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a b s t r a c t

We first review the definition of superprojective spaces from the functor-of-points
perspective. We derive the relation between superprojective spaces and supercosets in the
framework of the theory of sheaves. As an application of the geometry of superprojective
spaces, we extend Donaldson’s definition of balanced manifolds to supermanifolds and
we derive the new conditions of a balanced supermanifold. We apply the construction to
superpoints viewed as submanifolds of superprojective spaces. We conclude with a list of
open issues and interesting problems that can be addressed in the present context.
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1. Introduction

Supermanifolds are rather well known in supersymmetric theories and in string theory. They provide a very natural
ground to understand the supersymmetry and supergravity from a geometric point of view. Indeed, a supermanifold
contains the anticommuting coordinates which are needed to construct the superfields whose natural environment is the
graded algebras [1,2]. However, the best way to understand the supermanifold is using the theory of sheaves [2,3]. In the
present notes we review this approach and its usefulness in theoretical physics and in particular in the latest developments
(twistor string theory [4] and pure spinor string theory [5]).
In the case of twistor string theory, the target space is indeed the supermanifold CP(3|4) which can be described in two

ways: as a supercoset of the supergroup PSU(4|4)/SU(3|4) or as a quotient of the quadratic hypersurface in the superspace
C(4|4) given by∑

αα̇

|Zαα̇|2 +
∑
A

ψ̄Aψ
A
= 1 (1.1)

where (Zαα̇, ψA) are the supertwistor coordinates. Obviously, this equation needs a clarification: the commuting coordinates
Zαα̇ cannot be numbers for the above equation to have a non-trivial meaning. One way to interpret the above equation is
using the sheaf point of view where Zαα̇, ψA are the generators of a sheaf of super-commuting algebra over open sets on
CP3. In this way, the supermanifold can be viewed as

(CP3,OCP3(Z
αα̇, ψA)) (1.2)
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and Eq. (1.1) makes sense (see also [6]). The second way is using the functor of points. This is a functor between the category
of sets and the category of supermanifolds and, as is well explained in [7] and the forthcoming sections, it assigns a point in
a supermanifold in terms of a set of coordinates. The easiest way to realize the functor of point is to map a superspace into
a supermanifold and describe the latter in terms of points identified by morphisms. Concretely, this amounts to choosing
a graded algebra with N generators and representing the generators of the sheaf OCP3(Z

αα̇, ψA) in terms of them. Then
inserting this decomposition in (1.1), one gets a set of numerical equations for the coefficients of the decomposition and
they can be solved or studied by the conventional means of algebraic geometry.
Of course the hypersurface (1.1) is one example of the manifold that can be realized in terms of the generators of

OCP3(Z
αα̇, ψA) and that can be studied by means of the functor of points [8,9]. Notice that also from the supercoset point of

view, the technique of the functor of point gives us a representation of the supercoset in terms of the generators of a sheaf.
Indeed, by multiplying supermatrices (whose entries are the generators of the sheaf) one finds that the entries cannot be
numbers and they have to be promoted to the generator of a sheaf. Therefore the multiplication between matrices and the
group multiplication of a supergroup has to be understood as a morphism of a ringed space. This point of view has been
emphasized by Manin [2] and recently by [7,10]. We provide here a more elementary explanation of the role of functor of
point in the case of supergroup and supercosets. The purpose of this is to use the functor of point to define the superprojective
spaces (as CP(3|4) above) and to prove the isomorphism with the supercoset point of view as in the purely bosonic case.
In the second part of the paper, we develop two applications for superprojective spaces. Following the recent analysis

of Donaldson [11] on balanced manifold, we extend his definition to supermanifolds.1 One ingredient is the definition of
balanced submanifold of a projective space (for example a point or a line). For that we extend the integral equation given
in [11] to an integration on the supermanifold. The definition of the integral of a superform in a supermanifold is not an
obvious extension since a regularization is needed. This can be done using the projection forms as illustrated in [14] and
discussed in more detail in [15]. We briefly discuss this point in the text, but we refer to [16] for a more detailed account.
After discussing the general theory,weprovided a simple example of the embedding ofP1|2 into the superprojective space

P2m−1|2m of sections H0(P1|2, L⊗m)where L⊗m is them-power of a line bundle L over P1|2. In this case both the base manifold
and the sections P2m−1|2m are super-Calabi–Yau spaces (in the sense that they are super-Kähler spaces with vanishing Ricci
tensor and an holomorphic top formΩCY ) and for those there is a natural measure for integrating superforms provided by
ΩCY ∧ Ω̄CY . It is shown that there are two types of conditions emerging from the extension of the Donaldson equations
to the supermanifold case and therefore this restricts the number of supermanifolds that can be balanced subvarieties of
superprojective spaces. In generalizing the analysis of Donaldson we have taken into account the extension of the Kodaira
embedding theorem discussed in [17].
The second application is to consider a set of pointsC0|N immersed in the superprojective spaceP1|N as a subvariety. In this

case we computed explicitly the general expression for the caseC0|2 embedded into P1|2 and we found the condition for the
balancing of a point.We found also how the supermanifold case generalizes the classical embedding condition andweargued
how one can recover the classical balancing in addition to the requirements on the parameter of the superembeddings. We
showed that this is tied to the choice of the integration measure for superforms.
A concluding remark: we have not explored all possible implications of our extension neither have we discussed the

relationwith the stability of points in the sense of Geometric Invariant Theory (GIT) [18]. Nevertheless we have found rather
interesting that some applications admit a non-trivial generalization of the usual geometric setting. These results open new
questions about the geometry of sheaves and their functor-of-point interpretation.
The paper is organized as follows: in Section 2wedefine the supermanifolds froma sheaf theory point of view.Wediscuss

the basic architecture and the set of morphisms. In Section 3 we define superprojective spaces and in Section 4 we provide a
functor-of-point interpretation. Part of thismaterial is a summary of notes [7]. This allows us to use the local coordinates and
to define the concept of a point in a supermanifold. In Section 5, we study supergroups and superdeterminant (Berezinians)
from the functor-of-point perspective needed to see the definition of superprojective space as supercosets of supergroups
discussed in Section 5.1. In Section 6, we extend the construction of Donaldson to supermanifold and we define balanced
supermanifolds. Finally, in Section 6.3 we discuss the balancing of points in superprojective spaces.

2. Supermanifolds

2.1. Definitions

A super-commutative ring is a Z2-graded ring A = A0 ⊕ A1 such that if i, j ∈ Z2, then aiaj ∈ Ai+j and aiaj = (−1)i+jajai,
where ak ∈ Ak. Elements in A0 (resp. A1) are called even (resp. odd).
A superspace is a super-ringed space such that the stalks are local super-commutative rings (Manin–Varadarajan). Since

the odd elements are nilpotent, this reduces to require that the even component reduces to a local commutative ring.
A super-domain Up|q is the super-ringed space

(
Up,C∞p|q

)
, where Up ⊆ Rp is open and C∞p|q is the sheaf of super-

commutative rings given by:

V 7→ C∞ (V )
[
θ1, θ2, . . . , θ q

]
, (2.1)

1 Recently, the techniques developed by Donaldson [12] have been used to compute the Calabi–Yau metric numerically [13].
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where V ⊆ Up is and θ1, θ2, . . . , θ q are generators of a Grassmann algebra. The grading is the natural grading in even and
odd elements. The notation is taken from [19] and from the notes [7].
Every element of C∞p|q (V )may be written as

∑
I fIθ

I , where I is a multi-index. A supermanifold of dimension p|q is a
super-ringed space locally isomorphic, as a ringed space, to Rp|q. The coordinates xi of Rp are called the even coordinates
(or bosonic), while the coordinates θ j are called the odd coordinates (or fermionic). We will denote by (M,OM) the
supermanifold whose underlying topological space isM and whose sheaf of super-commutative rings is OM .
To a section s of OM on an open set containing x one may associate the value of s in x as the unique real number s∼ (x)

such that s− s∼ (x) is not invertible on every neighborhood of x. The sheaf of algebrasO∼, whose sections are the functions
s∼, defines the structure of a differentiable manifold onM , called the reduced manifold and denotedM∼.

2.2. Morphisms

In order to understand the structure of supermanifolds it is useful to study their morphisms. Here we describe how a
morphism of supermanifolds looks like locally. Amorphism ψ from (X,OX ) to (Y ,OY ) is given by a smooth map map ψ∼
from X∼ to Y∼ together with a sheaf map:

ψ∗V : OY (V ) −→ OX (ψ
−1(V )), (2.2)

where V is open in Y . The homomorphisms ψ∗V must commute with the restrictions and they must be compatible with the
super-ring structure. Moreover they satisfy

ψ∗V (s)
∼
= s∼ ◦ ψ∼.

We illustrate this with an example taken from [7]. GivenM = R1|2, we describe a morphismψ ofM into itself such that
ψ∼ is the identity. Letψ∗ be the pull-back map defined previously. We denote {t, θ1, θ2} the coordinates onM , where t can
be interpreted both as the coordinate onM∼ = R or as an even section of the sheaf. Since the sheaf mapmust be compatible
with the Z2-grading, ψ∗t is an even section and (ψ∗t)∼ = t . Then,

ψ∗(t) = t + f (t)θ1θ2.

Similarly,

ψ∗(θ j) = gj(t)θ1 + hj(t)θ2.

It is important to observe that this defines uniquely ψ∗ for sections of the form

a+ b1θ1 + b2θ2

where a, b1 and b2 are polynomials in t . It is therefore reasonable to expect that ψ∗ is uniquely defined. Let us take, for
simplicity, the case where

ψ∗(t) = t + θ1θ2,

and

ψ∗(θ j) = θ j. (2.3)

If g is a smooth function of t on an open set U ⊆ R, we want to define ψ∗U(g).
Let us expand g(t + θ1θ2) as a formal Taylor series:

g(t + θ1θ2) = g(t)+ g ′(t)θ1θ2.

The series does not continue because (θ1θ2)2 = 0. Then, we define

ψ∗U(g) = g(t)+ g
′(t)θ1θ2.

If

g = g0 + g1θ1 + g2θ2 + g12θ1θ2,

then we must define

ψ∗U(g) = ψ
∗

U(g0)+ ψ
∗

U(g1)θ
1
+ ψ∗U(g2)θ

2
+ ψ∗U(g12)θ

1θ2

where we have used (2.3). The family (ψ∗U) then defines a morphism between R1|2 and itself. This method can be extended
to the general case.
Let us recall some fundamental local properties of morphisms. A morphismψ between two super-domains Up|q and V r|s

is given by a smooth map ψ∼ : U → V and a homomorphism of super-algebras

ψ∗ : C∞ r|s(V )→ C∞ p|q(U).

It must satisfy the following properties:
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• If t = (t1, . . . , tr) are coordinates on V r , each component tj can also be interpreted as a section ofC∞ r|s(V ). If fi = ψ∗(ti),
then fi is an even element of the algebra C∞ p|q(U).
• The smooth map ψ∼ : U → V must be ψ∼ = (f ∼1 , . . . , f

∼
r ), where the f

∼

i are the values of the even elements above.
• If θj is a generator of C∞ r|s(V ), then gj = ψ∗(θj) is an odd element of the algebra C∞ p|q(U).

The following fundamental theorem (see for example [7]) gives a local characterization of morphisms:

Theorem 1 (Structure of Morphisms). Suppose φ : U → V is a smooth map and fi, gj, with i = 1, . . . , r, j = 1, . . . , s,
are given elements of C∞ p|q(U), with fi even, gj odd and satisfying φ = (f ∼1 , . . . , f

∼
r ). Then there exists a unique morphism

ψ : Up|q → V r|s with ψ∼ = φ and ψ∗(ti) = fi and ψ∗(θj) = gj.

Remark. IfV is a vector bundle over a smoothmanifoldM , thenwe can form its exterior bundle E = ΛmaxV . LetO(E) be the
sheaf of sections of E. Then, locally onM , the sheaf is isomorphic to Up|q where p = dim(M) and q = rank(V ). This is clearly
true whenever V is restricted to some open subset ofM over which it is trivial. Consequently, (M,O(E)) is a supermanifold,
denoted by E[. Every supermanifold is locally isomorphic to a supermanifold of the form E[. However we should note the
important fact that E[, as a supermanifold, has manymore morphisms than the corresponding exterior bundle E, because of
the possibility that the even and odd coordinates can bemixed under transformations. This iswell illustrated by the previous
simple example. Another way to say the same thing is that there are less morphisms which preserve the bundle structure
than morphisms which preserve the supermanifold structure.

2.3. Local charts on supermanifolds

We describe how supermanifolds can be constructed by patching local charts. Let X =
⋃
i Xi be a topological space, with

{Xi} open, and let Oi be a sheaf of rings on Xi, for each i. We write (see [19]) Xij = Xi ∩ Xj, Xijk = Xi ∩ Xj ∩ Xk, and so on. We
now introduce isomorphisms of sheaves which represent the ‘‘coordinate changes’’ on our supermanifold. They allow us to
glue the single pieces to get the final supermanifold. Let

fij :
(
Xji,Oj|Xji

)
−→

(
Xij,Oi|Xij

)
be an isomorphisms of sheaves with

f ∼ij = Id.

This means that these maps represent differentiable coordinate changes on the underlying manifold.
To say that we glue the ringed spaces (Xi,Oi) through the fij means that we are constructing a sheaf of rings O on X and

for each i a sheaf isomorphism

fi : (Xi,O|Xi) −→ (Xi,Oi),
f ∼i = IdXi

such that

fij = fif −1j ,

for all i and j.
The following usual cocycle conditions are necessary and sufficient for the existence of the sheaf O:

i. fii = Id on Oi;
ii. fijfji = Id on Oi|Xi ;
iii. fijfjkfki = Id on Oi|Xijk .

3. Projective superspaces

Due to their importance in physical applications we now give a detailed description of projective superspaces. One
can work either on R or on C, but we choose to stay on C. Let X be the complex projective space of dimension n. The
superprojective space will be called Y . The homogeneous coordinates are {zi}. Let us consider the underlying topological
space as X , and let us construct the sheaf of super-commutative rings on it. For any open subset V ⊆ X we denote by V ′
its preimage in Cn+1 \ {0}. Then, let us define A

(
V ′
)
= H

(
V ′
) [
θ1, θ2, . . . , θ q

]
, where H

(
V ′
)
is the algebra of holomorphic

functions on V ′ and
{
θ1, θ2, . . . , θ q

}
are the odd generators of a Grassmann algebra. C∗ acts on this super-algebra by:

t :
∑
I

fI (z) θ I −→
∑
I

t−|I|fI
(
t−1z

)
θ I . (3.1)

The superprojective space has a ring over V given by:

OY (V ) = A
(
V ′
)C∗
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which is the subalgebra of elements invariant by this action. This is the formal definition of a projective superspace (see for
example [7]), however we would like to construct the same space more explicitly from gluing different super-domains as
in Section 2.3.
Let Xi be the open set where the coordinate zi does not vanish. Then the super-commutative ringOY (Xi) is generated by

elements of the type

f0

(
z0
zi
, . . . ,

zi−1
zi
,
zi+1
zi
, . . . ,

zn
zi

)
, fr

(
z0
zi
, . . . ,

zi−1
zi
,
zi+1
zi
, . . . ,

zn
zi

)
θ r

zi
, r = 1, . . . , q.

In fact, to be invariant with respect to the action of C∗, the functions fI in Eq. (3.1) must be homogeneous of degree−|I|.
Then, it is obvious that the only coordinate we can divide by, on Xi, is zi: all functions fI are of degree−|I| and holomorphic
on Xi. If we put, on Xi, for l 6= i, Ξ

(i)
l =

zl
zi
and Θ(i)

r =
θ r

zi
, then OY (Xi) is generated, as a super-commutative ring, by the

objects of the form

F (i)0
(
Ξ
(i)
0 ,Ξ

(i)
1 , . . . ,Ξ

(i)
i−1,Ξ

(i)
i+1, . . . ,Ξ

(i)
n

)
, F (i)a

(
Ξ
(i)
0 ,Ξ

(i)
1 , . . . ,Ξ

(i)
i−1,Ξ

(i)
i+1, . . . ,Ξ

(i)
n

)
Θ(i)
a ,

where F (i)0 and the F
(i)
a ’s are analytic functions on Cn. In order to avoid confusion we have put the index i in parenthesis: it

just denotes the fact that we are defining objects over the local chart Xi. In the following, for convenience in the notation,
we also adopt the convention thatΞ (i)

i = 1 for all i.
To explain the ‘‘coordinate change’’ morphisms let us recall what happens in the ordinary complex projective spaces.
If we consider Pn(C)with the ordinary complex analytic structure, then, over the affine open set Xi where zi 6= 0, we can

define the affine coordinatesw(i)a = za
zi
, a 6= i. The sheaf of rings over Xi is H(Xi), the ring of analytic functions over Xi. Every

element f ofH(Xi) can also be expressed as a function in homogeneous coordinates F(z0, z1, . . . , zn). Two functions, F (i) on Xi
and F (j) on Xj, represent ‘‘the same function’’ on the intersection Xi∩Xj if, when expressed in homogeneous coordinates, they
give the same function F . The isomorphism between (Xi ∩ Xj,H(Xi)|Xj) and (Xj ∩ Xi,H(Xj)|Xi) sends F

(i) to F (j), i.e. expresses
F (i) with respect to the affine coordinates w(j)a = za

zj
. The total manifold is obtained by gluing these domains Xi as in the

previous section.
We now return to considering the superprojective spaces. We have the two sheavesOY (Xi)|Xj andOY (Xj)|Xi . In the same

way as before, we have themorphisms given by the ‘‘coordinate changes’’. So, on Xi∩Xj, the isomorphism simply affirms the
equivalence between the objects of the super-commutative ring expressed either by the first system of affine coordinates,
or by the second one. So for instance we have thatΞ (j)

l =
zl
zj
andΘ(j)

r =
θ r

zj
can be also expressed as

Ξ
(j)
l =

Ξ
(i)
l

Ξ
(i)
j

, Θ(j)
r =

Θ
(i)
r

Ξ
(i)
j

.

Which, in the language used in the previous section, means that the morphism ψji gluing (Xi ∩ Xj,OY (Xi)|Xj) and (Xj ∩
Xi,OY (Xj)|Xi) is such that ψ

∼

ji is the usual change of coordinates map on projective space and

ψ∗ji (Ξ
(j)
l ) =

Ξ
(i)
l

Ξ
(i)
j

, ψ∗ji (Θ
(j)
r ) =

Θ
(i)
r

Ξ
(i)
j

.

The supermanifold is obtained by observing that the coordinate changes satisfy the cocycle conditions of the previous
section.

4. The functor of points

We now wish to explain how the physicists’ interpretation of the zi’s as ‘‘even coordinates’’ and the θj’s as ‘‘odd
coordinates’’ can be obtained from the ‘‘super-ringed space’’ interpretation of supermanifolds through the concept of
‘‘functor of points’’. The key to understanding this is Theorem 1.
Given two supermanifolds X and S, the S-points of X (or the points of X parametrized by S) are given by the set

X(S) = Hom(S, X) = {set of morphisms S → X}.

X is the supermanifold we want to describe and S is the model on which we base the description of X . Changing S modifies
the description of X . The functor which associates S to X(S) is a functor between the category of supermanifolds and the
category of sets (which are the ‘‘points’’ of the supermanifolds). See also [10] for more details.
Let us interpret this in the case when X = V r|s and S = Up|q. According to Theorem 1, a morphism ψ ∈ Hom(Up|q, V r|s)

is uniquely determined by a choice of r even sections and s odd sections of C∞ p|q(U), i.e. morphisms are in one to one
correspondence with (r + s)-tuples (f1, . . . , fr , g1, . . . , gs), where fj’s are even and gj’s are odd in the algebra C∞ p|q(U). If
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we denote by Γ 0q (U) and Γ
1
q (U) respectively the set of even and odd sections of C

∞ p|q(U), then the above fact is expressed
as

Hom(Up|q, V r|s) = (Γ 0q (U))
r
× (Γ 1q (U))

s. (4.1)

The sub-index q denotes the ‘‘number of odd generators’’ of the algebra we are considering.
In particular, if S = R0|q, then

Hom(R0|q, V r|s) = (Γ 0q )
r
× (Γ 1q )

s (4.2)

where (Γ 0q ) and (Γ
1
q ) represent the even and the odd component of a Grassmann algebra with q generators, respectively.

One could say that the ‘‘super-ringed space’’ structure of X encodes the information of how the even and odd coordinates
(z, θ) glue together, but independently of the number of generators of the underlying super-algebra. The number of
generators (q in the above case) can be fixed by taking a supermanifold S and constructing Hom(S, X). We will see some
examples shortly.

4.1. Coordinates of superprojective spaces

We are going to consider the superprojective space

Pp|q =
(
Pp,OPp

)
(4.3)

which is defined as in Section 3 as a ringed space and dim(OPp) = q. Wewant to describe the set ofC0|N -points of this space.
The space C0|N can be viewed as the super-commutative ringOC0 over the single point (denoted by P) of the corresponding
topological space C0 and can be identified precisely with the Grassmann algebra with N generators that we denote by ΓN .
Let us consider the open subsets {Xi}, i = 0, 1, 2, . . . , p, of Pp where zi 6= 0, with the corresponding super-commutative

ring OXi . A morphism between C0|N and (Xi,OXi) is completely defined by the pull-back for each generator of the ring OXi

τ(i) ∈ Hom(C0|N , (Xi,OXi)), τ ∗(i) : OXi → OC0 (4.4)

where OC0 = C[θ1, . . . , θN ] = ΓN . To clarify this point, we take the generators of OXi : Θ
(i)
j , j = 1, . . . , q and the affine

coordinatesΞ (i)
j on Xi and we map into C[θ1, . . . , θN ] as follows

τ ∗(i)(Ξ
(i)
j ) = f

(i)
j j = 1, . . . , p (4.5)

τ ∗(i)(Θ
(i)
r ) = η

(i)
r r = 1, . . . , q

where the f (i)j (resp. η(i)r ) are even (resp. odd) elements of the Grassmann algebra ΓN . It is clear that τ∼(i)(P) =

((f (i)1 )
∼, . . . , (f (i)p )∼). We therefore see that for every i, Hom(C0|N , (Xi,OXi)) can be identified with a copy of (Γ

0
N )
p
× (Γ 1N )

q.
To obtain all the possiblemorphisms fromC0|N toPp|q, wemust take into account that the latter is built by ‘‘gluing’’ super-

domains bymeans of the ‘‘coordinate change isomorphisms’’, this corresponds to gluing together all copies of (Γ 0N )
p
×(Γ 1N )

q

for all possible i’s. Since amorphism inHom(C0|N , Pp|q)must be compatiblewith the restrictionmaps, itmust commutewith
the ‘‘coordinate changes’’. This means that, if τ ∗(j) is the pull-back of a morphism to Xj, andψ

∗

ij : OXj |Xi∩Xj −→ OXi |Xi∩Xj is the
isomorphism which represents ‘‘coordinate changes’’, then

τ ∗(j) = τ
∗

(i) ◦ ψ
∗

ij .

This then induces a map between subsets of the ith and jth copy of (Γ 0N )
p
× (Γ 1N )

q as follows

(f (i)1 , . . . , f
(i)
p ) 7→ (f (i)j )

−1(f (i)1 , . . . , 1, . . . , f
(i)
p ),

(η
(i)
1 , . . . , η

(i)
q ) 7→ (f (i)j )

−1(η
(i)
1 , . . . , η

(i)
q ).

By means of this map we glue the two copies together. Performing all these gluings gives a model for Hom(C0|N , Pp|q),
consisting of the C0|N -points of Pp|q.
Another way to interpret this model is as follows. We consider a set of ‘‘homogeneous’’ (even and odd) generators

z0, . . . , zp, θ1, . . . , θq, where the zj’s are in Γ 0N and at least one them is invertible and the θj’s are in Γ
1
N . One obtains the

local generators on each Xi simply ‘‘dividing’’ by zi (exactly like in the standard projective case, when one looks for the
‘‘affine coordinates’’). This way we see that we can identify

Hom(C0|N , Pp|q) =

((
Γ 0N

)p+1
\ Bp+1

)
×
(
Γ 1N

)q(
Γ 0N

)∗ ,

where
(
Γ 0N

)∗ is the set of the even invertible elements and B = (Γ 0N ) \ (Γ 0N )∗. This model is exactly the generalization of the
projective space as a supermanifold in the sense of Rogers, Bruzzo and others (see book [3] for a complete discussion).
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5. Supergroups and superdeterminants

As another illustration of the meaning of the functor of points we consider the case of supergroups. For simplicity we
will just look at the cases of GL(1|1), SL(1|1) and finally we will give another construction of the superprojective space as
the quotient space SU(n|m)/U(n− 1|m).
Let us now consider the simplest case of supergroup GL(1|1). As a supermanifold, GL(1|1) is isomorphic to the super-

domain U2|2 = (U2,C∞2|2), where U2 = (C∗)2. If (z1, z2) are the coordinates on U2 and θ1, θ2 are the generators of the
Grassmann algebra, it is convenient to use the notation in matrix form(

z1 θ1
θ2 z2

)
. (5.1)

We can define the ‘‘product’’ on GL(1|1) as a morphism

ψ ∈ Hom(GL(1|1)× GL(1|1),GL(1|1))

such that

ψ∼ : GL(1|1)0 × GL(1|1)0 −→ GL(1|1)0
(z1, z2)× (z3, z4) 7−→ (z1z3, z2z4),
ψ∗ : C∞(U2) [ϑ1, ϑ2] −→ C∞(U2 × U2) [θ1, θ2, θ3, θ4](
w1 ϑ1
ϑ2 w2

)
7−→

(
z1z3 + θ1θ4 θ1z4 + z1θ3
θ2z3 + z2θ4 z2z4 + θ2θ3

)
,

where the action of the pull-back morphism ψ∗ has been specified only for the generators of the algebra (see Theorem 1).
We now apply the functor of points to recover the usual interpretation of GL(1|1) as the set of ‘‘invertible supermatrices’’.

Take as model space S = C0|q, then Hom(S,GL(1|1)) can be identified with the set of matrices

g =
(
ψ∗z1 ψ∗θ1
ψ∗θ2 ψ∗z2

)
, (5.2)

whereψ∗zi are even elements of the Grassmann algebra Γq, whose value is different from zero, andψ∗θi are odd elements.
To simplify notation we denote ψ∗zi (resp. ψ∗θi) by zi (resp. θi).
The above ‘‘product’’ becomes the usual multiplication of supermatrices as follows. A morphism from S to GL(1|1) ×

GL(1|1) is given by a pair of matrices, g1 and g2, as above. Composition with the product morphism gives a morphism from
S to GL(1|1), represented by a matrix g3, which can be seen to be given by the usual multiplication of matrices:

g1 =
(
z1 θ1
θ2 z2

)
, g2 =

(
z3 θ3
θ4 z4

)
(5.3)

g3 = g1g2 =
(
z1z3 + θ1θ4 θ1z4 + z1θ3
θ2z3 + z2θ4 z2z4 + θ2θ3

)
.

Recall the classical formula for the superdeterminant (or Berezinian) of a supermatrix in GL(1|1):

sdet(g) = Ber(g) =
z1
z2

(
1+

θ1θ2

z1z2

)
(5.4)

which is well defined if z2 6= 0. The Berezinian can also be understood from the sheaf point of view, as a morphism Ber from
GL(1|1) to C1|0:

Ber∼ : GL(1|1)0 −→ C
(z1, z2) 7−→ z1/z2

,

Ber∗ : C∞1|0 −→ C∞2|2

w 7−→
z1
z2

(
1+

θ1θ2

z1z2

)
.

Next,we consider a subset of supermatricesGL(1|1)with the property that ‘‘the superdeterminant is 1’’. They are denoted
by SL(1|1). Wewant to describe this space using the sheaf theoretic interpretation of supermanifolds, by restricting the base
manifold and considering an appropriate quotient sheaf. We need to give a meaningful interpretation of the relation

z1
z2

(
1+

θ1θ2

z1z2

)
= 1. (5.5)

We do it as follows. Let J be the ideal in C∞ 2|2 generated by

z1
z2

(
1+

θ1θ2

z1z2

)
− 1. (5.6)
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The base manifold of SL(1|1) is the support of this ideal, i.e. the subset X ⊂ C∗ × C∗ of points around which no element
of J is invertible. Clearly X is the diagonal in C∗ × C∗, i.e. the set where z1 = z2. The sheaf OX is the restriction to X of the
quotient sheaf

C∞ 2|2/J. (5.7)

It remains to show that this ringed manifold SL(1|1) is really a supermanifold, i.e. it is obtained by pasting super-domains.
In fact observe that the relation (5.6) tells us that over an open set V ⊂ X , z1 = z2 −

θ1 θ2
z2
. Therefore the ring over V is

C∞(z2 −
θ1 θ2
z2
, z2)[θ1, θ2] which can be seen to be isomorphic to a super-ring of the type C∞(z)[Ψ1,Ψ2], so locally SL(1|1)

is isomorphic to a super-domain. What we have done here is to show explicitly that SL(1|1) is a sub–supermanifold of
dimension 1|2 of GL(1|1) in the sense of [7].
To conclude the description of X = SL(1|1), we present its interpretation by means of the functor of points, using the

model space S = C0|N . Then, the morphisms in Hom(S, X) can be viewed as the morphisms in Hom(S,GL(1|1)) such that:

(i) the map between the underlying topological spaces has image contained in the diagonal of C∗ × C∗;
(ii) the pull-back map descends to the quotient, i.e. ψ∗(j) = 0 for any j ∈ J.

Then, the set Hom(S, X) can be viewed as the matrices of the form

g =
(
ψ∗z1 ψ∗θ1
ψ∗θ2 ψ

∗z2

)
, (5.8)

with the conditions that: (1) the value of ψ∗z1 is equal to the value of ψ∗z2 (by (i)), and (2) the superdeterminant of the
matrix in (5.8) is 1 (by (ii)).
We start describing GL(1|1,C) in a different way, by passing to real supergroups. We use the following idea: think about

Cn, with a complex basis {v1; v2; . . . ; vn}. Then, Cn can be viewed as a real 2n-dimensional space, with a real basis

{v1; iv1; v2; iv2; . . . ; vn; ivn} .

So, let us take V 2 =
{
(a; b) ∈ R2 : a2 + b2 6= 0

}
. We take, as a base manifold,

(
V 2
)2, and the ring over this total space is

C∞R
(
z1; z ′1; z2; z

′

2

) [
θ; θ ′;ψ;ψ ′

]
. Note that z ′1 and z

′

2 (as even generators), and θ
′ andψ ′ (as odd generators) play the role of

the vectors (written above) ivj. So, the primed generators are independent from the real point of view; sums like xz1 + yz ′1
(or θ + θ ′) represent complex even (respectively, odd) elements, since they put together the real and the imaginary part.
We can view the generators in the following matrix form, which helps us in writing the product morphism.(

z1 + z ′1 θ + θ
′

ψ + ψ ′ z2 + z ′2

)
. (5.9)

The productmorphism is defined by:m :
(
V 2
)2
×
(
V 2
)2
−→

(
V 2
)2
, and one candescribe exactly the pull-backmorphism

by performing explicitly the matrix multiplication:(
z11 + z

′1
1 θ1 + θ ′1

ψ1 + ψ ′1 z12 + z
′1
2

)
·

(
z21 + z

′2
1 θ2 + θ ′2

ψ2 + ψ ′2 z22 + z
′2
2

)
.

Then, we try to define a ‘‘complex conjugation’’. It is a morphism, such that its pull-back map takes the form:

ρ∗ : C∞R
(
z1; z ′1; z2; z

′

2

) [
θ; θ ′;ψ;ψ ′

]
−→ C∞R

(
z1; z ′1; z2; z

′

2

) [
θ; θ ′;ψ;ψ ′

]
,

and it is completely determined once one knows the behavior of the generators. In fact, it sends z1; z2; θ;ψ to themselves,
while the primed elements z ′1; z

′

2; θ
′
;ψ ′ undergo a change of sign, going respectively to−z ′1;−z

′

2;−θ
′
;−ψ ′.

Next, we define the ‘‘Hermitian transpose’’, which will be denoted by the symbol H . Its pull-back map sends z1; z2 to
themselves, z ′1; z

′

2 to−z
′

1;−z
′

2, respectively; θ; θ
′ to ψ ′;ψ , respectively, and ψ ′;−ψ to θ ′;−θ , respectively. Note that the

exchange of the θ with the ψ is due to the transposition operation, while the exchange of a non-primed generator with a
primed one is due to a multiplication by−i. We will see this better when we pass to Grassmann algebras by the functor of
points. We have again to require thatH is a morphism. Note that it is not true that (H∗)2 = Id.
Now, we can describe the functor of points with respect to a particular model space. We choose, as a model space, C0|q.

So, C0|q =
(
P;C

[
ξ1; ξ2; . . . ; ξq

])
. The conjugation is a map, defined, in a standard way (since C0|q is simply a Grassmann

algebra) σ : C0|q −→ C0|q, with pull-back defined by: σ ∗ ((x+ iy) ξi) = (x− iy) ξi.
When we construct the morphisms Hom

(
C0|q;GL (1|1)

)
, we only take the ones which are R-linear and compatible with

conjugations, which means that σ ∗ ◦ϕ∗ = ϕ∗ ◦ρ∗. This means for example, that, if we choose an odd element of C0|q as the
pull-back of θ , the pull-back of θ ′ is consequently i times the pull-back of θ . (In general this is not true, but we have assumed
here that there is a complex structure J on the anticommuting coordinates and we consider only those morphisms which
commute with J .)
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In this way, we can describe the C0|q-points of GL (1|1) as the set of matrices of the form(
a α
β b

)
,

where a; b are even elements of a complex Grassmann algebra with q generators, α;β are odd elements of the same algebra,
and the Berezinian is invertible.
Now, we can pass to construct the supergroup U(1|1). Note that it is a real supermanifold. We have to perform the

quotient of C∞R
(
z1; z ′1; z2; z

′

2

) [
θ; θ ′;ψ;ψ ′

]
, by the four relations obtained from:

A ·H∗ (A) = I, (5.10)

where A is a sheaf element written in the matrix form (5.9). By explicitly writing the elements on the left, we get four
generators of an ideal I . Taking the quotient

C∞R (z1; z
′

1; z2; z
′

2)[θ; θ
′
;ψ;ψ ′]/I,

we finally get the sheaf corresponding to U(1|1). The base manifold is the support of this sheaf. Applying the functor-of-
points interpretation and using C0|q as a model, it is easy to see that the elements of U(1|1) correspond, as a set, to the
matrices of the form

B =
(
a α
β b

)
. (5.11)

They preserve the ‘‘scalar’’ product 〈(z, θ), (z, θ)〉 = zz̄ + iθ θ̄ . Note that the bar is the conjugation in C0|q, i.e. a = σ ∗ (a).
It follows that BĎ · B = I, where Ď represents the usual ‘‘adjoint’’ of supermatrices. It represents the correspondence
between a matrix and its Hermitian transpose from the C0|q-point of view, since we can see that for every element
ϕ ∈ Hom

(
C0|q;GL (1|1)

)
, ϕ∗ ◦H∗ is related to ϕ∗ by exactly performing the Ď operation. More precisely,

BĎ =
(
a −iβ
−iα b

)
. (5.12)

For the sake of completeness, wewrite explicitly theC0|q-points of U(1|1). They are in bijective correspondence with the
matrices of the form

U =

1−
i
2
γ γ −ieiψγ

γ eiψ
(
1+

i
2
γ γ

)
 , (5.13)

where ψ is a real phase and γ is a generic odd element of the Grassmann algebra.
A similar construction applies to U(n|m) supergroups. To get the supergroups SU(n|m)we have to quotient with respect

to the Berezinian equal to one. The body part of SU(n|m) is U(1)× SU(n)× SU(m). The odd part belongs to the fundamental
representation of SU(n)× U(m).

5.1. Superprojective spaces as supercosets

Herewe show that, using the functor-of-points framework, the superprojective spaces can be described in three different
and equivalent ways. We first remind the reader the three methods to define the classical projective space and then we
extend it to superprojective ones.
In the classical case, let zi, i = 1, . . . , n + 1 be the coordinates on Cn+1 − {0} and define the projective space Pn by the

quotient

(z1, . . . , zn+1) ∼ λ(z1, . . . , zn+1), λ ∈ C∗. (5.14)

This is the standard definition of Pn. Alternatively, one can fix the modulus of λ by setting

n+1∑
i=1

|zi|2 = r > 0, zi ∼ eiφzi,∀i, φ ∈ R (5.15)

up to the phase φ. The first equation fixes the modulus |λ|2 = 1 and the second equation removes its phase. Let us choose
r = 1, this implies that the vector zi has modulus equal to one.
The SU(n+1) symmetry of (5.15) is used to bring the vector zi in the form (1, 0, . . . , 0)which has modulus equal to one.

This vector has a stability groupwhich isU(n). A stability group is the subgroupof transformationswhich leaves (1, 0, . . . , 0)
invariant. Therefore, we can define the projective space as the coset

SU(n+ 1)/U(n). (5.16)

The three ways to define a Pn are easily seen to be equivalent.
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Let us consider now the superprojective spaces Pn|m. The definition (5.14) can be repeated as follows

(z1, . . . , zn+1, θ1, . . . , θm) ∼ λ(z1, . . . , zn+1, θ1, . . . , θm), (5.17)

with λ not belonging to C∗, but to the space of even quantities which are invertible (see Section 4.1). Again, we can use the
alternative definition of Pn|m [6,20,4,7]

n+1∑
i=1

|zi|2 + i
m∑
A=1

θ̄AθA = r > 0, zi ∼ eiφzi, θA ∼ eiφθA,∀i, A, φ ∈ R. (5.18)

Eq. (5.18) is the correct extension of (5.15), but its interpretation needs some comment. As we have seen there are two
ways to describe supermanifolds: (i) using the sheaf description and (ii) using the functor of points. According to the first
framework, Eq. (5.18) can be seen as an algebraic equation among the generators of the sheaves of the supermanifolds. Eq.
(5.18) is consistent with the projection (5.17) and it defines an hypersurface in Cn+1|m. According to the second description,
one has to decompose the coordinates zi and θA on the basis of the generators of the super-domain and the coefficients need
to satisfy a set of algebraic equations.
Note that SU(n+ 1|m) acts on Pn|m as follows:

ψ : SU(n+ 1|m)× Pn|m −→ Pn|m (5.19)

with the pull-back defined by

ψ∗(zi) =
n+1∑
j=1

Aijzj +
m∑
A=1

αiAθA, ψ∗(θA) =

n+1∑
j=1

βAjzj +
m∑
B=1

BBAθB, (5.20)

where Aij, BAB are the even generators of SU(n + 1|m) and αiA, βAj are the odd ones. It is easy to see that the action is
transitive like in the classical case. So, as in the classical case one can define the supercoset SU(n+1|m)/SU(n|m)which can
be identified with the superprojective space Pn|m. An analysis of the supercosets can be found in the book [2] and recently
it has been discussed in [10].
Therefore applying the construction above and starting from a vector ((1, . . . , 0), (0, . . . , 0)) (where the first set of

components are the even coordinates and the second set the odd ones) we end up with Eq. (5.18). The odd part of (5.18) is
obtained by acting with the odd part of the supergroup on the unit vector. Notice that this is not the only possibility, indeed
we can start from an odd vector ((0, . . . , 0), (1, . . . , 0))which has the following norm

‖((0, . . . , 0), (1, . . . , 0))‖2 = i θ1θ̄1.

In this case, acting with the supergroup on it (and preserving the subgroup U(n|m)), we end up with the new equation

n+1∑
i=1

|zi|2 + i
m∑
A=1

θ̄AθA = r, (5.21)

where r is an even element of the algebra. For example, starting from the vector

((1, . . . , 0), (1, . . . , 0))

we have r = r0 + i θ1θ̄1 whose body r0 is positive.

6. Balanced supermanifolds

In this section, we propose a possible extension of notion of balanced manifold (see [11] or [25] for a survey) to the
supermanifolds. We found it appropriate to report the present results since they call for a functor-of-point interpretation
and for the definition of stable supermanifolds.

6.1. Integration of superforms

The integration of superforms has been studied in the literature and it is based on the notion of the integral superforms
(see for example [2] for a discussion based on sheaf technique and the references therein). This is due to the fact that the
superforms are built with basic 1-superform dθ and their wedge products. However, those products dθ ∧ · · · ∧ dθ form a
differential complex

0
d
−→ Ω(0|0) d

−→ Ω(1|0)
· · ·

d
−→ Ω(n|0) d

−→ · · · (6.1)

(the notation Ω(a|b) denotes the form degree a and the picture number b that will be explained few lines below) which is
bounded from below, but not from above. Therefore, there is no notion of a top form to be integrated on the supermanifold
Cp+1|q.
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While the integration of functions on the supermanifold is clear since it is obtained by the Berezin integral [19], the
integration of the superforms is obtained by using the method of the projection forms

dµV =
1
p!
Ω
p
FB ∧Uq (6.2)

whereUq is the Thom class obtained by viewing the supermanifold Pp|q as modeled on Pp. For a nice review see [21]. The
construction ofUq for Pp|q will be given in [16].
One simple way to define the integration forms is to introduce the new basic forms δ(dθ) where the symbol δ has the

usual properties of Dirac’s delta distribution. They satisfy in addition some simple rules such as

δ(dθ) ∧ δ(dθ ′) = −δ(dθ ′) ∧ δ(dθ), dθδ(dθ) = 0, dθδ′(dθ) = −δ(dθ). (6.3)

The systematic exposition of these rules can be found in [22] and they can be put in a more mathematical framework using
the results of [3].
We introduce the picture number by counting the number of delta functions and we denote byΩ r|s the space of r-forms

with picture s. For example, in the case of Cp+1|q, the integral form

dx[K1 ∧ · · · ∧ dxKl]dθ [il+1 ∧ · · · ∧ dθ ir ∧ δ(dθ i1) ∧ · · · ∧ δ(dθ is]) (6.4)

is an r-form with picture s. All indices Ki and ij are antisymmetrized among themselves. We denote by [I1 . . . Is] the
antysimmetrization of the indices. Notice that we can also add derivatives of delta functions δ(n)(dθ) and they effectively
reduce the form degree. Indeed, even negative form degree can be considered by forms of the type

δ(n1)(dθ i1) ∧ · · · ∧ δ(ns)(dθ is) (6.5)

which is a−(n1 + · · · + ns)-form with picture s. The integral forms form a new complex as follows

· · ·
d
−→ Ω(r|q) d

−→ Ω(r+1|q)
· · ·

d
−→ Ω(p+1|q) d

−→ 0 (6.6)

whereΩ(p+1|q) is the top form dx[K1 ∧· · ·∧dxKp+1]δ(dθ [i1)∧· · ·∧δ(dθ iq])which can be integrated on the supermanifold. As
in the usual commuting geometry, there is an isomorphism between the cohomologies H(0|0) and H(p+1|q). In addition, one
can define two operations acting on the cohomology groupsH(r|s) which change the picture number s (see for example [22]).
Given a function f (x, θ) on the supermanifold C(p+1|q), we define its integral by the super top form ω(p+1|q) =

f (x, θ)dp+1xδ(dθ1) ∧ · · · ∧ δ(dθ q) belonging toΩ(p+1|q) as follows∫
C(p+1|q)

ω(p+1|q) = ε i1···iq∂θ i1 · · · ∂θ iq

∫
Cp+1

f (x, θ)|θ=θ̄=0 (6.7)

where the last equality is obtained by integrating on the delta functions and selecting the bosonic top form. The remaining
integrals are the usual integral of densities and the Berezin integral. The latter can be understood in terms of the Berezinian
sheaf [23]. It is easy to show that indeed themeasure is invariant under general coordinate changes and the density transform
as a Berezinian with the superdeterminant.
Before defining Donaldson’s balanced supervarieties, we need to define the integration on the projective space which

will involve the technology of integral forms. This can be done in two ways:

1. We use the fact that for a projective space there is a gauge symmetry defined by the rescaling of the coordinates. So,
given X the vector field generating such a symmetry, the induced measure on the projective space is given by

ιXΩ
(p+1|q)
C = Ω

(p|q)
P (6.8)

whereΩ(p+1|q)
C is the top form in the supermanifold C(p+1|q) andΩ(p|q)

P is the top form in the projective superspace Pp|q.
As we have discussed in the above sections, the scale symmetry is generated by the holomorphic vector field

X =
∑
I

zI∂zI +
∑
i

θ i∂θ i . (6.9)

To illustrate these statements, we focus on the case of the super-Calabi–Yau P1|2. The holomorphic top form for C(p+1|q)
is given by

Ω
(p+1|q)
C = ε IJdzI ∧ dzJεijδ(dθ i)δ(dθ j), (6.10)

and we act with the contraction ιX to get

ιXΩ
(p+1|q)
C = ε IJzIdzJεijδ(dθ i) ∧ δ(dθ j) (6.11)
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where we have used the relation ιθ i∂
θ i
δ(dθ i) = θ iδ′(dθ i) (where the index i is not summed) and the fact that dz1 ∧ dz2

on P1 vanishes. Using affine coordinates z = z1/z0, ψ i = θ i/z0 we get

ΩCY = dzεijδ(dψ i) ∧ δ(dψ j). (6.12)

It is important to underline that ΩCY is not a differential form, but rather an integral form (see also [4]) and it can be
identifiedwith themeasure associatedwith the Fubini–Studymetric for the supermanifold P1|2. To see this, we re-derive
(6.12) in a different way.

2. We use the algebraic equation

p+1∑
i=1

|zi|2 + i
q∑
I=1

θ̄IθI = r (6.13)

where r ∈ C and we derive the conditions for a measure on the sub–supermanifold. For the super-Calabi–Yau P1|2 the
Eq. (5.21) (or (6.13)) becomes

|z0|2 + |z1|2 + i δijθ̄ iθ j = r (6.14)

and by the symmetry zI → eiαzI , θi → eiαθi. Here we have used the homogeneous coordinates zI with I = 0, 1 and the
affine coordinate z is defined by z = z1/z0. Acting with the ∂ differential operator on (6.14) we get

δIJ z̄IdzJ + i δijθ̄ idθ j = 0. (6.15)

The measure for the super-Calabi–Yau space can be determined by choosing the ansatz

dzIεijδ(dθ i) ∧ δ(dθ j) = ΩCY FI(zI , θ i) (6.16)

where FI(zI , θ i) is a function of the coordinates zI and θ i which is needed to satisfy the constraint (6.15). Indeed, by
contracting both sides of (6.16) with δIJ z̄I and using the identity dθ iδ(dθ i) = 0 for each i, we find that FI = f (θ)εIJ z̄ J
where f (θ) is a scalar function needed to guarantee the holomorphicity ofΩCY . By simple algebraic manipulations, one
finds

ΩCY = ε
IJzIdzJεijδ(dθ i) ∧ δ(dθ j) (6.17)

which coincides with the above derivation.

Finally the integration of a function F on the superspace is given by∫
P1|2

ΩCY ∧ Ω̄CY F(z, z̄, θ i, θ̄ i) =
∫

P1
dz ∧ dz̄ εij

∂

∂θ i

∂

∂θ j
εij
∂

∂θ̄ i

∂

∂θ̄ j
F(z, z̄, θ i, θ̄ i)|θ=θ̄=0. (6.18)

In the second line we have taken the four derivatives with respect to the fermionic coordinates θi and θ̄i and then set them
to zero. It remains to perform the usual integration on the P1.

6.2. Donaldson’s balanced superprojective spaces

Let us consider the superprojective space Pp|q with standard coordinates [z0, . . . , zp, θ1, . . . , θq] and the matrix valued
function on Pp|q given by

Bik =
ziz̄k

p∑
l=0
|zi|2 + i

q∑
l=1
θI θ̄I

,

BiK =
ziθ̄K

p∑
l=0
|zi|2 + i

q∑
l=1
θI θ̄I

, BIk =
θI z̄k

p∑
l=0
|zi|2 + i

q∑
l=1
θI θ̄I

,

BIK =
iθI θ̄K

p∑
l=0
|zi|2 + i

q∑
l=1
θI θ̄I

.

(6.19)

If we denote by V a projective sub–supervariety of Pp|q, we define the (p+ q+ 1)× (p+ q+ 1)-matrix by the block matrix

M(V )AB =


∫
V
BikdµV

∫
V
BiKdµV∫

V
BIkdµV

∫
V
BIKdµV

 (6.20)
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where the indices A, B run over p + 1 + q values. Notice that M(V )ij = Mji, M(V )iK = M(V )Ik and M(V )IK = −MKI . The
measure dµV is defined above. In the case of the super-Calabi–Yau, we use the definition given in (6.18).
Applying the rules described above for the integration, one immediately gets
M(V )iK = M(V )Ik = 0 (6.21)

and there are only non-trivial blocksMik andMIK . Since the computation ofUq in (6.2) requires new ingredients, we consider
in the following only super-Calabi–Yau spaces. For themwe can use a different measure provided by the holomorphic form.
Following Donaldson [11], we define a balanced supermanifold if M(V ) is a multiple of the identity matrix. However,

notice that the identitymatrix in the supermanifold has the block structure I = (δīj, δIK̄ ). Hence, a supermanifold is balanced
iff there exist two real numbers λ and η such that∫

V
Bīj dµV = λ δīj,

∫
V
BiJ̄ dµV = 0,

∫
V
BI J̄ dµV = η δI J̄ . (6.22)

If p = q, then we must have λ = −η. This is due to the presence of a additional U(1) subgroup of the stability group
SU(p|q) (which is the group of isometries of the supermetric I) and this reduces the supergroup to PSU(p|p). Notice that the
integration over the fermionic coordinates produces two terms: one is coming from the expansion of the denominator in
Bīj or BIK̄ and the second is coming from the expansion of the measure dµV . The second source of interest in (6.22) is the
presence of the additional constraints (the second and the third relations) on the bosonic manifold.
In the case of super-Calabi–Yau space we use the integration measure obtained by the nowhere-vanishing holomorphic

formΩCY described above. Notice that in the super-Calabi–Yau case, the Fubini–Studymeasure on the superprojective space
coincides with the Ricci flat supermetric (see also for the explicit computation [24] or using group theoretical arguments
in [4]). This simplifies the construction.
Let us now consider a generic polarized supermanifold (M, L) with L an holomorphic super line bundle where the

transition functions are elements of GL(1|1). In addition, we require that the super line bundle has its first Chern class c1(L)
represented by a Kähler form of the supermanifoldω. For a positivem, we construct the tensor power series L⊗m of the super
line bundle and we denote by H0(M, L⊗m) the space of holomorphic sections (as clarified above) of L⊗m. The holomorphic
section could be odd or even. We use the extension of the Kodaira embedding theorem [17] asserting that for a sufficiently
largem the holomorphic sections define a projective embedding

im : M → P
(
H0(M, L⊗m)

)
. (6.23)

A choice of holomorphic sections (s0|0, . . . , spm|qm) in H
0(M, L⊗m) identifies P

(
H0(M, L⊗m)

)
with a superprojective Ppm|qm

where the superdimensions pm and qm are due to the choice of even and odd sections.
Let us consider an example. We consider P1|2 (which is a super-Calabi–Yau). Chosenm, H0(P1|2, L⊗m) is spanned by

H0(P1|2, L⊗m) =
{
za0z

m−a
1 , za0z

m−a−1
1 θI , za0z

m−a−2
1 θ1θ2

}
(6.24)

pm = 2m−1 and qm = 2m. We can see that each spaceH0(P1|2, L⊗m) is again a super-Calabi–Yau space. This can be verified
easily using the formulas given in [24] and it amounts to see that the number of anticommuting coordinates must exceed
of one w.r.t. the commuting ones. In analogy with the bosonic case, we define the supermanifold (M, L⊗m) superbalanced if
one can choose a basis in P

(
H0(M, L⊗)

)
such that the V = ιm(M) is a superbalanced variety.

On the space P
(
H0(M, L⊗m)

)
we can define the Kähler form induced by the Fubini–Study form on Ppm|qm , namely

ωm =
i
2π
∂∂̄ log

pm+qm∑
l=0

∣∣∣∣ sl(x)σ (x)

∣∣∣∣2 (6.25)

where σ(x) is an invertible even section of H0(P1|2, L⊗m). For H0(P1|2, L⊗m)we have

ωm =
i
2π
∂∂̄ log

( m∑
l=0

|z l0z
m−l
1 |

2
+ i

m−1∑
l=0

|z l0z
m−1−l
1 |

2(θ0 + θ1)(θ̄0 + θ̄1)−

m−2∑
l=0

|z l0z
m−2−l
1 |

2θ1θ̄1θ2θ̄2

)
. (6.26)

The θ − θ̄-sections are absent in the usual geometry and it appeared in physics in the context of supertwistor geometry.
The differentials ∂ and ∂̄ are natural extensions of the one dimensional case. In the case of H0(P1|2, L⊗m), we can define an
holomorphic form by separating the commuting sections si with i = 1, . . . , 2m − 1 from the anticommuting ones ŝI with
I = 1, . . . , 2m and following the prescription given above in Section 6.3.
The next step is to consider a super Hermitian metric L⊗m × L⊗m → C1|0 defined by the formula

hm(q, q′) =
1
λ

q
σ(x)

q′
σ(x)

pm+qm∑
l=0
|sl(x)|2

. (6.27)
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In the denominator, we have both commuting and anticommuting sections and they have to be taken into account to define
an L2-product and an orthonormal basis for P

(
H0(M, L⊗m)

)
as follows

〈si, sj〉h =
∫
M
hm(si(x), sj(x))ΩCY ∧ Ω̄CY = (δij, εij) (6.28)

where δij is the diagonal metric for even sections and εij is the off-diagonal metric for odd sections. The metric 〈· · · , · · ·〉h
reduced the symmetry group from GL(pm|qm) to the supergroup SU(pm|qm).
To finish this paragraph, we analyze in detail the balancing of P1|2 into H0(P1|2, L⊗2), namely into the space of

homogeneous sections of degree 2. They are given by the set{
za0z

2−a
1 , za

′

0 z
1−a′
1 θI , θ1θ2

}
(6.29)

where a = 0, 1, 2 and a′ = 0, 1. So, we can form the following integrals (where z is the affine coordinate on P1)

Ba,b =
∫

P1|2
ΩCY ∧ Ω̄CY

z2−az̄2−b

1+
∑

a=0,1,2
|z|4−2a + i

∑
a′=0,1
|z|2−2a′θI θ̄ I + θ1θ̄1θ2θ̄2

Ba′I,b′J =
∫

P1|2
ΩCY ∧ Ω̄CY

z1−a
′

z̄1−b
′

θI θ̄J

1+
∑

a=0,1,2
|z|4−2a + i

∑
a′=0,1
|z|2−2a′θI θ̄ I + θ1θ̄1θ2θ̄2

B12,12 =
∫

P1|2
ΩCY ∧ Ω̄CY

θ1θ2θ̄1θ̄2

1+
∑

a=0,1,2
|z|4−2a + i

∑
a′=0,1
|z|2−2a′θI θ̄ I + θ1θ̄1θ2θ̄2

(6.30)

where the integrals are easily performed by the previous instructions. In the last integral, the Berezin integration removes
those θ ’s and it leaves a bosonic integral on P1 which is similar to the classical integrals in the bosonic balanced manifolds.
However, here we see that we have new conditions coming from the other integrals. For example, from the first one we
need to expand the denominator to soak up enough θ ’s. And this leads to new conditions on the embeddings. Notice that in
general the form of the embedding given by (6.29) is not balanced, but one needs to adjust some numerical coefficients in
front of each given section.

6.3. Balancing of points

As a second application, we consider the problem of the stability of point of the type C0|n into the superprojective space
P1|n. Since the superspace C0|n is not a Calabi–Yau, we need to use the measure defined in (6.2). However, in this simple
case it reduces to the product of delta functions:

∏n
i=1 ∧δ(dθ

i). Before doing that, we specify the embedding as follows: we
denote by ηi, η̄i the anticommuting generators ofC0|n, we construct the morphism between the two superspace by the map

P : C0|n −→ P1|n

XI = P∗(xI) = αI + αI,[jk]ηjηk + · · · (6.31)

Θi = P∗(θi) = βi,jηj + βi,jklηjηkηl + · · · (6.32)

where xI , θi are the homogeneous coordinates on P1|n, with I = 0, 1 and i = 1, . . . , n. The capital letters denote the pull-
backs of the sheaf generators.
First we construct the matrices for the bosonic embeddings. For each single point [x0 : x1] the map discussed in

(6.19)–(6.20) gives

B[x0 : x1] =
1

|x0|2 + |x1|2

(
|x0|2 x0x̄1
x1x̄0 |x1|2

)
(6.33)

and to extend it to supermanifold, we substitute the pull-backs XI in place of the coordinates xI . In this way, the momentum
map becomes a superfield of the anticommuting coordinates ηi and therefore we need to integrate over them to get a
numerical value. For that reason we define the following new quantity

M(P) =
∫ n∏

i=1

dηidη̄i

 1
|X0|2 + |X1|2 + i

∑
j
ΘjΘ̄j

(
|X0|2 X0X̄1
X1X̄0 |X1|2

) (6.34)

where P is the point in the superprojective space P1|N . We also define σij = ∂
∂ηi
Θj(ηi) as the embedding matrix

σij = βi,j + βi,jklηkηl + · · · . (6.35)
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The function M(P) is the generalization of the usual moment map B[x0 : x1], where we embed the point [x0 : x1] into a
su(2)matrix. On the other hand, for supermanifoldsM(P) is the embedding of the point P into the upper-left corner of the
supermatrix su(2|N)which is the Lie algebra of the isometry group of P1|N which is represented by an su(2)matrix. For that
reason the normalization term |X0|2 + |X1|2 + i

∑
jΘjΘ̄j acquires the supplementary summand i

∑
jΘjΘ̄j. Notice that we

have also to take into account the embedding of the point into the su(N) part of the supermatrix needed to implement the
third type of condition in Eqs. (6.22) and this will be done later.
So, the final condition for the stability of a set of points C0|n immersed into P1|n is∑

P

n∏
i=1

∂

∂ηi

∂

∂η̄i
MP |ηi=η̄i=0 = λ1,

MP =
1

|XP,0|2 + |XP,1|2 + i
∑
j
ΘP,jΘ̄P,j

(
|XP,0|2 XP,0X̄P,1
XP,1X̄P,0 |XP,1|2

)
(6.36)

where XP,I ,ΘP,i are respectively the embeddings for the point P and the sum is extended over all points.
Before discussing the third type of condition in Eqs. (6.22), let us analyze the condition (6.36) for a specific example, when

C0|2 is embedded into P1|2. For that we consider the embedding

P : C0|2 −→ P1|2

Xi = P∗(xi) = αi + α̃iη1η2
Θi = P∗(θi) = σi,jηj

(6.37)

and we compute explicitly the expression in (6.36). After few manipulations, we get∑
P

{
Υ 3P

(
2|
∑
i

ᾱP,iα̃P,i|
2
−

∑
i

|αP,i|
2
∑
i

|̃αP,i|
2
− 2 (det|σ |2)

)(
|αP,0|

2 αP,0ᾱP,1
αP,1ᾱP,0 |αP,1|

2

)

+Υ 2P

[(∑
i

αP,i˜̄αP,i)(αP,0˜̄αP,0 αP,1˜̄αP,0
αP,0˜̄αP,1 αP,1˜̄αP,1

)
+ h.c.

]
− ΥP

(
|̃αP,0|

2 α̃P,0˜̄αP,1
α̃P,1˜̄αP,0 |̃αP,1|2

)}
= λ1. (6.38)

where ΥP = 1/
∑
i |αP,i|

2. For example, in the case of only a single point P = [1 : 0], we get the simplified equation(
−|̃α1|

2
+ α̃20 +

˜̄α20 − 2det |σ |2 α̃0α̃1 − α̃0˜̄α1˜̄α0˜̄α1 − ˜̄α0α̃1 −|̃α1|
2

)
= λ1. (6.39)

From the up-right corner we get α̃1 is real and this fixes the constant λ. Then, we get the condition, α̃20 +˜̄α20− 2 det|σ |2 = 0
which can be solved in terms of α̃0. Therefore, there is a single point whose embedding into P1|2 is balanced. The logic can
be repeated for several points and other solutions can be also found. Notice that the non-numerical part of Xi, namely the
part which is parametrized by α̃i plays a fundamental role and serves for the balancing. We can also recover the classical
solution by setting all α̃i to zero. This implies the classical balancing condition and therefore we found that there are also
the classical solutions with anticommuting coordinates.
It remains to compute the contribution for the embedding in the second su(2) of the supermatrix su(2|2) and for that we

have

M(P)kl =
∫ n∏

i=1

dηidη̄i

 iΘkΘ̄l
|X0|2 + |X1|2 + i

∑
j
ΘjΘ̄j

 (6.40)

as follows from (6.22). It is easy to evaluate the Berezin integrals to get

M(P)kl = λδkl (6.41)

where λ = det|σ |2/(
∑
i |αi|

2)2 and in the case of the point P = [1 : 0]we have λ = det|σ |2. In the way, we notice that this
part of the embedding is automatically balanced and it does not yield a new condition on the parameters of the embedding.
To our knowledge, the present discussion is a way to formulate the balancing of points into a superprojective space. Of

course, one can add further condition, for example inserting in the integral the factor exp(i
∑
jΘjΘ̄j). This term reproduces

the previous results, but in addition it leads to a further condition that coincides with the classical requirement of balanced
points into a projective space. So, instead of imposing by hand the additional condition of classical stability, themodification
of the integration measure yields all possible sets of conditions. Moreover, for the case with more than 2 anticommuting
coordinates the exponential factor exp(i

∑
jΘjΘ̄j) will lead to new conditions on the embedding. This makes sense since

adding new anticommuting coordinates requires new embedding parameters to be fixed.
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There are several questions that can be addressed in the same framework, for example: can all points be made balanced
after an SL(2|2) transformation? Is there a relation between our definition of balanced supermanifolds and a suitable
notion of stability, such as in GIT, in the supermanifold context (see [18])? We will leave these questions to forthcoming
publications.

Acknowledgments

We thank P. Aschieri, U. Bruzzo, L. Castellani, P. Fré, and E. Scheidegger for the useful discussions and remarks.

References

[1] J. Wess, J. Bagger, Supersymmetry and Supergravity, revised edition, Univ. Pr, Princeton, USA, 1992, p. 259.
[2] Yu. Manin, Complex Manifolds and Gauge fields, Springer, 1997.
[3] C. Bartocci, U. Bruzzo, D. Hernandez-Ruiperez, The Geometry of Supermanifolds, Kluwers Academic Publishers.
[4] E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189. arXiv:hep-th/0312171.
[5] N. Berkovits, Super-Poincare covariant quantization of the superstring, JHEP 0004 (2000) 018. arXiv:hep-th/0001035.
[6] A.S. Schwarz, Sigma models having supermanifolds as target spaces, Lett. Math. Phys. 38 (1996) 91. arXiv:hep-th/9506070.
[7] V.S. Varadarajan, Courant Lectures on Supersymmetry. http://www.math.ucla.edu/~vsv/susy.html.
[8] U. Bruzzo, V.G. Pestov, On the structure of DeWitt supermanifolds, J. Geom. Phys. 30 (2) (1999) 147–168.
[9] Pierre Deligne, Pavel Etingof, Daniel S. Freed, Lisa C. Jeffrey, David Kazhdan, John W. Morgan, David R. Morrison, Edward Witten. (Eds.), Quantum
Fields and Strings: A Course for Mathematicians, vol. 1 (Material from the Special Year on Quantum Field Theory held at the Institute for Advanced
Study, Princeton, NJ, 1996–1997), American Mathematical Society, Providence, RI, 1999, Institute for Advanced Study (IAS), Princeton, NJ.

[10] R. Fioresi, M.A. Lledo, V.S. Varadarajan, The Minkowski and conformal superspaces, J. Math. Phys. 48 (2007) 113505. arXiv:math/0609813.
[11] S.K. Donaldson, Scalar curvature and projective embeddings I, J. Differential Geom. 59 (3) (2001) 479–522.
[12] S.K. Donaldson, Some numerical results in complex differential geometry, Pure Appl. Math. Quart. 5 (2) (2009) 571–618. (Special Issue: In honor of

Friedrich Hirzebruch, Part 1 of 2) arXiv:math/0512625.
[13] M.R. Douglas, R.L. Karp, S. Lukic, R. Reinbacher, Numerical solution to the hermitian Yang–Mills equation on the Fermat quintic, arXiv:hep-th/0606261;

M.R. Douglas, R.L. Karp, S. Lukic, R. Reinbacher, Numerical Calabi–Yau metrics, arXiv:hep-th/0612075.
[14] P.A. Grassi, G. Policastro, Super-Chern–Simons theory as superstring theory, arXiv:hep-th/0412272.
[15] N. Berkovits, N. Nekrasov, Multiloop superstring amplitudes from non-minimal pure spinor formalism, JHEP 0612 (2006) 029. arXiv:hep-th/0609012.
[16] P.A. Grassi, M. Marescotti, hep-th/0712.2600v2 (in press).
[17] C. LeBrun, Y.-S. Poon, R.O. Wells Jr., Projective embeddings of complex supermanifolds, Comm. Math. Phys. 126 (1990) 433.
[18] R.P. Thomas, Notes on GIT and symplectic reduction for bundles and varieties, Surveys Differential Geom. 10 (2006).
[19] V.S. Varadarajan, Supersymmetry for mathematicians: An introduction, in: Courant Lectures Notes, American Mathematical Society, 2004.
[20] A. Konechny, A.S. Schwarz, On (k + l/q)-dimensional supermanifolds, in: Lecture Notes in Physics, in: Supersymmetry and Quan- tum Field Theory,

vol. 509, 1998, pp. 201–206. arXiv:hep-th/9706003.
[21] S. Cordes, G.W. Moore, S. Ramgoolam, Lectures On 2-D Yang–Mills theory, equivariant cohomology and topological field theories, Nucl. Phys. Proc.

Suppl. 41 (1995) 184. arXiv:hep-th/9411210.
[22] A. Belopolsky, New geometrical approach to superstrings, arXiv:hep-th/9703183;

A. Belopolsky, Picture changing operators in supergeometry and superstring theory, arXiv:hep-th/9706033;
P.A. Grassi, G. Policastro, Super-Chern-Simons theory as superstring theory, arXiv:hep-th/0412272.

[23] M.J. Rothstein, Trans. Amer. Math. Soc. 299 (1987) 387–396;
Hernandez-Ruiperez, Muñoz-Masque, Lecture Notes in Mathematics, in: Differential Geometric Methods in Mathematical Physics, vol. 1251, 1987,
pp. 137–149.

[24] P.A. Grassi, M. Marescotti, Flux vacua and supermanifolds, JHEP 0701 (2007) 068. arXiv:hep-th/0607243.
[25] C. Arezzo, A. Loi, Moment maps, scalar curvature and quantization of Kähler manifolds, Comm. Math. Phys. 246 (3) (2004) 543–559.

http://arxiv.org/hep-th/0312171
http://arxiv.org/hep-th/0001035
http://arxiv.org/hep-th/9506070
http://arxiv.org///www.math.ucla.edu/~vsv/susy.html
http://arxiv.org/math/0609813
http://arxiv.org/math/0512625
http://arxiv.org/hep-th/0606261
http://arxiv.org/hep-th/0612075
http://arxiv.org/hep-th/0412272
http://arxiv.org/hep-th/0609012
http://arxiv.org/hep-th/0712.2600v2
http://arxiv.org/hep-th/9706003
http://arxiv.org/hep-th/9411210
http://arxiv.org/hep-th/9703183
http://arxiv.org/hep-th/9706033
http://arxiv.org/hep-th/0412272
http://arxiv.org/hep-th/0607243

	Balanced superprojective varieties
	Introduction
	Supermanifolds
	Definitions
	Morphisms
	Local charts on supermanifolds

	Projective superspaces
	The functor of points
	Coordinates of superprojective spaces

	Supergroups and superdeterminants
	Superprojective spaces as supercosets

	Balanced supermanifolds
	Integration of superforms
	Donaldson's balanced superprojective spaces
	Balancing of points

	Acknowledgments
	References


