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Key Points

•Double-refractory sam-
ples showed high sub-
clonal heterogeneity
and a distinct spectrum
of mutations, aneuploi-
dies, and mutational
signatures.

• Resistance may be
polyclonal and dictated
by a more complex ge-
nomic architecture
rather than mutations or
expression of drug-
target genes.

In multiple myeloma, novel treatments with proteasome inhibitors (PIs) and

immunomodulatory agents (IMiDs) have prolonged survival but the disease remains

incurable. At relapse, next-generation sequencing has shown occasional mutations of drug

targets but has failed to identify unifying features that underlie chemotherapy resistance.

We studied 42 patients refractory to both PIs and IMiDs. Whole-exome sequencing was

performed in 40 patients, and RNA sequencing (RNA-seq) was performed in 27. We found

more mutations than were reported at diagnosis and more subclonal mutations, which

implies ongoing evolution of the genome of myeloma cells during treatment. Themutational

landscape was different from that described in published studies on samples taken at

diagnosis. The TP53 pathway was the most frequently inactivated (in 45% of patients).

Conversely, point mutations of genes associated with resistance to IMiDs were rare and

were always subclonal. Refractory patients were uniquely characterized by having

a mutational signature linked to exposure to alkylating agents, whose role in chemotherapy

resistance and disease progression remains to be elucidated. RNA-seq analysis showed that

treatment or mutations had no influence on clustering, which was instead influenced by

karyotypic events. We describe a cluster with both amp(1q) and del(13) characterized by

CCND2 upregulation and also overexpression of MCL1, which represents a novel target for

experimental treatments. Overall, high-risk features were found in 65% of patients.

However, only amp(1q) predicted survival. Gene mutations of IMiD and PI targets are not

a preferred mode of drug resistance in myeloma. Chemotherapy resistance of the bulk

tumor population is likely attained through differential, yet converging evolution of

subclones that are overall variable from patient to patient and within the same patient.

Introduction

Over the last 2 decades, novel therapeutic approaches in multiple myeloma (MM), mainly represented
by proteasome inhibitors (PIs) and immunomodulatory drugs (IMiDs), have produced deeper and more
durable remissions.1 However, relapses are inevitable, and patients will eventually become refractory to
both classes of drugs, at which point survival is dismal.2
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The revised international staging system has incorporated few
translocations and copy-number abnormalities (CNAs) that have
prognostic potential in risk stratification of newly diagnosed patients,3

which confirms the utility of genotyping for clinical purposes. Next-
generation sequencing (NGS) techniques have greatly expanded our
view of the genomicmakeup of newly diagnosedMM (NDMM).4-7 But
very little value is attributed to genomic lesions in predicting response
to specific drugs, because even the few classic druggable mutations
in MM (eg, BRAFV600E) are often found at a subclonal level.5

Current risk definitions may need to be redefined because modern
effective combination therapies seem to have the potential to
abrogate the negative prognostic effect of some chromosomal
abnormalities.8 More recently, NGS-based studies have suggested
that extended genotyping is feasible and can offer improved
prognostication at diagnosis.9-13

In relapsed or refractory MM (RRMM), a small number of mutations
implicated in resistance to PIs or IMiDs have been identified through
custom targeted gene panels or in occasional patients.14-16 These
mutations have been validated in in vitro models, but their clinical
relevance needs additional study. Expression levels and splice
isoforms of the IMiD target CRBN have been proposed to mediate
resistance to those drugs, but results are conflicting and are not
ready for the clinic.17 Furthermore, the few RNA sequencing (RNA-
seq) studies in MM so far have found little correlation of genomic
and transcriptomic findings.18 Finally, in vitro genetic screens have
suggested candidate targets that confer drug resistance.19-21 In
light of all this uncertainty, NGS studies have not provided any real
clinical value to help make treatment decisions in the relapse
setting.

We and others have shown that MM is characterized by the
presence of subclonal heterogeneity and branching evolution from
the very early preclinical stages all the way to relapse.5,7,22-28 At
diagnosis, treatment results in a selective pressure on the tumor
population, which leads to the selection of resistant subclones. This
suggests that chemotherapy resistance is carried by a fraction of
myeloma cells that may be missed at diagnosis or that evolve during
treatment. In the RRMM setting, broader sequencing approaches
thus have the potential to better inform the catalog of genomic
alterations that mediate drug resistance by the acquisition of the
drug targets, by their downstream effectors, or by mutations of
alternative oncogenic pathways.

In this study, we performed whole-exome sequencing (WES) in
a highly selected cohort of patients refractory to both PIs and IMiDs
and also performed RNA-seq in a subset of them, looking for
genomic and phenotypic correlates of drug response.

Materials and methods

Sample selection

All patients enrolled in our study carried either refractory or relapsed-
and-refractory (R/R) disease defined as documented disease
progression during or within 60 days of completing the last therapy.
All patients were refractory to both PIs and IMiDs and had R/R
disease.

The samples were obtained at the Fondazione IRCCS Istituto
Nazionale dei Tumori of Milan, Istituto di Ematologia “L.A.
Seràgnoli” (Azienda Ospedaliero-Universitaria Sant’Orsola-Malpighi,
Bologna, Italy) and National and Kapodistrian University of Athens in

accordance with a protocol approved by the local ethics committee
after informed consent has been obtained from each patient
(Institutional Review Board INT 15/14).

We processed tumors from CD1381 bone marrow plasma cells
and matched germline samples from buccal swabs of DNA from 59
patients (118 total samples). Seventeen patients were excluded
from the study because their tumor and normal samples were either
mismatched or contaminated. Thus, our analysis was restricted 42
patients.

DNA extraction and library preparation

For plasma cells, 8 mL of a bone marrow aspirate were subjected to
red cell lysis in NH4Cl 0.15M, KHCO3 10 nM, and Na4EDTA 1 nM
(to pH 7.2). CD1381 cells were then selected by immunomagnetic
bead separation (Miltenyi Biotec). The CD1381 fraction was frozen
as viable cells in 90% fetal bovine serum and 10% dimethyl
sulfoxide. For DNA extraction, cells were thawed and rinsed twice in
phosphate-buffered saline; DNA was then extracted using the
Nucleospin Tissue kit (Macherey-Nagel). A minimum of 200 ng of
high-quality DNA was considered suitable for analysis. DNA amount
was assessed by using a fluorimetric technique (Qubit 2.0, Thermo
Fisher), and DNA integrity was assessed with an Agilent 2100
Bioanalyzer. For buccal swabs, DNA was obtained with the
Nucleospin Tissue kit (Macherey-Nagel).

High-molecular-weight DNA was sheared to smaller fragments
before preparing the library. DNA fragments were prepared using
a Covaris M220 sonicator. After sonication, DNA integrity was
checked again with the Agilent 2100 Bioanalyzer to confirm the
desired molecular weight of 150-300 bp.

Sheared DNA was used to prepare indexed libraries according to
Agilent SureSelect XT2 protocol (SureSelectXT2 Target Enrich-
ment System for Illumina Paired-End Multiplexed Sequencing).
Briefly, Illumina adapters and patient tags were ligated to the ends
of the DNA fragments, which were then amplified with 7 cycles of
polymerase chain reaction (PCR) before being captured. After
indexing and amplification, libraries were pooled in equimolar
amounts for a total of 1500 ng per pool. Each pool of 8 libraries was
then subjected to target enrichment through hybridization with
biotin-tagged 120-mer complementary RNA probes (Agilent Sure-
Select Human All-Exon V6) at 65°C degrees for 24 hours. Pulldown
was performed with streptavidin-coated magnetic beads. Nine
cycles of postcapture PCR were performed, and DNA was then
purified with AMPure XP beads.

Sequencing

We performed sequencing with the NextSeq500 sequencer (Illumina)
and obtained an average of 15.63 Gb per patient on a 75-bp
paired-end protocol. Raw fastq files were quality-controlled with
FastQC.29 Then, paired-end reads were aligned to the reference
human genome (hg19) using a Burrows-Wheeler Aligner (BWA-
MEM, v0.7.12).30 Duplicate reads were removed with Picard
software (http://broadinstitute.github.io/picard/), and unmapped
reads were removed with samtools v1.3.1.31 The reads were then
post-processed according to Genome Analysis Toolkit (GATK)
best practices 3.7,32 which include left alignment of small
insertions and deletions, indel realignment, and base quality score
recalibration. Finally, we assessed the concordance and cross-
sample contamination using the Conpair tool, which was developed
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for detecting samples swaps and cross-individual contamination in
paired samples. It can measure contamination levels as low as 0.1%,
even in the presence of copy number changes.33 Variant call format
(VCF) files have been deposited in European Genome-phenome
Archive (EGA), accession number EGAD00001005098. WES and
RNA-seq data from NDMM patients were also gathered from the
CoMMpass data set, which is part of the Multiple Myeloma Research
Foundation Personalized Medicine Initiatives (https://research.
themmrf.org and www.themmrf.org).

Detection of mutations and

copy-number abnormalities

Somatic single nucleotide variants (SNVs) were called with 3
different variant callers: MuTect2 (v3.7),34 CaVEMan (v1.13.2),35

and MuSE (v1.0).36 Small indels were called with the MuTect2
algorithm. To create a high-confidence variant list, we chose the
variants called by at least 2 algorithms. Somatic variants (substitu-
tions and indels) were annotated with Oncotator v1.9.9.0.37We then
performed additional filtering to remove false positives and poly-
morphisms. In particular, we excluded variants based on at least 1 of
the following filters: read depth was ,30 in both normal and tumor
samples; call was unidirectional; an alternative allele was present in
matched normal if the variant was not listed in the Catalogue Of
Somatic Mutations In Cancer (COSMIC) database; the C.A/G.T
variants had a frequency ,0.1 (oxoG artifacts); or variants were
annotated in polymorphism databases (ExAC,38 NCBI dbSNP,39

1000 Genome Project40) without a COSMIC annotation. Signifi-
cantly mutated genes were identified by using the MutSigCV
algorithm.41 The analysis was performed using the Gene Pattern
Web interface (http://genepattern.broadinstitute.org). P , .005
was used to create the list of the most frequently mutated genes.

CNAs were called with Excavator2 v1.1,42 an algorithm that detects
copy-number variations from WES data by integrating the analysis
of on-target and off-target reads. Hyperdiploid samples were
identified by the presence of 2 or more trisomies involving chromo-
somes 3, 5, 7, 9, 11, 15, 19, or 21. The genome regions that were
significantly modified in our samples were identified by using
GISTIC v2.0.43 The analysis was executed using the Gene Pattern
Web interface (http://genepattern.broadinstitute.org) and setting
a q value threshold of 0.01.

Subclonal analysis using ABSOLUTE v2.044 was performed in each
patient by using the cancer cell fraction (CCF) of each mutation,
corrected by purity of the sample and ploidy of the locus to return
more solid information compared with the analysis of raw allelic
frequency. This computational method starts from previous
information such as segmentation copy number data, cancer
karyotype, and somatic point mutations data to infer absolute
ploidy, tumor purity, and subclonal heterogeneity of each sample.
The software computes possible solutions in each sample,
characterized by a combination of purity, ploidy, and subclonal
fraction ranked by probability. The user then manually chooses
the most likely solution based on the software output and on the
features of each patient. This is a more authoritative way to
address subclonality.

Mutational signatures

Mutational signatures were investigated by using the implemented
algorithm in MutationalPatterns R package,45 as previously de-
scribed.46 This process exploits the non-negative matrix factorization

approach for extracting known and unknown mutational signatures.
The contribution of the shortlist of identified signatures to each case
was then quantified by using the bespoke mmSig R code (https://
github.com/evenrus/mmsig).

RNA-seq

RNA was extracted with the Qiagen RNeasy kit and quality
controlled using the Agilent Bioanalyzer and TapeStation systems.
RNA-seq libraries were produced using the Illumina TruSeq RNA
Access Library Prep Kit (Illumina). Samples were sequenced with
a plexing of 8 per high-output flowcell in the Illumina NextSeq500
system. Raw files generated from the sequencer were quality
controlled with FastQC. Then, RNA-seq reads were mapped to the
reference human genome (hg19) using the STAR aligner47 and the
parameters were set to count read numbers per gene while
mapping. To analyze the gene expression profile, we applied the
voom/limma pipeline.48 First, the data set of raw counts was filtered
to remove genes with ,10 reads in .95% of samples. Then, we
performed the trimmed mean of M-values (TMM) normalization.49

This method estimates a scale factor used to reduce technical bias
between samples that result from differences in library size. We
then applied the voom transformation to convert the raw counts in
log2-counts per million (log2-CPM) and calculated the respective
observation-level weights to be used in differential expression
analysis. P values were corrected for multiple testing by using the
Benjamini-Hochberg false discovery rate method. We performed
unsupervised hierarchical clustering with Euclidean distance and
Ward’s linkage. To compare expression levels in our cohort and
those in the public CoMMpass database, we started from raw
counts for both data sets. After TMM normalization and voom
transformation in log2-CPM, we performed a z score normalization
to allow the standardization of data across experiments and
sequencing platforms for candidate gene analysis as in Cheadle
et al.50 Results were also confirmed by Singscore, an orthogonal
method that uses a rank-based scoring system to score individual
samples independently, which provides stable scores that are less
likely to be affected by varying sample size and unwanted variations
across samples.51 Then we assessed the impact of mutations on
expression of the same gene (cis analysis) or of other genes (trans
analysis) with a hierarchical Bayesian approach implemented in the
xseq R package.52 This method works with 4 input files: a patient-
gene expression matrix, a patient-gene mutation data set, patient
CNV data, and a graph containing known interactions between
genes. The outputs are the posterior probability that a mutation in
a given gene in an individual patient influences gene expression
within that patient (P[F]) and the posterior probability that mutations
in a given gene influences gene expression across all patients
(P[D]). The list of gene interactions used was downloaded from the
Shah Lab algorithm Web page (https://shahlab.ca/projects/xseq/).

To call variants on RNA-seq data, including SNVs and indels, we
used the GATK best practice workflow for RNA-seq 3.7 (https://
software.broadinstitute.org/gatk/documentation). This includes re-
moval of reads marked with the “N” symbol, hard-clipping of regions
overhanging into introns, base recalibration, and variant calling with
the HaplotypeCaller function. Called variants were annotated with
Oncotator. We then applied the same filters as for variants obtained
byWES and cross-referenced the results with the mutations identified in
the previous WES analysis. We defined a gene as being not expressed
or as being at a low expression level if it had a log2-CPM ,3.

832 ZICCHEDDU et al 10 MARCH 2020 x VOLUME 4, NUMBER 5

D
ow

nloaded from
 https://ashpublications.org/bloodadvances/article-pdf/4/5/830/1717994/advancesadv2019000779.pdf by BIBLIO

TEC
A SC

IEN
TIFIC

A user on 04 M
arch 2020

https://research.themmrf.org
https://research.themmrf.org
http://www.themmrf.org
http://genepattern.broadinstitute.org
http://genepattern.broadinstitute.org
https://github.com/evenrus/mmsig
https://github.com/evenrus/mmsig
https://shahlab.ca/projects/xseq/
https://software.broadinstitute.org/gatk/documentation
https://software.broadinstitute.org/gatk/documentation


Statistical analysis

The comparison tests have been performed with unpaired 2-tailed
Student t tests. When the comparisons concerned paired samples,
we used a paired 2-tailed Student t test. When the comparison
included dichotomic variables, we used a Fisher’s exact test. The
P values were adjusted using the Bonferroni method. The exact
number of hypotheses tested in each panel was used to correct the
P value. An adjusted P , .05 was considered statistically significant.
The correlations were computed using Pearson’s correlation
coefficient.

Association of categorical variables with both progression-free
disease (PFS) and overall survival (OS)was performed in a univariable
fashion using Kaplan-Meier curves and a log-rank test. P values were
corrected for multiple testing using the Bonferroni method. All
analyses were performed in R, the language and environment for
statistical computing (R Core Team, 2018).

Results

Composition of the cohort and mutational spectrum

Our cohort included 42 heavily pretreated patients with a median
age of 61 years. Patients were uniformly refractory to both PIs and
IMiDs and received a median of 3 lines of treatment before
sampling, which occurred a median of 52.3 months after diagnosis
(Table 1). Three of 42 patients were primary refractory to both
drugs. All patients were refractory to the last line of treatment, which
consisted of a PI in 17, an IMiD in 15, both in 3, and other regimens
(mostly alkylators) in 7 patients (supplemental Table 1).

Forty samples were sequenced by WES to an average depth of
973 (supplemental Figure 1A-C). We found a median of 77.5
somatic variants per sample (range, 22-333 somatic variants), and
a total of 3683 variants (Figure 1A; supplemental Table 2). We then
applied ABSOLUTE44 to infer the subclonal composition of

samples: all samples showed evidence of subclonal mutations,
and 37.5% of them had more subclonal than clonal mutations
(Figure 1A). This was not influenced by purity or coverage of the
samples (supplemental Figure 2A-B; supplemental Table 3). An
increased number of mutations correlated positively with the
number of subclonal mutations (Figure 1B), implying that hyper-
mutation is a feature of late subclones that cause ongoing evolution,
even in this highly selected cohort of double-refractory samples.
Compared with NDMM patients from the CoMMpass data set, our
RRMM samples showed an increased number of mutations
(Figure 1C). The increase of mutations at relapse was also shown
by paired analysis of pretreatment and relapse samples in the
CoMMpass data set and in a recent publication by Bolli et al5 in our
group (supplemental Figure 2C-D), confirming recently published
reports.53 Perhaps not surprisingly, TP53 emerged as the most
commonly mutated gene with 10 mutations in 7 double-refractory
patients (Figure 1D). The gene mutation spectrum was otherwise
not different from those in previously published studies. We also
found mutations previously implicated in resistance to IMiDs (ie, 2 in
CRBN, 1 in IKZF3) in some patients in our cohort, but their overall
number was very low when compared with the 100% IMiD
refractory population in our study. Analysis of recurrently mutated
genes did not show novel genes in RRMM compared with NDMM,
and only KRAS, TP53, and NRAS showed significance (Figure 1D).

Genomic makeup of treatment-resistant samples

We combined fluorescence in situ hybridization (FISH) analysis and
WES to obtain information on CNAs and translocations (Figure 2A).
Analysis of significant areas of recurrent copy number changes
(supplemental Figure 3) showed an excess in gain(1q) and del(17p)
in our refractory cohort (45% and 35%, respectively). By combining
mutational data with structural abnormalities, we found that
deletions and amplifications of driver genes were frequent events.
For tumor suppressors, we found frequent instances of biallelic
inactivation through mutations and deletions that were particularly
notable for TP53 in which 6 of 7 patients showed both a mutated
and a deleted allele (Figure 2A-B).23,54 Combining CNAs and
mutations, our selected cohort of double-resistant patients showed
inactivation of the TP53 pathway through mutations and/or
deletions in 45% of the patients (Figure 2C), more than what was
previously reported in NDMM. In paired samples from the
CoMMpass cohort, we also observed the same phenomenon
(supplemental Figure 4A). Notably, we also found a significant
increase in TP53 deletions in our own patients when FISH data at
diagnosis were compared with the TP53 copy-number at the time of
sampling in the double-refractory phase (supplemental Figure 4B).
This likely represents a key mediator of the chemotherapy
resistance observed in the cohort. By aggregating evidence from
refractory patients and from in vitro screens, we created a shortlist
of genes potentially implicated in IMiD and PI resistance
(supplemental Table 4); altogether, mutations and deletions in IMiD
resistance genes were found in 32.5% of patients, regardless of the
last line of treatment. Mutations were rare. In particular, we found
IKZF3 mutations in 1 patient and CRBN mutations in 2, always at
the subclonal level (Figure 2A). Conversely, deletions were more
frequent, especially in RBX1, a component of the E3 ubiquiting
ligase complex in chr22q, which was co-deleted with XBP1 in 9
patients (Figure 2A). Interestingly, very few nonrecurring mutations
or aneuploidies were found in proteasome subunit genes in our
cohort, confirming their rarity.16,55 We assessed high-risk genetic

Table 1. Clinical features of cohort patients

Factor n/N % Median Range

Age at diagnosis, y 61 43-78

No. of lines of therapy before sampling 3 1-9

Time from diagnosis to sampling, mo 52.3 3-165

Follow-up after sampling, mo 14.6

Best response after sampling

VGPR 5/41 12.2

PR 14/41 34.2

MR 6/41 14.6

SD 7/41 17.1

PD 8/41 19.5

Lost to follow-up 1/41 2.4

Relapse 40/41 97.6

Death 37/41 90.2

Cause of death

Progressive disease 34/37 91.9

Treatment related mortality 2/37 5.4

MR, minor response; PD, progressive disease; PR, partial response; SD, stable disease;
VGPR, very good partial response.
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features (including those described in the Revised International
Staging System [R-ISS]3), double-hit events,11 apolipoprotein B
mRNA editing enzyme, catalytic polypeptide-like (APOBEC)
signature contribution,13 TP53 mutations,9 and CRBN pathway
mutations15 and found that at least 1 such event was present in
65% of patients (Figure 2D).

When the cohort was split into patients receiving IMiDs or PIs as the
last treatment, the only significant difference in the mutational
spectrum was in TP53 mutations, found only in patients receiving
PIs as the last line of treatment (Figure 2E). We found no difference
when we assessed primary refractory and R/R patients.

Mutational signatures

We next asked whether our treatment-resistant patients who
showed an increased number of mutations and defective DNA

repair pathways also showed a distinct mutational signature profile.
To this end, we performed a de novo extraction on the 96-class
profile of mutations in the cohort (Figure 3A), followed by assignment
using the COSMIC catalog of mutational signatures and finally fitting
the identified signatures. This approach allows precise quantification
of the contribution of each signature and the identification of novel
ones.46 We found that even at this late stage, the mutational catalog
is mainly composed of mutational processes attributable to cell
aging (signatures 1 and 5) and APOBEC (signatures 2 and 13)56

(Figure 3B). Interestingly, we confirmed the activity of a novel
signature (still not included in the COSMIC database) first reported
in MM genomes as MM-128; it was later believed to be linked to
exposure to alkylating agents.57 Not surprisingly, this signature was
well represented in our heavily treated cohort, in which most patients
were exposed to oral or intravenous alkylating agents at some point in
the past. Its activity was not correlated with the cumulative dose of

C
0.027

1

10

100

1000

CoMMpass RRMM

Nu
m

be
r o

f m
ut

at
ion

s (
log

10
)

(t test)

D

20

15

10

5

0

5

10

A
C

TG
1

B
H

LH
E

41
B

IR
C

3
C

D
K

4
C

Y
LD

FA
T3

FU
B

P
1

H
IS

T1
H

1E
ID

H
1

IG
F1

R
IK

Z
F3

N
FK

B
IA

P
R

K
D

2
R

P
L1

0
R

P
S

3A
S

N
X

7
TG

D
S

A
R

ID
2

AT
R

B
R

A
F

C
C

N
D

1
C

D
K

N
1B

C
R

B
N

E
G

R
1

FA
M

4
6C

FG
FR

3
IG

LL
5

K
D

M
6A LT
B

P
IM

1
S

F3
B

1
U

S
P

29
AT

M
D

IS
3

IR
F4

* 
N

R
A

S

% Mutations in PatientsNumber of Mutations

* 
K

R
A

S
* 

TP
53

Nu
m

be
r o

f
m

ut
at

ion
s

%
 m

ut
at

ion
s 

in 
pa

tie
nt

s

20

15

10

5

0

5

10

B

To
ta

l m
ut

at
ion

s

0 50 100 150

50

100

150

200

250

300

Subclonal mutations

cor = 0.83
p = 2.85e–11

A

M
73

3
M

74
2

M
M

7
M

M
9

M
82

4
42

9
M

73
1

M
72

5
M

82
3

M
M

1
M

72
7

45
0

M
71

7
M

75
3

M
75

9
M

73
6

M
75

1
M

79
6

M
M

4
47

5
M

M
3

M
74

0
M

71
9

M
73

7
M

73
9

M
72

0
M

M
5

M
73

5
33

5
M

72
4

M
M

2
M

6
9

0
M

72
6

M
M

8
M

72
9

M
73

4
M

73
2

35
2

3
9

0
M

73
0

Ab
so

lut
e 

va
ria

nt
 n

um
be

r 

0

100

200

300

400

0

20

40

60

80

100

number subclonal variants % subclonal variants number clonal variants

%
 su

bc
lon

al
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Box plot representing the distribution of variant number in NDMM (samples pertain to the CoMMpass data set) and RRMM. First, second, and third quartiles are represented by

horizontal bars, and the whiskers point to the 1.5 interquartile range of the upper quartile and lower quartile. To make this comparison, our cohort was re-analyzed with MuTect,

Strelka, and Seurat to ensure accuracy of the analysis. (D) Waterfall plot showing the overall number of mutations for the most commonly mutated genes and their prevalence

(% of mutations) in patients. Genes mutated at a statistically significant rate are indicated by an asterisk.
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Figure 2. Genomic makeup of RRMM. (A) Oncoplot columns showing genomic alterations for the patients in the study: cytogenetic events are in red in the top part
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melphalan or cyclophosphamide administered to the patients when
both oral and intravenous administration were considered (supple-
mental Figure 5A-B). Interestingly, it was significantly higher in people
who underwent autologous transplantation before sampling and thus
received a single high dose of melphalan (Figure 3C).

Transcriptomic profile of the cohort

In 27 of 42 patients (including 25 with whole-exome data available),
RNA from CD1381 cells was available and RNA-seq was
performed. We obtained a median of 69.9 million reads per sample
to extract data on the global transcriptome as well as expressed
mutations.

We asked whether variation in gene expression across patients
could somehow be correlated with the presence of driver mutations
or cytogenetic abnormalities. To obtain an overview of the main
patterns of expression changes, we first performed an analysis of
principal components (Figure 4A). The first 2 principal components
of the analysis accounted for 9.4% and 8.7% of the variability
(supplemental Figure 6). Globally, expression changes were rarely
correlated with genomic abnormalities, with the exception of
immunoglobulin heavy chain translocations that clearly separated
samples mostly along PC1. Second, we performed an unsupervised
clustering of samples, in which the optimal number of clusters was
determined to be 5 by consensus clustering analysis. Despite the
limited value of clustering in our small cohort, we could observe
distinct groups of patients segregating mainly on the basis of
cytogenetic features (Figure 4B): in particular, the most distinctive
group of patients was characterized by the simultaneous presence
of del(13) and amp(1q) in the context of immunoglobulin heavy
chain translocations. Most of these patients received lenalidomide
as a last line of treatment, which failed. Although overall differences
in gene expression were quite limited between clusters, patients
with concomitant del(13) and amp(1q) showed a significant number
of deregulated genes, with overexpression of CCND2 as the most
prominent one. This cluster also showed EGR1 and CD79a
downregulation and MCL1 overexpression. Gene set enrichment
analysis (GSEA) on this cluster showed significant downregulation
of genes involved in NF-kB signaling downstream of tumor necrosis
factor (TNF) (supplemental Figure 7A; supplemental Table 5).
Although MCL1 overexpression can be explained by chr(1q)
amplification, upregulation of CCND2 was previously described in
patients with MAF translocations.58-60 Here, only 1 patient carried
a t(14;16); therefore, other high-risk genetic features must underlie
this observation. Interestingly, no significant gene dysregulation was
observed when either CNA was considered in isolation, confirming
that this is a fairly homogeneous subgroup characterized by
a significant interaction between genetic lesions (supplemental
Figure 7B).

Gene expression analysis could also carry predictive value and
might correlate with drug response. For example,CRBN expression
levels have been inconsistently linked to IMiD sensitivity.61,62 In our
data set, the type of last treatment did not correlate with any cluster
(Figure 4B), in line with the high number of subclonal mutations

observed by WES and suggesting that treatment does not result in
the selection of a transcriptionally homogeneous clone. Consistent
with this observation, we did not observe significant differences in
expression levels of genes associated with resistance to PIs or
IMiDs among patients who showed refractoriness to either drug as
a last line of treatment, including CRBN (supplemental Figure 8).
Next, we compared z scores and rank scores of candidate genes at
diagnosis and at the double-refractory stage by using data from the
IA12a release of the CoMMpass study. This again confirmed no
general downregulation of CRBN at the RNA level, whereas XBP1
expression levels were significantly lower in our RRMM stage
(supplemental Figure 9).

Expressed mutations

We next asked to what extent RNA-seq data would show
expression of the genomic spectrum of mutations observed. We
found that an average of only 26.3% of mutations per sample were
expressed, confirming previous data on a smaller data set18

(Figure 5A). Expression levels of the mutation positively correlated
with its CCF by WES (Figure 5B), and this was especially true for
mutations with higher CCF. As expected, the probability of
a mutation being expressed positively correlated with the overall
expression levels of that gene (Figure 5C). Overall, mutations of
driver genes such as KRAS, NRAS, and IRF4 were mostly
expressed (Figure 5D). Notable exceptions were a TP53 mutation
that caused nonsense-mediated decay in M725. Overall, mutations
that were not expressed were the ones with the lowest cancer cell
fraction in DNA sequencing, and this was independent of
expression levels of the gene.

Finally, to systematically explore transcriptomic consequences of
gene mutations, we applied the Bayesian xseq package.52 In our
small cohort, we found that the only mutated gene associated with
a significant transcriptomic deregulation was TP53: in fact, patients
with mutations often showed BCL2 upregulation and PTEN and
BAX downregulation, suggesting that these mutations are linked
with activation of other cancer-associated pathways and could be
used as surrogates of linked gene expression levels (Figure 5E).

Survival analysis

Clinical data and adequate follow-up were available for 41 of 42
patients. Median follow-up after sampling was 14.6 months. In all,
97.6% of patients relapsed and 90.2% died during follow-up, with
median PFS of 189 days after sampling and a median OS of
440 days after sampling, in line with the literature63 (Figure 6A-B).
Best response from sampling was very good partial response or
better in 12.2%, partial response (PR) in 34.2%, minor response or
stable disease in 31.7%, and progressive disease in 19.5%,
highlighting the chemotherapy resistance of the cohort (Table 1).
Transcriptomic clusters did not show distinct survival, whereas we
found that patients who harbored chr(1q) amplification, but not
a single chr(1q) gain, showed a poorer PFS and a trend toward
worse OS (Figure 6C-D). Conversely, patients with TP53
mutations and chr(17p) deletions did not have a worse prognosis

Figure 2. (continued) the most commonly mutated pathways in the cohort. MAPK_pathway: KRAS, NRAS, BRAF, and FGFR3 mutations; NF-kB pathway: CYLD, BIRC2,

BIR3, TRAF2, TRAF3, NFKBIA, and NFKBIE mutations and/or deletions; CRBN pathway: IKZF1 and IKZF3 mutations and CRBN, RBX1, DDB1, and CUL4B mutations and/or

deletions; proteasome subunit: mutations in proteasome subunit genes; and TP53 pathway: TP53, ATM, and ATR mutations and/or deletions. (D) Breakdown of the patients

based on the presence or absence of high-risk features; left-most bar, % contribution of each feature. (E) Frequency of mutations according to the last line of treatment.
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(Figure 6E-F). Gene mutations were found to have little prognostic
significance in NDMM, and this was also the case at the RRMM
stage. One exception was the PRDM1 gene: when mutated or
deleted, patients had a trend toward worse OS (Figure 6G-H).
PRDM1 is a crucial transcription factor in plasma cells and its
mutations-deletions have been observed as late events in MM
development,64 with a possible prognostic role, even at diagnosis.9

We had data on pomalidomide-based salvage treatment of 14
patients. Of these, 4 showed primary refractoriness, including 3
with loss of chr13 and del(17p). Interestingly, 1 patient with
a CRBN mutation and 1 with an IKZF3 mutation were treated with
pomalidomide and showed sensitivity to the drug, with a PFS in line
with that of the rest of the cohort.

Discussion

Here we performed WES and RNA-seq in a highly selected
population that homogeneously showed refractoriness to both
IMiDs and PIs. Contrary to previous studies, our approach allowed
us to study the genomic and transcriptomic landscape of double-
resistant myeloma in deeper detail.

We unexpectedly found that the subclonal composition is very rich
in these late stages. Previous studies showed anecdotal evidence
of 1 subclone taking over at disease relapse and accounting for the
bulk of refractory disease.65 Here, one-third of samples showed
more subclonal than clonal mutations, implying ongoing acquisition
of novel mutations and genomic heterogeneity, even at late stages.
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Indeed, this heterogeneity may explain the PRs observed to
subsequent treatments, but almost half of our cohort did not even
achieve a PR after sampling. Here, it is likely that different subclones
attained drug resistance through convergent evolution, a well-
described phenomenon in MM.5,24,28 Supporting this hypothesis,
known mutations conferring resistance to IMiDs were always found
at the subclonal level, which therefore did not entirely explain
resistance to treatment in the few patients carrying them.
Consistently, the 2 patients with CRBN and IKZF3 mutations were
not primary refractory to pomalidomide. Furthermore, when
stratified by last line of treatment, no common genomic pattern
was found across patients, again reinforcing the hypothesis that
resistance is not mediated by a major clone with a treatment-
specific genotype that mediates resistance. Even in the context of
spatial heterogeneity,66 gene mutations are likely not a preferred
mode of developing chemotherapy resistance, because recent
studies of patients who relapsed during lenalidomide maintenance
showed similar low rates of mutation in drug target genes.53 In
contrast, high-risk features were clearly enriched in our samples,
including chr(1q) amplification,11 biallelic inactivation of tumor
suppressors,23 and particularly TP53 pathway inactivation,67 which
are likely responsible for the chemotherapy resistance we observed.
Although genomic analyses are increasingly performed at relapse to
determine whether high-risk features are present, we still lack clear
correlates of subsequent drug response. Only larger studies with
uniformly treated patients will have the potential to provide results
that could be incorporated into clinical practice in the future.

WES analyses are limited in their ability to discover mutational
signatures because of a limited view of the genome. However, we
were able to confirm activation-induced cytidine deaminase and
APOBEC activity in MM and to identify an additional mutational
process active at this late stage. The signature of this process has
been linked to exposure to alkylating agents,57 and it was enriched
in patients who underwent autologous transplantation. This
indicates that the relapsing clone has been exposed to melphalan
and therefore relapse arose from residual disease at the time of
transplant rather than from contaminating clonal plasma cells in the
graft. Likely, not only the dose but also the mode of exposure to
alkylating agents is relevant in the activity of this mutational process.
Clearly, a pulsed exposure of a few residual cells to high-dose
melphalan is expected to result in more visible mutational activity
compared with longer exposure of millions of cells to lower doses of
drugs (eg, as in first-line triplet therapy with bortezomib, mephalan,
and prednisone [VMP]), and this does not necessarily imply positive
selection of mutagenized cells. Further studies with more patients
will be required to confirm our findings and to clarify whether there
is any pathogenetic role of this mutational process or whether
it merely represents a sign of drug exposure.

The study of the whole transcriptome returned a fairly heteroge-
neous picture that paralleled that of genomic analysis. As in NDMM,

we found that patients clustered mostly on the basis of cytogenetic
events rather than on gene mutations or treatment. This is likely
explained by the high number of subclonal mutations we observed,
which underlies ongoing evolution in genetically different cells that
may average the RNA-seq signal and make it less distinct from
patient to patient. This heterogeneity suggests that single-cell
analysis will be needed in the future to functionally dissect
heterogeneity and highlight therapeutic vulnerabilities at the
subclonal level in RRMM. However, our RNA-seq study also
highlighted several interesting observations. For example, our
finding that RNA expression levels of the IMiD target CRBN are
not modulated in drug-resistant stages adds evidence that this may
not be a useful biomarker for IMiD sensitivity.61,68,69 Additional
studies will be needed to assess whether downregulation of XBP1
(encoding a key member of the unfolded protein response linked to
PI resistance70-72) can be a useful biomarker. In our cohort, the
finding that amp(1q) correlated with increased MCL-1 expression
suggests that these patients may respond to MCL1 inhibitors.
Finally, we found that most driver gene mutations are expressed,
especially when found at a relatively high CCF, suggesting that
future strategies of targeted treatment could be feasible in such
patients.

To investigate whether prognostic factors used at diagnosis are
also relevant at the double-refractory stage, we measured survival
from the time of sampling. With the limitations of the small sample
size and the different salvage treatments used, we found that not all
adverse prognostic markers retained their effect. For example,
biallelic inactivation of TP53 did not have prognostic value. Median
PFS for patients with TP53 wild-type or single-hit mutations was
less than 200 days, much less than what was found at diagnosis,
likely because of the addition of other high-risk features, which
changed the effect size of each. In the future, dynamic prognostic
scores could help predict advanced stages. Of course, this would
also depend on the subsequent treatment used.

Overall, clonal heterogeneity of MM is best addressed by the use of
combination treatment, even in R/R stages. Not surprisingly, the
best results in the RRMM setting have come from combination
treatments, including monoclonal antibodies73,74 that act regard-
less of the genomic makeup of the cancer cell and have pleiotropic
effects that also target the microenvironment.75 By comparing our
data with those in studies on newly diagnosed and asymptomatic
stages,5,7,25,27,28,76 MM seems to bear an increasing genomic
complexity as it advances from asymptomatic to R/R stages, which
includes a higher number of mutations and aneuploidies, as well as
the appearance of a new mutational process and a higher level of
subclonal mutations compared with samples taken at diagnosis.
Supposedly, treatment is more likely to be effective in earlier stages
when the MM clonal structure is less complex and high-risk clones
are less frequent. This is where the maximum effort should be
directed to achieve long-term control of the disease. However,

Figure 5. (continued) that are expressed or not expressed for each quartile (Qu) of gene expression because the mutated allele is not expressed (not present) or the gene is

not expressed at all. (D) Heat map for the most commonly mutated genes (in rows) showing their expression level in each patient (columns); whether a mutation is present in

both RNA and DNA samples or in DNA samples only; and the cancer cell fraction of that mutation, which is proportional to the size of the square. (E) Heat map showing the

probabilities of genes being dysregulated in patients with mutated TP53. P(F) denotes the probability that the mutation affects the expression in the same individual; mutation

type can be either missense or complex (complex indicates that the patient has more than 1 mutation). The probability scale indicates the probability that the gene is upregu-

lated (red) or downregulated (blue).
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additional research is needed before personalized treatment can be
applied to MM based on each patient’s genomic and transcriptomic
features.
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Figure 6. Survival analysis. (A-B) Kaplan-Meier plot of the OS and PFS of the cohort. (C-D) A significant negative effect is observed on PFS (but not on OS after P value

correction) in patients harboring amplification of chr1q (ie, .3 copies). (E-F) No significant effect is observed in patients showing a double-hit of the TP53 locus. (G-H) A trend

toward shorter survival is observed in patients with deletion or mutations of the PRDM1 gene in chr6q. For all plots, numbers of patients at risk are shown in tables below

the graphs.
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