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DECOMPOSITION THEOREMS FOR HARDY SPACES ON
CONVEX DOMAINS OF FINITE TYPE

SANDRINE GRELLIER AND MARCO M. PELOSO

Abstract. In this paper we study the holomorphic Hardy spaceHp(Ω),
where Ω is a smoothly bounded convex domain of finite type in Cn.

We show that for 0 < p ≤ 1, Hp(Ω) admits an atomic decomposi-
tion. More precisely, we prove that each f ∈ Hp(Ω) can be written

as f = PS(
∑∞
j=0 νjaj) =

∑∞
j=0 νjPS(aj), where PS is the Szegö pro-

jection, the aj ’s are real variable p-atoms on the boundary ∂Ω, and
the coefficients νj satisfy the condition

∑∞
j=0 |νj |p . ‖f‖

p
Hp(Ω)

. More-

over, we prove the following factorization theorem. Each f ∈ Hp(Ω)

can be written as f =
∑∞
j=0 fjgj , where fj ∈ H2p, gj ∈ H2p, and∑∞

j=0 ‖fj‖H2p‖gj‖H2p . ‖f‖Hp(Ω). Finally, we extend these theorems

to a class of domains of finite type that includes the strongly pseudo-
convex domains and the convex domains of finite type.

Introduction

Let Ω be a smoothly bounded domain in Cn. For 0 < p ≤ ∞ let Lp(Ω)
denote the Lebesgue space with respect to the volume form and Lp(∂Ω) the
Lebesgue space on ∂Ω with respect to the induced surface measure dσ. For
0 < p ≤ 1 let Hp(∂Ω) be the real-variable Hardy space on ∂Ω.

We let Hp(Ω) denote the Hardy space of holomorphic functions on Ω, with
norm given by

‖f‖pHp(Ω) := sup
0<ε<ε0

∫
δ(w)=ε

|f(w)|p dσε(w),

where δ(w) is the distance from w to ∂Ω and dσε denotes the surface measure
on the manifold {δ(w) = ε}. To any function f ∈ Hp(Ω) corresponds a unique
boundary function in Lp(∂Ω), which we also denote by f , obtained as normal
almost everywhere limit [St1]. Thus, we may identify Hp(Ω) with a closed
subspace of Lp(∂Ω).
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The Hilbert space orthogonal projection PS of L2(∂Ω) onto H2(Ω) is given
by the Szegö projection

PSf(z) =
∫
∂Ω

f(ζ)SΩ(z, ζ) dσ(ζ),

where SΩ(z, ζ) is the Szegö kernel.
When Ω is a smoothly bounded convex domain of finite type, there exists a

natural pseudo-distance db on ∂Ω that makes ∂Ω into a space of homogeneous
type (see [Mc]). The real-variable Hardy space Hp(∂Ω), 0 < p ≤ 1, is defined
as a space of distributions on ∂Ω, in terms of atoms, in the following sense.
Each distribution f ∈ Hp(∂Ω) can be written as f =

∑∞
j=0 νjaj , where {νj} ∈

`p, the aj ’s are p-atoms and the series is assumed to converge in the sense of
distributions (see Section 1 for the precise definition).

In this paper we prove that, for 0 < p ≤ 1, the Hardy space Hp(Ω) con-
tinuously embeds into Hp(∂Ω). In other words, every function f ∈ Hp(Ω)
has boundary values that belong to Hp(∂Ω), so that it admits an atomic
decomposition.

To be more precise, for g a distribution on ∂Ω, PS(g) is the holomorphic
function in Ω defined for z ∈ Ω by

PS(g)(z) =
〈
g, SΩ(z, ·)

〉
,

where SΩ(z, ζ) denotes the Szegö kernel, which is C∞(∂Ω) in the second vari-
able whenever z ∈ Ω.

We prove that any f ∈ Hp(Ω) can be written as PS(
∑
νjaj), where

∑
νjaj

is a distribution that belongs to Hp(∂Ω). Moreover, we have PS(
∑
νjaj) =∑

νjPS(aj) in theHp(Ω)-sense, that is, the series converges to f in theHp(Ω)-
norm.

On the other hand, we prove that the Szegö projection PS maps continu-
ously Hp(∂Ω) into Hp(Ω), for 0 < p ≤ 1.

Moreover, we prove that on Hp(Ω) a (weak) factorization theorem holds.
More precisely, we show that, given any function f ∈ Hp(Ω), there ex-
ist fj , gj ∈ H2p(Ω) such that f =

∑∞
j=0 fjgj and

∑∞
j=0 ‖fj‖H2p‖gj‖H2p ≤

c‖f‖Hp(Ω), with c independent of f .
Finally, in Section 8 we extend the above results to so-called H-domains,

a class of smooth, bounded domains of finite type that includes the strongly
pseudoconvex domains and the convex domains of finite type. Such domains
are a natural extension of the mentioned domains and were studied in [BPS3].

These results extend classical results to the case of convex domains of finite
type, and more generally to the case of H-domains. The atomic decomposi-
tion of the holomorphic Hardy spaces was first proved in the case of the unit
ball by Garnett and Latter [GL], and later extended to strongly pseudoconvex
domains and domains of finite type in C2 by Krantz and Li [KL2], and inde-
pendently by Dafni [D] in the case of strongly pseudoconvex domains. Related
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results about duality between H1 and BMO appear in [KL1] for strongly pseu-
doconvex domains and domains of finite type in C2, and in [KL3] for convex
domains of finite type. The factorization theorem is classical in dimension
1, while in several variables it was first proved by Coifman, Rochberg and
Weiss [CRW] in the case of the unit ball for the space H1(Ω). In [KL2] this
theorem was extended to the case of strongly pseudoconvex domains for all
spaces Hp(Ω), 0 < p ≤ 1, and in [BPS2] to convex domains of finite type for
H1(Ω).

Applications of these results to the regularity properties of small Hankel
operators have been given in [CRW], [KL2] and [BPS2], just to name a few.
Another classical characterization of Hardy spaces, in terms of the area inte-
gral, was given in [KL4] for the case of convex domains of finite type in Cn.
Finally, we mention that the optimal approach regions for a Fatou-type the-
orem for Hp functions on a convex domain of finite type have been described
in [DFi].

The geometry of convex domains of finite type was first described by Mc-
Neal [Mc]. This description was later applied by McNeal and Stein to the
analysis of the mapping properties of the Bergman projection [McS1] and the
Szegö projection [McS2]. In the case of strongly pseudoconvex domains and
finite type domains in C2 the geometry was determined by canonical vector
fields. The natural quasi-distance on ∂Ω was the control distance determined
by these vector fields, i.e., the Carnot metric. The situation of convex do-
mains of finite type is essentially more general. The “weight” of each vector
field may vary from point to point, and one needs to take into consideration
the different order of contact of complex lines with ∂Ω. For these reasons it
is natural to consider a diameter function τ(ζ, λ, r), which gives the diameter
of the largest one-dimensional disc in the direction of λ with center at ζ that
fits inside the region {z′ : %(z′) < r}. Here % denotes a fixed smooth defining
function for Ω.

As a consequence, in order to define the cancellation property for p-atoms
for small values of p, we need to consider the pairing between functions
f ∈ Hp(Ω) and smooth bump functions whose derivatives in all tangential
directions can be controlled in terms of the diameter function.

We remark that, although the main lines of the proof of the atomic de-
composition are standard, some of the classical arguments have been greatly
simplified. On the other hand, in order to prove the factorization theorem we
adapt an idea from [BPS2], where the result was proved in the case p = 1.
The proof relies neither on the explicit expression of the Szegö kernel, as in
[CRW], nor on its asymptotic expansion, as in [KL4]. Instead, it is based on a
recent result by Diederich and Fornæss on the existence of support functions
on convex domains of finite type.

We use the notation A . B to indicate that A ≤ c ·B, where the constant
c does not depend on the important parameters on which the functions A and
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B depend. (Typically, the constant c will only depend on the geometry of the
domain Ω.) We use the symbols & and ≈ with similar, obvious meanings.

1. Basic facts and notation

Let Ω be a smoothly bounded convex domain in Cn. A point ζ ∈ ∂Ω is
said to be of finite type if the order of contact of complex lines with ∂Ω at
this point is finite (see [BS] and the references therein). The type of the point
is the least upper bound of the various orders of contact. We say that Ω is of
finite type MΩ if every point on ∂Ω is of finite type ≤MΩ.

Let Ω = {z ∈ Cn : %(z) < 0}. There exists ε0 > 0 such that for |ε| ≤ ε0

the sets Ωε = {z ∈ Cn : %(z) < ε} are all convex and the normal projection
π : U → ∂Ω is well defined and smooth, where U = {z ∈ Cn : δ(z) < ε0}. The
basic geometric facts about convex domains of finite type were first proved by
McNeal [Mc]; see also [McS1], [McS2], and [DFo]. We recall the results needed
for the present work and take this opportunity to review the main elements
of the construction and to set some notation.

For z ∈ U and λ ∈ Cn a unit vector, we denote by τ(z, λ, r) the distance
from z to the surface {z′ : %(z′) = %(z)+r} along the complex line determined
by λ.

For each z ∈ U and r < ε0 there exists a special set of coordinates
{wz,r1 , . . . , wz,rn }, which we call r-extremal. The first vector v(1) is given by
the direction transversal to the boundary, in the sense that the shortest dis-
tance from z to the set {z′ : %(z′) = %(z) + r} is attained in the complex line
determined by v(1).

The vector v(2) is chosen among the vectors orthogonal to v(1) in such a
way that τ(z, v(2), r) is maximal. We repeat this process until we obtain an
orthonormal basis {v(1), . . . , v(n)}. We denote by (w1, . . . , wn) the coordi-
nates with respect to this basis. Notice that these coordinates (w1, . . . , wn) =
(wz,r1 , . . . , wz,rn ) depend on z and r. However, the transversal direction w1

does not depend on r.
For k = 1, . . . , n, we set

(1.1) τk(z, r) = τ
(
z, v(k), r

)
and define the polydisc

(1.2) Q(z, r) = {w : |wk| < τk(z, r), k = 1, . . . , n}.
The basic relations among these quantities are given in the following propo-
sition; see [McS2, Prop. 1.1] and also [BPS2, Lemma 2.1].

Proposition 1.1. There exists a constant C > 0 depending only on Ω
such that for any unit vector λ ∈ Cn, 0 < r ≤ ε0, z ∈ U , and 0 < η < 1 we
have:

(i) η1/2τ(z, λ, r) . τ(z, λ, ηr) . η1/MΩτ(z, λ, r);
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(ii) η1/2Q(z, C−1r) ⊂ Q(z, ηr) ⊂ η1/MΩQ(z, Cr);
(iii) if w ∈ Q(z, δ) then τ(z, λ, r) ≈ τ(w, λ, r).

We define the quasi-distance db : U × U by

(1.3) db(z, w) = inf{δ : w ∈ Q(z, δ)}

and set

(1.4) d(z, w) = db(z, w) + δ(z) + δ(w).

Notice that d is initially defined on U×U . We extend this function to Cn×Cn
by setting

d(z, w) = ψ(%(z))ψ(%(w)) d(z, w) + (1− ψ(%(z)))(1− ψ(%(w)))|z − w|,

where ψ is a smooth cut-off function on R such that ψ(t) = 1 for |t| ≤ ε0/2
and ψ(t) = 0 for |t| ≥ ε0.

On the boundary we will use a family of “balls” centered at ζ ∈ ∂Ω and of
radius δ, defined as

B(ζ, δ) = Q(ζ, δ) ∩ ∂Ω.

For any unit vector λ we introduce the differential operator

(1.5) Lλ = (∂λ%)∂x1 − (∂x1%)∂λ,

where w1 = x1 + iy1 is the transversal direction fixed earlier. Here ∂λ is the
standard vector field defined by λ as ∂λf = 〈λ, df〉, for the real differential
df of a smooth function f , where 〈 , 〉 denotes the usual pairing between a
one-form and a vector.

Notice that Lλ is always a tangential vector field. If λ ∈ S2n−1 is itself
tangent to ∂Ω, then Lλ is the directional derivative in the direction λ.

For Λ = (λ1, . . . , λq) a q-list of vectors in S2n−1 and µ = (µ1, . . . , µq) a
q-index we set |µ| = µ1 + · · ·+ µn,

(1.6) LµΛ = Lµ1
λ1
. . . L

µq
λq
,

and

(1.7) τµ(z,Λ, δ) = τ(z, λ1, δ)µ1 . . . τ(z, λq, δ)µq .

We recall the fundamental estimates for the Szegö kernel and its derivatives
called interior estimates of S-type (see Definion 4 and Theorem 3.6 in [McS2]):

(1.8)
∣∣∣LµΛ,zLµ′Λ′,z′SΩ(z, z′)

∣∣∣ . τ−µ(z,Λ, δ)τ−µ
′
(z′,Λ′, δ)

σ (B (π(z), δ))
,

where δ = d(z, z′), z, z′ ∈ Ω × Ω \∆∂Ω, with ∆∂Ω denoting the diagonal on
∂Ω.
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We conclude this section by giving the definition of the real-variable Hardy
spaces. We first introduce the notion of p-atoms. Let ζ0 ∈ ∂Ω, r0 < ε0, and
let N be a positive integer. On C∞(B(ζ0, r0)) we introduce the norm

(1.9) ‖φ‖SN (B(ζ0,r0)) = sup
Λ

∑
|µ|=N

‖LµΛφ‖L∞(B(ζ0,r0)) τ
µ(ζ0,Λ, r0).

Definition 1.2. We set

`0 = [(1− 1/p)(MΩ + 2n− 2)] , Np = `0 + 1,

where [x] denotes the integral part of x. A measurable function a on ∂Ω is
called a p-atom if it is either the constant function on ∂Ω equal to σ(∂Ω)−1/p,
or satisfies the following conditions:

(i) supp a ⊆ B(ζ0, r0);
(ii) |a(ζ)| ≤ σ (B(ζ0, r0))−1/p;
(iii)

∫
∂Ω
a(ζ) dσ(ζ) = 0;

(iv) for all φ ∈ C∞ (B(ζ0, r0)) we have∣∣∣∣∫
∂Ω

a(ζ)φ(ζ) dσ(ζ)
∣∣∣∣ ≤ ‖φ‖SNp (B(ζ0,r0))σ (B(ζ0, r0))1−1/p

.

Notice that condition (iv) replaces the classical higher moment condition
and is in the same spirit as the analogous condition in [KL2]. The difference
here lies in the choice of the norm ‖ · ‖SNp .

Real-variable Hardy spaces. Let 0 < p ≤ 1. The real Hardy space
Hp(∂Ω) is the space of distributions f on ∂Ω which can be written as

(1.10) f =
∞∑
j=0

νjaj ,

where
∑
|νj |p <∞, the aj ’s are p-atoms, and the series is assumed to converge

in the sense of distributions.
With a standard abuse of notation, the “norm” on Hp(∂Ω) is defined as

‖f‖pHp = inf

∑
j

|νj |p : f =
∑
j

νjaj

 .

Setting d(f, g) = ‖f − g‖pHp , we see that Hp(∂Ω) is a complete metric space.
This implies that the series in (1.10) converges in norm. This is in fact obvious
since ‖

∑m2
j=m1

νjaj‖pHp ≤
∑m2
j=m1

|νj |p, which tends to 0 as m1 → ∞. This
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implies that
∑∞
j=0 νjaj necessarily converges in norm, and hence in the sense

of distributions, to f .1

We point out that this definition of Hp(∂Ω) is consistent with the definition
given in [CW] in the case of a space of homogeneous type for values of p close
to 1; see also [KL5].

2. Statement of the main results

The main results of the present work are the following.

Theorem 2.1. Let Ω be a smoothly bounded convex domain of finite type.
Let 0 < p ≤ 1. Then there exists a constant c depending only on p and Ω such
that the following holds. Given any f ∈ Hp(Ω) there exist constants νj and
p-atoms aj such that

∑∞
j=0 νjaj ∈ Hp(∂Ω) and

f = PS

 ∞∑
j=0

νjaj

 =
∞∑
j=0

νjPS(aj),

and moreover
∞∑
j=0

|νj |p ≤ c‖f‖pHp(Ω).

Theorem 2.2. Let Ω be a smoothly bounded convex domain of finite type.
Let 0 < p ≤ 1 and let Hp(∂Ω) be the real-variable Hardy space on ∂Ω. Then

PS : Hp(∂Ω)→ Hp(Ω)

is bounded.

Finally, we have the following factorization theorem.

Theorem 2.3. Let Ω be a smoothly bounded convex domain of finite type.
Let 0 < p ≤ 1, 1 < q <∞, and let q′ be the conjugate exponent. There exists
a constant c depending only on p, q and Ω such that the following holds. Given
any f ∈ Hp(Ω) there exist fj ∈ Hpq, gj ∈ Hpq

′
, j = 1, 2, . . . , such that

f =
∞∑
j=0

fjgj

1In order to clarify one point on which there is a little bit of confusion in the literature,
we remark that in [MTW, p. 513] it was shown that a generic Hp-function f , which is

an infinite sum of atoms, cannot be written as a finite sum of atoms
∑N
j=1 νjbj , with∑N

j=1 |νj |p ≈ ‖f‖
p
Hp . Of course, this fact does not contradict the norm convergence of the

series in (1.10).
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and
∞∑
j=0

‖fj‖Hpq‖gj‖Hpq′ ≤ c‖f‖Hp(Ω).

We remark that this theorem was proved in [BPS2] for p = 1 by a different,
more indirect, method. Our proof relies on the atomic decomposition obtained
in Theorem 2.1.

The above theorems are valid on a class of smoothly bounded domains of
finite type that includes the convex domains as well as the strongly pseudo-
convex domains. These domains were introduced in [BPS3] and are called
H-domains. In the final section of this paper, we discuss the extension of
these theorems to H-domains.

3. Proof of Theorem 2.2

Let f =
∑∞
j=0 νjaj ∈ Hp(∂Ω). By definition,

PS

 ∞∑
j=0

νjaj

 (z) =

〈 ∞∑
j=0

νjaj , SΩ(z, ·)

〉

=
∞∑
j=0

〈
νjaj , SΩ(z, ·)

〉
=
∞∑
j=0

νjPS(aj)(z),

since the series converges in the sense of distributions. It remains to prove
that this last term belongs to Hp(Ω), with norm controlled by ‖f‖Hp(∂Ω).

We claim that there exists C > 0 such that ‖PS(a)‖Hp(Ω) ≤ C for any
p-atom a. From this it follows that, for any m1,m2 ∈ N with m1 ≤ m2,∥∥∥∥∥

m2∑
m1

νjPS(aj)

∥∥∥∥∥
p

Hp

≤ Cp
m2∑
m1

|νj |p.

Hence, by the assumption on {νj} and the completeness of Hp(Ω), one gets
that PS(f) =

∑∞
j=0 νjPS(aj) belongs to Hp(Ω). Moreover,

‖PS(f)‖pHp .
∑
j

|νj |p

whenever f =
∑
j νjaj , which gives the desired estimate.
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Thus, we only need to estimate ‖PS(a)‖Hp for any p-atom a. Let supp a ⊆
B(ζ0, δ), where ζ0 and δ = r0 are as in Definition 1.2. Let ε > 0. Then∫

∂Ωε

|PS(a)(ζ)|p dσε(ζ) =
∫
∂Ω

|PS(a)(ζ − εν(ζ))|p dσ(ζ)

=

(∫
B(ζ0,2δ)

+
∫
cB(ζ0,2δ)

)
|PS(a)(ζε)|p dσ(ζ)

= I + II,

where ν(ζ) denotes the outward unit normal at ζ ∈ ∂Ω and ζε = ζ − εν(ζ).
Since p < 2,

I ≤

(∫
B(ζ0,2δ)

|PS(a)(ζε)|2dσ(ζ)

)p/2
· σ (B(ζ0, 2δ))

1−p/2

≤ c‖a‖pL2(∂Ω)σ (B(ζ0, 2δ))
1−p/2

≤ c,

since ‖a‖L2(∂Ω) ≤ σ (B(ζ0, 2δ))
1/2−1/p and PS maps L2(∂Ωε) into L2(∂Ω)

with norm independent of ε, as a consequence of the T (1)-theorem of David
and Journé and of the results in [McS2].

Next, set Ek = {ζ ∈ ∂Ω : 2kδ ≤ d(ζ, ζ0) ≤ 2k+1δ}. Then

II =
∞∑
k=0

∫
Ek

|PS(a)(ζ − εν(ζ))|p dσε(ζ),

and

|PS(a)(ζε)| =
∣∣∣∣∫
∂Ω

SΩ(ζε, w)a(w) dσ(w)
∣∣∣∣

≤ ‖SΩ(ζε, ·)‖SNp (B(ζ0,δ)) · σ (B(ζ0, 2δ))
1−1/p

.

Recall that the Szegö kernel satisfies the estimate (1.8), so that

|LµΛSΩ(ζε, w)| . τ−µ(w,Λ, d(ζε, w))
σ(B(w, d(ζε, w)))

,

and notice that, for ζ ∈ Ek and w ∈ B(ζ0, δ),

d(ζε, w) = ε+ db(ζ, w) ≥ ε+ db(ζ, ζ0)− db(ζ0, w)

≥ ε+ 2kδ − δ ≥ δ2k−1.

Therefore, for ζ ∈ Ek,

‖SΩ(ζε, ·)‖SNp (B(ζ0,δ))

= sup
Λ

∑
|µ|=Np

‖LµΛSΩ(ζε, ·)‖L∞(B(ζ0,δ)) · τ
µ(ζ0,Λ, δ)
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= sup
Λ

∑
|µ|=Np

sup
w∈B(ζ0,δ)

τ−µ(w,Λ, d(ζε, w))
σ(B(w, d(ζε, w)))

· τµ(ζ0,Λ, δ)

. sup
Λ

∑
|µ|=Np

sup
w∈B(ζ0,δ)

τµ(ζ0,Λ, δ)
τµ(w,Λ, δ2k−1)

· 1
σ(B(w, δ2k−1))

. sup
Λ

∑
|µ|=Np

τµ(ζ0,Λ, δ)
τµ(ζ0,Λ, δ2k−1)

· 1
σ(B(w, δ2k−1))

.
∑
|µ|=Np

2−k|µ|/MΩ
1

σ(B(w, δ2k−1))
.

Returning to the estimation of II, we obtain

II =
∞∑
k=1

∫
Ek

|PS(a)(ζε)|p dσε(ζ)

.
∑
k

‖SΩ(ζε, ·)‖pSNp (B(ζ0,δ))
σ (B(ζ0, δ))

p−1
σ(Ek)

.
∑
k

∑
|µ|=Np

2−kp|µ|/MΩ
σ(B(ζ0, δ))p−1

σ(B(w, δ2k))p−1

.
∑
k

∑
|µ|=Np

2−k[(|µ|/MΩ)p+(1+(2n−2)/MΩ)(p−1)]

≤ c,

since the term in brackets in the exponent is positive, due to our choice of
Np. �

4. Maximal functions and a partition of unity

In the proof of the atomic decomposition of Hp(Ω) we are going to use
some maximal operators that now we introduce. These operators are standard
variants of classical ones; see [FS], [St2], and also [KL2].

Given ζ ∈ ∂Ω we define the approach region Aγ(ζ) as the subset of Ω given
by

Aγ(ζ) = {z ∈ Ω : d(ζ, π(z)) < γδ(z)}.
We define the non-tangential maximal function

(4.1) f∗γ (ζ) = sup
z∈A(ζ)

|f(z)|,

and the tangential variant

(4.2) f∗∗N (ζ) = sup
w∈Ω

(
δ(w)

δ(w) + d(ζ, π(w))

)N
|f(w)|.
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We consider a space of smooth bump functions at ζ, defined by

KMγ (ζ) = {g ∈ C∞(∂Ω) : supp g ⊆ B(ζ0, t0), ζ0 ∈ Aγ(ζ) and ‖g‖M,ζ0,t0 ≤ 1},

where

(4.3) ‖g‖M,ζ0,t0 = sup
Λ, |µ|≤M

τµ(ζ0,Λ, t0)σ(B(ζ0, t0))‖LµΛg‖L∞(B(ζ0,t0)).

Following [McS2, Def. 2], we say that a function ψ is a smooth bump function
of order N on B(ζ0, t0) ⊆ ∂Ω if ψ ∈ C∞(B(ζ0, t0)) and

sup
Λ
|LµΛψ(z)|τµ(ζ0,Λ, t0) ≤ Cψ,

for all z ∈ B(ζ0, t0) and |µ| ≤ N . If Cψ = 1, ψ is called a normalized smooth
bump function of order N .

The grand maximal function is defined as

(4.4) Kγ,M (f)(ζ) = sup
g∈KMγ (ζ)

∣∣∣∣∫
∂Ω

f(w)g(w) dσ(w)
∣∣∣∣ .

Lemma 4.1. With the above definitions, there exist c = c(Ω) and N =
N(γ,M) such that

Kγ,Mf(ζ) . f∗cγ(ζ) + f∗∗N (ζ).

Proof. We wish to estimate |
∫
∂Ω
f(w)g(w) dσ(w)| for g ∈ KMγ (ζ). Given

such a function g, there exist ζ0 and t0 such that supp g ⊆ B(ζ0, t0) and
d(ζ, ζ0) < γt0; i.e., ζ0 − t0ν(ζ0) ∈ Aγ(ζ). By Lemma 6.5 in [BPS1] (which re-
quires only the holomorphy of f) and by integration by parts, for any positive
integer k there exists a differential operator Yk+1 with smooth coefficients, of
order k + 1, such that∣∣∣∣∫

∂Ω

f(w)g(w) dσ(w)
∣∣∣∣ =

∣∣∣∣∫
Ω

f(w)Yk+1g̃(w)δk(w) dV (w)
∣∣∣∣ .

Here g̃ is a smooth extension of g, say

g̃(w) =

{
g(π(w))g1(%(w)) if |%(w)| < 2t0,
0 otherwise,

and g1 ∈ C∞0 ([−2t0, 2t0]), g1(t) = 1 if |t| ≤ t0/2. The positive integer k will
be selected later.
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Notice that |g(j)
1 (t)| ≤ cjt−j0 and hence

|Yk+1g̃(w)| .
k+1∑
j=0

1
tj0

sup
Λ,|µ|=k+1−j

‖LµΛg‖L∞(B(ζ0,t0))

.
k+1∑
j=0

1
tj0

sup
Λ,|µ|=k+1−j

1
τµ(ζ0,Λ, t0)

· 1
σ(B(ζ0, t0))

.
1

tk+1
0

· 1
σ(B(ζ0, t0))

.

Now we write∣∣∣∣∫
∂Ω

f(w)g(w) dσ(w)
∣∣∣∣ ≤ ∫

Ωt0

|f(w)Yk+1g̃(w)|δk(w) dV (w)

+
∫

Ω\Ωt0
|f(w)Yk+1g̃(w)|δk(w) dV (w)

= I + II.

Notice that w ∈ supp g̃ implies that d(π(w), ζ) ≤ cγt0. Thus, if w ∈
Ωt0 ∩ supp g̃ then w ∈ Acγ(ζ). Hence,

I . f∗cγ(ζ)
∫
B(ζ0,t0)

∫ 2t0

t0

tk

tk+1
0 σ(B(ζ0, t))

dt dσ(w)

. f∗cγ(ζ).

Moreover, since

|f(w)| ≤ f∗∗N (ζ)
(

1 +
d(π(w), ζ)
δ(w)

)N
. f∗∗N (ζ)

(
1 +

t0
δ(w)

)N
,

we have

II .
∫
B(ζ0,t0)

∫ ∞
t0

|f(w)| tk

tk+1
0 σ(B(ζ0, t0))

dt dσ(w)

.
∫ ∞
t0

f∗∗N (ζ)
(

1 +
t0
t

)N
tk

tk+1
0

dt

. f∗∗N (ζ),

if k −N < −1. �

The next two lemmas are classical, and they hold on any smoothly bounded
domain. The first is due to Stein; see [St1, Sec. 9]. The second is a version of
a result of Fefferman and Stein; see [FS, Lemma VI.1].
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Lemma 4.2. Let Ω be any smoothly bounded domain, 0 < p ≤ ∞. Then

‖f∗γ‖Lp(∂Ω) . ‖f‖Hp(Ω).

Lemma 4.3. Let Ω be any smoothly bounded domain, 0 < p ≤ ∞. Then,
for N large enough,

‖f∗∗N ‖Lp(∂Ω) . ‖f‖Hp(Ω).

We now introduce a smooth partition of unity on any open set O ⊆ ∂Ω.

Lemma 4.4. Let O ⊆ ∂Ω be an open set. Then there exist a collection
of balls Bi = B(ζi, ri), functions φi ∈ C∞(∂Ω), i = 0, 1, 2, . . . , and constants
α > 1 > β > 0, depending only on Ω, such that the following conditions hold:

(i) 0 ≤ φi ≤ 1;
(ii) suppφi ⊆ Bi;
(iii) φi = 1 on 1

αBi;
(iv)

∑∞
i=0 φi = χO;

(v) for each i there exists ζi ∈ cO such that for any integer N we have
cNφi/‖φi‖L1 ∈ KNα (ζi) for some cN = c(N,Ω).

Proof. By [McS2, Prop. 1.9], given any ζ0, δ > 0 and C > 1, there exist nor-
malized smooth bump functions of order N on B(ζ0, Cδ) that are identically
equal to 1 on B(ζ0, δ).

Given this result, the proof now proceeds as the proof of Lemma 4.3 in
[KL2]. We give the details for the sake of completeness.

Let {B(ζi, ri)} be a sequence of balls satisfying, for some 0 < β < 1 < α,
the following conditions:

(a) ∪iβB(ζi, ri) = O;
(b) B(ζi, ri) ⊆ O, αB(ζi, ri) ∩ cO 6= ∅;
(c) 1

αB(ζi, ri) are pairwise disjoint;
(d) no point in O lies in more than NΩ of the balls B(ζi, ri).

Such a sequence exists; an example is a Whitney covering for O.
Given Bi = B(ζi, ri) let ψi be a normalized smooth bump function sup-

ported in Bi that equals 1 on 1
αBi. By condition (d) above,

1 ≤
∑
i

ψi(ζ) ≤ NΩ for all ζ ∈ O.

Now set

φi(ζ) = ψi(ζ)
/∑

j

ψj(ζ).

Then (i)–(iv) are clearly satisfied, so we only need to check (v).
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By condition (b) above, there exists ξi ∈ αB(ζi, ri)∩cO. Then ζi−riν(ζi) ∈
Aγ(ξi), suppφi ⊆ Bi, with γ > 1, and

sup
Λ,|µ|≤N

τµ(ξi,Λ, ri)σ (B(ξi, ri)) ‖LµΛφi‖L∞(∂Ω) . cNσ (B(ξi, ri))

. cN‖φi‖L1(∂Ω). �

5. Beginning of the proof of Theorem 2.1

We let k0 be the least integer such that

(5.1) ‖Kγ,M (f) + f∗γ‖Lp(∂Ω) ≤ 2k0 .

For a positive integer k define

(5.2) Ok = {z ∈ ∂Ω : Kγ,Mf(z) + f∗γ (z) > 2k0+k}.

For each k we fix a Whitney covering and a partition of χOk , {φki }, as in
Lemma 4.4.

Let ζ0 ∈ ∂Ω and B(ζ0, r0) be fixed. The ball B(ζ0, r0) is contained in
the polydisc Q(ζ0, r0). By the results in [Mc] there exists an r0-extremal
(orthonormal) basis {v(1), . . . , v(n)} on Q(ζ0, r0), where v(1) is transversal to
the boundary. We denote by (w1, . . . , wn) the coordinates with respect to this
basis and we define V`(ζ0, r0) to be the space of all polynomials of degree ≤ `
in Imw1, w2, w2, . . . , wn, wn.

We remark that V`(ζ0, r0) does not depend on r0 since v(1) does not depend
on r0. Hence we simply write V`(ζ0).

Let φ0 be a smooth bump function supported on B(ζ0, r0). We denote by
L2
φ0

(dσ) the L2-space with respect to the probability measure (φ0/‖φ0‖L1) dσ.
We let Pφ0 denote the orthogonal projection of L2

φ0
(dσ) onto V`(ζ0) (which is

obviously contained in L2
φ0

(dσ)).
In what follows, we will write w = s+ it, s = (s1, s

′), t = (t1, t′), s1, t1 ∈ R,
s′, t′ ∈ Rn−1, so that V`(ζ0) is the set of all polynomials in s′, t1, t

′, of degree
≤ `.

Let {πJ} be an orthonormal basis for V`0 , where `0 = [(1−1/p)(MΩ−2n−
2)] and J = (j′, j) = (0, j′2, . . . , j

′
n, j1, . . . , jn, ), |J | = j′2+· · ·+j′n+j1+· · ·+jn.

Lemma 5.1. Let πJ be as above. Then:
(i) |πJ(z)| ≤ cJ on the support of φ0;
(ii) |LµΛπJ(z)| ≤ cJ,µτ−µ(ζ0,Λ, r0) on the support of φ0.

Proof. We begin with (i). Recall that ζ0 and r0 are fixed. Then B :=
B(ζ0, r0) = Q(ζ0, r0) ∩ ∂Ω, where Q(ζ0, r0) is the polydisc centered at ζ0 and
of polyradius τ1(ζ0, r0) = r0, τ2(ζ0, r0), . . . , τn(ζ0, r0).

Let
πJ(w) =

∑
|γ′|+|γ|≤`0

aγ′,γs
γ′tγ ,
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where γ′ = (0, γ′2, . . . , γ
′
n), γ = (γ1, γ2, . . . , γn). Then

‖πJ‖L∞(B) ≤ sup
(s′,t)∈B

∣∣∣∣∣ ∑
|γ′|+|γ|≤`0

aγ′,γs
γ′tγ

∣∣∣∣∣
= sup

(s̃′,t̃)∈B̃

∣∣∣∣∣ ∑
|γ′|+|γ|≤`0

aγ′,γ s̃
γ′ t̃γτγ

′+γ(ζ0, r0)

∣∣∣∣∣,
where s̃ = (0, s′2/τ2, . . . , s

′
n/τn), t̃ = (t1/τ1, t2/τ2, . . . , tn/τn), τj = τj(ζ0, r0),

and B̃ = (−1, 1)2n−1.
Hence, using the equivalence of all norms on a finite dimensional vector

space, we have

‖πJ‖L∞(B) ≤ sup
(s′,t)∈B

∣∣∣∣∣ ∑
|γ′|+|γ|≤`0

aγ′,γs
γ′tγ

∣∣∣∣∣
.

∥∥∥∥∥ ∑
|γ′|+|γ|≤`0

aγ′,γτ
γ′+γ(ζ0, r0)s̃γ

′
t̃γ

∥∥∥∥∥
L2(B̃)

= σ(B)−1/2

∥∥∥∥∥ ∑
|γ′|+|γ|≤`0

aγ′,γs
γ′tγ

∥∥∥∥∥
L2(B)

≈

∥∥∥∥∥ ∑
|γ′|+|γ|≤`0

aγ′,γs
γ′tγ

∥∥∥∥∥
L2
φ0

(B)

= 1.

Here we use the fact that, since φ0 = 1 on B(ζ0, r0) and suppφ0 ⊆ αB,
‖φ0‖L1 ≈ σ(B(ζ0, r0)). This proves (i).

It remains to prove the estimates on the derivatives of πJ . We are going to
show that, for any (γ′, γ) such that |γ′|+ |γ| ≤ `0, there exists cJγ′,γ so that

(5.3) |aγ′,γ | ≤
cJγ′,γ

τγ′+γ(ζ0, r0)
.

Assuming this estimate for the moment, it follows that, for any β′, β with
|β′|+ |β| ≤ `0,∣∣∣∂β′s ∂βt πJ(w)

∣∣∣ =

∣∣∣∣∣ ∑
γ′≥β′,γ≥β,|γ′|+|γ|≤`0

cβ′,βaγ′,γs
γ′−β′tγ−β

∣∣∣∣∣
≤ cJ,γ′,γ
τγ′+γ(ζ0, r0)

· τγ
′−β′+γ−β(ζ0, r0)

≤ cJ,γ′,γ
τβ′+β(ζ0, r0)

.



222 SANDRINE GRELLIER AND MARCO M. PELOSO

The estimate for any derivative LµΛ follows from the fact that any Lλ is a lin-
ear combination of the ∂sj ’s and the ∂tk ’s, say Lλ =

∑n
j=2 aj∂sj +

∑n
k=1 bk∂tk ,

and that

1
τ(ζ0, λ, r0)

≈
n∑
j=1

|aj |+ |bj |
τj(ζ0, r0)

,

where a1 = 0; see [McS2, Prop. 1.1].
It remains to prove (5.3). Since the πJ ’s are real-analytic, they satisfy the

mean-value property. In particular,

τγ
′+γ(ζ0, r0)

∣∣∣∂γ′s ∂γt πJ(ζ0)
∣∣∣ ≤ c

σ(B(ζ0, r0))

∫
B(ζ0,r0)

|πJ(w)|dσ(w) ≤ c̃J ,

so that

|aγ′,γ | =
∣∣∣∂γ′s ∂γt πJ(ζ0)

∣∣∣ ≤ c̃J
τγ′+γ(ζ0, r0)

,

which proves (5.3) and finishes the proof. �

Lemma 5.2. With the notation fixed above, there exists c > 0 such that
for f ∈ Hp(Ω)

|Pφki (f)(z)φki (z)| ≤ c2k.

Furthermore, ∣∣∣Pφk+1
j

((
f − Pφk+1

j
(f)
)
φki

)
(z)φk+1

j (z)
∣∣∣ ≤ c2k+1.

Proof. We use Lemma 5.1 with ζki = ζ0, φki = φ0, and Bki (ζki , r
k
i ) = B0.

Then

Pφki (f)(z) =
∑
|J|≤`0

cJ(f)πJ(z),

where

cJ(f) =
∫
∂Ω

f(w)πJ(w)φki (w) dσ(w).

The estimates on the πJ ’s and φki imply that πJ · φki ∈ KMγ (ζki ), so that

|cJ(f)| ≤ Kγ,M (f)(ζki ) ≤ c2k.

This estimate, together with another application Lemma 5.1, imply the re-
quired bound on Pφki (f)φki .
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Next we prove the second estimate in the statement. Set h =
(
f −

Pφk+1
j

(f)
)
φki . Then

c
(k+1)
J (h) =

∫
∂Ω

(
f − Pφk+1

j
(f)
)

(w)φki (w)π(k+1)
J (w)dσφk+1

j
(w)

=
∫
∂Ω

f(w)φki (w)π(k+1)
J (w)φk+1

j (w)
dσ(w)
‖φk+1

j ‖L1

−
∫
∂Ω

Pφk+1
j

(f)(w)φki (w)φk+1
j (w)π(k+1)

J (w)
dσ(w)
‖φk+1

j ‖L1

= I + II.

By condition (v) in Lemma 4.4, we have, for some ξk+1
j ∈ cOk+1,

|I| ≤ Kγ,M (f)
(
ξk+1
j

)
≤ 2k+1,

by construction. On the other hand, by the previous bound,∣∣∣Pφk+1
j

(f)(w)φk+1
j (w)

∣∣∣ ≤ c2k+1,

while |π(k+1)
J (w)| ≤ c, so that the desired conclusion follows. �

6. Atomic decomposition

In this section we define the atomic decomposition of a given function
f ∈ Hp(Ω), and finish the proof of Theorem 2.1. As mentioned above, f
admits boundary values defined a.e. on ∂Ω, which we also denote by f .

We write

f =

(
f −

∞∑
i=0

fφki

)
+
∞∑
i=0

fφki

= fk +
∞∑
i=0

fφki

= fk +
∞∑
i=0

Pφki (f)φki +
∞∑
i=0

(
f − Pφki (f)

)
φki

= hk +
∞∑
i=0

(
f − Pφki (f)

)
φki ,

where hk = fk +
∑∞
i=0 Pφki (f)φki .

Notice that

(6.1)
∣∣∣∣ ∞∑
i=0

Pφki (f)(z)φki (z)
∣∣∣∣ ≤ c02k,
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since no point in cOk lies in more than NΩ of the balls B(ζki , r
k
i ). Moreover,

observe that

supp

( ∞∑
i=0

(
f − Pφki (f)

)
φki

)
⊆ Ok,

so that the function on the left-hand side above tends to 0 pointwise as k →∞.
This implies that hk → f pointwise a.e., so that the following equality holds
a.e.:

(6.2) f = h0 +
∞∑
k=0

(hk+1 − hk).

Now notice that

(6.3) f − hk =
∞∑
i=0

(
f − Pφki (f)

)
φki

and

(6.4)
∞∑
i=0

Pφk+1
j

((
f − Pφk+1

j
(f)
)
φki

)
= Pφk+1

j

(
f − Pφk+1

j
(f)
)

= 0.

Then, using (6.3) and (6.4) we write

hk+1 − hk =
∞∑
i=0

(
f − Pφki (f)

)
φki −

∞∑
j=0

(
f − Pφk+1

j
(f)
)
φk+1
j

=
∞∑
i=0

{(
f − Pφki (f)

)
φki

−
∞∑
j=0

((
f − Pφk+1

j
(f)
)
φkj − Pφk+1

j

((
f − Pφk+1

j
(f)
)
φki

))
φk+1
j

}

=
∞∑
i=0

bki ,

where we have set

bki =
(
f − Pφki (f)

)
φki(6.5)

−
∞∑
j=0

((
f − Pφk+1

j
(f)
)
φkj − Pφk+1

j

(
(f − Pφk+1

j
(f))φki

))
φk+1
j .

Hence

(6.6) f = h0 +
∞∑
k=0

∞∑
i=0

bki .
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Now let

(6.7) a0 =
1
ν0
h0, aki =

1
νki
bki ,

where

ν0 = ‖h0‖L∞(∂Ω)σ(∂Ω)1/p, νki = 2k0+k+1σ(Bki )1/p.

Then equation (6.6) becomes

f = ν0a0 +
∞∑
k=0

∞∑
i=0

νki a
k
i .

The remainder of this section is devoted to proving that this representation
is the desired atomic decomposition of f .

Estimate for h0. By definition,

h0 = f0 +
∞∑
i=0

Pφ0
i
(f)φ0

i .

By (6.1) we have ∣∣∣∣ ∞∑
i=0

Pφ0
i
(f)φ0

i

∣∣∣∣ ≤ c,
and, by definition,

|f0| ≤ |f∗|cO0 ≤ 2k0 .

Thus ‖h0‖L∞ ≤ c2k0 , so that a0 is an atom supported in ∂Ω.

Size estimates for the bki ’s. We have

|bki | =
∣∣∣∣ (f − Pφki (f)

)
φki

−
∞∑
j=0

((
f − Pφk+1

j
(f)
)
φki − Pφk+1

j

(
f − Pφk+1

j
(f)
)
φki

)
φk+1
j

∣∣∣∣
≤
∣∣∣∣ (f − Pφki (f)

)
φki −

∞∑
j=0

(
f − Pφk+1

j
(f)
)
φki φ

k+1
j

∣∣∣∣
+
∣∣∣∣ ∞∑
j=0

(
Pφk+1

j

(
f − Pφk+1

j
(f)
)
φki

)
φk+1
j

∣∣∣∣.
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The second term on the right-hand side is bounded by c0c2k+1 by Lemma 5.2,
while the first term is bounded by∣∣∣∣ ∞∑
j=0

((
f − Pφki (f)

)
−
(
f − Pφk+1

j
(f)
)
φki

)
φk+1
j

∣∣∣∣+
∣∣∣(f − Pφki (f)

)
φki χcOk+1

∣∣∣
≤
∣∣∣∣ ∞∑
j=0

(
Pφk+1

j
(f)− Pφki (f)

)
φki φ

k+1
j

∣∣∣∣+
∣∣∣(f − Pφki (f)

)
φki χOk\Ok+1

∣∣∣
≤
∣∣∣∣ ∞∑
j=0

Pφk+1
j

(f)φk+1
j

∣∣∣∣+
∣∣∣Pφki (f)φki

∣∣∣+
∣∣fχOk\Ok+1

∣∣+
∣∣∣Pφki (f)φki

∣∣∣
≤ c0c2k + f∗χOk\Ok+1

≤ c0c2k,

where we have again used Lemma 5.2.

Support of the bki ’s. The first term in (6.5) is supported in Bki . To ensure
that the terms in the series are not identically 0, the condition Bki ∩B

k+1
j 6= ∅

must be satisfied for some j.
We claim that if Bki ∩ B

k+1
j 6= ∅, then rk+1

j ≤ cαrki . Indeed, let w ∈
Bki ∩B

k+1
j . Since Ok+1 ⊆ Ok, we have

Crk+1
j ≤ d(Bk+1

j , ∂Ok+1) ≤ d(Bk+1
j , ∂Ok)

≤ d(w, ∂Ok) ≤ d(Bki , ∂Ok) + 2d(w, ζki )

≤ cαrki ,

since, by the Whitney property, one has Crki ≤ d(Bki , ∂Ok) ≤ αrki .

Moment condition. We wish to estimate∣∣∣∣∫
∂Ω

bki (w)φ(w) dσ(w)
∣∣∣∣

for φ ∈ SNp(Bki ).
On Bki we work in local coordinates and use the Taylor expansion of order

`0 of φ around ζki . We denote by S`0φ (ζki ) the corresponding Taylor polynomial.
Notice that S`0φ (ζki ) ∈ V`0(ζki ).

By the definition of SNp(Bki ) we have

‖φ− S`0φ (ζki )‖L∞(∂Ω) ≤ ‖φ‖SNp (B(ζ0,r0)).

By construction, the first term in bki is orthogonal to V`0(ζki ), and each non-
vanishing term in the series is orthogonal to some V`0(ζk+1

j ). Hence, if Bki ∩
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Bk+1
j 6= ∅ then rk+1

j ≤ Cαrki and Bk+1
j ⊆ C ′αBki . In this case it follows that

V`0(ζk+1
j ) ⊆ V`0(ζki ), since the same coordinate system works. Therefore,∣∣∣∣∫

∂Ω

bki (w)φ(w) dσ(w)
∣∣∣∣ =

∣∣∣∣∫
∂Ω

bki (w)
(
φ(w)− S`0φ (ζki )

)
dσ(w)

∣∣∣∣
. ‖φ‖SNp (Bki ) · σ(Bki ) · 2k+k0 ,

by the size estimate for the bki ’s.

Coefficients in `p. It remains to prove that {νki } ∈ `p. We have
∞∑
k=0

∞∑
i=0

∣∣νki ∣∣p ≤ cp ∞∑
k=0

∞∑
i=0

2k+k0σ(Bki )

≤ cp
∞∑
k=0

2k+k0σ(Ok)

≤ cp
∫ ∞

1

tp−1σ
({
ζ ∈ ∂Ω : KM

α f(ζ) + f∗α(ζ) ≥ t
})

dt

≤ cp‖f‖pHp .

Convergence in Hp(Ω)-norm. We have shown that the boundary value
of f ∈ Hp(Ω), which we also denote by f , admits a decomposition f =

∑
j νjaj

with p-atoms aj and constants νj such that
∑
j |νj |p <∞.

This equality, which stems from (6.6), holds a.e.; see (6.2). We will show
that it is also valid in the distribution sense. This together with Theorem 2.2
implies that the above series converges to f in the Hp(Ω)-norm.

We now show that the equality

f = h0 +
∞∑
k=0

(hk+1 − hk),

which holds a.e., also holds in the distribution sense.
Recall that hk+1−hk =

∑∞
i=0 b

k
i , so it suffices to show that

∑m
k=0(hk+1−hk)

converges in the sense of distributions. We have∣∣∣∣∣
∫
∂Ω

(
m∑
k=`

(hk+1 − hk)

)
(z)ψ(z) dσ(z)

∣∣∣∣∣ =

∣∣∣∣∣
m∑
k=`

∫
∂Ω

∞∑
i=0

bki ψ(z) dσ(z)

∣∣∣∣∣(6.8)

=

∣∣∣∣∣
m∑
k=`

∞∑
i=0

∫
∂Ω

bki ψ(z) dσ(z)

∣∣∣∣∣
.

m∑
k=`

∞∑
i=0

2k+k0σ(Bki )‖ψ‖SNp (Bki )
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.
m∑
k=`

∞∑
i=0

2k+k0σ(Bki )‖ψ‖C`0+1(∂Ω)(r
k
i )[(1/p−1)(MΩ+2n−2)]+1

.
m∑
k=`

∞∑
i=0

2k+k0σ(Bki )‖ψ‖C`0+1(∂Ω)(r
k
i )(1/p−1)(2n−1),

since [(1/p−1)(MΩ +2n−2)]+1 ≥ (1/p−1)(MΩ +2n−1) ≥ (1/p−1)(2n−1).
Hence, using the inequality 1/p ≥ 1 twice, the left-hand side in (6.8) is

bounded by a constant times
m∑
k=`

∞∑
i=0

2k+k0σ(Bki )1/p‖ψ‖C`0+1(∂Ω)

.
m∑
k=`

2k
( ∞∑
i=0

σ(Bki )1/p

)1/p

.

(
m∑
k=`

2kpσ(Ok)

)1/p

.

( ∞∑
k=`

∫ 2k

2k−1
tp−1σ

({
f∗ +KM

α f ≥ t
})

dt

)1/p

.

(∫ ∞
2`−1

tp−1

∫
{f∗+KM

α f≥t}
dσ dt

)1/p

.

(∫
O`−1

∣∣f∗ +KM
α f
∣∣p dσ)1/p

,

which tends to 0 as `→∞.
This finishes the proof of the atomic decomposition. �

7. Proof of Theorem 2.3

The method used in the proof of the atomic decomposition yields the same
result using atoms with arbitrarily large order of cancellation. Hence we call
an atom a a (k, p)-atom if k ≥ Np, a is a p-atom and, moreover, satisfies∣∣∣∣∫

∂Ω

a(ζ)φ(ζ) dσ(ζ)
∣∣∣∣ ≤ ‖φ‖Sk(B(ζ0,r0))σ (B(ζ0, r0))1−1/p

,

for all φ ∈ C∞((B(ζ0, r0)), where B(ζ0, r0) is the support of a.

Lemma 7.1. Let a be a (k, p)-atom, having support in B = B(ζ0, r0), and
let A = PS(a). Then A satisfies the following estimates:

(i) ‖A‖H2p ≤ cσ(B)−1/2p;
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(ii) for C > 1 and d(ζ, ζ0) ≥ Cr0,

|A(ζ)| ≤ c
(

r0

d(ζ, ζ0)

)1+(k−2+2n)/MΩ

σ (B(ζ0, r0))−1/p ;

(iii) for C > 1, ` a positive integer and d(ζ, ζ0) ≥ Cr0,

|∇`A(ζ)| ≤ c r0
1+(k−2+2n)/MΩ

d(ζ, ζ0)1−`+(k−2+2n)/MΩ
σ (B(ζ0, r0))−1/p

.

In the following we will set β = 1 + (k − 2 + 2n)/MΩ.

Proof. The proof follows the same lines as that of [BPS2, Lemma 4.7].
The estimate (i) is the same as the estimate for ‖A‖Hp .
Denote by Sk the Taylor polynomial of the function w 7→ SΩ(ζ, w) around

ζ0 of order k. Then ‖SΩ(ζ, w)− Sk(w)‖L∞ ≤ ‖SΩ(ζ, ·)‖Sk(B(ζ0,r0)). Hence,

|A(ζ)| =
∣∣∣∣∫
∂Ω

a(w)SΩ(ζ, w) dσ(w)
∣∣∣∣

=
∣∣∣∣∫
∂Ω

a(w) (SΩ(ζ, w)− Sk(w)) dσ(w)
∣∣∣∣

≤ ‖SΩ(ζ, ·)‖Sk(B(ζ0,r0))σ (B(ζ0, r0))1−1/p
.

Using the estimate (1.8) we have

‖SΩ(ζ, ·)‖Sk(B(ζ0,r0)) =
∑
|µ|=k

sup
Λ
‖LµΛ,wSΩ(ζ, ·)‖L∞(B)τ

µ(ζ0,Λ, r0)

.
∑
|µ|=k

sup
w∈B

sup
Λ

τµ(ζ0,Λ, r0)
τµ(w,Λ, d(ζ, w))

· 1
σ(B(w, d(ζ, w)))

.

Recall that, if d(ζ, ζ0) ≥ Cr0 and w ∈ B(ζ0, r0) ⊆ B(ζ0, d(ζ0, ζ)/C), then
d(ζ0, ζ) ≈ d(ζ, w). Thus,

‖SΩ(ζ, ·)‖Sk(B(ζ0,r0)) .

(
r0

d(ζ, ζ0)

)k/MΩ

· σ (B(ζ0, d(ζ, ζ0))−1
,

so that

|A(ζ)| .
(

r0

d(ζ, ζ0)

)β
· σ (B(ζ0, r0))−1/p

.

The estimates for the derivatives of A follow in the same fashion. �

Completion of the proof of Theorem 2.3. By the atomic decomposi-
tion, it suffices to factorize each holomorphic atom A = PS(a), where a is a
(k, p)-atom with k large enough and with support in some ball B(ζ0, r0).

To obtain this factorization we use a recent result of Diederich and Fornæss
[DFo] on the existence of support functions on convex domains of finite type.
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To be precise, there exists a neighborhood U of ∂Ω and a function H : Ω×U →
C such that H ∈ C∞(Ω× U), H(·, w) is holomorphic for each w ∈ U , and

d(z, w) . |H(z, w)| . d(z, w),

on Ω × U . This function H was used in [BPS2] to prove the factorization
theorem for H1(Ω).

We set H0 = H(·, ζ̃0), where ζ̃0 = ζ0 − r0ν(ζ0). We write A = AH`
0H
−`
0 ,

with ` to be selected later.
We prove the result for q = q′ = 2, the general case being completely

analogous. Writing ζε = ζ − ενζ , we have∥∥H−`0

∥∥2p

H2p . sup
ε>0

∫
∂Ω

d
(
ζε, ζ̃0

)−2p`

dσ(ζ)

. r−2pl
0 σ(B),

by a standard integration result; see [BPS2, Lemma 2.2].
On the other hand, for a fixed constant C > 1, we have∥∥AH`

0

∥∥2p

H2p

. sup
ε0>ε>0

∫
B(ζ0,Cr0)

|A(ζε)|2p d
(
ζε, ζ̃0

)2p`

dσ(ζ)

+
1

σ(B)

∫
cB(ζ0,Cr0)

r2pβ
0

d(ζ, ζ0)2pβ
d(ζ, ζ̃0)2p` dσ(ζ)

. (Cr0)2p`‖A‖2pHp

+
Cr2p`

0

σ(B)

∫
cB(ζ0,Cr0)

r2pβ
0

d(ζ, ζ0)2pβ

(
1 +

d(ζ, ζ0)
r0

)2p`

dσ(ζ)

.
r2p`
0

σ(B)
for k large enough, where we have again used Lemma 2.2 in [BPS2].

This finishes the proof of the factorization theorem. �

8. Final remarks

We now introduce the class of H-domains.

Definition 8.1. We say that Ω is an H-domain if it is a smooth bounded
domain of finite type and the following condition holds: For each ζ ∈ ∂Ω there
exist a neighborhood Vζ and a biholomorphic map Φζ defined on Vζ such that
Φζ(Ω ∩ Vζ) is geometrically convex.

This class of domains, which obviously includes the strongly pseudoconvex
domains and the convex domains of finite type, has been analyzed in [BPS3].
In this paper, it was shown that for these domains the Szegö and Bergman
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kernels satisfy the same local estimates (1.8) as in the case of the convex
domains of finite type or strongly convex domains. Therefore, Theorems 2.1–
2.3 immediately extend to the case of H-domains, since all the arguments in
their proofs are based on local estimates for the kernels; see [BPS3].
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