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Spatially modulated illumination allows for light
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Abstract: Light sheet fluorescence microscopy has become one of the most widely used
techniques for three-dimensional imaging, due to its high speed and low phototoxicity. Further
improvements in 3D microscopy require limiting the light exposure of the sample and increasing
the volumetric acquisition rate. We hereby present an imaging technique that allows volumetric
reconstruction of the fluorescent sample using spatial modulation on a selective illumination
volume. We demonstrate that this can be implemented using an incoherent LED source, avoiding
shadowing artifacts, typical of light sheet microscopy. Furthermore, we show that spatial
modulation allows the use of Compressive Sensing, reducing the number of modulation patterns
to be acquired. We present results on zebrafish embryos which prove that selective spatial
modulation can be used to reconstruct relatively large volumes without any mechanical movement.
The technique yields an accurate reconstruction of the sample anatomy even at significant
compression ratios, achieving higher volumetric acquisition rate and reducing photodamage
biological samples.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Selective Plane Illumination Microscopy (SPIM), also known as Light Sheet Fluorescent
Microscopy (LSFM), is an optical imaging technique which has been increasingly used in
biological applications ranging from molecular biology to whole mount tissue analysis. The basic
idea behind SPIM consists in confining the fluorescence excitation to a single plane (or light sheet),
e.g. focusing a laser beam with a cylindrical lens, and acquiring the emitted fluorescence signal
along an orthogonal detection path, as shown schematically in Fig. 1a. [1]. This confinement
of light confers optical sectioning capability to the microscope. The main advantages of this
technique are its high-speed volumetric acquisition rate and low photo-toxicity, which make it an
ideal tool for rapid 3D and 4D imaging [2].

Selective Volume Illumination (SVI) microscopy has been recently developed with the goal of
further increasing the acquisition rate [3]. As is the case with SPIM, SVI uses a perpendicular
illumination and detection. In this approach, rather than illuminating the sample in a single plane,
one applies the excitation across a confined volume. In Truong et al. [3], Light Field Microscopy
[4] was used to collect the light from the volume and reconstruct the 3D sample. In SVI, the
illumination volume is chosen so as to cover the part of the sample which is of interest to the
experiment, minimizing the background generated by fluorescent or diffusive regions outside
said part.
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Fig. 1. (a) Schematic representation of light sheet illumination and detection. (b) Spatial
modulation in Selective Volume Illumination. (c) Scheme of the experimental setup. Light
from the LED impinges on a Digital Micromirror Device, which spatially modulates light
according to a binary pattern (schematically represented in the figure below). Reflected
light is collected and refocused over the illumination volume by two objective lenses. The
fluorescence signal is collected by a wide field microscope. The coordinate reference system
in shown in the top right corner.

Here, we report a microscopy setup that exploits spatially modulated Selective Volume
Illumination (sm-SVI). Using a spatial modulator, we structure the illumination light along
the detection direction (Fig. 1(b)). We demonstrate that we can reconstruct the sample in 3
dimensions by solving an inverse problem which is based on the data generated by several
spatially modulated patterns. We show that this approach is compatible with Light Emitting
Diode (LED) illumination, presenting resolution comparable with that achievable with SPIM.
LEDs are suitable sources for fluorescence microscopy thanks to their colour availability, low
cost and stability. However, they are not well suited for SPIM microscopy, because their low
spatial coherence limits the possibility to focus the light into a single plane. Here we show not
only that LEDs can be used to optically section the sample, but also that the use of incoherent
light can reduce the unwanted speckle pattern and shadowing effects typical of SPIM [5], being
an alternative to methods shown in [6–8].

Furthermore, we demonstrate that this technique can be combined with Compressive Sensing
(CS) [9]. Compressive Sensing is a signal processing technique that has been proven to overcome
Shannon’s theorem by recovering a signal from a set of under sampled data [10,11]. For its
construction, CS finds applications in many imaging fields, such as ultrafast imaging [12], lensless
imaging [13], single pixel imaging and holography [14], among others. It has been used in
fluorescence microscopy [15,16] and in lattice light sheet fluorescence microscopy [9]. Here we
exploit CS to demonstrate that the use of sm-SVI can reduce the amount of acquired data and
consequently the light dose to the sample. Therefore, CS together with LED source make the
presented technique particularly attracting for biology, where non-invasive investigation tools are
required.
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2. Results and discussion

2.1. Selective volume illumination is achievable with a LED source

It holds for any light source, that the number of collectable photons is determined by its étendue,
which is at best preserved along the optical path in a lossless system. For a laser source, due
to the low divergence output beam, the emitted photons can be collected and focused over a
surface which is fundamentally limited by diffraction, reaching high intensities over small areas.
Conversely, photons coming from an incoherent source as a LED are emitted over a wide angle
from a relatively large emitting surface, so that only a small percentage can be gathered and
refocused. For this reason, it is normally unfeasible to use a LED in a SPIM setup, which requires
to focus the light tightly along one direction [1,2].
However, when illuminating a volume of several micrometres thickness, a LED illumination

can provide the intensity required for fluorescence imaging. This is achieved in the setup depicted
in Fig. 1(b) and Fig. 1(c), which is configured to have illumination and detection pathways
mutually orthogonal. In this work we mark with x the illumination axis and with z the detection
axis.
The first part of the system consists of a LED source which is used in combination with

a Köhler illuminator to create a uniform spot on a Digital Micromirror Device (DMD). The
DMD displays patterns which modulate the light spatially. Two paired objective lenses are used
to reproduce the pattern on the sample and depending on the illumination numerical aperture
(NAILL), the persistence length of the pattern can be changed from some tens of micrometers to
millimeters. The pattern, together with the two objective lenses, limits the illumination light to a
thickness of ∆z and modulates the light along the z direction. A detection objective lens is placed
perpendicular to the illumination direction and, in combination with a tube lens, forms the image
of the sample at the detector (a CMOS camera), collecting the photons emitted from the entire
thickness ∆z.

In a typical configuration (see Material and Methods), starting from the initial LED power of
3.5W, the intensity on the sample is approximately 500mW/cm2, which is one order of magnitude
lower than the power used in SPIM [1,17]. However, the illumination volume is wider (typically
100-150µm thick, 10 times wider than SPIM) and the collected photons per image are therefore
comparable: high-power diodes make it possible to perform SVI measurements with fluorescence
intensity at the detector comparable to SPIM.

2.2. Axially modulated illumination enables volumetric reconstruction

Spatially modulated light has been widely used in SPIM. Structuring the light in the detection
plane is a powerful method to improve the axial resolution of a microscope [18] as well as its
lateral resolution [19]. This concept has been adopted to increase resolution and contrast in
SPIM [20–23] even beyond the diffraction limit [24].

Sinusoidal illumination, modulated along the detection axis, has been used to encode the axial
profile of a sample in the Fourier domain [25]. Our setup, taking advantage of a programmable
spatial light modulator, allows one not only to adopt a similar approach, but also to generalize it by
projecting any kind of pattern set (e.g. Hadamard, Wavelet, Fourier, etc). We present the results
obtained using Walsh-Hadamard (WH) patterns [26] that were chosen both for their compatibility
with fast DMD modulation and for the 50% fill factor. The DMD modulates the incoming light
according to a binary pattern, encoded in two different states: ON and OFF. Since the Hadamard
functions have entries± 1, a rescaled version of these can be easily encoded (see Material and
Methods). Reconstruction of the sample image is possible by solving an inverse problem, as
commonly done in single pixel camera applications [26,27]. Each pixel of the detector collects a
signal that is the line integral of the fluorescence emitted by the sample along the optical axis z,
within the illuminated thickness ∆z, which must be comparable or lower than the depth of field
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of the detection optics. This signal varies depending on the projected pattern, which is spatially
modulated along the same axis. In order to recover the fluorescence concentration χ in each
voxel of the sample (x,y,z) we acquire N images ξi(x, y), with i = 1..N, corresponding to different
illumination patterns. For each (x̄, ȳ) position, we solve the linear problem:

ξ(x̄,ȳ) = A · χ(x̄,ȳ) (1)

where ξ(x̄,ȳ) is the column vector of the intensities ξi(x̄, ȳ), A is the NxN measurement matrix,
whose rows are the WH patterns and χ(x̄,ȳ) is the fluorescence concentration profile along z at
the position (x̄, ȳ). This problem can be efficiently solved in parallel for each voxel by using
standard WH routines available in MATLAB® (overall reconstruction time ∼ 3 s). No point
spread function deconvolution was applied to the data in detection, nor in illumination, although
this could potentially improve the results and enlarge the reconstruction volume.

We used N= 64 patterns in order to structure the light within the thickness ∆z = N · e = 134µm,
where e = 2.1µm is the DMD pixel size projected at the sample. In particular we discuss
the results obtained at detection magnification of 4X and numerical aperture NADET = 0.13, a
common configuration to study so-called mesoscopic samples, ranging in size between hundreds
of micrometres and a few millimetres.
We tested the method on a sample consisting of fluorescent nano-beads (500nm of average

diameter, with emission peak λ= 582nm) embedded in a solid gel matrix (1.5% phytagel in
distilled water). An example of bead reconstruction is shown in Fig. 2. In the centre of the
field of view the reconstruction is limited by diffraction. The lateral resolution (xy plane) is
given by the detection objective lens: δr = λ

2·NADET
(with NADET = 0.13). The axial resolution is

dominated by the pixel size of the DMD convolved with the illumination profile (the illumination
was upper limited by NAILL = 0.1), considering that the detection depth of field is an order of
magnitude larger than the effective pixel size. In the centre of the field of view, the measured
lateral resolution was δr= 2.3± 0.2µm and the axial resolution was δz= 2.9± 0.2µm (Fig. 2(b),
(c)), which is compatible with theoretical values. This resolution is achievable only in part of
the volume (Fig. 2(b)): moving along the x direction, away from the image centre, the axial
resolution decreases because of the defocusing of the illumination pattern. Conversely, moving
along the z axis, the transverse resolution is affected by the defocusing of the detection lens. For
the given illumination and detection geometry, these two effects are independent on the y position
within the sample. In any case, a good resolution is preserved on a relatively large volume: the
resolution is within ±

√
2 δr laterally and ±

√
2 δz axially (Fig. 2(d)) across the whole region

between ∆X= 200µm, ∆Y= 3.2mm, ∆Z = 120µm (here ∆Y= 3.2mm is the size of the camera
field of view along the y axis, red rectangle in Fig. 2(b)), where ∆X and ∆Z are comparable with
the illumination and detection depths of field.
This volume fits well specimens that are elongated in one direction (y). We anticipate that

in order to use this technique in many biological applications involving bigger samples (e.g.
imaging of large chemically cleared organs [28]), methods to extend the depth of field both in
detection and illumination will be required. To this end several solutions could be adopted, from
translating the sample along the optical axis (as normally done in SPIM) to scanning the detection
path [29], tiling the illumination [22,30,31] or engineering the detection point spread function
[32,33]. Furthermore, it is worth noting that we could modulate the light in the perpendicular
direction (axis y) [22], even if the possible advantages of this modulation, shown in [20], are not
discussed in the present paper.

Nevertheless, the imaging volume ∆X · ∆Y · ∆Z is suitable for studying zebrafish (Danio rerio)
embryos, as at least half size of the specimen is covered, without the need of translating the
sample or the detection optics.
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Fig. 2. Imaging of fluorescent beads for evaluation of the working volume. Scale bar
is 100µm. (a) Reconstructed single plane (xy plane) upon acquisition with sm-SVI. (b)
Transverse view (xz).of the reconstructed beads sample. The volume where the resolution
±
√
2 δr laterally and ±

√
2 δz axially, is indicated by the red box. (c) Bead intensity profile

along x and z in the centre of the measured volume (green arrow). The FWHM is 2.3µm
laterally, and 2.9µm axially. (d) Lateral and axial bead intensity profile, at the border of the
red box (blue arrow).

2.3. Three-dimensional imaging of zebrafish

To evaluate the quality of the 3D reconstructions we imaged 4-day post fertilization living
transgenic zebrafish embryos Tg(α-actin:GFP) and Tg(kdrl:GFP), expressing green fluorescent
protein (GFP) in the skeletal muscles and endothelial cells respectively. The samples were
acquired with sm-SVI and with a standard laser-based SPIM [17], using the same detection
objective lens (NADET = 0.13) for comparison. The power of both laser and LED was set to
provide the same total optical energy to the volume during the measurement.
By comparing the results achieved with the two techniques, we observe that the shadowing

artifacts are drastically reduced in sm-SVI (Fig. 3). This improvement results from the incoherence
of the light source, which eliminates interference effects within the sample.
A whole embryo is displayed in Fig. 4, in which the reconstruction sectioning is enough to

distinguish the muscular fibers along the entire zebrafish length, both for lateral and transverse
sections.

The acquisition of the Tg(kdrl:GFP) zebrafish (Fig. 5) confirms that the technique can provide
an adequate resolution for the observation of a large portion of the embryonic vascular network:
the vessels are distinguishable in the brain and along the trunk-tail region of the zebrafish with
almost isotropic resolution.
A requirement of sm-SVI is having a static sample, not moving for the entire duration of the

patterns acquisition. For this reason, the zebrafishes were anesthetized in tricaine 0.1% and
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Fig. 3. Comparison of SPIM and sm-SVI with incoherent illumination. Scale bar is 100µm.
(a) Single plane acquired with SPIM of a Tg(α-actin:GFP) zebrafish tail. (b) Reconstructed
plane in approximately the same location with sm-SVI.

Fig. 4. Reconstruction of a Tg(α-actin:GFP) zebrafish embryos. Scale bars are 100µm. (a)
Plane by plane reconstruction at different depth: z= 0, z= 67µm, z= 134µm, from left to
right. (b, c) Transverse sections of the sample acquired in frontal and sagittal positions. (d)
Frontal Maximum Intensity Projections (e) Sagittal Maximum Intensity projection. (f, g)
Details of the regions shown in the green and blue boxes.
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Fig. 5. sm-SVI acquisition of a Tg(kdrl:GFP) zebrafish embryos. Scale bars are 100µm. (a)
Maximum Intensity Projection of 3D reconstruction of the trunk and head region. (b) Detail
of the blue box. (c) Single sagittal plane (d) Single frontal plane. The yellow lines indicate
the corresponding position in the sagittal and frontal planes.

restrained in Fluorinated ethylene propylene (FEP) tubes [34]. Looking at Fig. 5 we observe that
the inevitable movements of the beating heart did not significantly affect the measurement results.
The fluorescence signal emitted by the two transgenic lines has different spatial features: the

fluorescence of the Tg(α-actin:GFP) is relatively uniform within each zebrafish somite while the
fluorescence of Tg(kdrl:GFP) is spatially sparse, as it appears in the zebrafish vasculature. In
both cases we conclude that sm-SVI is a suitable tool for the reconstruction of a relatively large
portion of zebrafish embryos, avoiding the sample mechanical translation or sample scanning
and presenting reduced speckle artifacts, thanks to LED illumination.

2.4. Compressive sensing reduces the amount of acquired data

SPIM and sm-SVI are practically equivalent in terms of acquisition time and light exposure of
the sample. To reconstruct N= 64 different planes, SPIM would require 64 acquisitions while the
number of acquired images in sm-SVI must be at least N+ 1= 65 (see Materials and Methods).
Spatial modulation enables to exploit Compressive Sensing (CS) strategies devoted to the

reduction of the number of measurements [9,35]. In fact, when the signal to be recovered χ has
a sparse representation under a certain basisW, there is a high probability of lossless recovery
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when the measurement matrix A is incoherent with the basis W [36]. The choice of the sensing
and sparsifying basis is fundamental both for compression and recovery. The problem (1) is
recast in the following form (the x̄, ȳ dependence has been omitted for simplicity):

ψ = argminψ

{
1
2
| | ξ − AWψ | |22 +λR(ψ)

}
, s.t. χ = Wψ, (2)

where ψ is the representation of the signal χ in the basis W, R is a penalty functional enforcing
some desired characteristic on the solution and λ is the hyperparameter weighting the penalty
with respect to the data-fidelity term. As an example, when χ is assumed to be sparse under the
W representation, a typical choice is R(ψ) = | |ψ | |1, which has been proved to enforce sparsity.
As a particular case, W = I if the image is sparse in the pixel basis.

Under this framework, another penalty term, which enforces sparsity in the image gradient,
has been proposed:

R(x) =| | TV(x) | | (3)

which is the L2 or L1 norm of the Total Variation (TV) (isotropic or anisotropic case, respectively)
[37]. The TV is suitable for images presenting sharp features, as in the case of the Tg(kdrl:GFP)
zebrafish embryos expressing fluorescence in the vascular tree.

We generated scrambled Hadamard (SH) patterns for illumination [38], which were obtained
by randomly permuting rows and columns of an Hadamard matrix. The inverse problem (2) with
W = I and the regularization given by the L2 norm of (3) was solved as a whole (not pixelwise) by
adapting the well-known TV minimization by Augmented Lagrangian and ALternating direction
ALgorithms (TVAL3) algorithm [39] to 3D images.

The measurements consisted of the acquisition ofM = N/C images upon structured volumetric
illumination with SH patterns drawn randomly from the complete set, with C being the data
compression ratio.
We reconstructed Tg(kdrl:GFP) zebrafish embryos starting from different measurement sets

respectively at compression factor of 2, 4 and 8. Throughout the entire volume, the differences
between the reconstruction obtained using the full dataset and compression C= 2 are negligible
(Fig. 6(a), (b)). When compression C= 4 is applied, some structures appear more blurred,
particularly along the axial direction (see for example the axial blurring of the vessel indicated by
the green arrow), but the full vascular network is visible. This effect is further emphasized at
higher compression rate (C= 8). We observe that the regions where multiple vessels cross are not
resolved and contribution from different axial position is mixed (see for example the blue arrow
indicating the intersomitic vessel emerging from the posterior caudal vein). Yet, even at C= 8
the reconstruction preserves the major spatial features of the vascular system. Remarkably, this
result is obtained using only M= 8 acquisitions. We have repeated this analysis on fluorescent
beads. A reconstructed region is shown in Fig. 7, sectioned along the xy and xz planes. The
results on beads confirm what observed in zebrafish samples: the quality of the reconstruction
is preserved at low and medium compression rates (C= 2 and C= 4), with some background
noise appearing, especially in the xz sections. More artifacts become visible at high compression
rate (C= 8) and some beads seem to be reconstructed in the wrong axial position or appear to be
duplicated. This can be explained by the fact that a very small number of patterns (8) was used for
the reconstruction and some axial positions are not adequately sampled by said illumination set.

These results indicate that CS can be a suitable tool to reduce the number of acquired images
which, on the one hand, has an impact in reducing the exposure to light of the sample (and
consequently the photo-toxicity), and on the other hand offers new possibilities to shorten the
acquisition time.
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Fig. 6. Compressed volumetric reconstruction in a Tg(kdrl:GFP) zebrafish embryo at
different undersampling ratio C. Scale bars are 100µm. Maximum intensity projection (left
hand side of each panel) and single frontal plane (right hand side). The yellow line highlights
the plane shown on the right-hand side. The red box is a detail of the Maximum Intensity
Projection, for each panel. From left to right: reconstruction from complete Scrambled
Hadamard measurement set and for compressing ratio of 2, 4, 8.

Fig. 7. Compressed volumetric reconstruction quality in a fluorescent beads sample at
different compression ratio. Each panel shows a maximum intensity projection. From
left to right: reconstruction from complete Scrambled Hadamard measurement set and for
compressing ratio of 2, 4, 8. Scale bar is 100µm.
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3. Conclusions

To sum up, we reported a microscopy scheme that enables 3D reconstruction of fluorescence
samples in a selective volume illumination microscope by axially modulating the excitation light.
Light modulation was made possible by using a spatial light modulator (DMD) and an incoherent
LED, with the advantage of reducing speckle artifacts. LEDs offer other advantages over lasers
in terms of higher stability and can potentially be a valuable solution for multicolor imaging, at a
much lower cost.
The spatial modulation enables compressive sensing reconstruction of the sample which

preserves anatomical details even at relevant compressing ratios. The present proof of principle
on living zebrafish embryos opens the possibility to reduce the number of acquisitions for 3D
imaging and consequently the acquisition time and the phototoxic effects induced in the sample.
Presently, the technique has the disadvantage to require a motionless sample for the entire

duration of the measurement. Since the typical measurement time was 6.4s, the method could be
applied to study fixed or anesthetized specimens, of interest for developmental biology. Further
optimization of the LED illumination and DMD modulation will be required in order to study
fast biological processes. Advanced deconvolution algorithms that fit well the presented method,
together with methods to extend the depth of field in illumination and detection, could allow us
to extend the approach to a variety of biological applications.

4. Materials and methods

4.1. Optical setup

As excitation source, a high-power LED (Thorlabs SOLIS-470C), emitting at 470nm was
used. The light creates a c.a. 10mm diameter uniform spot on the DMD through a custom
made Köhler illuminator (Fig. 1(c)). To reproduce a suitable, uniform light spot, we used an
aspheric lens (Thorlabs LB1723-A, f1 = 60mm in Fig. 1(c)) as collector, together with two lenses
f2 = 200mm (Thorlabs LA1979-A) and f3= 50mm (Thorlabs LA1131-A), as field and condenser
lens, respectively. The DMD is made by 1920× 1080 squared mirrors, whose side is 7.56µm
(Texas-Instrument DLP LightCrafter 6500). The device allows ON-OFF single mirror transition
at a 9523Hz maximum frequency. The DMD is mounted on a moving platform, enabling 3 axis
manual translation and tilt, for optical alignment. The excitation path is tilted by approximatively
12° with respect to the DMD normal, so that a ON state micromirror would reflect light to the
chamber direction. Because the DMD micromirrors tilt along their diagonal, the whole array is
rotated by 45°, so that both incident and reflected radiation belong to same plane (i.e. parallel
to the optical table). Once reflected by the DMD, the light is collected by an infinity corrected
objective lens (2X Mitutoyo Plan Apo Infinity Corrected Long, 46-142), it then passes through a
band pass excitation filter and impinges on a second objective lens, at higher magnification (5X
Mitutoyo Plan Apochromat Objective, 46-143). The presented setup showed light losses mostly
given by the size modulated region, which was almost ten times smaller than the 10mm light spot
on the DMD.
This configuration led to an overall magnification of 0,4 which resized the imaged pixel to

3µm. Considering the DMD is placed at 45° from the illumination plane, the spacing between
two lines is given by the semi-diagonal of the imaged pixel: e= 2.1µm (previously indicated as
the pixel size at the sample). The fluorescence signal emitted by the sample plane is collected
by a 4X objective lens (4X Nikon CFI Plan Fluor, 0.13 NA, 17.2mm WD), filtered by a GFP
emission filter and then imaged onto a CMOS sensor (Hamamatsu orca flash 4.0) with a tube
lens (Nikon MXA20696). The camera acquisition was triggered by a signal from the DMD,
originated at each pattern update.
The LED power at the sample was 2mW, projected on a rectangular area with sides 3.2mm

and 0.13mm, which corresponds to an intensity of c.a 500mW/cm2. The acquisition time for
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sm-SVI was 100ms per pattern. SPIM measurement shown in Fig. 3 was performed with the
setup described in [17], with a laser power of 2mW projected on an area of 3.2mm and 0.015mm.
The acquisition time for SPIM was 50ms per plane.

4.2. Modulation patterns

The DMD modulates the light along detection optical axis (z) and eventually (not used here) the
vertical axis y, while the light propagates along the x axis (Fig. 1(c)). The pattern has a persistence
length, which is given by the illumination numerical aperture (which could be changed with a
diaphragm in the back of the illumination objective lens). In the typical measurement settings,
the persistence length was approximately 200µm.
In both the used patterns set, Walsh-Hadamard and Scrambled Hadamard functions assume

positive and negative values, while the illumination intensity can only be positive. In order to
encode these functions, either (i) a pair of positive measurements or (ii) a single positive can be
acquired. In the first case the real pattern is encoded by subtraction of the pair of measurements,
while in the second it must be shifted and rescaled accordingly to the pattern corresponding to
a constant illumination [38]. In our case we adopted the first strategy, which has been widely
proved to be more robust for background subtraction [40]. An example of used patterns and the
corresponding raw images are available in Visualization 1 and Visualization 2, respectively.

4.3. Compressive Sensing inverse problem

To work with the TV algorithm, which correlates voxels along the three dimensions, we need to
treat the inverse problem as a whole. Thus, we reformulate the problem as follows:

χ = argminχ
{ µ
2
| | ξ − A(χ) | |22 + | | TV(χ) | |2

}
, (4)

where χ is now the whole fluorescence distribution in each voxel, ξ is the whole set of M<N
measurements (shown in Visualization 2), A(·) is the measurement operator acting on the whole
dataset. The isotropic TV (L2 norm) has been introduced to regularize the image in every
direction. We solved the problem (4) by using the algorithm TVAL3 proposed by Li [41] adapted
to 3D images. The reconstructions were carried out on a Workstation mounting Dual Intel
Xeon processors (10 cores, 2.35GHz) and 64 Gb of RAM memory. On a region-of-interest of
1523× 457× 64 voxels, the reconstruction process took about 15min.

4.4. Fish lines and sample preparation

The fishes were maintained under standard conditions in the fish facilities of Bioscience Dept.,
University of Milan, Via Celoria 26, 20133 Milan, Italy (Aut. Prot, n. 295/2012-A - 20/12/2012).
All the experiments were conducted minimizing stress and pain, with the use of apposite
anesthetic. Zebrafish AB strains obtained from the Wilson lab (University College London,
London, UK) were maintained at 28°C on a 14 h light/10 h dark cycle. The zebrafish transgenic
Tg(α-actin:GFP) and Tg(kdrl:GFP) were used for imaging. Embryos were collected by natural
spawning, staged according to Kimmel and colleagues, and raised at 28°C in fish water (Instant
Ocean, 0.1% Methylene Blue) in Petri dishes, according to established techniques. After 24
hpf, to prevent pigmentation 0.003% 1-phenyl-2-thiourea (PTU, Sigma-Aldrich, Saint Louis,
MO, USA) was added to the fish water. Embryos were washed, dechorionated and anaesthetized,
with 0.016% tricaine (Ethyl 3-aminobenzoate methanesulfonate salt; Sigma-Aldrich), before
acquisitions. During imaging, the fish were restrained in FEP (Fluorinated ethylene propylene)
tubes [34].

Funding Q1

Horizon 2020 Framework Programme (654148).

https://doi.org/10.6084/m9.figshare.9911543
https://doi.org/10.6084/m9.figshare.9911546
https://doi.org/10.6084/m9.figshare.9911546


1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162

1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212

Research Article Vol. 10, No. 11 / 1 November 2019 / Biomedical Optics Express 12

Disclosures

The authors declare that there are no conflicts of interest related to this article.

References
1. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos

by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
2. O. E. Olarte, J. Andilla, E. J. Gualda, and P. Loza-Alvarez, “Light-sheet microscopy: a tutorial,” Adv. Opt. Photonics

10(1), 111 (2018).
3. T. V. Truong, D. B. Holland, S. Madaan, A. Andreev, J. V. Troll, D. E. S. Koo, K. Keomanee-Dizon, M. McFall-Ngai,

and S. E. Fraser, “Selective volume illumination microscopy offers synchronous volumetric imaging with high
contrast,” bioRxiv Ill, 403303 (2018).

4. N. C. Pégard, H.-Y. Liu, N. Antipa, M. Gerlock, H. Adesnik, and L. Waller, “Compressive light-field microscopy for
3D neural activity recording,” Optica 3(5), 517 (2016).

5. U. Leischner, A. Schierloh, W. Zieglgänsberger, and H.-U. Dodt, “Formalin-Induced Fluorescence Reveals Cell
Shape and Morphology in Biological Tissue Samples,” PLoS One 5(4), e10391 (2010).

6. J. Mayer, A. Robert-Moreno, J. Sharpe, and J. Swoger, “Attenuation artifacts in light sheet fluorescence microscopy
corrected by OPTiSPIM,” Light: Sci. Appl. 7(1), 70 (2018).

7. A. K. Glaser, Y. Chen, C. Yin, L. Wei, L. A. Barner, N. P. Reder, and J. T. C. Liu, “Multidirectional digital scanned
light-sheet microscopy enables uniform fluorescence excitation and contrast-enhanced imaging,” Sci. Rep. 8(1),
13878 (2018).

8. J. Huisken and D. Y. R. Stainier, “Even fluorescence excitation by multidirectional selective plane illumination
microscopy (mSPIM),” Opt. Lett. 32(17), 2608 (2007).

9. M. Woringer, X. Darzacq, C. Zimmer, and M. Mir, “Faster and less phototoxic 3D fluorescence microscopy using a
versatile compressed sensing scheme,” Opt. Express 25(12), 13668 (2017).

10. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging
via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).

11. E. J. Candes and T. Tao, “Decoding by Linear Programming,” IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005).
12. L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames

per second,” Nature 516(7529), 74–77 (2014).
13. G. Huang, H. Jiang, K. Matthews, and P. Wilford, “Lensless imaging by compressive sensing,” in 2013 IEEE

International Conference on Image Processing (IEEE, 2013), pp. 2101–2105.
14. P. Clemente, V. Durán, E. Tajahuerce, P. Andrés, V. Climent, and J. Lancis, “Compressive holography with a

single-pixel detector,” Opt. Lett. 38(14), 2524 (2013).
15. Y. Wu, P. Ye, I. O. Mirza, G. R. Arce, and D. W. Prather, “Experimental demonstration of an Optical-Sectioning

Compressive Sensing Microscope (CSM),” Opt. Express 18(24), 24565 (2010).
16. E. McLeod and A. Ozcan, “Unconventional methods of imaging: computational microscopy and compact implemen-

tations,” Rep. Prog. Phys. 79(7), 076001 (2016).
17. A. Candeo, I. Sana, E. Ferrari, L. Maiuri, C. D’Andrea, G. Valentini, and A. Bassi, “Virtual unfolding of light sheet

fluorescence microscopy dataset for quantitative analysis of the mouse intestine,” J. Biomed. Opt. 21(5), 056001
(2016).

18. M. A. A. Neil, R. Juškaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a
conventional microscope,” Opt. Lett. 22(24), 1905 (1997).

19. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with
theoretically unlimited resolution,” Proc. Natl. Acad. Sci. 102(37), 13081–13086 (2005).

20. P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast
imaging of animal development with scanned light sheet–based structured-illumination microscopy,” Nat. Methods
7(8), 637–642 (2010).

21. B. Hu, D. Bolus, and J. Q. Brown, “Improved contrast in inverted selective plane illumination microscopy of thick
tissues using confocal detection and structured illumination,” Biomed. Opt. Express 8(12), 5546 (2017).

22. C. Garbellotto and J. M. Taylor, “Multi-purpose SLM-light-sheet microscope,” Biomed. Opt. Express 9(11), 5419
(2018).

23. R. M. Power and J. Huisken, “Adaptable, illumination patterning light sheet microscopy,” Sci. Rep. 8(1), 9615 (2018).
24. B.-J. Chang, V. D. Perez Meza, and E. H. K. Stelzer, “csiLSFM combines light-sheet fluorescence microscopy and

coherent structured illumination for a lateral resolution below 100 nm,” Proc. Natl. Acad. Sci. 114(19), 4869–4874
(2017).

25. B. Judkewitz and C. Yang, “Axial standing-wave illumination frequency-domain imaging (SWIF),” Opt. Express
22(9), 11001 (2014).

26. F. Soldevila, P. Clemente, E. Tajahuerce, N. Uribe-Patarroyo, P. Andrés, and J. Lancis, “Computational imaging with
a balanced detector,” Sci. Rep. 6(1), 29181 (2016).

27. R. Baraniuk, “Compressive Sensing [Lecture Notes],” IEEE Signal Process. Mag. 24(4), 118–121 (2007).

https://doi.org/10.1126/science.1100035
https://doi.org/10.1364/AOP.10.000111
https://doi.org/10.1364/OPTICA.3.000517
https://doi.org/10.1371/journal.pone.0010391
https://doi.org/10.1038/s41377-018-0068-z
https://doi.org/10.1038/s41598-018-32367-5
https://doi.org/10.1364/OL.32.002608
https://doi.org/10.1364/OE.25.013668
https://doi.org/10.1109/MSP.2007.914730
https://doi.org/10.1109/TIT.2005.858979
https://doi.org/10.1038/nature14005
https://doi.org/10.1364/OL.38.002524
https://doi.org/10.1364/OE.18.024565
https://doi.org/10.1088/0034-4885/79/7/076001
https://doi.org/10.1117/1.JBO.21.5.056001
https://doi.org/10.1364/OL.22.001905
https://doi.org/10.1073/pnas.0406877102
https://doi.org/10.1038/nmeth.1476
https://doi.org/10.1364/BOE.8.005546
https://doi.org/10.1364/BOE.9.005419
https://doi.org/10.1038/s41598-018-28036-2
https://doi.org/10.1073/pnas.1609278114
https://doi.org/10.1364/OE.22.011001
https://doi.org/10.1038/srep29181
https://doi.org/10.1109/MSP.2007.4286571


1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263

1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313

Research Article Vol. 10, No. 11 / 1 November 2019 / Biomedical Optics Express 13

28. H.-U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W.
Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the
whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).

29. F. O. Fahrbach, V. Gurchenkov, K. Alessandri, P. Nassoy, and A. Rohrbach, “Self-reconstructing sectioned Bessel
beams offer submicron optical sectioning for large fields of view in light-sheet microscopy,” Opt. Express 21(9),
11425 (2013).

30. L. Gao, “Extend the field of view of selective plan illumination microscopy by tiling the excitation light sheet,” Opt.
Express 23(5), 6102 (2015).

31. K. M. Dean, P. Roudot, E. S. Welf, G. Danuser, and R. Fiolka, “Deconvolution-free Subcellular Imaging with Axially
Swept Light Sheet Microscopy,” Biophys. J. 108(12), 2807–2815 (2015).

32. O. E. Olarte, J. Andilla, D. Artigas, and P. Loza-Alvarez, “Decoupled illumination detection in light sheet microscopy
for fast volumetric imaging,” Optica 2(8), 702 (2015).

33. R. Tomer, M. Lovett-Barron, I. Kauvar, A. Andalman, V. M. Burns, S. Sankaran, L. Grosenick, M. Broxton, S. Yang,
and K. Deisseroth, “SPED Light Sheet Microscopy: Fast Mapping of Biological System Structure and Function,”
Cell 163(7), 1796–1806 (2015).

34. A. Bassi, L. Fieramonti, C. D’Andrea, M. Mione, and G. Valentini, “In vivo label-free three-dimensional imaging of
zebrafish vasculature with optical projection tomography,” J. Biomed. Opt. 16(10), 100502 (2011).

35. V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for
biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. 109(26), E1679–E1687 (2012).

36. E. J. Candes and M. B. Wakin, “An Introduction To Compressive Sampling,” IEEE Signal Process. Mag. 25(2),
21–30 (2008).

37. L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Phys. D (Amsterdam,
Neth.) 60(1-4), 259–268 (1992).

38. N. Huynh, E. Zhang, M. Betcke, S. Arridge, P. Beard, and B. Cox, “Single-pixel optical camera for video rate
ultrasonic imaging,” Optica 3(1), 26 (2016).

39. E. J. Candes and M. B. Wakin, “An Introduction to Compressive Sensing,” IEEE Signal Process. Mag. 25(2), 1–118
(2014).

40. M. Harwit and N. J. A. Sloane, Hadamard Transform Optics (Elsevier, 1979).
41. C. Li, W. Yin, H. Jiang, and Y. Zhang, “An efficient augmented Lagrangian method with applications to total variation

minimization,” Comput. Optim. Appl. 56(3), 507–530 (2013).

https://doi.org/10.1038/nmeth1036
https://doi.org/10.1364/OE.21.011425
https://doi.org/10.1364/OE.23.006102
https://doi.org/10.1364/OE.23.006102
https://doi.org/10.1016/j.bpj.2015.05.013
https://doi.org/10.1364/OPTICA.2.000702
https://doi.org/10.1016/j.cell.2015.11.061
https://doi.org/10.1117/1.3640808
https://doi.org/10.1073/pnas.1119511109
https://doi.org/10.1109/MSP.2007.914731
https://doi.org/10.1016/0167-2789(92)90242-F
https://doi.org/10.1016/0167-2789(92)90242-F
https://doi.org/10.1364/OPTICA.3.000026
https://doi.org/10.1007/s10589-013-9576-1

