated
accordingly, the remaining children of the node are added
to the list of nodes to consider in a following step of this
episode. The reward function is then evaluated using the
current state of the tree. The episode terminates once all
nodes have been iterated over.

The framework described here deviates from usual RL
implementations in that the range of possible states for
any episode are fixed at the start. The transition prob-
ability between states P(st+1|st, at) therefore does not
always depend very strongly on the action, although a
grooming action can result in the removal of some of the
future states and will therefore still have an effect on the
distribution.

A. Finding optimal hyper-parameters

The optimal choice of hyper-parameters, both for the
model architecture and for the grooming parameters, is
determined using the distributed asynchronous hyper-
parameter optimization library hyperopt [2].

The performance of an agent is evaluated by defining a
loss function, which is evaluated on a distinct validation
set consisting of 50k signal and background jets. For
each sample, we evaluate the jet mass after grooming of
each jet and derive the corresponding distribution. To
calculate the loss function L, we start by determining
a window (wmin, wmax) containing a fraction f = 0.6 of
the final jet masses of the groomed signal distribution,
defining wmed as the median value on that interval. The
loss function is then defined as

L =
1

5
|wmax − wmin|+ |mtarget − wmed|+ 20fbkg , (4)

where fbkg is the fraction of the groomed background
sample contained in the same interval, and mtarget is a
reference value for the signal.

We scan hyper-parameters using 1000 iterations and
select the ones for which the loss L evaluated on the val-
idation set is minimal. In practice we will do three dif-
ferent scans: to determine the best parameters of the re-
ward function, to find an optimal grooming environment,

3

and to determine the architecture of the DQN agent. The
scan is performed by requiring hyperopt to use a uniform
search space for continuous parameters, a log-uniform
search space for the learning rate and a binary choice
for all integer or boolean parameters. The optimization
used in all the results presented in this work rely on the
Tree-structured Parzen Estimator (TPE) algorithm.

B. Defining a reward function

One of the key ingredients for the optimization of the
grooming policy is the reward function used at each step
during the training. We consider a reward with two com-
ponents: a first piece evaluated on the full tree, and an-
other that considers only the kinematics of the current
node.

The first component of the reward compares the mass
of the current jet to a set target mass, typically the mass
of the underlying boosted object. We implement this
mass reward using a Cauchy distribution, which has two
free parameters, the target mass mtarget and a width Γ,
so that

RM (m) =
Γ2

π(|m−mtarget|2 + Γ2)
. (5)

Separately, we calculate a reward on the current node
which gives a positive reward for the removal of wide-
angle soft radiation, as well as for leaving intact hard-
collinear emissions. This provides a baseline behavior
for the groomer. We label this reward component “Soft-
Drop” due to its similarity with the Soft Drop condi-
tion [13], and implement it through exponential distribu-
tions

RSD(at,∆, z) = at min
(
1, e−α1 ln(1/∆)+β1 ln(z1/z)

)
+ (1− at) max

(
0, 1− e−α2 ln(1/∆)+β2 ln(z2/z)

)
, (6)

where at = 0, 1 is the action taken by the policy, and
αi, βi, zi are free parameters.

The total reward function is then given by

R(m, at,∆, z) = RM (m) +
1

NSD
RSD(at,∆, z) . (7)

Here NSD is a normalization factor determining the
weight given to the second component of the reward.

C. RL implementation and multi-level training

For the applications in this paper, we have imple-
mented a DQN agent that contains a groomer module,
which is defined by the underlying NN model and the test
policy used by the agent. The groomer can be extracted
after the model has been trained, using a greedy policy
to select the best action based on the Q-values predicted

by the NN. This allows for straightforward application of
the resulting grooming strategy on new samples.

The training sample consists of 500k signal and back-
ground jets simulated using Pythia 8.223 [18]. We will
construct two separate models by considering two signal
samples, one with boosted W jets and one with boosted
top jets, while the background always consists of QCD
jets. We use the WW and tt̄ processes, with hadronically
decaying W and top, to create the signal samples, and
the dijet process for the background. All samples used
in this article can are available online [6]. The grooming
environment is initialized by reading in the training data
and creating an event array containing the corresponding
jet trees.

To train the RL agent, we use a multi-level approach
taking into account both signal and background samples.
At the beginning of each episode, we select either a signal
jet or a background jet, with probability 1 − pbkg. For
signal jets, the reward function uses a reference mass set
to the W -boson mass, mtarget = mW , or to the top mass,
mtarget = mt, depending on the choice of sample. In
the case of the background the mass reward function in
equation (7) is changed to

Rbkg
M (m) =

m

Γbkg
exp

(
− m

Γbkg

)
. (8)

The width parameters Γ, Γbkg are also set to different
values for signal and background reward functions, and
are determined through a hyper-parameter scan.

We found that while this multi-level training only
marginally improves the performance, it noticeably re-
duces the variability of the model.

IV. JET MASS SPECTRUM

Let us now apply the GroomRL models to new data
samples. We consider three test sets of 50k elements
each: one with QCD jets, one with W initiated jets and
one with top jets. The size of the window containing
60% of the mass spectrum of the W sample, as well as
the corresponding median value, are given in table I for
each different grooming strategy. As a benchmark, we
compare to the RSD algorithm, using parameters zcut =
0.05, β = 1 and R0 = 1. One can notice a sizeable
reduction of the window size after grooming with the
machine learning based algorithms, while all groomers
are able to reconstruct the peak location to a value very
close to the W mass.

The distribution of the jet mass after grooming for
each of these samples is shown in figure 1. Each curve
gives the differential cross section dσ/dmj normalized by
the total cross section. We show results for the groom-
ing algorithm trained on a W sample, as well as for the
ungroomed (or plain) jet mass and the jet mass after
RSD grooming. As expected, one can observe that for
the ungroomed case the resolution is very poor, with the

4

0 50 100 150 200
m [GeV]

0

0.005

0.01

0.015

0.02
plain
RSD
GroomRL-W

(a) QCD

0 50 100 150 200
m [GeV]

0

0.02

0.04

0.06

0.08

0.10
plain
RSD
GroomRL-W

(b) W

0 50 100 150 200
m [GeV]

0

0.01

0.02

0.03

0.04

0.05
plain
RSD
GroomRL-W

(c) top

FIG. 1: Jet mass spectrum for (a) QCD jets, (b) W jets, (c) top jets. The GroomRL-W curve is obtained from training on W
data.

TABLE I: Size of the window ∆w containing 60% of the W
mass spectrum, and median value on that interval.

Plain GRL-W GRL-TopRSD

∆w [GeV] 44.65 10.70 13.88 16.96
wmed [GeV] 104.64 80.09 80.46 80.46

QCD jets having large masses due to wide-angle radia-
tion, while the W and top mass peaks are heavily dis-
torted. In contrast, after applying RSD or GroomRL, the
jet mass is reconstructed much more accurately. One in-
teresting feature of GroomRL is that it is able to lower the
jet mass for quark and gluon jets, further reducing the
background contamination in windows close to a heavy
particle mass.

In top jets, displayed in figure 1c, there are also notice-
able enhancements after grooming with GroomRL, despite
the fact that the training did not involve any top-related
data. This demonstrates that the tools derived from our
framework are robust and can be applied to data sets
beyond their training range with good results.

V. CONCLUSIONS

We have shown a promising application of RL to the
issue of jet grooming. Using a carefully designed reward
function, we have constructed a groomer from a dense
NN trained with a DQN agent.

This grooming algorithm was then applied to a range
of data samples, showing excellent results for the mass
resolution of boosted heavy particles. In particular, while
the training of the NN is performed on samples consisting
of W (or top) jets, the groomer yields noticeable gains
in the top (or W) case as well, on data outside of the
training range.

The improvements in resolution and background re-
duction compared to alternative state-of-the-art methods
provide an encouraging demonstration of the relevance
of machine learning for jet grooming. In particular, we
showed that it is possible for a RL agent to extract the

underlying physics of jet grooming and distill this knowl-
edge into an efficient algorithm.

Due to its simplicity, the model we developed also re-
tains most of the calculability of other existing methods
such as Soft Drop. Accurate numerical computations of
groomed jet observables are therefore achievable, allow-
ing for the possibility of direct comparisons with data.
Furthermore, given an appropriate sample, one could also
attempt to train the grooming strategy on real data, by-
passing some of the limitations due to the use of parton
shower programs.

The GroomRL framework, available online [5], is generic
and can easily be extended to higher-dimensional inputs,
for example to consider multiple emissions per step or ad-
ditional kinematic information. Algorithms derived from
GroomRL can easily be used to analyze real events through
the associated libGroomRL C++ library [7]. While the
method presented in this article was applied to a spe-
cific problem in particle physics, we expect that with a
suitable choice of reward function, this framework is in
principle also applicable to a range of problems where a
tree requires pruning.
Acknowledgments: We are grateful to Jia-Jie Zhu

and Gavin Salam for comments on the manuscript and to
Jesse Thaler for useful discussions. We also acknowledge
the NVIDIA Corporation for the donation of a Titan
Xp GPU used for this research. F.D. is supported by
the Science and Technology Facilities Council (STFC)
under grant ST/P000770/1. S.C. is supported by the
European Research Council under the European Union’s
Horizon 2020 research and innovation Programme (grant
agreement number 740006).

Appendix A: Determining the RL agent

The DQN agent uses an Adam optimizer [12], and the
training is performed with a Boltzmann policy, which
chooses an action according to weighted probabilities,
with the current best action being the likeliest.

Let us now determine the remaining parameters of the
DQN agent. To this end, we perform two independent
scans, for the grooming environment and for the network

5

2 3 4 5
state dimension

3

5

10

20

50
lo

ss

0.5 1.0 1.5 2.0 0.0 0.1 0.2
1/NSD

false true
multi-level training

0.5 1.0 1.5 2.0
1/Nbkg

5 8 10 12 15
bkg

0.0 0.2 0.4
fbkg

25 50 75 100
mass [GeV]

3

5

10

20

50

Lo
ss

wmin
wmax
wmed

10 5 10 3 10 1

learning rate
Dense LSTM

architecture
0.02 0.05 0.1

dropout
10 50 100 200

number of units
1 3 5 10
number of layers

false true
double DQN

false true
dueling network

FIG. 2: Distribution of the loss value for different parameters. The best performing model is indicated in red.

architecture.
The grooming environment has several options, which

are shown in the upper row of figure 2. Here the dis-
tribution of loss values for discrete options are displayed
using violin plots, showing both the probability density
of the loss values as well as its quartiles. The first plot
is the dimensionality of the state observed at each step,
which can be a subset of the tuple given in equation (2).
We can observe that as the dimension of the input state
is increased, the NN is able to leverage this additional
information, leading to a decrease of the loss function.
The scan over the normalization parameters of the re-
ward functions shows that it is preferable to use a small
width Γ for the signal, with a large value Γbkg for the
background, as well as a small value for the 1/NSD factor.
One can also see that the multi-level training described
in section III C leads to a distribution of loss values con-
centrated at smaller values. We have also allowed for
several functional forms of the signal mass reward func-
tion, although for our final model we will use a Cauchy
distribution.

The parameters of the network architecture are shown
in the lower row of figure 2, with the first plot showing
the mass window containing 60% of the signal distribu-
tion, with the median of that interval shown in blue. The
scatter plot of the learning rate used for the Adam opti-
mizer shows that a value slightly above 10−4 yields the
best result. The scan shows a preference for a dense net-
work with a large number of units and layers as well as
a dropout layer as the architecture of the NN. Finally,
we see that using duelling networks [20] leads to a small
improvement of the model, while double Q-learning [19]
does not.

Appendix B: Optimal GroomRL model

The final GroomRL model is trained using the full train-
ing sample with 500k signal/background jets for 1M

TABLE II: Final parameters for GroomRL, with the two values
of mtarget corresponding to the W and top mass.

Parameters Value

mtarget 80.385 GeV or 173.2 GeV

st dimension 5
Γ 2 GeV

(α1, β1, ln z1) (0.59, 0.18,−0.92)
(α2, β2, ln z2) (0.65, 0.33,−3.53)

1/NSD 0.15
multi-level training Yes

Γbkg 8 GeV
1/Nbkg 1.8 or 1.0
pbkg 0.48 or 0.2

learning rate 10−4

Dueling NN Yes
Double DQN No

Nmax
epochs 500K

Architecture Dense
Dropout 0.05
Layers 10
Nodes 100

0 100k 200k 300k 400k 500k
Iterations

3.0

3.2

3.4

3.6

3.8

4.0

4.2

Re
wa

rd W
Top

FIG. 3: Reward evolution during training of the GroomRL on
W and top data. A LOESS smoothing is applied to the orig-
inal curves.

6

epochs. The overall training time requires four hours
of training using a single NVIDIA GTX 1080 Ti GPU
with 12 GB of memory which includes all the training
jet trees and the DQN parameters.

The parameters of the best GroomRL model obtained
following the strategy presented in this paper is listed in
table II. Here two values are given for the mtarget param-
eter, which are used to train on either a sample consisting

of W bosons or of top quarks.

In figure 3 we show the reward value during the train-
ing of the GroomRL for W bosons and top quarks, after
applying the LOESS smoothing algorithm on the orig-
inal curve. We observe an improvement of the reward
function during the first 300k training epochs, with the
reward becoming relatively stable after that point.

[1] Aaboud, M. et al. Measurement of the Soft-Drop Jet
Mass in pp Collisions at

√
s = 13 TeV with the ATLAS

Detector. Phys. Rev. Lett., 121(9):092001, 2018. doi:
10.1103/PhysRevLett.121.092001.

[2] Bergstra, J., Yamins, D., and Cox, D. D. Making a sci-
ence of model search: Hyperparameter optimization in
hundreds of dimensions for vision architectures. In Pro-
ceedings of the 30th International Conference on Inter-
national Conference on Machine Learning - Volume 28,
ICML’13, pp. I–115–I–123. JMLR.org, 2013.

[3] Cacciari, M., Salam, G. P., and Soyez, G. The anti-
kt jet clustering algorithm. JHEP, 04:063, 2008. doi:
10.1088/1126-6708/2008/04/063.

[4] Carrazza, S. and Dreyer, F. A. Jet grooming through
reinforcement learning. 2019.

[5] Carrazza, S. and Dreyer, F. A. JetsGame/GroomRL
v1.0.0, March 2019. URL https://doi.org/10.5281/

zenodo.2602529.
[6] Carrazza, S. and Dreyer, F. A. JetsGame/data v1.0.0,

March 2019. URL https://doi.org/10.5281/zenodo.

2602514. This repository is git-lfs.
[7] Carrazza, S. and Dreyer, F. A. JetsGame/libGroomRL

v1.0.0, July 2019. URL https://doi.org/10.5281/

zenodo.3265835.
[8] Datta, K. and Larkoski, A. How Much Information is in

a Jet? JHEP, 06:073, 2017. doi: 10.1007/JHEP06(2017)
073.

[9] de Oliveira, L., Kagan, M., Mackey, L., Nachman, B.,
and Schwartzman, A. Jet-images deep learning edition.
JHEP, 07:069, 2016. doi: 10.1007/JHEP07(2016)069.

[10] Dokshitzer, Y. L., Leder, G. D., Moretti, S., and Webber,
B. R. Better jet clustering algorithms. JHEP, 08:001,
1997. doi: 10.1088/1126-6708/1997/08/001.

[11] Dreyer, F. A., Necib, L., Soyez, G., and Thaler, J. Re-
cursive Soft Drop. JHEP, 06:093, 2018. doi: 10.1007/
JHEP06(2018)093.

[12] Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014. URL http:

//arxiv.org/abs/1412.6980.
[13] Larkoski, A. J., Marzani, S., Soyez, G., and Thaler,

J. Soft Drop. JHEP, 05:146, 2014. doi: 10.1007/
JHEP05(2014)146.

[14] Louppe, G., Cho, K., Becot, C., and Cranmer, K. QCD-
Aware Recursive Neural Networks for Jet Physics. JHEP,
01:057, 2019. doi: 10.1007/JHEP01(2019)057.

[15] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. A.
Playing atari with deep reinforcement learning. CoRR,
abs/1312.5602, 2013. URL http://arxiv.org/abs/

1312.5602.
[16] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-

ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie,
C., Sadik, A., Antonoglou, I., King, H., Kumaran, D.,
Wierstra, D., Legg, S., and Hassabis, D. Human-level
control through deep reinforcement learning. Nature, 518
(7540):529–533, February 2015. ISSN 00280836. URL
http://dx.doi.org/10.1038/nature14236.

[17] Sirunyan, A. M. et al. Measurements of the differential
jet cross section as a function of the jet mass in dijet
events from proton-proton collisions at

√
s = 13 TeV.

JHEP, 11:113, 2018. doi: 10.1007/JHEP11(2018)113.
[18] Sjstrand, T., Ask, S., Christiansen, J. R., Corke, R., De-

sai, N., Ilten, P., Mrenna, S., Prestel, S., Rasmussen,
C. O., and Skands, P. Z. An Introduction to PYTHIA
8.2. Comput. Phys. Commun., 191:159–177, 2015. doi:
10.1016/j.cpc.2015.01.024.

[19] van Hasselt, H., Guez, A., and Silver, D. Deep re-
inforcement learning with double q-learning. CoRR,
abs/1509.06461, 2015. URL http://arxiv.org/abs/

1509.06461.
[20] Wang, Z., de Freitas, N., and Lanctot, M. Dueling

network architectures for deep reinforcement learning.
CoRR, abs/1511.06581, 2015. URL http://arxiv.org/

abs/1511.06581.

https://doi.org/10.5281/zenodo.2602529
https://doi.org/10.5281/zenodo.2602529
https://doi.org/10.5281/zenodo.2602514
https://doi.org/10.5281/zenodo.2602514
https://doi.org/10.5281/zenodo.3265835
https://doi.org/10.5281/zenodo.3265835
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://dx.doi.org/10.1038/nature14236
http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1511.06581
http://arxiv.org/abs/1511.06581

	I Introduction
	II Jet representation
	A Grooming algorithm

	III Setting up a grooming environment
	A Finding optimal hyper-parameters
	B Defining a reward function
	C RL implementation and multi-level training

	IV Jet mass spectrum
	V Conclusions
	A Determining the RL agent
	B Optimal GroomRL model
	 References

