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Abstract

For utility functions u finite valued on R, we prove a duality formula for utility maxi-

mization with random endowment in general semimartingale incomplete markets. The main

novelty of the paper is that possibly non locally bounded semimartingale price processes are

allowed. Following Biagini and Frittelli [BF06], the analysis is based on the duality between

the Orlicz spaces (Lbu, (Lbu)∗) naturally associated to the utility function. This formulation

enables several key properties of the indifference price π(B) of a claim B satisfying conditions

weaker than those assumed in literature. In particular, the indifference price functional π

turns out to be, apart from a sign, a convex risk measure on the Orlicz space Lbu.
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1 Introduction

The main purpose of this paper is to study the indifference pricing framework in markets where

the underlying traded assets are described by general semimartingales which are not assumed to be

locally bounded. Following Hodges and Neuberger [HN89], we define the (seller) indifference price

π(B) of a claim B as the implicit solution of the equation

sup
H∈HW

E

[
u

(
x+

∫ T

0

HtdSt

)]
= sup

H∈HW

E

[
u

(
x+ π(B) +

∫ T

0

HtdSt −B

)]
, (1)

where x ∈ R is the constant initial endowment, T < ∞ is a fixed time horizon while S is an

Rd−valued càdlàg semimartingale defined on a filtered stochastic basis (Ω,F , (Ft)t∈[0,T ], P ) that

satisfies the usual assumptions. The Rd−valued portfolio processH belongs to an appropriate class

HW of admissible integrands defined in Section 2.1 through a random variable W that controls the

losses incurred in trading. B is an FT –measurable random variable corresponding to a financial

liability at time T and satisfies the integrability conditions discussed in Section 3.1.
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Throughout the paper, the utility function u is assumed to be an increasing and concave

function u : R → R satisfying limx→−∞ u(x) = −∞.

Neither strict monotonicity nor strict concavity are required, but we exclude that u is constant

on R.

In principle, a general way to compute the indifference price in (1) is to solve the two utility

maximization problems, in the sense of finding the optimizers in the class of admissible integrands.

Such optimizers then correspond to the optimal trading strategies that an investor should follow

with or without the claim B, therefore providing a corresponding notion of indifference hedging

for the claim. However, it is generally possible to employ duality arguments to obtain the optimal

values for utility maximization problems under broader assumptions than those necessary to find

their optimizer. Since these values are all that is necessary for calculating the indifference price

itself, the main goal here is the pursuit of such duality results rather than a full analysis of the

indifference hedging problem which is deferred to future work (even though some partial results in

this direction are provided in Proposition 3.18).

The key to establish such duality above is to choose convenient dual spaces as the ambient for

the domains of optimization. Our approach is to use the Orlicz space Lbu - and its dual space L
bΦ

- that arises naturally from the choice of the utility function u and was previously used in [BF06]

for the special case of B = 0, as explained in Section 2.

We then use this general framework for the case of a random endowment B in Section 3 and

prove in Theorem 3.15 a duality result of the type

sup
H∈HW

E

[
u

(
x+

∫ T

0

HtdSt −B

)]
(2)

= min
λ>0, Q∈MW

{
λx− λQ(B) + E

[
Φ

(
λ
dQr

dP

)]
+ λ‖Qs‖

}
. (3)

where W is a loss control and in the dual problem (3), Φ : R+ → R is the convex conjugate of the

utility function u, defined by

Φ(y) := sup
x∈R

{u(x)− xy} , (4)

while MW is the appropriate set of linear pricing functionals Q, which admit the decomposition

Q = Qr +Qs

into regular and singular parts. The penalty term in the right-hand side of (3) is split into the ex-

pectation E
[
Φ
(
λdQr

dP

)]
, associated only with the regular part of Q, and the norm ‖Qs‖, associated

only with its singular part.

¿From the previous results [BF06] in the case B = 0, we expected the presence of the singular

part ‖Qs‖, due to the fact that we allow possibly unbounded semimartingales. As shown in the

Examples in Section 3.6.1 and discussed in Section 3.5, when also the claim B is present and is

not sufficiently integrable, in the above duality an additional singular term appears from Q(B) =

EQr [B] +Qs(B).

The above duality result (2)-(3) holds under the assumptions that B belongs to the set Au of

admissible claims (see definition 3.2). Even though we admit price processes represented by general

semimartingale, the above assumptions on B are weaker than those assumed in the literature for
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the locally bounded case - see the discussion in Sections 3.1 and 5. This is a nice consequence of

the selection of the Orlicz space duality.

Regarding the primal utility maximization problem with random endowment, in Theorem 3.15

we also prove the existence of the optimal solution fB in a slightly enlarged set than {
∫ T

0 HtdSt |

H ∈ HW }. As it happens in the literature for B = 0 this optimal solution exists under additional

assumptions on the utility function u (or similar growth conditions on its conjugate), which are

introduced in Section 3.4.

Since the most well–studied utility function in the class considered in this paper is the ex-

ponential utility, we specialize the duality result for this case in Section 3.6, thereby obtaining

a generalization of the results in Bellini and Frittelli [BeF02], the ”Six Authors paper” [6Au02]

and Becherer [Be03]. Some interesting examples of exponential utility optimization with random

endowment are presented, where the singular part shows up. These examples are simple, one

period market models, but surprising since they display a quite different behavior from the locally

bounded case, which is thoroughly interpreted.

While the notion of the indifference price was introduced in 1989 by Hodges and Neuberger

[HN89], the analysis of its dual representation in terms of (local) martingale measures was per-

formed in the late ’90. It started with Frittelli [F00] and was considerably expanded by [6Au02]

and, in a dynamic context, by El Karoui and Rouge [EkR00]. An extensive survey of the recent

literature on this topic can be found in [C08], Volume on Indifference Pricing.

Armed with the duality result of Theorem 3.15, the indifference price of a claim B is addressed

in Section 4. The classical approach of Convex Analysis - basically the Fenchel-Moreau Theorem

- was first applied in Frittelli and Rosazza [FR02] to deduce the dual representation of convex risk

measures on Lp spaces. Based on the duality results proven in [F00], in [FR02] it is also shown

that, for the exponential utility function, the indifference price of a bounded claim defines - except

for the sign - a convex risk measure. In recent years this connection has been deeply investigated

by many authors (see Barrieu and N. El Karoui [BK05] and the references therein).

In Section 4 of this paper these results are further extended thanks to the Orlicz space duality

framework. This enables us to establish the properties of the indifference price π summarized in

Proposition 4.4, including the expected convexity, monotonicity, translation invariance and volume

asymptotics. More interestingly, in (65) we provide a new and fairly explicit representation for the

indifference price, which is obtained applying recent results from the theory of convex risk measures

developed in Biagini and Frittelli [BF07]. In fact, in Proposition 4.4 it is also shown that the map

π, as a convex monotone functional on the Orlicz space Lbu, is continuous and subdifferential on the

interior of its proper domain B, which is considerably large as it coincides with −int(Dom(Iu)), i.e.

the opposite of the interior of the proper domain of the integral functional Iu(f) = E[u(f)] in Lbu.

The minus sign is only due to the fact that π(B) is the seller indifference price. In Corollary 4.6

we show that when B and the loss control W are ”very nice” (i.e., they are in the special subspace

M bu of Lbu), the indifference price π has also the Fatou property.

The regularity of the map π itself allows then for a very nice, short proof of some bounds on

3



the indifference price π(B) of a fixed claim B as a consequence of the Max Formula in Convex

Analysis.

Section 5 concludes the paper with a comparison with the existing literature on utility maxi-

mization in incomplete semimartingale markets with random endowment (the reader is deferred to

[BF06] and the literature therein for the case of no random endowment) and utility functions finite

valued on R (see Hugonnier and Kramkov [HK04] and the literature therein for utility functions

finite valued on R+).

2 The set up for utility maximization

In this section we recall the set up of [BF06] for the utility maximization problem in an Orlicz

space framework with zero random endowment, corresponding to the left–hand side of (1). Similar

arguments can then be used in the next section for the optimization problem in the presence of

a random endowment as in (2). In particular, the class of admissible integrands as well as the

relevant Orlicz spaces and dual variables are the same for both problems.

2.1 Admissible integrands, suitability and compatibility

Given a non–negative random variableW ∈ FT , the domain of optimization for the primal problem

(2) is the following set of W–admissible strategies :

HW :=

{
H ∈ L(S) | ∃c > 0 such that

∫ t

0

HsdSs ≥ −cW, ∀t ∈ [0, T ]

}
, (5)

where L(S) denotes the class of predictable, S-integrable processes. In other words, the random

variable W controls the losses in trading. This extension of the classic notion of admissibility,

which requires W = 1, was already used in Schachermayer ([S94] Section 4.1) in the context of the

fundamental theorem of asset pricing, as well as in Delbaen and Schachermayer [DS99].

In order to build a reasonable utility maximization, W should satisfy two conditions that are

mathematically useful and economically meaningful. The first condition depends only on the vector

process of traded assets S and guarantees that the set of W–admissible strategies is rich enough

for trading purposes:

Definition 2.1. We say that a random variable W ≥ 1 is suitable for the process S if for each

i = 1, . . . , d, there exists a process Hi ∈ L(Si) such that

P ({ω | ∃t ≥ 0 such that Hi
t (ω) = 0}) = 0 (6)

and ∣∣∣∣
∫ t

0

Hi
sdS

i
s

∣∣∣∣ ≤ W, ∀t ∈ [0, T ]. (7)

The class of suitable random variables is denoted by S.

The second condition depends only on the utility function and measures to what extent the

investor accepts the risk of a large loss:
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Definition 2.2. We say that a positive random variable W is strongly compatible with the utility

function u if

E[u(−αW )] > −∞ for all α > 0 (8)

and that it is compatible with u if

E[u(−αW )] > −∞ for some α > 0. (9)

Given a suitable and compatible random variable W , the first step to apply duality arguments

to problem (2) is to rewrite it in terms of an optimization over random variables, as opposed to an

optimization over stochastic processes. To this end, we define the set of terminal values obtained

from W–admissible trading strategies as

KW =

{∫ T

0

HtdSt | H ∈ HW

}
, (10)

and consider the modified primal problem

sup
k∈KW

E[u(x+ k)]. (11)

The next step is to identify a good dual system and invoke some duality principle. Classically,

the system (L∞, ba) has been successfully used when dealing with locally bounded traded assets.

In order to accommodate more general markets and inspired by the compatibility conditions above,

in the next section we argue instead for the use of an appropriate Orlicz spaces duality, naturally

induced by the utility function.

Remark 2.3. When S is locally bounded, W = 1 is automatically suitable and compatible (see

[BF05], Proposition 1), and we recover the familiar set of trading strategies. Therefore, the locally

bounded setup is a special case of our more general framework.

Remark 2.4. The conditions of suitability and compatibility on W put integrability restrictions on

the jumps of the semimartingale S. For a toy example that illustrates the various situations, see

[BF06, Example 4].

Remark 2.5. It is not difficult (see for instance Biagini [B04], where the utility maximization for

possibly non locally bounded semimartingales was addressed with a new class of strategies) to

build a different set up, where the definitions of admissibility, suitability and compatibility are

formulated in terms of stochastic processes, instead of random variables, leading to an adapted

control of the losses from trading.

A real, adapted and nonnegative process Y could be defined to be suitable to S if for each

i = 1, . . . , d, there exists a processHi ∈ L(Si) satisfying (6) and |HidSi| ≤ Y , and to be compatible

with u if

E[u(−αY ∗
T )] > −∞ for some α > 0,

where Y ∗
t = sups≤t |Ys| is the maximal process of Y . The admissible integrands become then

HY := {H ∈ L(S) | ∃c > 0 such that HdS ≥ −cY }.

It is then easy to check that if a process Y satisfies the two requirements above, then the random

variable W := Y ∗
T is suitable and compatible, in the sense of the Definitions 2.1, 2.2, and that

5



HY ⊂ HW . This shows that this set up with processes does not achieve more generality than that

one with random variables and for this reason we continue to use the framework described in (5)

and in Definitions 2.1 and 2.2.

Remark 2.6. Alternatively, the same definition of suitability as in the previous remark could be

used, but the process Y could be defined to be compatible with u if it satisfies the following less

stringent condition:

E[u(−αtYt)] > −∞ for some αt > 0, for all t ∈ [0, T ]. (12)

The problem with this definition is that in general (12) does not guarantee the existence of a uniform

bound (in the form of a single random variable) on the stochastic integrals
∫
HtdSt satisfying

the integrability condition required for the Ansel and Stricker Lemma [AS94]. To the best of

our knowledge, without this latter result one cannot show that the regular elements of the dual

variables are sigma martingale measures, a key property that justifies the interpretation of the dual

variables as pricing measures (see the subsequent Section 2.3 or [DS98], [B04, Prop. 6], [BF05,

Prop. 6] and [BF06, Prop. 19]).

2.2 The Orlicz space framework

This new framework for utility maximization was first introduced by Biagini [B08] and then con-

siderably expanded in [BF06], upon which this section is mostly based. The key observation is

that the function û : R → [0,+∞) defined as

û(x) = −u(−|x|) + u(0),

is a Young function (a reference book is [RR91]). Thus, its corresponding Orlicz space

Lbu(Ω,F , P ) = {f ∈ L0(Ω,F , P ) | E[û(αf)] < +∞ for some α > 0},

is a Banach space (and a Banach lattice) when equipped with the Luxemburg norm

N
bu(f) = inf

{
c > 0 | E

[
û

(
f

c

)]
≤ 1

}
. (13)

Since the probability space (Ω,F , P ) is fixed throughout the paper, set Lp := Lp(Ω,F , P ), p ∈

[0,+∞], and Lbu := Lbu(Ω,F , P ). Under our assumptions on the utility u, it is not difficult to see

that L∞ ⊆ Lbu ⊆ L1. Next consider the subspace of ”very integrable” elements in Lbu

M bu := {f ∈ Lbu | E[û(αf)] < +∞ for all α > 0}.

Due to the fact that û is continuous and finite on R, M bu contains L∞ and moreover it coincides

with the closure of L∞ with respect to the Luxemburg norm. However, the inclusion M bu ⊂ Lbu

is in general strict, since bounded random variables are not necessarily dense in Lbu (see [RR91,

Prop. III.4.3 and Cor. III.4.4]). This will play a central role in our work.

As observed in [B08] and [BF06], the Young function û carries information about the utility on

large losses, in the sense that for α > 0 we have

E[û(αf)] < +∞ ⇐⇒ E[u(−α|f |)] > −∞, (14)
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a characterization that will be repeatedly used in what follows. For instance, using (14) it is easy

to see that

• a positive random variable W is strongly compatible (resp. compatible) with the utility func-

tion u if and only if W ∈ M bu (resp. W ∈ Lbu).

When W ∈ Lbu, the negative part of each element in KW belongs to Lbu, but in general we do

not have the inclusion KW ⊆ Lbu.

¿From the definition of Φ we know that Φ(0) = u(+∞), Φ is bounded from below and it satisfies

limy→+∞
Φ(y)
y

= +∞. This limit is a consequence of u being finite valued on R. Indeed, from the

inequality Φ(y) ≥ u(x)−xy for all x, y ∈ R, we get lim infy→+∞
Φ(y)
y

≥ lim infy→+∞
u(x)
y

−x = −x

for all x ∈ R.

The convex conjugate of û, called the complementary Young function in the theory of Orlicz

spaces, is denoted here by Φ̂, since it admits the representation

Φ̂(y) =

{
0 if |y| ≤ β

Φ(|y|)− Φ(β) if |y| > β
(15)

where β ≥ 0 is the right derivative of û at 0, namely β = D+û(0) = D−u(0), and Φ(β) = u(0). If

u is differentiable, note that β = u′(0) and it is the unique solution of the equation Φ′(y) = 0.

¿From (15) it then follows that Φ̂ is also a Young function, which induces the Orlicz space L
bΦ

endowed with the Orlicz (dual) norm

‖g‖
bΦ = sup{E[|fg|] | E[û(g)] ≤ 1}.

As before, L∞ ⊆ L
bΦ ⊆ L1. Moreover, LΦ is a dual space, as

(M bu)∗ = L
bΦ, (16)

in the sense that if Q ∈ (M bu)∗ is a continuous linear functional on M bu, then there exists a unique

g ∈ L
bΦ such that

Q(f) =

∫

Ω

fgdP, f ∈ M bu,

with

‖Q‖(M bu)∗ := sup
N

bu(f)≤1

|Q(f)| = ‖g‖
bΦ.

The characterization of the topological dual for the larger space Lbu is more demanding than (16).

For the complementary pair of Young functions (û, Φ̂), it follows from [RR91, Cor. IV.2.9] that

each element Q ∈ (Lbu)∗ can be uniquely expressed as

Q = Qr +Qs,

where the regular part Qr is given by

Qr(f) =

∫

Ω

fgdP, f ∈ Lbu,

for a unique g ∈ L
bΦ, and the singular part Qs satisfies

Qs(f) = 0, ∀f ∈ M bu. (17)
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In other words,

(Lbu)∗ = (M bu)∗ ⊕ (M bu)⊥

where (M bu)⊥ = {z ∈ (Lbu)∗ | z(f) = 0, ∀f ∈ M bu} denotes the annihilator of M bu.

Consider now the concave integral functional Iu : Lbu → [−∞,∞) defined as

Iu(f) := E[u(f)].

As usual, its effective domain is denoted by

Dom(Iu) :=
{
f ∈ Lbu | E[u(f)] > −∞

}
.

It was shown in [BF06, Lemma 17] that thanks to the selection of the appropriate Young function

û associated with the utility function u, the norm of a nonnegative singular element z ∈ (M bu)⊥

satisfies

‖z‖(Lbu)∗ := sup
N

bu(f)≤1

z(f) = sup
f∈Dom(Iu)

z(−f). (18)

2.3 Loss and dual variables

¿From now on, the loss controls W are assumed suitable and compatible, i.e. W ∈ S ∩ Lbu, and

will simply be referred to as loss variables. Given such W , the cone

CW = (KW − L0
+) ∩ Lbu,

corresponds to random variables that can be super–replicated by trading strategies in HW and

that satisfy the same type of integrability condition of W . The polar cone of CW , which will play

a role in the dual problem, is

(CW )0 :=
{
Q ∈ (Lbu)∗ | Q(f) ≤ 0, ∀f ∈ CW

}
, (19)

and it satisfies (CW )0 ⊆ (Lbu)∗+, since (−Lbu
+) ⊆ CW . Therefore, all the functionals of interest are

positive and the decomposition Q = Qr +Qs enables the identification of Qr with a measure with

density dQr

dP
∈ L

bΦ
+ ⊆ L1

+. The subset of normalized functionals in (CW )0 is defined by

MW := {Q ∈ (CW )0 | Q(1Ω) = 1}. (20)

Using the notation above, we see that this normalization condition reduces to Qr(1Ω) = 1, since

Qs ∈ (M bu)⊥ and thus vanishes on any bounded random variable. In other words, the regular part

of any element in MW is a true probability measure with density in L
bΦ
+. Moreover, it was shown

in [BF06, Proposition 19], that

MW ∩ L1 = Mσ ∩ L
bΦ, (21)

where

Mσ =

{
Q(1Ω) = 1,

dQ

dP
∈ L1

+ | S is a σ −martingale w.r.t. Q

}

consists of all the P−absolutely continuous σ-martingale measures for S, i.e. of those Q ≪ P

for which there exists a process η ∈ L(S) such that η > 0 and the stochastic integral
∫
ηdS is a

Q–martingale. Such probabilities Q were introduced in the context of Mathematical Finance by
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Delbaen and Schachermayer in the seminal [DS98], which the reader is referred to for a thorough

analysis of their financial significance as pricing measures.

From (21) it follows that the regular elements of the normalized set MW coincide with the

σ-martingale measures for S that belong to L
bΦ. In particular this shows that the (possibly empty)

set MW ∩ L1 does not depend on the particular loss variable W .

2.4 Utility optimization with no random endowment

The following theorem is a reformulation of [BF06, Theorem 21]. When S is locally bounded,

a duality formula similar to (22) - but with no singular components - holds true for all utility

functions in the class considered in this paper. This latter fact is well known and was first shown

in [BeF02].

Theorem 2.7. Suppose that there exists a loss variable W satisfying

sup
H∈HW

E

[
u

(
x+

∫ T

0

HtdSt

)]
< u(+∞).

Then MW is not empty and

sup
H∈HW

E

[
u

(
x+

∫ T

0

HtdSt

)]
= min

λ>0, Q∈MW

{
λx+ E

[
Φ

(
λ
dQr

dP

)]
+ λ‖Qs‖

}
. (22)

When W ∈ M bu, then the set MW can be replaced by Mσ ∩ L
bΦ and no singular term appears in

the duality formula above.

The last statement in the theorem follows from the observation that when W ∈ M bu then the

regular component Qr of Q ∈ MW is already in MW (see [BF06, Lemma 41]). Since ‖Qs‖ ≥ 0 this

immediately implies that the minimum in (22) is reached on the set
{
Qr | Q ∈ MW

}
= Mσ ∩L

bΦ.

3 Utility optimization with random endowment

3.1 Conditions on the claim

We now turn to the right–hand side of (1) and consider the optimization problem

sup
H∈HW

E

[
u

(
x+

∫ T

0

HtdSt −B

)]
, (23)

where B ∈ FT is a liability faced at terminal T .

Without loss of generality, let x = 0. The case with non null initial endowment can clearly be

recovered by replacing B with (B−x). In view of the substitution of terminal wealths
∫ T

0 HtdSt ∈

KW by random variables f ∈ CW ⊂ Lbu, we require that B satisfies

E[u(f −B)] < +∞, ∀f ∈ Lbu, (24)

so that the concave functional IBu : Lbu → [−∞,∞) given by

IBu (f) := E[u(f −B)]

9



is well defined for such claims.

Remark 3.1. The set of claims satisfying this condition is quite large. In fact, by monotonicity

and concavity of u,

E[u(f −B)] = E[u(f − (B+ −B−))] ≤ E[u(f +B−)] ≤ u(E[f ] + E[B−]),

where the last step follows from Jensen’s inequality. Therefore, since f ∈ Lû ⊂ L1, one obtains

that a simple sufficient condition for (24) is that B− ∈ L1.

Obviously, when the utility function is bounded above (as for example in the exponential case)

the condition (24) is satisfied by any claim.

A second natural condition on B is that it does not lead to prohibitive punishments when the

agent chooses the trading strategy H ≡ 0 ∈ HW . In other words, we would like to impose that

E[u(−B)] > −∞. Since the utility function is finite and increasing, this is equivalent to

E[u(−B+)] > −∞, (25)

which in turn implies that −B+ ∈ Dom(Iu) and consequently B+ ∈ Lû, in view of (14). Be aware

that B+ ∈ Lû does not necessarily imply (25).

However, for the main duality result we also need that the claim B satisfies:

E[u(−(1 + ǫ)B+)] > −∞, for some ǫ > 0. (26)

This condition, stronger than (25), is equivalent to requiring that the random variable (−B+)

belongs to int(Dom(Iu)), the interior in Lbu of the effective domain of Iu. This is a consequence

of Lemma 30 in [BF06], which in turn is based on the definition of the Luxemburg norm on Lbu

and on a simple convexity argument. In addition to its technical relevance (shown in Lemma 3.4),

another reason for adopting (26) is explained in Remark 3.5.

Definition 3.2. The set of admissible claims Au consists of FT measurable random variables B

satisfying (24) and (26).

The conditions (24), (26) do not really capture the risks corresponding to B−, which are gains

for the seller of the claim. For example, it is quite possible to have B ∈ Au and E[u(−εB−)] = −∞

for all ε > 0 (simply take B− ∈ L1\Lû). This would mean that a buyer using the same utility

function u, investment opportunities S and control random variable W , would incur losses leading

to an infinitely negative expected utility simply by holding any fraction of the claim and doing no

other investment. Such undesirable outcome can be avoided by the more stringent condition

E[u(−εB−)] > −∞, for some ε > 0, (27)

which is equivalent to B− ∈ Lû. Since the focus is on the problem faced by the seller of the claim

B, we refrain from assuming (27), until Section 4 where B will belong to the set

B := Au ∩ Lbu = {B ∈ Lbu | E[u(−(1 + ǫ)B+)] > −∞ for some ǫ > 0}. (28)

In any event, the potential buyers for B will likely not have the same investment opportunities,

utility function and loss tolerance as the seller, leading to entirely different versions of (1).

10



For example, suppose that the seller has an exponential utility us(x) = −e−x and the buyer

has quadratic utility ub(x) = −x2 for x ≤ −1, then prolonged so that it is bounded above and

satisfies all the other requirements. Then take B so that B+ has an exponential distribution with

parameter λ = 2 and B− has a density c
1+x4 , x ≥ 0, where c is the normalizing constant. It is

easy to check that B satisfies (24) and (26) for us and that selling B is very attractive, since the

tail of the distribution of B− (the gain for the seller) is much bigger than that of B+ (the loss

for the seller). B− has no finite exponential moment, therefore it violates (27) and would clearly

be unacceptable if the buyer had exponential preferences. However the quadratic tolerance of the

losses of ub accounts for a well posed maximization problem with B even for the buyer.

3.2 The maximization

The first step in our program consists in showing that optimizing over the cone CW leads to the

same expected utility as optimizing over the set of terminal wealths KW .

Lemma 3.3. If B satisfies (24) and (25) then

sup
k∈KW

E[u(k −B)] = sup
f∈CW

E[u(f − B)]. (29)

Proof. Since CW ⊂ (KW − L0
+) and the utility function is monotone increasing,

sup
f∈CW

E[u(f −B)] ≤ sup
g∈(KW−L0

+)

E[u(g −B)] ≤ sup
k∈KW

E[u(k −B)]. (30)

Since k ≡ 0 ∈ KW ,

sup
k∈KW

E[u(k −B)] ≥ E[u(−B)] > −∞.

by (25). Pick any k ∈ KW satisfying E[u(k − B)] > −∞. Consider kn = k ∧ n, which is in CW

since W ∈ Lbu (this is the only assumption needed on W here). Then

u(kn −B) = u(k+ ∧ n−B)I{k≥0} + u(−k− −B)I{k<0} ≥ u(−B) + u(−k− −B)I{k<0}

and the latter is integrable. An application of the monotone convergence theorem gives E[u(kn −

B)] ր E[u(k −B)], which implies that

sup
k∈KW

E[u(k −B)] ≤ sup
f∈CW

E[u(f −B)],

and completes the proof.

The next step in the program is to establish that the functional IBu has a norm continuity point

contained in the cone of interest CW .

Lemma 3.4. Suppose that B satisfies (24) and (25). Then the concave functional IBu is norm

continuous on the interior of its effective domain. Moreover, if B ∈ Au then there exists a norm

continuity point of IBu that belongs to CW .
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Proof. Since IBu < +∞, the functional IBu is proper, monotone and concave. The first sentence

in the Lemma thus follows from the Extended Namioka-Klee Theorem (see [RS06] or [BF07]).

Denoting the unit ball in Lû by S1, it follows rather easily from a convexity argument that the

hypothesis (26) on B+ implies that

−B+ +
ǫ

1 + ǫ
S1 ⊂ Dom(Iu), (31)

and therefore ǫ
1+ǫ

S1 ⊂ Dom(IBu ). Therefore, any element of ǫ
2(1+ǫ)S1 ∩ (−Lbu

+) is then in CW and

a continuity point for IBu .

Remark 3.5. At first sight, the condition (26) on the positive part B+ appears to be an ad-hoc

hypothesis imposed for the sake of proving the previous technical lemma. We argue, however, that

(26) is in fact a natural condition to impose on a financial liability in this context. Indeed, if the

claim B satisfies only E[u(−B+)] > −∞, it may happen - contrary to (31) - that

E[u(−B+ − c)] = −∞ for all constants c > 0

as shown in the example below, which would restrict the possibility of any significative trading.

Example 3.6. Consider the smooth function

u(x) =

{
−e(x−1)2 x ≤ 0

−2e−x+1 + e x > 0

as utility function u (the particular expression of u for x > 0 is however irrelevant). Consider

now a (positive) claim B with distribution dµB = k e−x2
−2x

x2+1 I{x>0}dx, where k is the normalizing

constant. Then,

E[u(−B)] =

∫ +∞

0

−e(−x−1)2k
e−x2−2x

x2 + 1
dx > −∞

but for any c > 0,

E[u(−B − c)] =

∫ +∞

0

−
e2cx+(c+1)2k

x2 + 1
dx = −∞.

3.3 Conjugate functionals

As already discussed, the condition B ∈ Au on the claim B does not necessarily imply that B ∈ Lbu.

Therefore, we need appropriate extensions of linear functionals on Lbu.

Though we sketch the proof for the sake of completeness, this extension is morally straightfor-

ward. In fact, it is defined in the same way as the expectation E[g] is defined when g is bounded

from below, instead of bounded. In this case, g− ∈ L∞ and

E[g] := sup{E[f ] | f ∈ L∞, f ≤ g} = lim
n

E[g ∧ n]

Accordingly, let us consider the convex cone of random variables with negative part in Lbu:

Lbu
neg :=

{
f ∈ L0 | f− ∈ Lbu

}
=
{
f ∈ L0 | E[u(−αf−)] > −∞, for some α > 0

}
,

and notice that this cone contains KW , for any loss variable W . For any Q ∈ (Lbu)∗+ we define

Q̂ : Lbu
neg → R ∪ {+∞} by

Q̂(g) , sup
{
Q(f) | f ∈ Lbu and f ≤ g

}
. (32)
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Lemma 3.7. If Q ∈ (Lbu)∗+ then

1. Q̂ is a well-defined extension of Q. It is a positively homogenous, additive (with the convention

+∞+ c = +∞ for c ∈ R ∪ {+∞}), monotone functional on the cone Lbu
neg. In particular, if

g ∈ Lbu
neg, h ∈ Lbu then Q̂(g + h) = Q̂(g) +Q(h).

2. Q ∈ (CW )0 if and only if Q̂(k) ≤ 0 for all k ∈ KW .

3. If g ∈ Lbu
neg is such that E[u(g)] > −∞, then

‖Qs‖ ≥ −Q̂s(g) (33)

4. If Q̂(g) is finite, then Q̂(g) = E[dQ
r

dP
g] + Q̂s(g).

Proof. The first two statements and item 4 follow rather directly from the definitions of Q̂ and

CW . We only prove additivity of Q̂. Fix then g1, g2 ∈ Lbu
neg. We want to show that Q̂(g1 + g2) =

Q̂(g1) + Q̂(g2). When fi ∈ Lbu, i = 1, 2, satisfy fi ≤ gi,

Q̂(g1) + Q̂(g2) = sup
fi≤gi

{Q(f1) +Q(f2)} ≤ sup
f≤g1+g2

Q(f) = Q̂(g1 + g2).

To show the opposite inequality, assume first that gi ≥ 0. Fix f ∈ Lbu
+, f ≤ g1 + g2. Then

f ∧ gi ∈ Lbu, i = 1, 2, and, moreover, f ≤ f ∧ g1 + f ∧ g2. Therefore

Q(f) ≤ Q(f ∧ g1) +Q(f ∧ g2) ≤ Q̂(g1) + Q̂(g2) for all f ∈ Lbu
+, f ≤ g1 + g2

so that Q̂(g1 + g2) ≤ Q̂(g1) + Q̂(g2). To treat the case g1 and g2 not necessarily positive, observe

that when g ∈ Lbu
neg, h ∈ Lbu :

Q̂(g + h) = sup
{
Q(f) | f ∈ Lbu, f ≤ g + h

}

= sup
{
Q(f) | f ∈ Lbu, f ≤ g

}
+Q(h) = Q̂(g) +Q(h),

As a consequence, Q̂(gi) = Q̂(g+i )−Q(g−i ) and Q̂(g1+ g2) = Q̂(g+1 + g+2 )−Q(g−1 + g−2 ). Collecting

these relations,

Q̂(g1 + g2) = Q̂(g+1 + g+2 )−Q(g−1 + g−2 ) ≤ Q̂(g+1 ) + Q̂(g+2 )−Q(g−1 + g−2 ) = Q̂(g1) + Q̂(g2).

Item 3 follows from −g− ∈ Dom(Iu) and equation (18):

‖Qs‖ ≥ Qs(g−) ≥ Qs(g−)− Q̂s(g+) = −Q̂s(g).

Finally, when B satisfies (25) the convex conjugate JB
u : (Lbu)∗ → R ∪ {+∞} of the concave

functional IBu is defined as

JB
u (Q) := sup

f∈Lbu

{E[u(f −B)]−Q(f)} , Q ∈ (Lbu)∗. (34)

The following Lemma gives a representation of JB
u .
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Lemma 3.8. 1. If B ∈ Lbu and Q ∈ (Lbu)∗+ then

JB
u (Q) = Q(−B) + E

[
Φ

(
dQr

dP

)]
+ ‖Qs‖. (35)

2. If B satisfies (24) and (25) and Q ∈ (Lbu)∗+, then

JB
u (Q) = Q̂(−B) + E

[
Φ

(
dQr

dP

)]
+ ‖Qs‖.

Proof. 1. This is an elementary consequence of the representation result proved in [K79, Theo-

rem 2.6]. In fact, from B ∈ Lbu,

JB
u (Q) = sup

f∈Lbu

{E[u(f −B)]−Q(f)}

= sup
g∈Lbu

{E[u(g)]−Q(g)} −Q(B)

and in the cited Theorem, Kozek proved that

sup
g∈Lbu

{E[u(g)]−Q(g)} = E

[
Φ

(
dQr

dP

)]
+ sup

g∈Dom(Iu)

Qs(−g)

so that the thesis in (35) is enabled by (18).

2. The thesis follows from the equality

sup
G≥B,G∈Lbu

{
sup
f∈Lbu

{E[u(f −G)]−Q(f)}

}

= sup
f∈Lbu

{
sup

G≥B,G∈Lbu

{E[u(f −G)]−Q(f)}

}
.

Indeed, thanks to (35), the left hand side gives

sup
G≥B,G∈Lbu

{
sup
f∈Lbu

{E[u(f −G)]−Q(f)}

}

= sup
G≥B,G∈Lbu

JG
u (Q) = Q̂(−B) + E

[
Φ

(
dQr

dP

)]
+ ‖Qs‖,

while the right hand side gives

sup
f∈Lbu

{
sup

G≥B,G∈Lbu

{E[u(f −G)]−Q(f)}

}
= sup

f∈Lbu

{E[u(f −B)]−Q(f)} = JB
u (Q). (36)

The first equality in (36) holds thanks to the following approximation argument. For each

f ∈ Lbu such that E[u(f − B)] > −∞ let Gn := B+ − (f− + n) ∧ B− ∈ Lbu and An :=

{B− ≤ f− + n}. Our assumptions imply that u(f − B) and u(−B+) are integrable and so

from

u(f −Gn) = u(f −B)1An
+ u(f −B+ + f− + n)1Ac

n
≥ u(f −B)1An

+ u(−B+)1Ac
n

we deduce E[u(f − Gn)] > −∞. Since −Gn ↑ −B, the monotone convergence theorem

guarantees supn E[u(f −Gn)] = E[u(f −B)].
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3.4 The dual optimization and a new primal domain

Before establishing the main duality result, let us focus on dual optimizations of the form

inf
λ>0,Q∈N

{
E

[
Φ

(
λ
dQr

dP

)]
+ λQ̂(−B) + λ‖Qs‖

}
, (37)

where N is a convex subset of (Lbu)∗+. Problems of this type (but for N ⊆ L1
+ and B = 0) were

originally solved by Ruschendorf [R84]. A general strategy for tackling such problems is to consider

the minimizations over λ and over Q separately. Accordingly, in the next Proposition we fix λ > 0

and explore the consequences of optimality in Q. The result is the analogue of [BF06, Prop 25]

but in the presence of the claim B and the corresponding extended functionals Q̂.

The presence of the scaling factor λ in the expectation term in (37) leads us to consider the

convex set:

LΦ = {Q probab, Q ≪ P | E

[
Φ

(
λ
dQ

dP

)]
< +∞ for some λ > 0}.

Clearly
{

dQ
dP

| Q ∈ LΦ

}
⊆ L

bΦ
+ ⊆ L1

+, but the condition dQ
dP

∈ L
bΦ
+ does not in general imply

E
[
Φ(dQ

dP
)
]
< +∞, nor Q ∈ LΦ. Indeed, the utility function may be unbounded from above, so

that Φ(0) = +∞ is possible.

Remark 3.9. The fact that the set LΦ is convex requires a brief explanation, since Φ(0) = +∞

is possible. Let Qy = yQ1 + (1 − y)Q2 , y ∈ (0, 1), be the convex combination of any couple of

elements in LΦ, take λi > 0 satisfying E
[
Φ
(
λi

dQi

dP

)]
< ∞, i = 1, 2, and define zy as the convex

combination of 1
λ1

and 1
λ2
, i.e.: zy := y 1

λ1
+(1− y) 1

λ2
∈ (0,∞). As a consequence of the convexity

of the function (z, k) → zΦ(1
z
k) on R+ × R+(which has been pointed out by [SW05], Section 3)

we deduce

E

[
zyΦ

(
1

zy

dQy

dP

)]
≤ y

1

λ1
E

[
Φ

(
λ1

dQ1

dP

)]
+ (1− y)

1

λ2
E

[
Φ

(
λ2

dQ2

dP

)]
< ∞.

Assumption (A) The utility function u : R → R is strictly increasing, strictly concave, continu-

ously differentiable and it satisfies the conditions

lim
x↓−∞

u′(x) = +∞, lim
x↑∞

u′(x) = 0 (38)

LΦ = {Q probab, Q ≪ P | E

[
Φ

(
λ
dQ

dP

)]
< +∞ for all λ > 0}. (39)

The condition expressed in (39) coincides with assumption (3) in [BF06]. A detailed discussion

on assumption (A) and the relationship of (39) with the condition of Reasonable Asymptotic

Elasticity introduced by Schachermayer [S01] can be found in [BF06], [BF05]. We stress that

this assumption is needed only when dealing with the existence of optimal solutions (i.e. only in

Propositions 3.10, 3.11, 3.18, and in the second part of Theorem 3.15).

Proposition 3.10. Suppose that the utility u satisfies assumption A and that the claim B satisfies

(24) and (25) . Fix λ > 0 and suppose that N ⊆ (Lbu)∗+ is a convex set such that for any Q ∈ N

we have Qr ∈ LΦ. If Qλ ∈ N is optimal for

inf
Q∈N

{
E

[
Φ

(
λ
dQr

dP

)]
+ λQ̂(−B) + λ‖Qs‖

}
< +∞ (40)
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then, ∀Q ∈ N with Q̂(−B) < +∞

EQr
λ

[
Φ′

(
λ
dQr

λ

dP

)]
+ Q̂λ(−B) + ‖Qs

λ‖ ≤ EQr

[
Φ′

(
λ
dQr

λ

dP

)]
+ Q̂(−B) + ‖Qs‖. (41)

Proof. If Qλ is optimal then Q̂λ(−B) must be finite. We can assume λ = 1, the case with general

λ being analogous, since condition (39) holds true. Denoting the optimal functional by Q1, fix

any Q with Q̂(−B) finite and consider Qx = xQ1 + (1 − x)Q. Also denote by V (Q) the objective

function to be minimized in (40) when λ = 1. Consider the convex function of x

F (x) := E

[
Φ

(
dQr

x

dP

)]
+ xQ̂1(−B) + (1− x)Q̂(−B) + ‖Qs

x‖

then F (1) = V (Q1) and F (x) ≥ V (Qx) since Q̂x(−B) is convex in x. Taking this inequality into

account and given that Q1 is a minimizer of V (Q),

F ′(1−) ≤ V ′(Q1−) ≤ 0.

Now, as in [BF06, Prop 25], it can be shown that

F ′(1−) = E

[(
dQr

1

dP
−

dQr

dP

)
Φ′

(
dQr

1

dP

)]
+ Q̂1(−B)− Q̂(−B) + ‖Qs

1‖ − ‖Qs‖

and since this quantity must be non positive we conclude the proof.

Next we fix Q and explore the consequences of optimality in λ. The result is identical to [BF06,

Prop 26], which we reproduce here for readability:

Proposition 3.11. Suppose that the utility u satisfies assumption A. If Q is a probability measure

in LΦ then for all c ∈ R the optimal λ(c;Q) solution of

min
λ>0

{
E

[
Φ

(
λ
dQ

dP

)]
+ λc

}
(42)

is the unique positive solution of the first order condition

E

[
dQ

dP
Φ′

(
λ
dQ

dP

)]
+ c = 0. (43)

The random variable f∗ := −Φ′(λ(c;Q)dQ
dP

) ∈
{
f ∈ L1(Q) | EQ[f ] = c

}
satisfies u(f∗) ∈ L1(P )

and

min
λ>0

{
E

[
Φ

(
λ
dQ

dP

)]
+ λc

}

= sup
{
E[u(f)] | f ∈ L1(Q) and EQ[f ] ≤ c

}
= E[u(f∗)] < u(∞) (44)

Therefore, whenever Q̂(−B) is finite, we can set c = Q̂(−B)+‖Qs‖ and conclude from (44) that

the minimization of the objective function in (37) with respect to λ > 0 for a fixed Q leads to the

same value of a utility maximization over integrable functions satisfying EQ[f ] ≤ Q̂(−B) + ‖Qs‖.

Motivated by these results, we define the following set of functionals and corresponding domain

for utility maximization:
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Definition 3.12. For any B satisfying (24) and (25) let

NW
B := {Q ∈ MW | Qr ∈ LΦ, Q̂(−B) ∈ R} (45)

and

KW
B := {f ∈ L0 | f ∈ L1(Qr), EQr [f ] ≤ Q̂s(−B) + ‖Qs‖, ∀Q ∈ NW

B }, (46)

with the corresponding optimization problem

UW
B := sup

f∈KW
B

E[u(f −B)]. (47)

Remark 3.13. (i) Note that the sets NW
B and KW

B depend also on Φ (and thus on the utility

u), but the dependence is omitted for convenience of notation. In the particular case B ∈ Lbu

however Q̂(−B) = Q(−B), so that NW
B does not depend on B and it coincides with the set of dual

functionals used in [BF06]:

NW = {Q ∈ MW | Qr ∈ LΦ}. (48)

While we are going to treat the utility maximization with random endowment for general B, we

will focus on B ∈ Lbu in the indifference price section, where the set of dual functionals will be

simply NW . Note also that each element in NW
B has non zero regular part.

(ii) If Φ(0) < +∞, then Q ∈ LΦ iff Q is a probability s.t. dQ
dP

∈ L
bΦ
+. As explained in Section

2.3 the regular part of each element in MW is already in L
bΦ
+, so that from (45) we get:

NW
B := {Q ∈ MW | Qr 6= 0, Q̂(−B) ∈ R}.

(iii) When Assumption (A) is satisfied then

NW
B := {Q ∈ MW | Qr 6= 0, E

[
Φ

(
dQr

dP

)]
< +∞, Q̂(−B) ∈ R}.

The utility optimization over the modified domain KW
B can be easily related with the original

utility optimization over terminal wealths KW .

Lemma 3.14. Suppose that B satisfies (24) and (25) and that NW
B 6= ∅. Then KW ⊂ KW

B and

the following chain of inequalities holds true

sup
k∈KW

E[u(k −B)] ≤ UW
B ≤ inf

λ>0,Q∈NW
B

{
λQ̂(−B) + E

[
Φ

(
λ
dQr

dP

)]
+ λ‖Qs‖

}
< ∞

Proof. For the first inequality, fix a k ∈ KW such that E[u(k − B)] > −∞ . By Lemma 3.7 item

2, Q̂(k) ≤ 0 for all Q ∈ MW . The assumptions on B imply that B+ ∈ Lbu so that (−B) ∈ Lbu
neg.

In addition, KW ⊆ Lbu
neg implies k − B ∈ Lbu

neg. Applying Lemma 3.7, item 1, we have for each

Q ∈ NW
B

Q̂(k −B) = Q̂(k) + Q̂(−B) ≤ Q̂(−B) < +∞.

Then Q̂(k −B) is finite and, by Lemma 3.7 item 4, the above inequality becomes:

EQr [k −B] + Q̂s(k −B) ≤ EQr [−B] + Q̂s(−B).

Given that −Q̂s(k −B) ≤ ‖Qs‖ from (33)

EQr [k −B] ≤ EQr [−B] + Q̂s(−B) + ‖Qs‖

17



and thus, cancelling EQr [−B], we get k ∈ KW
B .

To prove the second inequality, the (pointwise) Fenchel inequality gives

u(k −B) ≤ Z(k −B) + Φ(Z)

for every positive random variable Z and k ∈ L0. Let Q ∈ NW
B and take any λ > 0. By setting

Z = λdQr

dP
, fixing k ∈ KW

B and taking expectations we have

E[u(k −B)] ≤ λEQr [k −B] + E

[
Φ

(
λ
dQr

dP

)]
.

¿From the definition of KW
B

EQr [k] ≤ Q̂s(−B) + ‖Qs‖

whence

E[u(k −B)] ≤ λ(Q̂(−B) + ‖Qs‖) + E

[
Φ

(
λ
dQr

dP

)]
.

The expression E
[
Φ
(
λdQr

dP

)]
may be equal to +∞, but for each Q ∈ NW

B there is a positive λ

for which it is finite. The thesis then follows.

3.5 The main duality result

Theorem 3.15. Fix a loss variable W and a liability B ∈ Au. If

sup
H∈HW

E

[
u

(∫ T

0

HtdSt −B

)]
< u(+∞) (49)

then NW
B is not empty and

sup
H∈HW

E

[
u

(∫ T

0

HtdSt −B

)]
= UW

B

= min
λ>0, Q∈NW

B

{
λQ̂(−B) + E

[
Φ

(
λ
dQr

dP

)]
+ λ‖Qs‖

}
. (50)

The minimizer λB is unique, while the minimizer QB is unique only in the regular part Qr
B.

Suppose in addition that the utility u satisfies assumption A. Then,

UW
B = E[u(fB −B)], (51)

where the unique maximizer is

fB =

(
−Φ′(λB

dQr
B

dP
) +B

)
∈ KW

B (52)

and satisfies

EQr
B
[fB] = Q̂s

B(−B) + ‖Qs
B‖. (53)

Proof. First observe that it follows from (29) that

sup
H∈HW

E

[
u

(∫ T

0

HtdSt −B

)]
= sup

k∈KW

E[u(k −B)] = sup
f∈CW

E[u(f −B)].
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Moreover, Lemma 3.4 enables the application of Fenchel duality theorem to get

sup
f∈CW

E[u(f −B)] = sup
f∈CW

IBu (f) = min
Q∈(CW )0

JB
u (Q)

= min
Q∈(CW )0

{
E[Φ(Qr)] + Q̂(−B) + ‖Qs‖

}

where the last equality is guaranteed by Lemma 3.8. Now if the optimal Q had Qr = 0, then we

would have

sup
f∈CW

E[u(f −B)] = Φ(0) + Q̂s(−B) + ‖Qs‖ ≥ u(+∞),

since Q̂s(−B)+‖Qs‖ ≥ 0, according to (33), and Φ(0) = u(∞). Because this contradicts condition

(49), Qr 6= 0 and a re-parametrization of the domain of minimization in terms of NW
B leads to

sup
f∈CW

E[u(f −B)] = min
λ>0, Q∈NW

B

{
λQ̂(−B) + E

[
Φ

(
λ
dQr

dP

)]
+ λ‖Qs‖

}
.

Uniqueness of λB and Qr
B follow from strict convexity of the dual objective function in λ and

Qr. However, the dependence of the dual objective function on Qs is mixed: it is linear in the

norm ‖ · ‖-part due to (18) (see [BF06, Proposition 10] and generally convex in the term Q̂s(−B),

although this term may also reduce to a linear one in the special case B ∈ Lbu. Therefore, the

optimal singular functional might not be unique. Thanks to Lemma 3.14, the equalities

sup
k∈KW

E[u(f −B)] = UW
B = min

λ>0, Q∈NW
B

{
λQ̂(−B) + E

[
Φ

(
λ
dQr

dP

)]
+ λ‖Qs‖

}

are immediate. Under assumption A, the expression for fB can be derived by observing that any

minimizer QB is obtained as the minimizer of

min
Q∈NW

B

{
λBQ̂(−B) + E

[
Φ

(
λB

dQr

dP

)]
+ λB‖Q

s‖

}

and from a standard combination of the results in Propositions 3.10 and 3.11.

Corollary 3.16. Whenever B ∈ B = Au ∩ Lbu we have that Q̂(−B) = −Q(B) in (50) and

NW
B = NW . Moreover, if both W and B are in M bu, then NW

B can be replaced by the set Mσ ∩LΦ

of σ- martingale probabilities with finite generalized entropy and no singular term appears in (50).

Proof. The first statement is clear from the definition of Q̂. For the second statement, notice that

when W ∈ M bu then the regular component Qr of Q ∈ MW is already in MW (see [BF06, Lemma

41]). If B is in M bu as well, then Qs(B) = 0. Since ‖Qs‖ ≥ 0, the minimum must be achieved on

the set
{
Qr | Q ∈ NW

B

}
= Mσ ∩ LΦ.

We can see from (50) that the singular part Qs in the dual objective function plays a double

role. Its norm ‖Qs‖ sums up the generic risk of the high exposure in the market generated by S.

When the agent sells B, there is obviously an extra idiosyncratic exposure. Given our very general

assumptions on B, this extra exposure may also be extremely risky, and this is expressed by the

term Q̂s(−B). Of course, the presence of “high exposure” terms in the dual does not imply that

the actual minimizer QB must have a non-zero singular part. However, in the next section we
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construct some examples displaying the more interesting situation where Qs
B is necessarily non-

zero. In view of (53), a sufficient condition for this is EQr
B
[fB] > 0. The condition is by no means

necessary, since it could happen that Qs
B 6= 0 but ‖Qs

B‖+ Q̂s
B(−B) = 0 in (53).

It is interesting to investigate and possibly derive more accurate bounds for Q̂s(−B). The next

Proposition gives a priori good bounds for this singular contribution.

Proposition 3.17. For any B ∈ Au set

L = sup{β > 0 | E[û(βB+)] < +∞}

and fix any Q ∈ NW
B . Then

Q̂s(−B) ≥ −
1

L
‖Qs‖. (54)

If B− is also in Lbu, set

l = sup{α > 0 | E[û(αB−)] < +∞}.

Then

−
1

L
‖Qs‖ ≤ Qs(−B) ≤

1

l
‖Qs‖ (55)

and in particular we recover again Qs(B) = 0 when B ∈ M bu.

Proof. ¿From (26), E[u(−(1 + ε)B+)] < +∞, so L ≥ 1 + ǫ. For any b < L, (33) gives ‖Qs‖ ≥

bQs(B+) and therefore

Q̂s(−B) ≥ −Qs(B+) ≥ −
1

b
‖Qs‖

whence the desired Q̂s(−B) ≥ − 1
L
‖Qs‖. To prove the right inequality in (55), observe that the

additional hypothesis on B− means l > 0 and −αB− ∈ Dom(Iu) for any α < l. Hence

Qs(−B) ≤ Qs(B−) =
1

α
Qs(αB−) ≤

1

α
‖Qs‖ for all α < l

The result in Theorem 3.15 does not guarantee in full generality that the optimal random

variable fB ∈ KW
B can be represented as terminal value from an investment strategy in L(S), that

is, fB =
∫ T

0
HtdSt. The next proposition presents a partial result in this direction.

Proposition 3.18. Suppose that the utility u satisfies assumption A. Under the same hypotheses

of Theorem 3.15, if Qs
B = 0 and Qr

B ∼ P , then fB can be represented as terminal wealth from a

suitable strategy H.

Proof. It follows from Theorem 3.15 that fB must satisfy

EQr [fB] ≤ Q̂s(−B) + ‖Qs‖ ∀Q ∈ NW
B

and equality must hold at any optimal QB, according to (53). When the optimal QB has zero

singular part, then it is a σ-martingale measure with finite entropy, according to (21). This being

the case, it is easy to see that the dual problem could be reformulated as a minimum over Mσ∩LΦ.

In this simplified setup, one can show exactly as in [BF05, Therem 4, Theorem 1 (d)] that the

optimal fB belongs in fact to
⋂

Q∈Mσ∩LΦ

{f | f ∈ L1Q,EQ[f ] ≤ 0}

and can be represented as terminal wealth from a suitable strategy H .
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3.6 Exponential utility

For an exponential utility function u(x) = −e−γx, γ > 0, we have

Φ(y) =
y

γ
log

y

γ
−

y

γ

û(x) = eγ|x| − 1

Using (14), we see that in this case M bu consists of those random variables that have all the

(absolute) exponential moments finite, while the larger space Lbu corresponds to random variables

that have some finite exponential moment.

Moreover, since Φ̂(y) = (Φ(|y|)− Φ(γ))I{|y|>γ} and Φ(0) < ∞, we have that

E[Φ̂(f)] < ∞ ⇐⇒ E[Φ(|f |)] < ∞. (56)

Finally, since Φ̂ in this case satisfies the ∆2–growth condition (see [RR91, pp 22, 77]), the subspace

M
bΦ coincides with L

bΦ, that is, E[Φ̂(αf)] < ∞ for some α > 0 if and only if E[Φ̂(αf)] < ∞ for all

α > 0.

The duality result for an exponential utility, which clearly satisfies Assumption (A), follows

directly as a corollary of our main Theorem 3.15. Since u(∞) = 0, the condition (24) automatically

holds for all FT measurable random variables B and furthermore,

LΦ = {Q probab, Q ≪ P | E

[
Φ

(
dQ

dP

)]
< +∞} = {Q probab, Q ≪ P | E

[
Φ̂

(
dQ

dP

)]
< +∞}.

Corollary 3.19. Suppose that the random endowment B ∈ L0(Ω,FT , P ) satisfies

E[eγ(1+ǫ)B] < +∞ for some ǫ > 0

and suppose that there exists a loss variable W satisfying

sup
H∈HW

E
[
−e−γ(

R

T

0
HtdSt−B)

]
< 0. (57)

Then NW
B is not empty and

sup
H∈HW

E
[
−e−γ(

R

T

0
HtdSt−B)

]
=

− exp

{
− min

Q∈NW
B

(
H(Qr|P ) + γQ̂(−B) + γ‖Qs‖

)}
, (58)

where H(Qr|P ) = E
[
dQr

dP
log
(

dQr

dP

)]
denotes the relative entropy of Qr with respect to P . The

minimizer QB ∈ NW
B is unique only in the regular part Qr

B. In addition,

sup
H∈HW

E
[
−e−γ(

R

T

0
HtdSt−B)

]
= E[−e−γ(fB−B)],

where the optimal claim is

fB = −
1

γ
ln

(
λB

γ

dQr
B

dP

)
+B,

where λB = γ exp(H(Qr
B|P ) + γQ̂B(−B) + γ‖Qs

B‖) = − 1
γ
UW
B , and it satisfies
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1. fB ∈ L1(Qr), EQr [fB] ≤ Q̂s(−B) + ‖Qs‖ for all Q ∈ NW
B (i.e. it belongs to KW

B )

2. EQr
B
[fB] = Q̂s

B(−B) + ‖Qs
B‖

Whenever B has some exponential (absolute) moments finite, Q̂(−B) = −Q(B). Also, if both

W and B have all the exponential moments finite, then NW
B can be replaced by the “classic” set of

probabilities Q ∈ Mσ that have finite relative entropy, i.e. E[dQ
dP

ln(dQ
dP

)] < +∞, and no singular

term appears in (58).

Proof. The conditions on B are exactly those in Theorem 3.15, adapted to the exponential case.

So, directly from Theorem 3.15

sup
H∈HW

E
[
−e−γ(

R

T

0
HtdSt−B)

]
=

min
λ>0, Q∈NW

B

{
λQ̂(−B) + E

[
λ

γ

dQr

dP
log

(
λ

γ

dQr

dP

)
−

λ

γ

dQr

dP

]
+ λ‖Qs‖)

}
,

and an explicit minimization over λ > 0 leads to the duality formula (58). The remaining assertions

follow as in the proof of Theorem 3.15.

3.6.1 Examples with nonzero singular parts

We now explore the case of an exponential utility to construct two examples where the existence

of a nonzero singular part in the dual optimizer can be asserted explicitly.

Example 3.20. Consider a one period model with S0 = 0 and S1 = Y Z where Y is an exponential

random variable with density f(y) = e−y, y ≥ 0 and Z is a discrete random variable taking the

values {1,− 1
2 , . . . ,

1
n
− 1, . . .}. Assume that Y and Z are independent and let

p1 := P (Z = 1) > 0

pn := P

(
Z =

1

n
− 1

)
> 0, n ≥ 2

be the probability distribution of Z. For an investor with exponential utility u(x) = −e−x, it

is clear that the random variable W = 1 + Y is suitable and compatible. Suppose now that

B = α(Y, Z), where α is a bounded Borel function, so that the seller of the claim B faces the

problem

sup
h∈R

E
[
−e−hS1+B

]
= sup

h∈R

E
[
−e−hZY+α(Y,Z)

]
.

Because Y is exponentially distributed with parameter 1, α is bounded, −1 < Z ≤ 1 and

independent from Y , a necessary condition for the expectation above to be finite is that −1 < h ≤ 1.

Now the function

g(h) = E
[
−e−hS1+B

]
,

has a formal derivative given by

g′(h) = E
[
S1e

−hS1+B
]
= p1E

[
Y e−hY+α(Y,Z)

]
+
∑

n≥2

pnznE
[
Y e−hznY+α(Y,zn)

]
.

Since −1 < zn < 0 for n ≥ 2, we have that

g′(h) ≥ p1E
[
Y e−Y+B

]
−
∑

n≥2

pnE
[
Y e−znY +α(Y,zn)

]
.
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When pn → 0 sufficiently fast, this expression is not only well defined but strictly positive. There-

fore, by adjusting the distribution of Z, we can guarantee that 0 < g′(h) < ∞ for all −1 < h ≤ 1.

Therefore, the function g(h) is strictly increasing and attains its maximum at h = 1. But this

implies that

sup
h∈R

E
[
−e−hS1+B

]
= E

[
−e−S1+B

]
,

so that the optimizer for the primal problem is fB = S1. From the identity

u′(fB −B) = λB

dQr
B

dP
,

we obtain that the optimizer for the dual problem has a regular part given by

dQr
B

dP
=

e−S1+B

E[e−S1+B]
. (59)

Using (59) to calculate the expectation of fB with respect to Qr
B, we conclude from (53) that

Qs
B(−B) + ‖Qs

B‖ = EQr
B
[fB] =

E[S1e
−S1+B]

E[e−S1+B]
=

g′(1)

E[e−S1+B]
> 0,

which implies that Qs
B 6= 0.

Observe that a proper selection of the probabilities pn also guarantees that setting B = 0 in the

expressions above does not alter the domain of the function g(h) and the remaining calculations.

In particular, the maximum of E[−e−hS1] would be still attained at h = 1, which implies that the

optimizers f0 and fB for the primal problem with and without the claim coincide. This means

that the investor does not use the underlying market to hedge the claim, despite the fact that

B = α(Y, Z) is explicitly correlated with S1 = Y Z. Such behavior stems from the fact that the

risk associated with the unboundedness of the underlying outweighs the risk associated with the

bounded claim. This should be contrasted with the case of locally bounded markets, where even

a bounded claim leads to a different optimizer for the primal problem.

Example 3.21. Consider now the same setting as in the previous example, but with a claim of the

form B = δY , 0 < δ < 1, so that the investor faces the problem

sup
h∈R

E
[
−e−(hS1−δY )

]
= sup

h∈R

E
[
−e−(hZ−δ)Y

]
.

A necessary condition for the expectation above to be finite is −(1 − δ) < h ≤ (1 − δ), since

−1 < Z ≤ 1. Define the function

g(h) = E
[
−e−hS1+δY

]
,

with derivative

g′(h) = E
[
S1e

−hS1+δY
]
= p1E

[
Y e−(h−δ)Y

]
+
∑

n≥2

pnznE
[
Y e−(hzn−δ)Y

]
.

As before,

g′(h) ≥ p1E
[
Y e−(1−δ)Y

]
−
∑

n≥2

pnE
[
Y e−(zn+δ)Y

]
,
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which can be made strictly positive for pn → 0 sufficiently fast (as a consequence, we can assume

p1 ≫ pn). Therefore, 0 < g′(h) < ∞ for all −(1 − δ) < h ≤ (1 − δ) and the function g(h) attains

its maximum at h = 1− δ. We then obtain that fB = (1 − δ)S1, which implies that

dQr
B

dP
=

e−(1−δ)S1+δY

E[e−(1−δ)S1+δY ]
, (60)

in view of the identity

u′(fB −B) = λB

dQr
B

dP
.

As before, inserting this in (53)

Qs
B(−B) + ‖Qs

B‖ = EQr
B
[fB] =

E[(1− δ)S1e
−(1−δ)S1+δY ]

E[e−(1−δ)S1+δY ]
=

g′(1)

E[e−(1−δ)S1+δY ]
> 0,

which implies that Qs
B 6= 0.

Apart from the appearance of a nonzero singular part in the pricing measure, an interesting

feature of this example is the excess hedge fB − f0 = −δS1 induced by the presence of the claim

B. Observe that the selection p1 ≫ pn guarantees that B is positively correlated with S1, since

Cov(B,S1) = δE[Z]Var[Y ],

and E[Z] is positive when p1 is sufficiently larger than pn. This would suggest that the seller of

B should hedge it by buying more shares of S. What our analyses indicates is that this intuition

is in fact wrong, since the excess hedge due to the presence of B consists of selling δ shares of S.

The explanation for this counterintuitive result relies on the fact that B is not perfectly correlated

with S. In fact, whenever Z < 0, the risks of large downward moves in S1 = Y Z and large upward

moves in B = δY are both related to the same exponential random variable Y . Therefore, in the

presence of B, the preference structure prohibits to buy more than 1 − δ shares, which must be

then the new optimum.

4 The indifference price π

4.1 Definition and domain of π

Consider an agent with utility u (not necessarily satisfying Assumption (A)), initial endowment x

and investment possibilities given by HW who seeks to sell a claim B. As pointed out in Section

1, the indifference price π(B) for this claim is defined as the implicit solution to (1). In view of

the duality result of Theorem 3.15, we now rephrase this definition in terms of the function

UW
B (x) := sup

k∈KW

E[u(x+ k −B)]. (61)

Comparing this with (50), we see that the optimal value UW
B (0) is exactly what has been there

denoted by UW
B . Notice that we could alternatively denote (61) by UW

B−x, which would be consistent

with (50) for a claim of the form (B − x). We prefer UW
B (x) instead, since it better illustrates the

different financial roles played by the initial endowment x and the claim B.
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Definition 4.1. Provided that the related maximization problems are well–posed, the seller’s

indifference price π(B) of the claim B is the implicit solution of the equation

UW
0 (x) = UW

B (x+ π(B)) (62)

that is, π(B) is the additional initial money that makes the optimal utility with the liability B

equal to the optimal utility without B.

The next lemma shows that the class

B = Au ∩ Lbu = {B ∈ Lbu | E[û((1 + ǫ)B+)] < +∞ for some ǫ > 0} (63)

of claims B, for which we compute indifference prices, is considerably large and has desirable

properties. Note that the equivalence (14) says that E[û((1 + ǫ)B+)] < +∞ if and only if B

satisfies (26), so that (28) and (63) agree. In other words, B consists of the set of claims which, in

addition to satisfying the hypotheses of Theorem 3.15, are also in Lbu. Upon fixing the loss variable

W , the strengthening assumption B ∈ Lbu allows us to use Corollary 3.16 and guarantees that the

set of dual functionals NW
B does not depend on B and reduces to the set NW defined in (48).

Lemma 4.2.

B = {B ∈ Lbu | (−B) ∈ int(Dom(Iu))] (64)

and therefore has the properties:

1. B is convex and open in Lbu;

2. If B1 ∈ B and B2 ≤ B1, then B2 ∈ B.

3. B contains M bu (and thus L∞);

4. for any given B ∈ B and C ∈ M bu, we have that B +C ∈ B. In particular, B + c ∈ B for all

constants c ∈ R.

Proof. As remarked after (26), we already know that B satisfies (26) iff −B+ ∈ int(Dom(Iu)).

Under the extra condition B ∈ Lbu, B satisfies (26) iff −B ∈ int(Dom(Iu)), which shows (64).

Then, B is obviously open and convex (property 1) and property 2 is a consequence of the

monotonicity of Iu. It is evident that M
bu is contained in B, since C ∈ M bu iff E[û(kC)] < +∞ for

all k > 0 (property 3). In order to prove property 4, fix B ∈ B and a convenient ǫ. For any C in

M bu, set r =
ǫ
2

(1+ǫ)(1+ ǫ
2 )
. Then

E
[
û
(
(1 +

ǫ

2
)(B + C)+

)]
≤

1 + ǫ
2

1 + ǫ
E
[
û((1 + ǫ)B+)

]
+

ǫ/2

1 + ǫ
E

[
û

(
C+

r

)]
< +∞.

4.2 The properties of π

The next Proposition lists the various properties of the indifference price functional π, defined on

the set B ⊆ Lbu. Some results are new, in particular the regularity of the map and the description
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of the conjugate π∗ and of the subdifferential ∂π. They are nice consequences of the choice of the

natural Orlicz framework and the proofs are quite short and easy. The other items are extensions

of well–established results to the present general setup (see e.g. [Be03] or the recent [OZ07, Prop.

7.5] and the references therein). A recent reference book for the necessary notions from Convex

Analysis is [BZ05].

In the next proposition, the assumption that UW
0 (x) < u(+∞) can be replaced by NW 6= ∅,

whenever the utility function satisfies assumption (A). Indeed, in this case Proposition 3.11 and

NW 6= ∅ guarantees that UW
0 (x) < u(+∞) for all x ∈ R.

Proposition 4.3. Fix a loss variable W and an initial wealth x ∈ R such that UW
0 (x) < u(+∞).

The seller’s indifference price

π : B → R

verifies the following properties:

1. π is well–defined. The solution to the equation (62) above exists and it is unique.

2. Convexity and monotonicity. π is a convex, monotone non–decreasing functional.

3. Translation invariance. Given B ∈ B, π(B + c) = π(B) + c for any c ∈ R.

4. Regularity. π is norm continuous and subdifferentiable.

5. Dual representation. π admits the representation

π(B) = max
Q∈NW

(Q(B)− α(Q)) (65)

where the (minimal) penalty term α(Q) is given by

α(Q) = x+ ‖Qs‖+ inf
λ>0

{
E[Φ(λdQr

dP
)]− UW

0 (x)

λ

}
.

As a consequence, the subdifferential ∂π(B) of π at B is given by

∂π(B) = QW
B (x + π(B)) (66)

where QW
B (x+ π(B)) is the set of minimizers of the dual problem associated with the right–

hand side of (62).

6. Bounds. π satisfies the bounds

max
Q∈QW

0 (x)
Q(B) ≤ π(B) ≤ sup

Q∈NW

Q(B)

If W ∈ M bu and B ∈ M bu, the bounds above simplify to

EQ∗ [B] ≤ π(B) ≤ sup
Q∈Mσ∩LΦ

EQ[B]

where the probability Q∗ ∈ Mσ ∩ LΦ is the unique dual minimizer in QW
0 (x).
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7. Volume asymptotics. For any B ∈ B we have

lim
b↓0

π(bB)

b
= max

Q∈QW
0 (x)

Q(B). (67)

If B is in M bu,

lim
b→+∞

π(bB)

b
= sup

Q∈NW

Q(B). (68)

If W ∈ M bu and B ∈ M bu, the two volume asymptotics above become

lim
b↓0

π(bB)

b
= EQ∗ [B], lim

b→+∞

π(bB)

b
= sup

Q∈Mσ∩LΦ

EQ[B]

where the probability Q∗ ∈ Mσ ∩ LΦ is the unique dual minimizer in QW
0 (x).

8. Price of replicable claims. If B ∈ B is replicable in the sense that B = c +
∫ T

0 HtdSt

with H ∈ HW , but also −H ∈ HW , then π(B) = c.

Proof. Applying Theorem 2.7, eq. (22), we preliminary observe that the assumption UW
0 (x) <

u(+∞) implies NW 6= ∅.

1. Let F (p) := UW
B (x+p). By standard arguments it can be shown that F : R → (−∞, u(+∞)]

is concave and monotone non–decreasing, though not necessarily strictly increasing. By

monotone convergence we also have

lim
p→+∞

F (p) = u(+∞). (69)

We now show that limp→−∞ F (p) = −∞, so that F (p) is not constantly equal to u(+∞).

Fix Q ∈ NW and take λ > 0 for which E[Φ(λdQr

dP
)] is finite. ¿From the inclusion KW ⊆ KW

B ,

proved in Lemma 3.14, and Fenchel inequality it follows, as in the second part of Lemma

3.14, that for all k ∈ KW

E[u(x+ p+ k −B)] ≤ E

[
(x+ p+ k −B)λ

dQr

dP

]
+ E

[
Φ

(
λ
dQr

dP

)]

≤ λ(x + p−Q(B) + ‖Qs‖) + E

[
Φ

(
λ
dQr

dP

)]
< +∞,

so that the r.h.s. does not depend on k anymore. Taking the sup over k

F (p) = UW
B (x+ p) ≤ λ(x+ p−Q(B) + ‖Qs‖) + E

[
Φ

(
λ
dQr

dP

)]

and then, passing to the limit for p → −∞, one obtains limp→−∞ F (p) = −∞. The well-

posedness of the definition of π is now straightforward. In fact, let pL be the infimum of the

set {p ∈ R | F (p) = F (+∞) = u(+∞)}. ¿From concavity, on (−∞, pL) F is continuous and

strictly monotone and thus a bijection onto the image (−∞, u(+∞)). Since UW
0 (x) < u(+∞),

there always exists a unique p such that F (p) = UW
0 (x), namely the indifference price π(B).

2. Convexity and monotonicity are consequences of the definition (62), of the concavity and

monotonicity of u and of the convexity of HW .
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3. Translation invariance follows directly from the definition (62).

4. For this item, observe that π is a real valued, convex, monotone functional on the convex

open subset B of the Banach lattice Lbu. It then follows from item 2 of Lemma 4.2 that the

extension π̃ of π on Lbu with the value +∞ on Lbu\B is still monotone, convex and translation

invariant. Trivially, the interior of the proper domain of π̃ coincides with B. Therefore,

norm continuity and sub-differentiability of π̃ (and thus of π) on B follow from an extension

of the classic Namioka-Klee theorem for convex monotone functionals (see [RS06], but also

[BF07] and [CL07] in the context of Risk Measures). As a consequence, π admits a dual

representation on B as

π(B) = π̃(B) = max
Q∈(Lbu)∗+,Q(1Ω)=1

{Q(B)− π∗(Q)} (70)

where π∗ is the convex conjugate of π̃, that is π∗ : (Lbu)∗ → (−∞,+∞],

π∗(z) = sup
B′∈Lbu

{z(B′)− π̃(B′)} = sup
B∈B

{z(B)− π(B)}.

The normalization condition Q(1Ω) = 1 in (70) derives from the translation invariance prop-

erty. The subdifferential of π at B is, as always, given by

∂π(B) = argmax{Q(B)− π∗(Q)}. (71)

Note that, since π(0) = 0, π∗ is nonnegative and thus it can be interpreted as a penalty

function. The next item presents a characterization of π∗ and therefore of ∂π(B).

5. A dual representation for π has just been obtained in (70). The current item is proved in

two steps: first, we establish representation (65) with the penalty α; second, we prove that

α = π∗, that is α is the minimal penalty function, which together with (71) gives (66) and

completes the proof.

Step 1. From the definition of π(B) and from the dual formula (50)

UW
0 (x) = UW

B (x+ π(B))

= min
λ>0,Q∈NW

{
λQ(−B + x+ π(B)) + λ‖Qs‖+ E

[
Φ

(
λ
dQr

dP

)]}
.

Necessarily then

π(B) ≥ Q(B)−

[
x+ ‖Qs‖+

E[Φ(λdQr

dP
)]− UW

0 (x)

λ

]
for all λ > 0, Q ∈ NW

and equality holds for the optimal λ∗ and any Q∗ ∈ QW
B (x + π(B)). Fixing Q ∈ NW and

taking first the supremum over λ > 0, we get

π(B) ≥ Q(B)− inf
λ>0

[
x+ ‖Qs‖+

E[Φ(λdQr

dP
)]− UW

0 (x)

λ

]
.

Taking then the supremum over Q we finally obtain

π(B) = max
Q∈NW

{
Q(B)− inf

λ>0

[
x+ ‖Qs‖+

E[Φ(λdQr

dP
)]− UW

0 (x)

λ

]}
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where equality holds for λ∗, Q∗ ∈ QW
B (x+ π(B)). Observe that the following extension, still

denoted by α,

α(Q) =





infλ>0

[
x+ ‖Qs‖+

E[Φ(λ dQr

dP
)]−UW

0 (x)

λ

]
when Q ∈ NW

+∞ otherwise

is [0,+∞]-valued and satisfies infQ∈(Lbu)∗ α(Q) = 0. Therefore, it is a grounded penalty

function and clearly

π(B) = max
Q∈(Lbu)∗+

{Q(B)− α(Q)}

and the set

argmax{Q(B)− α(Q)} coincides with QW
B (x+ π(B)). (72)

In particular, when B = 0

π(0) = 0 and argmax{−α(Q)} = argmin {α(Q)} = QW
0 (x). (73)

Step 2. As α provides another penalty function, a basic result in convex duality ensures that

π∗ = α∗∗, i.e. π∗ is the convex, σ((Lbu)∗, Lbu)–lower semicontinuous hull of α. We want to

show that π∗ = α. To this end, we prove that α is already convex and lower semicontinuous.

(a) α is convex: Let Q(y) = yQ1 + (1 − y)Q2 be the convex combination of any couple

of elements in NW (if the Qi are not in NW there is nothing to prove). Given any

λ1, λ2 > 0 , define λ(y) = 1
(1−y) 1

λ2
+y 1

λ1

, so that 1
λ(y) = (1− y) 1

λ2
+ y 1

λ1
. Then

α(Q(y)) ≤

[
x+ ‖Qs(y)‖ +

E[Φ(λ(y)
dQr(y)

dP
)]−UW

0 (x)

λ(y)

]
≤

y

[
x+ ‖Qs

1‖+
E[Φ(λ1

dQr
1

dP
)]−UW

0 (x)

λ1

]
+ (1− y)

[
x+ ‖Qs

2‖+
E[Φ(λ2

dQr
2

dP
)]−UW

0 (x)

λ2

]

where the inequalities follow from the convexity of the norm and of the function (z, k) →

zΦ(k/z) on R+ × R+, as already pointed out. Taking the infimum over λ1 and λ2

α(Q(y)) ≤ y α(Q1) + (1− y)α(Q2).

(b) α is lower semicontinuous: Since α is a convex map on a Banach space, weak lower

semicontinuity is equivalent to norm lower semicontinuity. Suppose then that Qk is a

sequence converging to Q with respect to the Orlicz norm. We must prove that

α(Q) ≤ lim inf
k

α(Qk) := L

We can assume L = lim infk α(Qk) < +∞, otherwise there is nothing to prove. Now, it

is not difficult to see that

Qk
‖·‖
→ Q iff Qr

k

‖·‖
→ Qr, Qs

k

‖·‖
→ Qs (74)

so that Qr
k → Qr in L

bΦ and henceforth in L1. We can extract a subsequence, still

denoted by Qk to simplify notation, such that

α(Qk) → L and Qr
k → Qr a.s.
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So these Qk are (definitely) in NW , which is closed and therefore the limit Q ∈ NW .

For all k ∈ N+ there exists λk > 0 such that

α(Qk) ≤ x+ ‖Qs
k‖+

E[Φ(λk
dQr

k

dP
)]− UW

0 (x)

λk

≤ α(Qk) +
1

k
.

The next arguments rely on a couple of applications of Fatou Lemma to (a subsequence

of) the sequence

(
Φ(λk

dQr
k

dP
)−UW

0 (x)

λk

)

k

. Fatou Lemma is enabled here by the condition

UW
0 (x) < u(+∞) and by the convergence of the regular parts (

dQr
k

dP
)k. In fact, one can

always find an x̃ such that u(x̃) = UW
0 (x) and then the Fenchel inequality gives the

required control from below

Φ(λk
dQr

k

dP
)− UW

0 (x)

λk

+
dQr

k

dP
x̃ ≥ 0. (75)

The sequence (λk)k cannot tend to +∞. In fact, if λk → +∞, then a.s. we would have

(remember that Φ is bounded below)

lim inf
k

Φ
(
λk

dQr
k

dP

)
− UW

0 (x)

λk

= lim inf
k

Φ
(
λk

dQr
k

dP

)

λk

≥ lim
k

(miny Φ(y))

λk

1
{

dQr
k

dP
∧ dQr

dP
=0}

+ lim
k

Φ(λk
dQr

k

dP
)

λk

1
{

dQr
k

dP
∧ dQr

dP
>0}

= lim
k

Φ(λk
dQr

k

dP
)

λk
dQr

k

dP

dQr
k

dP
1
{

dQr
k

dP
>0}

1{ dQr

dP
>0} (76)

Since 1
{

dQr
k

dP
>0}

1{ dQr

dP
>0} → 1{dQr

dP
>0} a.s. and, as already checked, limy→+∞

Φ(y)
y

=

+∞ the limit in (76) is in fact +∞ on the set { dQr

dP
> 0} which has positive probability

as Q ∈ NW . But then

L = limk{α(Qk) +
1
k
} = limk

{
x+ ‖Qs

k‖+ E

[
Φ(λk

dQr
k

dP
)−UW

0 (x)

λk

]}

≥ x+ ‖Qs‖+ E

[
lim infk

Φ(λk

dQr
k

dP
)−UW

0 (x)

λk

]
= +∞

where in the inequality we apply (74) and Fatou’s Lemma.

Therefore there exists some compact subset of R+ that contains λk for infinitely many

k’s, so that we can extract a subsequence λkn
→ λ∗. The inequality (75) ensures that

λ∗ must be strictly positive. Otherwise, if λ∗ = 0, the numerator of the fraction there

tends to Φ(0)− UW
0 (x) = u(+∞)− UW

0 (x) > 0 and globally the limit random variable

would be +∞. Finally,

α(Q) ≤ x+ ‖Qs‖+
E[Φ(λ∗ dQr

dP
)]− UW

0 (x)

λ∗

≤ x+ lim inf
n

{
‖Qs

kn
‖+

E[Φ(λkn

dQr
kn

dP
)]− UW

0 (x)

λkn

}
= L.

Therefore, α = π∗ and the identity ∂π(B) = QW
B (x + π(B)) in (66) follows from (71) and

(72).
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6. The bounds below are easily proved,

sup
Q∈QW

0 (x)

Q(B) ≤ π(B) ≤ sup
Q∈ NW

Q(B) (77)

since the first inequality follows from the fact that when Q ∈ QW
0 (x), the penalty α(Q) = 0

(see (73)) and the second inequality holds because α is a penalty, i.e. α(Q) ≥ 0. The first

supremum is in fact a maximum, which is a consequence of the“Max Formula” as better

explained in item 7 below.

The case W,B ∈ M bu is immediate from (77) and from the special form of the dual as stated

in Corollary 3.16.

7. Let π′(C,B) indicate the directional derivative of π at C along the direction B, i.e. π′(C,B) =

limb↓0
π(C+bB)−π(C)

b
. The so–called Max Formula ([BZ05, Theorem 4.2.7]) states that given

a convex function π and a continuity point C, then

π′(C,B) = max
Q∈∂π(C)

Q(B)

So the first volume asymptotic becomes a trivial application of the Max Formula with C = 0,

since bB ∈ B if b ≤ 1 + ǫ and

lim
b↓0

π(bB)

b
= π′(0, B) = max

Q∈QW
0 (x)

Q(B),

because π(0) = 0 and QW
0 (x) = ∂π(0).

For the second volume asymptotic, when B ∈ M bu then bB ∈ B for all b ∈ R. So, π(bB) is

well–defined and for all b > 0 we have that π(bB) ≤ supQ∈NW Q(bB). Therefore

lim sup
b→+∞

π(bB)

b
≤ sup

Q∈NW

Q(B).

If we fix Q ∈ NW , the penalty α(Q) is finite and

π(bB)

b
≥ Q(B)−

α(Q)

b
for all b > 0

so that

lim inf
b→+∞

π(bB)

b
≥ Q(B) for all Q ∈ NW

so that

lim
b→+∞

π(bB)

b
= sup

Q∈NW

Q(B).

Finally, the case W,B ∈ M bu follows from the asymptotics just proved and Corollary 3.16.

8. If B and −B are replicable with admissible strategies, then Q(B) = c for all Q ∈ NW ,

whence in particular for the “zero penalty functionals” Q ∈ QW
0 (x). Therefore π(B) =

maxQ{Q(B)− α(Q)} = c
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Remark 4.4. As already noted in [Be03, Remark 2.6], if B is not in B (e.g. a call option in a

Black-Scholes model for an investor with exponential preferences) but satisfies

B = B∗ +

∫ T

0

H∗
s dSs

where B∗ ∈ B and the strategy H∗ is such that {H +H∗ | H ∈ HW } = HW , then one can apply

the analysis to B∗ and define π(B) = π(B∗).

To better compare our results with the current literature, in the next Corollary we specify the

formula for π in the exponential utility case.

Corollary 4.5. Let u(x) = −e−γx, fix a loss variable W and assume that NW 6= ∅. If B ∈ B

then:

πγ(B) = max
Q∈NW

[
Q(B)−

1

γ
H(Q,P )

]
, (78)

where the penalty term is given by:

H(Q,P ) := γ‖Qs‖+H(Qr|P )− UW
0

= γ‖Qs‖+H(Qr|P )− min
Q∈NW

{H(Qr|P ) + γ‖Qs‖} . (79)

Observe that, apart from the presence of the singular term ‖Qs‖, this result coincides with

equation (5.6) of [6Au02]. For a possible interpretation of this term, both in (79) and in the

general representation (65) let us define a catastrophic event as a random variable χ such that

E[u(χ)] > −∞ but E[u(αχ)] = −∞ for some α > 0. (80)

In other words, catastrophic events are given by random variables in the set

D̂ := {f ∈ Lbu\M bu and E[u(f)] > −∞}. (81)

Since Qs vanishes on M bu, we conclude that

‖Qs‖ = sup
f∈D

Qs(−f) = sup
f∈ bD

Qs(−f), (82)

so that the singular component is only relevant when computing Q(f) for a catastrophic f ∈ D̂.

Therefore, if Q ∈ MW is a “pricing measure” for which ‖Qs‖ > 0, then it might happen that

EQr [f ] > 0 for a catastrophic random variable in the domain of optimization, despite the fact

that Q(f) ≤ 0 for all f ∈ CW . Such Q should then be used with caution. When pricing the

claim B using the formula (78) or (65), the pricing measures Q ∈ MW that allow this unnatural

behavior are penalized with a penalization proportional to the relevance that Qs attributes to the

catastrophic events according to (82).

We conclude this section with some considerations on the risk measure induced by π.

Corollary 4.6. Under the same hypotheses of Proposition 4.3 , the seller’s indifference price π

defines a convex risk measure on B, with the following representation:

ρ(B) = π(−B) = max
Q∈NW

{Q(−B)− α(Q)}. (83)
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If both the loss control W and the claim B are in M bu, then this risk measure has the Fatou property.

In terms of π, this means

Bn ↑ B ⇒ π(Bn) ↑ π(B) (84)

Proof. The first part is a consequence of the above Proposition and the second part follows from the

fact that we have often stressed that when W,B are in M bu there is a version of the dual problem

only with regular elements Q ∈ NW ∩ L1 = Mσ ∩ LΦ. Consequently there is a representation

ρ(B) = maxQ∈NW∩L1{Q(−B)− α(Q)} on the order continuous dual. But this implies the Fatou

property (see e.g. [BF07, Prop. 26]).

5 Comparison with existing literature

The results above extend the literature on utility maximization with random endowment when u

is finite on the entire real line. In fact, we allow the semimartingale S to be non locally bounded

and as far as we know ours is the first paper in this direction.

Also, the conditions we put on the claim B, that is B ∈ Au, are extremely weak - for the

exponential utility B ∈ Au simply means that B satisfies (26). The following list compares our

conditions on B with those in the cited papers, which are all formulated in the S locally bounded

case.

To better compare these works, we stress that when S is locally bounded, we may select W = 1

and therefore (see Corollary 3.16) the dual problem can be formulated totally free of singular parts,

as soon as B ∈ M bu, and we also get the representation of the optimal fB as terminal value of an

S-stochastic integral (Proposition 3.18).

1. The first paper where a duality result of the type (2)-(3) appeared - obviously with no

singular components - is Bellini and Frittelli [BeF02] Corollaries 2.2, 2.3, 2.4. In this paper, u is

finite on the entire real line, B is bounded, W = 1, so that the admissible set of trading strategies

is H1 and M1 is the set of local martingale measures.

2. The six Authors paper [6Au02] (see also the related work by Kabanov and Stricker [KS02])

considers only the exponential u. They extended the results [BeF02] in two respect. First they con-

sider four different classes of trading strategies (including H1) and secondly, they assume condition

(26) plus B bounded from below. These conditions clearly imply that B ∈ B = Lbu ∩Au.

3. Becherer’s paper [Be03] also consider only the exponential case and extend further the results

in 1) and 2) above. His Assumption 2.4

E[e(γ+ε)B] < +∞, E[e−εB] < +∞

is however equivalent to saying that conditions (26) and (27) hold, i.e. that B ∈ B = Lbu ∩ Au.

4. For general utility u finite on R, the Assumption 1.6 on B in Owen and Zitkovich [OZ07] is

on a different level, since it is a joint condition on B and the admissible strategies. This condition

is not easy to verify in practice, since it requires the prior knowledge of the dual measures. Also,

for economic reasons, we believe that it is better to state the conditions on the claim only in terms

of the compatibility with the utility function.
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