Supplementary materials to:

F. M. Rubino. Center-of-Mass iso-energetic collision-induced decomposition in tandem triple quadrupole mass spectrometry. Molecules 2020, 25, 2250

Correspondance to:
Federico M. Rubino. LaTMA Laboratory for Analytical Toxicology and Metabonomics, Department of Health Sciences, Università degli Studi di Milano at 'Ospedale San Paolo', v. A. di Rudinì 8, I-20142 MILANO (Italy), Lab.: +39-02-50323034 Federico.Rubino@unimi.it

List of Supplementary materials.
Table S1. Structures of the examined dabsyl-amino acids
Figure S2, S3. Measurement of representative CE $_{\max }$ and calculation of the scan line (DABS-AA)
Table S4. Structures of the examined nucleosides
Figure S5, S6. Measurement of representative CEmax of riboside transition MH+@BH+ and calculation of the scan line

Figure S7. Comparison of the generation efficiency curves of the $\mathbf{B H}+$ fragment of protonated guanosine in Fragment Ion and in Neutral Loss spectra.

Figure S8. ESI source spectrum of a mixture of nucleosides.
Figure S9. Fragment ion spectrum of a protonated N6-subsituted adenosine (12)
Table S10. Experiments for the measurement of nucleosides.
Figure S11. Relative abundance of nucleosides in different conditions
Figure S12. Stability of signal in fast-scan i-CE Neutral Loss spectra
Figure S13. Comparison of $\mathrm{CElab}_{\text {ia }}$ in a continuous and stepped scan of collision energy.

S1. Structures of the examined dabsyl-amino acids

	Compound name	Formula	$\mathbf{M}-\mathrm{H}^{+}{ }^{-}$	Structure
1	DABS-Gly	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$	361	
2	DABS-Val	$\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$	403	
3	DABS-SMC	$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}$	421	
4	DABS-Met	$\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}$	435	
5	DABS-Asp	$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}$	419	
6	DABS-Glu	$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}$	433	
7	DABS-Trp	$\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}$	490	

Figure S2, S3. Measurement of representative $C^{\max }$ and calculation of the scan line (DABS-AA)

Figure S3.
Plot of calculated collision energy $v s$. precursor m / z for the maximum of the fragment formation efficiency of the characteristic transition of deprotonated DABS-AAs. Open diamonds are for curves derived from Fragment Ion spectra, open circles are for curves derived from Precursor ion spectra.
From the intercept of the best-fit lines
$\mathrm{Y}(\mathrm{eV})=1.91(\mathrm{eV})-0,0006{ }^{*} \mathrm{X}(\mathrm{m} / \mathrm{z})\left(\mathrm{R}^{2}=0,0923\right)$
$Y(e V)=1.95(e V)-0,0004 * X(m / z)\left(R^{2}=0,0237\right)$
the mean value of the recalculated CEmax yields, for each series of measurements, the value employed to calculate the scan line of Figure S4 (right).

Figure S4.
Plot of measured collision voltage $v s$. precursor m / z for the maximum of the fragment formation efficiency of the characteristic transition of deprotonated DABS-AAs. Open diamonds are for curves derived from Fragment Ion spectra, open circles are for curves derived from Precursor ion spectra.
The gray band and its width, indicated by the doublepointed arrow, visualizes the width of the round-topped curve maxima (set at the value of 5 DV).
The best-fit line corresponds to the scan line calculated for $C E_{\text {max }}=-2.15 \mathrm{eV}$.

Table S4. Structures of the examined nucleosides
Compound name 2 2-deoxy-cytidine

Compound name
$12 \mathrm{~N} 6-(4-\mathrm{OH}$-Benzyl)-Ade
3,4-di-hydroxy-phenyl-ethyl- Adenosine
MH^{+}

Figure S5, S6. Measurement of representative $\mathbf{C E m a x}_{\max }$ of riboside transition $\mathbf{M H}^{+} @ \mathbf{B H}^{+}$ and calculation of the scan line

Plot of calculated collision energy $v s$. precursor m / z for the maximum of the fragment formation efficiency of the characteristic transition of protonated ribo-nucleotides. Open diamonds are for curves derived from Fragment Ion spectra, open circles are for curves derived from Precursor ion spectra.
From the intercept of the best-fit lines
$\mathrm{Y}(\mathrm{eV})=1.57(\mathrm{eV})+0,004 * \mathrm{X}(\mathrm{m} / \mathrm{z})\left(\mathrm{R}^{2}=0,0518\right)$
$Y(e V)=1.49(e V)-0,0008^{*} X(m / z)\left(R^{2}=0,0642\right)$
the mean value of the recalculated CEmax yields, for each series of measurements, the value employed to calculate the scan line of Figure S4 (right).

Plot of measured collision voltage $v s$. precursor m / z for the maximum of the fragment formation efficiency of the characteristic transition of protonated ribo-nucleotides. Open diamonds are for curves derived from Fragment Ion spectra, open circles are for curves derived from Precursor ion spectra.
The best-fit line corresponds to the scan line calculated for $C_{\text {max }}=1.71 \mathrm{eV}$.

Figure S7. Comparison of the generation efficiency curves of the BH^{+}fragment of protonated guanosine in Fragment Ion and in Neutral Loss spectra.

Figure S7. Comparison of the production efficiency curves of protonated guanine (m/z 152+ Th) recorded from protonated guanosine ($\mathrm{m} / \mathrm{z} 284^{+} \mathrm{Th}$) in the Collision Energy Ramp ($\mathrm{DV}=0.5 \mathrm{~V}$) mode in Fragment Ion spectra (left) and in Neutral Loss of 132 Da spectra (right).

Figure S8. ESI source spectrum of a mixture of nucleosides.

Figure S8. ESI spectrum of a mixture of nucleosides (1-13).

Figure S9. Fragment ion spectrum of a protonated N6-subsituted adenosine (12)

Figure S9. Integrated fragment ion spectrum of protonated N6-p-hydroxy-
benzyl-
adenosine (12).
Collision energy
0-70 DV (0-4.88
eV).

Table S10. Experiments for the measurement of nucleosides.

Table S10. Setup of the experiments for the measurement of three RNA nucleosides and six modified adenine ribosides. The layout of the five rightmost columns corresponds to that of the instrument's data system.

Exp_ID	Scan type	CElab (DV)	CEcm(eV)	m / z START	m / z STOP	dwell (s)	$C E_{\text {lab }}$ START	CE STOb
\boldsymbol{a}	source scan			220	420	1.0		
\boldsymbol{b}	NL132	Constant	$1.58-0.88$	220	420	1.0	14	14
\boldsymbol{c}	NL132	Constant	$2.26-1.25$	220	420	1.0	20	20
\boldsymbol{d}	NL132	Constant	$2.94-1.63$	220	420	1.0	26	26
\boldsymbol{e}	NL132	ramp	1.65	220	420	1.0	14,6	26,4
\boldsymbol{f}						0.5		

Figure S11. Relative abundance of nucleosides in different conditions

Figure S11. Comparison of the relative abundances of C, A, G, and six N6-substituted adenosine compounds in the source spectrum and in four different conditions of MS-MS detection (Table S11) at fixed laboratory CElab of 14, 20 and 26 eV (CElab) and with a synchronized scan of CE from 14.6 eV (CElab) ($\mathrm{m} / \mathrm{z} 220$) to $26.4 \mathrm{eV}\left(\mathrm{CE}_{\text {lab }}\right)(\mathrm{m} / \mathrm{z} 420)$.

Figure S12. Stability of signal in fast-scan i-CID Neutral Loss spectra

Figure S12. Stability of signals of ribosides 5-13 detected in a triple quadrupole with a synchronized (Neutral Loss of 132 Da) scan of Q1 and Q3, with simultaneous ramp of the collision voltage (q2-Q1). Scan speed is 1s (dark bars, condition e of Table S11) and at 0.5 s (open bars, condition f of Table S11) over $200 \mathrm{Da}(\mathrm{m} / \mathrm{z})$. Insert is the profile of m / z 374 obtained in a single 0.5 s scan, showing no loss of mass resolution. Above each group of bars is the coefficient of variation (CV\%) of the peak intensity.

Figure S13. Comparison of CElab in a continuous and stepped scan of collision energy.

Figure S15_a. Comparison of $\mathrm{CE}(\mathrm{DV})$ in a continuous and stepped scan of collision energy.
A synchronized scan line of (q2-Q1) is calculated at $C E_{c m}$ $=2.0 \mathrm{eV}$ (dotted line).

A stepped i-CID Precursor Ion is calculated where Q1 scan is segmented in ten $14-\mathrm{u} \mathrm{m} / \mathrm{z}$ ranges, each centered at the m / z corresponding to $\left(150+\mathrm{n}^{*} 14\right)$, with a 14 u width and $\mathrm{CE}_{\text {lab }}(\mathrm{eV})$ is calculated at $\mathrm{CE}_{\mathrm{cm}}=2.0 \mathrm{eV}$ for the central m / z value (open circles).

The difference between the center value (open circles) and the value of the scan line at the lower and upper values of the scan range is $\pm 0.5 \mathrm{eV}$.

