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ABSTRACT 

  



ABSTRACT 
 

Glycosphingolipids, due to their tendency to form laterally separated liquid-ordered 

phases, possess a high potential for the creation of order in biological membranes. The 

formation of glycosphingolipid-rich membrane domains within the membrane has 

profound consequences on the membrane organization at different levels, and on the 

conformational and biological properties of membrane-associated proteins and 

multimolecular protein complexes. 

Alterations in the structures of carbohydrate epitopes associated with 

glycosphingolipids are a common feature of tumors and tumor cells (“aberrant 

glycosylation”). In particular, tumors are characterized by the peculiar ability to 

manipulate sialylation processes (1). This abnormal sialylation process generates 

peculiar antigenic determinants, which are normally absent in healthy cells, and 

affects cell homeostasis, altering the normal signaling pathways. Indeed, 

glycosphingolipids in tumor cells have been implicated in the regulation of cell 

adhesion, motility, recognition, survival and proliferation (2). Thus, an 

ever-increasing interest to this regard is being devoted to gangliosides, sialic 

acid-containing glycolipids, and to the enzymes affecting sialylation. Both 

sialyltransferases and sialidases seem to be involved in the phenomenon of aberrant 

sialylation in tumor cells. 

The genetic (stable overexpression sialyltransferase I - SAT-I or GM3 synthase) or 

pharmacological (selective pressure by N-(4-hydroxyphenyl)retinamide)) 

manipulation of A2780 human ovarian carcinoma cells allowed us to obtain 

monoclonal cells characterized by higher GM3 synthase activity respect to wild type 

cells (3-5). High GM3 synthase expression resulted in 1) elevated ganglioside levels, 

2) reduced in vitro cell motility and increased adhesion to fibronectin, 3) enhanced 

expression of the membrane adaptor protein caveolin-1, an integral membrane protein 

playing multiple roles as negative regulator in the progression of several types of 

human tumors (6,7).  

Administration of exogenous gangliosides was able to strongly reduce in vitro cell 

motility and to increase cell adhesive ability to fibronectin in wild type cells, which 
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are low GM3 synthase-expressing A2780 cells. Conversely, in high GM3 

synthase-expressing clones, ganglioside depletion by treatment with the 

glucosylceramide synthase inhibitor D-PDMP was able to strongly increase cell 

motility and to reduce adhesion. In these cells, transient silencing of caveolin-1 by 

siRNA also led to increased motility. Thus, high levels of caveolin-1 and high levels 

of gangliosides are necessary, but not sufficient, if independent, to down-regulate 

tumor cell motility. 

Treatment of A2780 cells with exogenous gangliosides only slightly increased the 

expression of caveolin-1; on the other hand it markedly increased the phosphorylation 

of caveolin-1 at tyrosine 14. Conversely, ganglioside depletion in high GM3 

synthase-expressing clones by D-PDMP treatment markedly reduced caveolin-1 

phosphorylation. These data suggest that phosphorylation of caveolin-1, rather than 

caveolin-1 total level, is controlled by gangliosides and is crucial in the control of 

tumor cell motility. 

The non-receptor tyrosine kinase c-Src plays a crucial role in controlling the motility 

of these cells. In fact, 1) the motility of low GM3 synthase-expressing cells was 

reduced in the presence of a Src inhibitor; 2) c-Src was less active in high GM3 

synthase-expressing clones; 3) D-PDMP treatment of high GM3 synthase-expressing 

cells led to c-Src activation, while gangliosides administration in wild type cells, low 

GM3 synthase-expressing A2780 cells reduced c-Src kinase activity. 

In high GM3 synthase-expressing cells, caveolin-1 and gangliosides were highly 

enriched in detergent-resistant membrane fractions (DRM) prepared in the presence of 

Triton X-100. In the presence of D-PDMP treatment, the distribution of several lipids 

in sucrose gradient changed, followed by a shift of both caveolin-1 and c-Src from 

DRM fraction to intermediate fraction. However, integrins, which are receptors that 

mediate attachment between cells moved from high density fraction to DRM and 

intermediate fraction. 

All of these data suggest a novel role of gangliosides in regulating tumor cell motility, 

by affecting the organization of a signaling complex organized by caveolin-1, 
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responsible for Src inactivation downstream to integrin receptors, and imply that GM3 

synthase is a key target for the regulation of cell motility and adhesion in human 

ovarian carcinoma.
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INTRODUCTION 
 

Glycosphingolipids 

Overview of glycosphingolipids 

Glycerophospholipids, sphingolipids, and cholesterol are the lipid components of cell 

membranes. Among these, sphingolipids are minor components. They belong to the 

external layer of the membrane (8) with the hydrophilic headgroup protruding toward 

the extracellular environment. Glycosphingolipids are a subtype of glycolipids 

containing the amino alcohol sphingosine. Alternatively, they may be considered 

sphingolipids with a carbohydrate head group (9-11). Glycosphingolipids are 

ubiquitous components of mammal cell membranes, but are particularly abundant in 

the nervous system (12). Since sphingolipids are concentrated at the subcellular level 

in the plasma membrane, where they reside asymmetrically in the extracellular leaflet, 

they represent relatively abundant components in this district (13,14). Keeping in 

mind that sphingolipids are not homogeneously distributed throughout the membrane 

plane, but rather they are further concentrated in restricted membrane areas (15) due 

to their spontaneous segregation respect to glycerophospholipids, it can be predicted 

that their local concentration in specific “lipid membrane domains” would be very 

high (16). In these lipid domains, glycosphingolipids modulate the functional features 

of several membrane proteins through direct specific lipid-to-protein interactions or 

through the maintenance of a dynamic membrane organization. Thus, these complex 

membrane lipids participate in the modulation of processes, such as cell proliferation 

(17), survival (18), adhesion (19), and neuronal differentiation (20,21). Many different 

experimental approaches, leading eventually to alterations in the organization of the 

plasma membrane due to quali- or quantitative changes in glycosphingolipid content 

or pattern, have been proven to be very effective in modulating the above-mentioned 

cell functions. On the other hand, catabolic fragments derived from plasma membrane 

sphingolipids (ceramide, sphingosine, and sphingosine-1-phosphate) emerged as a 

class of lipid mediators capable to modulate cell proliferation, differentiation, motility 

or apoptotic cell death.  

http://en.wikipedia.org/wiki/Subtype
http://en.wikipedia.org/wiki/Glycolipids
http://en.wikipedia.org/wiki/Amino_alcohol
http://en.wikipedia.org/wiki/Sphingosine
http://en.wikipedia.org/wiki/Sphingolipid
http://en.wikipedia.org/wiki/Carbohydrate
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Structures of representative glycosphingolipids and 
glycoglycerolipids. Glycosphingolipids, such as GalCer, are built on 
a ceramide lipid moiety that consists of a long-chain amino alcohol 
(sphingosine) in amide linkage to a fatty acid. In comparison, 
glycoglycerolipids, such as seminolipid, are built on a diacyl or 
acylalkylglycerol lipid moiety. Most animal glycolipids are 
glycosphingolipids, which have a large and diverse family of 
glycans attached to ceramide. Shown is one example of a complex 
sialylated glycosphingolipid, GT1b (IV3NeuAcII3[NeuAc]2Gg4Cer). 

 

Glycosphingolipids biosynthesis, trafficking and degradation 

Glycosphingolipids biosynthesis occurs in a stepwise fashion, with an individual 

sugar added first to ceramide and then subsequent sugars transferred by 

glycosyltransferases from nucleotide sugar donors (22). Ceramide is synthesized on 

the cytoplasmic face of the endoplasmic reticulum (ER); it subsequently equilibrates 

to the lumenal face and trafficks to the Golgi compartment (23). GlcCer is synthesized 

on the cytoplasmic face of the ER and early Golgi apparatus; it then flips into the 

Golgi lumen, where it is typically elongated by a series of glycosyltransferases (24). 

In contrast, GalCer is synthesized on the lumenal face of the ER and then trafficks 

through the Golgi, where it may be sulfated to form sulfatide (25). In both cases, the 

final orientation of glycosphingolipids during biosynthesis is consistent with their 
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nearly exclusive appearance on the outer leaflet of the plasma membrane, facing the 

extracellular milieu. Although ceramide resides on intracellular organelles such as 

mitochondria, glycosphingolipids beyond GlcCer are not known to exist on 

membranes facing the cytoplasm (26,27). 

 
Glycosphingolipids biosynthesis. a, Most lipids are synthesized in 
the endoplasmic reticulum, and are then transferred to the Golgi 
complex. b, Glucosylceramide (GlcCer), which is synthesized from 
ceramide in the Golgi complex, has to be carried to more distal 
Golgi compartments for processing into complex glycosphingolipids. 
FAPP2 protein mediates transport of GlcCer between Golgi 
compartments. It picks up GlcCer from the membrane of one Golgi 
compartment and, on reaching its destination, binds to the 
membrane by interacting with phosphatidylinositol 4-phosphate 
(PtdIns4P). Consequently, GlcCer is released and translocated into 
the lumen of this compartment. 

 

The biosynthesis of glycosphingolipids in the brain provides an example of how 

competing biosynthetic pathways can lead to glycan structural diversity (28). In the 

brain, stepwise biosynthesis of GalCer and sulfatide occurs in oligodendrocytes, the 

cells that elaborate myelin. Gangliosides, in contrast, are synthesized by all cells, with 

concentrations of the different forms varying according to cell type. Expression 
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patterns of glycosphingolipids are determined by the expression and intracellular 

distribution of the enzymes required for their biosynthesis. In some cases, multiple 

glycosyltransferases (29) compete for the same glycosphingolipid precursor. For 

example, the ganglioside GM3 may be acted on by N-acetylgalactosaminyltransferase 

(30), thereby forming GM2, the simplest of the “a-series” gangliosides, or by 

sialyltransferase (31), thereby forming GD3, the simplest of the “b-series” 

gangliosides. Each branch is a committed pathway, because sialyltransferases cannot 

directly convert a-series gangliosides (beyond GM3) to their corresponding b-series 

gangliosides. Due to this branch exclusivity, competition between two enzymes at a 

key branch point determines the relative expression levels of the final 

glycosphingolipid products. The transfer of N-acetylgalactosamine to a-, b-, and 

c-series gangliosides, transforming GM3 into GM2, GD3 into GD2, or GT3 into GT2, 

is catalyzed by the same N-acetylgalactosaminyltransferase. Likewise, the transfer of 

galactose to GM2 to form GM1, to GD2 to form GD1b, or to GT2 to form GT1c is 

accomplished by a single galactosyltransferase. An additional level of regulation may 

occur via stable association of different glycosphingolipid glycosyltransferases into 

functional “multiglycosyltransferase” complexes. The multiple enzymes are then 

thought to act concertedly on the growing glycosphingolipid without releasing 

intermediate structures, ensuring progression to the preferred end product. 

The breakdown of glycosphingolipids occurs stepwise by the action of lysosomal 

hydrolases (32,33). Glycosphingolipids on the outer surface of the plasma membrane 

are internalized, along with other membrane components, in invaginated vesicles that 

then fuse with endosomes, resulting in the glycosphingolipid glycan facing the 

endosome lumen. Glycosphingolipid-enriched areas of the endosomal membrane may 

then invaginate once again to form multivesicular bodies within the endosome. When 

endosomes fuse with primary lysosomes, glycosphingolipids become exposed to 

lysosomal hydrolases. In vivo, glycosphingolipids are eventually broken down to their 

individual components, which are then available for reuse. 
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Biosynthetic pathway for brain glycosphingolipids. 
Glycosphingolipids are synthesized by the stepwise addition of 
sugars first to ceramide, then to the growing glycan. Shown as 
examples are brain glycosphingolipids. Ceramide (Cer) is the 
acceptor for UDP-Gal:ceramide β-galactosyltransferase or 
UDP-Glc:ceramide β-glucosyltransferase in the major pathways to 
glycosphingolipid biosynthesis in oligodendrocytes and nerve cells, 
respectively. GalCer is the acceptor for GalCer sulfotransferase, 
which adds a sulfate group to the C-3 of galactose to form sulfatide. 
Extension of GlcCer to the major brain gangliosides occurs by the 
action of UDP-Gal:GlcCer β1-4 galactosyltransferase to make 
lactosylceramide (LacCer), then CMP-NeuAc:lactosylceramide α2-3 
sialyltransferase to make the simple ganglioside GM3. GM3 is a 
branch point and acts as the acceptor for UDP-GalNAc:GM3/GD3 
β1-4 N-acetylgalactosaminyltransferase to generate a-series 
gangliosides and for CMP-NeuAc:GM3 α2-8 sialyltransferase to 
generate GD3 and the b-series gangliosides. Similarly, the action of 
an α2-8 sialyltransferase on GD3 gives rise to GT3 and the c-series 
gangliosides. Enzymes for subsequent elongation are common to the 
a-, b-, and c-series gangliosides. 
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Glycosphingolipids functions 

Glycosphingolipids are essential for the survival, proliferation, and differentiation of 

eukaryotic cells within complex multicellular systems. Glycolipid-deficient cells, such 

as the GM-95 mutant melanoma cell line, lacking ceramide glucosyltranferase activity 

(34), and embryonic stem cells from ceramide glucosyltranferase knockout mice (35) 

are able to survive, grow, and undergo in vitro differentiation. However, ceramide 

glucosyltranferase knockout mice are embryonic lethal, and showed no cellular 

differentiation beyond the primitive germ layers (36). These observations indicate the 

vital importance of glycosphingolipids in the life of cells that are dealing with a 

multifaced extracellular reality. 

As mentioned above, glycosphingolipids are not randomly distributed along the 

membrane surface, but they are rather highly segregated together with cholesterol in 

lipid domains with specialized signaling functions (15). A high local concentration of 

glycosphingolipids in the plasma membrane has important implications with regard to 

their ability to engage both trans and cis functional interactions with other cellular 

components. In the case of trans interactions, it has been shown that recognition of 

lipid-bound oligosaccharides by soluble ligands (such as antibodies or toxins) or by 

complementary carbohydrates and by carbohydrate binding proteins (such as selectins 

or lectins) belonging to the interfacing membrane of adjacent cells is strongly affected 

by their degree of dispersion (or segregation) (37). On the other hand, cis interactions, 

i.e., direct lateral interactions with plasma membrane proteins or short range 

alterations of the lipid microenvironment of plasma membrane proteins, are strongly 

favored within a sphingolipid-enriched membrane domain (38). 

Glycosphingolipid patterns undergo deep qualitative and quantitative modifications 

during the development of the nervous system, and along differentiation in cultured 

neurons (39-46). A widely used experimental model for the study of 

glycosphingolipid biological functions in intact cells or in membrane preparations rely 

on the administration of exogenous gangliosides dissolved in the culture medium. The 

binding, uptake and metabolic fate of exogenous gangliosides under different 
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experimental conditions have been well characterized (47,48). The addition of 

exogenous gangliosides resulted in the modulation of the biological activity of 

tyrosine kinase receptors, protein kinases and phosphatases, ion channels and pumps, 

and in cultured neurons and neurotumoral cell lines, it exerted neuritogenic, 

neurotrophic, and neuroprotective effects (42,49-51). 

Many pieces of evidence indicated that sphingolipid biosynthesis is necessary for the 

differentiation and function of neurons in culture. Pharmacological inhibition of 

glycosphingolipid biosynthesis by synthetic inhibitors of glucosylceramide synthase 

(D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol, D-PDMP, and 

analogues) (52) or by inhibitors of sphinganine N-acyltransferase (the enzyme that 

catalyses the synthesis of dihydroceramide, the biosynthetic precursor of ceramide 

and of all complex sphingolipids) (53), reduced axonal elongation and branching in 

cultured hippocampal and neocortical neurons (54-56), and NGF-induced neurite 

outgrowth in human neuroblastoma and PC12 cells (57,58). Conversely, up-regulation 

of glycosphingolipid biosynthesis by L-PDMP stimulated neurite outgrowth in 

cultured cortical neurons (56,59). In the same cellular model, D- and L-PDMP exerted 

as well opposite effects on the formation of functional synapses and on synaptic 

activity (59). 

As mentioned above, the role of glycosphingolipids in the maintenance of neuronal 

structure and function can be at least in part explained by their ability to laterally 

interact with specific proteins at the level of the plasma membrane and to modulate 

their activity. Possible interactions with functional significance between gangliosides 

and plasma membrane proteins have been intensively studied in the past (60-62). 

These interactions are usually highly specific. In the case of receptor-associated 

tyrosine kinases, well-studied examples are represented by epidermal growth factor 

receptor (EGFR), whose tyrosine phosphorylation and dimerization are inhibited by 

GM3, but uninfluenced by GM1 (63), and by insulin receptor, inhibited by GM3 but 

not by GD1a (64). On the other hand, many papers indicated that the colocalization of 

glycosphingolipids and signaling proteins within sphingolipid- and 
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cholesterol-enriched membrane domains might imply a functional link even in the 

absence of direct strong and specific glycosphingolipid-protein interactions, 

suggesting that overall lipid raft dynamics, as determined by their peculiar lipid 

composition, might be rather responsible for the functional modulation of 

raft-associated signaling proteins (15,65-69). 

 

Glycosphingolipids and tumor 

Glycosphingolipids play important roles in modulating several properties of tumor 

cells. Indeed, a correlation between the expressions of some carbohydrate structures 

associated with glycolipids and tumor patient survival rates has been observed, and 

elevated serum ganglioside levels have been reported in patients (2,70). On the other 

hand, in tumor cell lines, the tumorigenic potential correlates with the cellular levels 

of gangliosides (71-73), and the ability to form experimental tumors can be affected 

by the artificial manipulation of cellular ganglioside levels (74). The contribution of 

transformation-associated changes in glycosphingolipids composition to the tumor 

phenotype is very complex and likely implies heterogeneous molecular mechanisms. 

However, at least two well-established paradigms support this role: (1) gangliosides 

have been described as modulators of growth factor receptor function-associated 

tyrosine kinase activities and cellular compartmentalization. A well-studied example 

is represented by the interaction between GM3 ganglioside and the EGFR. GM3 

negatively regulates ligand-stimulated autophosphorylation and dimerization of 

EGFR (75-78), and cross-talk of EGFR with integrin receptors (79) and PKCα (80), 

inhibiting EGFR-dependent cell proliferation and survival in neoplastic cells. (2) 

GM3 and/or GM2 inhibit integrin-dependent tumor cell motility via the formation of a 

ganglioside/tetraspanin/integrin receptor complex (the “glycosynapse”) that is 

responsible for the negative regulation of c-Src (81) and Met (82,83) tyrosine kinase 

activity. Indeed, altered GM3 ganglioside expression plays a multiple role in the 

control of tumor cell motility, invasiveness, and survival. GM3 is highly expressed in 
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non-invasive compared with invasive bladder tumors and derived cell lines (84,85), 

and the overexpression of GM3 synthase reduced cell proliferation, motility, and 

invasion in mouse bladder carcinoma cells (74). In colorectal (86) and bladder (85) 

cancer cells, GM3-mediated inhibition of integrin-dependent cell motility required the 

expression of hydrophobic membrane adapter proteins belonging to the tetraspan 

membrane protein superfamily (tetraspanins). In bladder cancer cells characterized by 

high GM3 levels and by the expression of tetraspanin CD9, a CD9/α3 integrin 

complex was stabilized by GM3-mediated interactions, and the Src C-terminal kinase 

Csk was recruited to this complex, with consequent inhibition of c-Src and reduced 

cell motility (81). On the other hand, tetraspanin CD82 is essential for the 

ganglioside-mediated cross-talk of EGFR with other signaling pathways (80). Thus, a 

crucial aspect in the control of receptor function by GSL is represented by their ability 

to influence the formation of multimolecular complexes that usually require the 

presence of hydrophobic membrane proteins as scaffold or molecular organizers. 
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Caveolin-1 

 

Caveolin-1 structure 

Caveolins (87,88) are a family of 21- to 24-kDa integral membrane proteins, that have 

been originally described as the main structural protein components of plasma 

membrane specializations known as caveolae (89,90). Three distinct caveolin genes, 

which encoding caveolin proteins individually: caveolin-1, caveolin-2 and caveolin-3, 

have been identified (91). While caveolin-3 is found mainly in skeletal muscle fibers 

and cardiac miocytes (92), caveolin-1 and caveolin-2 are co-expressed in most cells 

(they are highly expressed in adipocytes, endothelial cells and fibroblasts) and share 

many physical properties, although the latter seems to lack full functional capacity to 

form caveolae. Caveolin-1 has a hydrophobic putative membrane-spanning sequence 

and it is palmitoylated at the C-terminal domain. Caveolins form high mass 

oligomeric complexes, providing a scaffold for caveolin interacting proteins 

(including H-Ras (93), c-Src, heterotrimeric G proteins (93,94) and growth factor 

receptors (95,96)), that can thus be concentrated within caveolin-rich membrane areas 

(97,98). 

 

Caveolin-1 as a negative regulator of tumor progression 

Several pieces of evidence indicate that caveolin-1 influences the development of 

human cancers. However, the exact functional role of caveolin-1 is still controversial. 

In certain cell types, antisense inhibition of caveolin-1 expression is sufficient to 

induce the oncogenic transformation. Targeted downregulation of caveolin-1 in 

NIH-3T3 cells activates MAPK and stimulates anchorage-independent growth (99). 

Loss of caveolin-1 is required to accelerate tumorigenesis and metastasis: 

PyMT/Cav-1 (-/-) mice showed accelerated onset of mammary tumors and lung 
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metastasis (100). Caveolin-1 gene (CAV-1) is markedly down regulated in human 

tumors derived from the ovary, breast and colon, but it is up regulated in tumor 

samples from the kidney, prostate and stomach. 

 
Primary structure and topology of caveolin-1. (a) The predicted 
membrane topology of caveolin-1. Two caveolin-1 monomers are 
shown forming a dimer for simplicity, but about 14-16 monomers 
normally self-associate to form a single caveolin homo-oligomer 
(the caveolar assembly unit, akin to the clathrin triskelion). Note that 
both the amino- and carboxy-terminal domains are oriented towards 
the cytosolic face of the plasma membrane, with a hairpin loop 
structure inserted within the membrane bilayer. (b) The domains 
present in caveolin-1. Note that the amino-terminal 
membrane-attachment domain is also called the caveolin scaffolding 
domain (CSD). 

 

Expression of caveolin-1 in a highly metastatic carcinoma-derived cell line 

suppressed lung metastasis in vivo and reduced Matrigel invasion in vitro. Decreased 

invasion in caveolin-1-expressing cells was accompanied by reduction in MMP9 and 

MMP2 secretion and gelatinolitic activity, and reduced ERK1/2 signaling in response 

to growth factors (100). Caveolin-1 potentially restrains tumor cell growth and 
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metastatic potential: caveolin-1 re-expression in human breast cancer and in colon 

carcinoma cell lines inhibited tumor cell growth (101), reduced tumorigenicity (102), 

negatively affected in vivo tumor growth, metastasis development and invasiveness in 

metastatic mammary tumor cells and promoted cell-cell adhesion in ovarian 

carcinoma cells by a mechanism involving inhibition of Src kinase (103). 

On the other hand, there is an increasing evidence to suggest that the caveolins and 

caveolae may also be involved in shifting the tightly regulated balance from 

anti-apoptotic to pro-apoptotic signaling. Caveolin-1 has been shown to interact and 

inactivate a number of signaling molecules involved in survival/proliferation, such as 

the PDGF receptor and phosphatidylinositol 3-kinase (104-106). However, aside from 

this seemingly pleiotropic suppression of plasma-membrane-initiated pro-survival 

pathways, caveolae and the caveolins appear to have a highly specialized role as well. 

Ceramide is an essential factor for the commitment to apoptosis induced by several 

cellular stressors (107). Interestingly, sphingomyelin, the precursor to ceramide 

generation, is one of the most abundant lipids in caveolae, and sphingomyelinase, the 

ceramide-generating enzyme, has been localized to caveolae microdomains (108). 

Furthermore, overexpression of caveolin-1 sensitizes cells to ceramide-induced cell 

death via a phosphatidylinositol 3-kinase-dependent mechanism (106). Therefore, the 

production of ceramide and its downstream actions seem to depend on caveolar 

localization and caveolin-1 regulation. In support of these results, overexpression of 

caveolin-1 sensitizes cells toward apoptotic stimuli, whereas antisense-mediated 

down-regulation of caveolin-1 imparts resistance to apoptosis (109). 
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Caveolin-1 negatively regulates signaling along several 
pro-proliferative and anti-apoptotic pathways. Consistent with a 
tumor-suppressor role, caveolin-1 can potently inhibit signaling 
originating from certain receptor tyrosine kinases (HER-2/c-Neu and 
EGFR) and some of their downstream components (including the 
Ras-p42/44 MAP kinase cascade). In addition, caveolin-1 has been 
shown to facilitate apoptotic signaling by shutting down certain 
members of the pro-survival phosphatidylinositol 3-kinase 
(PI-3-kinase)/Akt pathway. The other inhibitory functions of 
caveolin-1 (e.g., abrogation of Myc- or HPV E6-mediated 
transformation) are less well understood. 

 

Caveolin-dependent signaling and glycosphingolipids 

As discussed previously, caveolin-1 and sphingolipid-rich membrane complexes are 

dynamically interacting and interdependent in their compositional regulation. So far, 

at least two different mechanisms can be hypothesized to explain the effects of 

glycosphingolipids on signaling complexes organized by caveolin-1: (1) both 

caveolin-1 and glycosphingolipids are simultaneously required in some cases to 

organize the molecular architecture of a signaling complex. This seems the case for 

EGFR: for this receptor the formation of a signaling complex with caveolin-1, 

tetraspanin CD82 and GM3 ganglioside (probably in noncaveolar membrane regions) 

allows the interaction of EGFR with activated PKC-α, ultimately leading to the 

inhibition of EGFR signaling (80,110-113). However, this signaling complex does not 
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seem to require a direct caveolin-GM3 interaction (80). (2) In other cases, caveolin-1 

and sphingolipids can compete for a common interactor. This is exemplified by 

insulin receptor (IR), that can form a complex with caveolin-1 (probably in caveolae) 

required for insulin signaling leading to the translocation of GLUT4 at the surface of 

normal adipocytes (114). Accumulation of GM3 upon acquisition of insulin resistance 

leads to the displacement of IR from the caveolin-1 complex and its sequestration as a 

complex with GM3 (115). In this case it has been convincingly demonstrated that a 

direct GM3-IR interaction is required. Increased GM1 cellular levels lead to the 

displacement of another growth factor receptor, PDGFR, which is from caveolae 

(116), negatively regulating Src mitogenic signaling. However, in this case it is not 

known whether the formation of a PDGFR-GM1 complex is required for its 

uncoupling from caveolae. Since caveolin-1 can direct bind sphingolipids, including 

GM1, in this case it cannot be excluded that GM1 forms a complex with caveolin-1, 

or that enrichment in GM1 inside the caveolae induces a deep reorganization of 

caveolar membrane, thus excluding PDGFR from caveolae. 

The examples reported above illustrate how caveolin-1 and glycosphingolipids could 

cooperate or compete in the multimolecular organization of a membrane receptor with 

its interactors, thus potentially affecting the coupling of the receptor with the 

downstream signaling events and regulating the receptor activity. Another way to 

regulate receptor function that can be influenced by both caveolin and sphingolipids is 

represented by the downregulation of plasma membrane receptor concentration 

through its internalization. The internalization of plasma membrane components, 

including basal state, ligand-activated or transactivated receptors, can exploit different 

routes whose complexity has been only recently and partially unveiled. This usually 

leads to important consequences for the receptor activity, encompassing its 

sequestration in intracellular sites, recycling to the plasma membrane, intracellular 

degradation or translocation to the nucleus. Internalization of receptors occurs via 

clathrin-dependent and clathrin-independent pathways (117). Both mechanisms are 

involved in the removal of receptor tyrosine kinases (RTK) from the plasma 
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membrane upon ligand activation. Clathrin-dependent endocytosis represents a single 

traffic pathway well characterized in its steps and molecular aspects. On the other 

hand, clathrin-independent endocytosis encompasses several different pathways that 

are much more poorly understood in their molecular mechanisms and physiological 

significance. Among those, caveolin-1-dependent, cholesterol-sensitive endocytic 

mechanism is usually referred to as “caveolar endocytosis”. Caveolar endocytosis is 

dependent not only on caveolin-1, but also on caveolae, and endothelial caveolae 

contain the whole array of molecular components for a vesicular transport system 

(118). Lipid raft-dependent (cholesterol- and sphingolipid-sensitive) but caveolin-1- 

independent internalization pathways have also been described. The picture is still 

fragmentary, but it becomes apparent that caveolae- and lipid raft-dependent 

endocytosis are similar but distinct processes, that are interdependent and reciprocally 

regulated (119,120). The situation is made even more complex by two relevant 

observations: (1) association of a molecule with lipid rafts/caveolae does not 

necessary implies its internalization via a caveolae/lipid raft-mediated pathway. 

Multiple endocytic pathways have been described for the internalization of lipid raft 

markers, as well exemplified by the case of cholera toxin, that can be internalized via 

caveolae but also via caveolae/raft-independent mechanisms, including clathrin- 

dependent endocytosis, despite its initial binding to GM1 within lipid rafts (121-123); 

(2) usually the internalization of lipid raft components via the clathrin-mediated 

mechanism requires that they move outside caveolae/lipid raft compartment. However, 

in some cases, lipid raft recruitment is an essential prerequisite for clathrin-dependent 

endocytosis, indicating that the association with lipid rafts can modulate as well lipid 

raft independent internalization mechanisms (124,125). 

Under basal conditions, caveolae are relatively immobile structures with a low 

turnover at the plasma membrane levels (126), and are thus probably not heavily 

involved in constitutive endocytic trafficking. However, caveolae (and caveolin) can 

be mobilized and internalized upon specific stimuli (e.g., antibody mediated 

cross-linking of GPI-anchored alkaline phosphatase (127) and of major 
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histocompatibility complex class I (128), cell membrane attachment of SV40 virus 

(129), disengagement of integrin receptors upon cell detachment (130)). Based on the 

observations that the loss of caveolae does not impair endocytosis of some lipid raft 

markers (131,132) and that caveolin-1 levels inversely correlate with the uptake of 

raft-associated receptors (e.g., reduction of caveolin levels accelerate raft-mediated 

internalization of autocrine motility factor receptor (133), it has been proposed that 

caveolin-1 could indeed act as a negative regulator of caveolae/raft-mediated receptor 

uptake, stabilizing and immobilizing potentially endocytic raft domains (119,120). 

Triggering of caveolae/raft-mediated internalization would thus require additional 

factors allowing overcoming to restraint to endocytosis imposed by caveolin-1. It has 

been shown that caveolae/rafts internalization in response to specific stimuli is 

dependent on glycosphingolipids and tyrosine phosphorylation. Sphingolipids are 

essential for clathrin-independent endocytosis (134), and glycosphingolipids stimulate 

caveolar endocytosis (135,136). Glycosphingolipids could directly affect the 

membrane environment of caveolin-1, or could regulate tyrosine phosphorylation of 

caveolin-1, that is an essential requirement for caveolar/raft endocytosis (130). Indeed, 

using fluorescent sphingolipid analogues it has been proven that sphingolipid 

segregation in endocytic vesicles is essential for caveolar endocytosis. On the other 

hand, glycosphingolipid-stimulated caveolar endocytosis required Src activity, and 

addition of exogenous sphingolipids or cholesterol has been shown to stimulate Src 

activity (137). Thus, likely multiple mechanisms regulated by sphingolipids are 

potentially responsible for triggering caveolar endocytosis. 

Along this line, another mechanism that could be involved in glycosphingolipid- 

regulated and caveolin-mediated clearance of plasma membrane receptors is 

suggested by the observation that many RTKs are at least in part localized in lipid 

rafts, have a caveolin binding motive and form complexes with caveolin-1, as 

discussed above. In all these cases, the elevation of cellular ganglioside levels has as a 

consequence the shift of the receptor outside of caveolae. In the case of IR and 

PDGFR, this resulted in the uncoupling of the receptor from the downstream 
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signaling cascade. However, as mentioned above, movement of RTK outside caveolar 

membrane domains potentially target these receptors to clathrin-dependent 

internalization pathways, thus contributing in the negative regulation of cell surface 

concentration of the receptor. 
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Src kinases 

 

Src tyrosine kinases 

The c-Src gene, discovered in the 1970s, is a “proto-oncogene” in normal mammalian 

cells. The protein product of c-Src gene (SRC) belongs to the Src family tyrosine 

kinases (SFKs), a group of non-receptor tyrosine kinases, which are involved in many 

of the signaling mechanisms associated with G-protein-coupled receptors, integrins, 

receptor tyrosine kinases, T-cell receptors, and others (138). Of the eight family 

members, c-Src, Yes, and Fyn are expressed ubiquitously, with the other members 

being expressed primarily in lymphocytes (139). SFKs all share a common general 

structural organization: an N-terminal membrane association domain, a unique 

domain, a Src homology (SH) 3 domain, an SH2 domain, a catalytic domain, and a 

C-terminal regulatory domain. The catalytic domain contains an autophosphorylated 

tyrosine (416 in c-Src), which is phosphorylated when the enzyme is active. SH2 

domains bind phosphotyrosine motifs, and SH3 domains bind polyproline motifs. In 

the inhibited state, the SH2 domain of c-Src is involved in an intramolecular 

interaction with a C-terminal regulatory domain phosphotyrosine, tyrosine 527 (140), 

locking the enzyme in an inactive or closed state. Oncogenic activation in the case of 

v-Src results from the loss of this C-terminal regulatory domain (141). 

Phosphorylation of the C-terminal regulatory tyrosine on SFKs is catalyzed by 

C-terminal Src kinase (Csk) (142). Csk is required for normal development, because 

Csk knockout mice die at embryonic day 9 or 10 (143). The architecture of Csk is 

similar to SFKs with one SH2 domain, one SH3 domain and a kinase domain (144). It 

is known that Csk lacks a regulatory C-terminal tyrosine, N-terminal myristoylation, 

and membrane association domain (145). Although SFKs are membrane-associated 

and regulated by phosphorylation, Csk is intrinsically cytoplasmic (146) and requires 

membrane adaptors to inhibit membrane-associated SFKs. 
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Proposed model for Src activation. The left panel represents the inactive 
conformation of Src, in which Tyr527 interacts with the SH2 domain, 
positioning the SH3 domain to interact with the linker between the SH2 and 
catalytic domains. The middle panel illustrates different mechanisms 
involved in the activation of Src, and the right panel represents the open or 
active conformation. 

 

Src family kinases and tumor 

Because SFKs are pleiotropic kinases involved in many cellular events, it is not 

surprising that aberrant activation of Src signaling contributes to diverse aspects of 

tumor development (147). SFKs are important mediators of tumor cell proliferation 

and survival. The most prominent and well-studied function of Src is its extensive 

interaction with transmembrane receptor tyrosine kinases (RTKs) at the cell 

membrane via its SH2 and SH3 domains (148). Src has long been known to interact 

with epidermal growth factor receptor (EGFR) (149), human epidermal growth factor 

receptor 2 (HER2 or ErbB2) (150), platelet-derived growth factor receptor (PDGFR) 

(151), insulin-like growth factor-1 receptor (IGF-1R) (152) and c-Met/hepatocyte 

growth factor receptor (HGFR) (153). Through these interactions, Src integrates and 
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regulates RTK signaling and directly transduces survival signals to downstream 

effectors such as phosphoinositide 3-kinases (PI3Ks), Akt and signal transducer and 

activator of transcription 3 (STAT3) (154). Src can also be activated by other 

membrane receptors including integrins and erythropoietin receptor (EpoR) (147,155). 

Src is also known to be crucial during tumor metastasis, mainly as a result of its role 

in regulating the cytoskeleton, cell migration, adhesion and invasion (155). Through 

interaction with p120 catenin, Src activation promotes dissociation of cell-cell 

adherens junctions and facilitates cell mobility (156). Through phosphorylation of 

focal adhesion kinase (FAK), Src activation also stabilizes focal adhesion complexes, 

which consist of FAK, paxillin, RhoA and other components, and enhances cell 

adhesion to extracellular matrix (155). Additionally, Src also plays a part in regulating 

the tumor microenvironment. Under hypoxic conditions, Src activation promotes 

angiogenesis through stimulation of vascular endothelial growth factor (VEGF) (157), 

matrix metallopeptidases (MMPs) (158) and interleukin-8 (IL-8) expression (159). 

Src-mediated VEGF secretion elicits angiogenic signaling in endothelial cells and Src 

activation in osteoclasts facilitates osteolytic bone metastasis (147,155,160). 

 
Src involved cell signaling pathways. The major downstream 
signaling upon Src activation include: (i) activation of Akt and 
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enhancement of cell proliferation; (ii) STAT3 activation and 
transcriptional upregulation of secretary factors involved in 
metastasis and angiogenesis, (e.g. matrix metallopeptidases (MMPs), 
vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8); 
(iii) disruption of cell-cell adherens junctions through 
phosphorylation of p120-catenin; (iv) stabilization of focal adhesion 
complex through phosphorylation of FAK. epidermal growth factor 
receptor (EGFR); erythropoietin receptor (EpoR); focal adhesion 
kinase (FAK); human epidermal growth factor receptor 2 (HER2); 
insulin-like growth factor-1 receptor (IGF-1R); interleukin-8 (IL-8); 
Janus kinase 2 (Jak2); mitogen-activated protein kinase (MAPK); 
phosphatase and tensin homolog (PTEN); phospho-inositide 
3-kinase (PI3K); platelet-derived growth factor receptor (PDGFR); 
receptor tyrosine kinases (RTKs); signal transducer and activator of 
transcription 3 (STAT3). 

 

Caveolin-1 and c-Src 

It has been recently shown that caveolin-1 promotes cell-cell adhesion in ovarian 

carcinoma cells by a mechanism involving inhibition of Src kinases (161). 

Non-receptor tyrosine kinases of the Src family are involved in several cell functions 

such as mitogenic response of growth factors (162-169), fibroblasts cell migration and 

epithelia cell scattering (166,170,171) and in cancers (172,173). Src kinases, located 

at the inner face of membranes, segregate in the specific membrane domains defined 

by sphingolipids, and usually enriched in caveolin. Src kinase localization in caveolae 

and/or sphingolipid-enriched domains seems to be instrumental for growth 

factor-induced Src dependent mitogenic response (170). Src kinases are activated and 

involved in cancer progression and metastasis of most human carcinoma. Published 

results from our group show that c-Src is in a less active state in low-motility human 

ovarian carcinoma cell lines expressing high levels of GM3 ganglioside and 

caveolin-1 (4). Remarkably, it has been demonstrated that Src kinases are activated in 

colon cancers despite the expression of the C-terminal Src kinase, Csk, the main 

negative regulator of c-Src and other related kinases (173). Why Csk in colon cancer 

cells does not regulate efficiently Src kinases? Csk is a cytosolic enzyme that may 
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need an intermediary protein to locate in Src kinases vicinity. Several candidates have 

been described such as paxillin, Csk binding protein/phosphoprotein associated with 

glycosphingolipids (CBP/PAG), and caveolin-1. CBP/PAG phosphorylated on 

tyrosine 317 by activated Src kinases binds and activates Csk that in turn 

downregulates Src kinases. CBP/PAG is downregulated in metastasis. CBP/PAG 

could play a major role in Src kinases regulation and cancer progression either as a 

Csk binding protein or as a glycolipid interacting protein. On the other hand, 

interactions of Src with caveolin-1 have important consequences. Caveolin-1 seems to 

act as a membrane adapter which couples integrin receptors to Src kinases (174). Src 

induces phosphorylation of caveolin-1 at Tyr14, that is responsible for the 

rearrangement of caveolin-1 within the cell (175-177). On the other hand, caveolin-1 

phosphorylation is involved in the regulation of the docking of Csk, the negative 

regulator of Src, suggesting a mechanism of negative regulation of Src activity by 

phosphorylated caveolin (178). Moreover, phosphorylated caveolin is recruited to 

lipid-enriched membrane domains upon integrin receptor disengagement, inhibiting 

the internalization of these specialized membrane areas and the signaling events 

downstream to integrin receptor (179-181). 
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Integrins 

 

Integrin structures 

The linkage of the extracellular matrix to the cell requires transmembrane cell 

adhesion proteins that act as matrix receptors and tie the matrix to the cell 

cytoskeleton. Although we have seen that some transmembrane proteoglycans 

function as co-receptors for matrix components, the principal receptors on animal 

cells for binding most extracellular matrix proteins, including collagens, fibronectin, 

and laminins are the integrins. These constitute a large family of homologous 

transmembrane, cell-matrix adhesion receptors. An integrin molecule is composed of 

two noncovalently associated transmembrane glycoprotein subunits called α and β 

(182). Because the same integrin molecule in different cell types can have different 

ligand-binding specificities, it seems that additional cell-type-specific factors can 

interact with integrins to modulate their binding activity (183). 

http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5397/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5164/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5054/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5178/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5343/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5292/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5343/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5486/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5241/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5393/
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The subunit structure of integrin. Electron micrographs suggest 
that the molecule has approximately the shape shown here, with the 
globular head projecting more than 20 nm from the lipid bilayer. By 
binding to a matrix protein outside the cell and to the actin 
cytoskeleton inside the cell, the protein serves as a transmembrane 
linker. The α and β subunits are held together by noncovalent bonds. 
The α subunit is made initially as a single 140,000-dalton 
polypeptide chain, which is then cleaved into one small 
transmembrane domain and one large extracellular domain that 
contains four divalent-cation-binding sites; the two domains remain 
held together by a disulfide bond. The extracellular part of the β 
subunit contains a single divalent-cation-binding site, as well as a 
repeating cysteine-rich region, where intrachain disulfide bonding 
occurs. 

 

Many matrix proteins in vertebrates are recognized by multiple integrins. At least 

eight types of integrins bind fibronectin, for example, and at least 5 types bind laminin. 

A variety of human integrin heterodimers are formed from nine types of β subunits 

and twenty-four types of α subunits (184). This diversity is further increased by 

alternative splicing of some integrin RNAs. Some of the best-studied integrins and 

their ligands are listed below: 

 

Integrin Ligands* Distribution 

α5β1  fibronectin ubiquitous 

α6β1  laminin ubiquitous 

α7β1  laminin muscle 

αLβ2  Ig superfamily counterreceptors white blood cells 

α2β3  fibrinogen platelets 

α6β4  laminin epithelial hemidesmosomes 

*Not all ligands are listed. 

 

http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5486/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5540/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5400/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5688/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A4766/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5054/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5840/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5059/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5658/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5101/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A4882/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5178/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5382/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5343/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5178/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5382/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5382/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5314/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5382/
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Integrin signaling and lipid rafts 

Examples of signaling pathways that involve lipid rafts include immunoglobulin E 

signaling, T lymphocyte activation, Glia cell line-derived growth factor (GDNF) 

signaling and H-Ras-mediated Raf activation (reviewed in (185)). A factor common to 

all these signaling events is that the interaction between the activated receptors and 

their immediate downstream effectors takes place in the raft fraction of the plasma 

membrane, and downstream signaling is inhibited by cholesterol depletion. Recent 

work in this area has focused on the activation of signaling by the small GTPase Rac 

in response to integrin-mediated cell adhesion to the extracellular matrix (ECM). 

Activation of Rac by integrins upon fibronectin binding induces GTP loading, similar 

to the activation triggered by growth factor receptors; but, distinct from growth factor 

regulation, integrins also target Rac to specific plasma membrane microdomains, 

where Rac can interact with its downstream effector molecule PAK to induce 

signalling (186,187). Thus, when β1- and probably other fibronectin-binding integrins 

are uncoupled from downstream signaling by detaching cells from the ECM, PAK is 

not activated by Rac, even though Rac-GTP (activated by growth factor receptors) is 

present in these detached cells (187). These data suggest that integrin-mediated 

adhesion facilitates the coupling of Rac to PAK by modulating the plasma membrane 

so as to target Rac to specific microdomains, where the interaction with its effector 

can take place. There is strong evidence that the membrane microdomain targets of 

integrin-modulated Rac affinity are lipid rafts or cholesterol-enriched membrane 

microdomains (CEMMs): (1) association of Rac with CEMMs within the plasma 

membrane has been reported in several studies (130,188-191), including an unbiased 

proteomic approach (191); and (2) the loss of integrin signalling promoted by cell 

detachment induces a rapid internalization of CEMMs, and this prevents the targeting 

of Rac to the plasma membrane and its coupling to PAK. Replatement of cells on 

fibronectin or anti-β1-integrin antibody reversed these effects (130). These data 

suggest a model in which integrin-mediated cell adhesion promotes plasma membrane 
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localization of Rac and its subsequent coupling to its effector by preventing 

internalization of the Rac-containing CEMMs (130). 

Localization to CEMMs has also been described for the other two members of the 

Rho family of GTPases, Rho and Cdc42 (188,192-194). Rho and its effector mDia 

regulate microtubule stabilization (194), and this process occurs only at the leading 

edges of migrating cells, which are enriched in Rho and CEMMs (195). The local 

coupling between Rho and its effector is regulated by integrin-mediated cellular 

adhesion to the ECM, and appears to require active signalling by focal adhesion 

kinase (193). Cdc42 targeting to the plasma membrane is also integrin dependent 

(186). Therefore, evidence for association with CEMMs in an integrin-dependent 

manner has been described for all three major members of Rho family GTPases. 

 

Glycosphingolipids and integrins 

One mechanism by which glycosphingolipids could affect cell adhesion and migration 

is via their interaction with integrins. Integrins are a family of heterodimeric, integral 

membrane proteins at the plasma membrane, which bind to extracellular matrix (ECM) 

proteins and cell surface ligands, and are responsible for many types of cell adhesion 

events (196,197). Glycosphingolipids have been shown to directly modulate 

integrin-based cell attachment. For example, gangliosides (sialic acid-terminated 

glycosphingolipids) extracted from neuroblastoma cells or atherosclerotic plaques 

enhance platelet adhesion via integrin binding to collagen (198-200). Gangliosides 

also enhance binding of integrins to the ECM in mouse mammary carcinoma, 

melanoma, and neuroblastoma cells (201-203). Several models have been proposed 

for the mechanisms by which glycosphingolipids or glycosphingolipid-enriched 

microdomains may regulate integrin function (200,204,205). First, glycosphingolipids 

could initiate signaling events, which cause downstream activation of integrins. 

Indeed, addition of exogenous glycosphingolipids to cells has been shown to have 

significant effects on signaling cascades. Another possibility is that 



INTRODUCTION 
 

26 
 

glycosphingolipids promote the clustering of integrins in glycosphingolipid-enriched 

microdomains, thus increasing their avidity for ligand. The cross-linking of integrins 

with certain integrin antibodies is an established method for integrin activation 

(206,207). Similarly, integrin function can be modulated by antibody cross-linking of 

cholera toxin B subunit bound to GM1 ganglioside or 

glycophosphatidylinositol-linked proteins (204,205). However, no studies have 

provided direct evidence that glycosphingolipids modulate integrin clustering in 

glycosphingolipid-enriched microdomains in the absence of cross-linking agents. An 

additional mechanism by which glycosphingolipids could regulate integrins is by 

affecting their endocytosis from the plasma membrane. Recent studies have shown 

that some integrins can be internalized via caveolae (207,208), a subset of 

glycosphingolipid enriched microdomains defined as invaginations at the plasma 

membrane enriched in caveolin-1 (209,210). Caveolae are sites for 

clathrin-independent endocytosis of glycosphingolipids as well as some viruses and 

bacteria toxins (135,137,211-214). It was reported recently that the addition of 

glycosphingolipids or cholesterol to the plasma membrane of cells stimulates caveolar 

endocytosis via activation of Src kinase (135). Treatment with exogenous 

sphingolipids the cells began to reorganize their actin cytoskeleton and retract, 

suggesting a link between plasma membrane glycosphingolipid and cholesterol 

composition and cell adhesion via integrins.
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A growing number of evidence suggests that alterations in glycosphingolipids 

expression and metabolism are common in tumors of different origins. Moreover, 

gangliosides, sialic acid-containing glycosphingolipids, are known to modulate 

several cellular functions relevant to tumor progression. Thus, altered ganglioside 

expression might play a relevant role in determining the aggressiveness and metastatic 

potential at least in certain tumors. Cellular ganglioside levels regulate cell 

proliferation, mainly by affecting the tyrosine kinase activity associated with growth 

factor receptors (e.g. EGFR) and receptor compartmentalization, thus regulating the 

responsiveness of these receptors to their ligands or their cross-talk with other 

signaling modules. On the other hand, gangliosides deeply affect tumor cell adhesion, 

motility and migration. In particular, gangliosides might contribute to the modulation 

of integrin-dependent interactions of tumor cells with the extracellular matrix as well 

as with host cells present in the tumor microenvironment.  

Therefore, the influence of gangliosides on tumor cell adhesion and motility seems to 

be mediated by the regulation of membrane-associated signaling complexes. 

Ganglioside interaction with hydrophobic membrane adaptor proteins seems to be 

crucial for this regulation. From this point of view, the interaction between 

gangliosides and the integral membrane protein caveolin-1 is potentially very 

interesting. Caveolin-1 is usually highly expressed in terminally differentiated cells, 

while it is markedly down-regulated in tumors of different origin, including ovarian, 

breast and colon carcinoma. 

On the basis of these considerations, aims of the present study are 1) to investigate the 

role of gangliosides as modulators of membrane signaling complexes organized by 

caveolin-1, able to affect the adhesion, motility and invasiveness of human cancer 

cells; 2) to explore the possible candidate molecules that are involved in gangliosides 

mediated signal transduction.  

The objectives of this project will contribute significantly to the greater understanding 

of the role of membrane glycolipids in the early mechanisms of the progression and 

dissemination of human cancer.
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Chemicals 

Commercial chemicals were the purest available and, unless otherwise stated, were 

purchased from Sigma. 

 

Lipids and radioactive lipids 

GM1, GM2 and GD1a were prepared from the bovine brain ganglioside mixture and 

purified by partitioning (215). GM3 was prepared from GM1 using the GM1-lactone 

hydrolysis procedure (216). [1-3H]sphingosine (radiochemical purity over 98%; 

specific radioactivity 2.2 Ci/mmol) was prepared by specific chemical oxidation of 

the primary hydroxyl group of sphingosine followed by reduction with sodium 

boro[3H]hydride. [3H] lipids used as chromatographic standards were prepared from 

[1-3H]sphingosine-fed cell cultures as previously described (217). 

 

Cell lines and culture 

Human ovarian carcinoma cells A2780 were kindly provided by Dr. F. Formelli 

(Department of Experimental Oncology, National Cancer Institute, Milan, Italy) and 

were obtained by Dr. R.F. Ozols (National Cancer Institute, Bethesda, USA). The 

cells were cultured in RPMI-1640 medium (Sigma) supplemented with 10% 

heat-inactivated fetal bovine serum (FBS) that was purchased from GIBCO, 2 mM 

glutamine, 100 U/ml penicillin and 100 μg/ml streptomycin. 

The cell line A2780/HPR, resistant to the drug HPR (N-(4-hydroxyphenyl) 

retinamide), was obtained from the parental cells A2780 through in vitro 

administration with increasing sub-lethal concentrations of HPR (Sigma) (218). The 

HPR resistance in this cell is reversible. For this reason, the drug HPR was dissolved 

in dimethylsulfoxide (DMSO) to the storage concentration of 10 mM. A2780/HPR 

cells are constantly cultured in presence of 5 μM HPR. 
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The cell line A2780/SAT-I was also obtained from the parental cells A2780 through 

transfection with the cDNA of sialyltransferase-I (SAT-I), so-called GM3 synthase. 

The GM3 synthase expression vector (pSAT1-Rc/CMV) (a generous gift of Dr. I. 

Colombo, University of Milan, Milan, Italy) was constructed by subcloning SAT-I 

cDNA into an expression vector pRc/CMV (219). A2780 cells were transfected by 

cationic polymers (Open Biosystems, Huntsville, AL) with the pSAT1-Rc/CMV or 

with the empty vector, following the manufacturer’s protocol. Stable transfectants 

were isolated after selection with 750 μg/ml of geneticin (G418, Sigma). In order to 

keep culturing the cells with GM3 synthase cDNA, A2780/SAT-I cells are constantly 

cultured in the presence of 250 μg/ml of geneticin. 

 

RNA extraction and RT-PCR 

Total RNA was isolated by single-step acid-guanidine-isothiocyanate-chloroform 

extraction methods and purified by PureLinkTM Macro-to-Midi kits (Invitrogen), 

according to manufacturer’s instructions. Five micrograms of RNA was treated with 3 

U of RNase-free DNase for 25 min at room temperature to remove possible DNA 

contamination. The total amount of extracted RNA was estimated by a quantitative 

fluorescent method using the Quant-iTTM RiboGreen RNA Reagent Kit (Invitrogen). 

Using random hexamers, 1 μg of RNA were reverse-transcribed using SuperScriptTM 

III First-Strand Synthesis System for RT-PCR (Invitrogen) in a final 20 μl reaction 

volume. cDNA representing 50 ng of total RNA was adapted as a template for 

RT-PCR. 

For multiplex RT-PCR, we used a mixture containing 0.2 μM primers, AccuPrimeTM 

PCR Buffer, and 1 unit of AccuPrimeTM Taq in a final volume of 50 μl. The 

amplification was performed using the following cycle conditions: initial denaturation 

at 94 °C for 2 min, followed by 35 cycles of 15 s at 94 °C (denaturation), 20 s at 

58 °C (annealing) and 30 s at 68 °C (elongation). RT-PCR mixture included 0.5 μM 

primers, 200 μM deoxynucleotides triphosphate, Fusion HF Buffer, 0.4 U of Phusion 
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Hot Start DNA polymerase (Finnzymes) and 3 % of dimethyl sulfoxide in a final 

volume of 20 μl. The amplification was performed using the following cycle 

conditions: initial denaturation at 98 °C for 1 min, followed by 30 cycles of 10 s at 

94 °C (denaturation), 45 s at 58 °C (annealing) and 30 s at 72 °C (elongation). The 

housekeeping genes GAPDH and ACTB were used as reaction and loading control 

and were simultaneously amplified with the target genes. Data were acquired using a 

GelDoc 2000 instrument (BioRad) and were elaborated using the Quantity One 

software (BioRad). Primer sequences were summarized in Table 1 shown below. 

 

Table 1: Sequence of primer 

Gene Forward primer Reverse primer 

SAT-I 5’‐GGGAGTAATAGCATGGGCAACCAT‐3’ 5’‐CAGCTCTCAGAGTTAGAGTTGCATT‐3’ 

CAV1 5’ –GAGCTGAGCGAGAAGCAAGT-3’ 5’- TCCCTTCTGGTTCTGCAATC-3’ 

CAV2 5’ –ACGACTCCTACAGCCACCAC-3’ 5’-CGTCCTACGCTCGTACACAA-3’ 

ACTB 5’-CGACAGGATGCAGAAGGAG-3’ 5’-ACATCTGCTGGAAGGTGGA-3’ 

GAPDH 5’-CGAGATCCCTCCAAAATCAA-3’ 5’-GGTGCTAAGCAGTTGGTGGT-3’ 

 

 

GM3 synthase activity assay 

Cells cultured in 100-mm dishes as described previously were harvested using a 

plastic scraper and washed two times with phosphate-buffered saline (PBS). Cells 

were resuspended in 150 mM sodium cacodylate-HCl buffer, pH 6.6 (20 mg of cell 

protein/ml) with protease inhibitors (2 mM 4-(2-aminoethyl)benzenesulfonyl fluoride, 

0.0016 mM aprotinin, 0.044 mM leupeptin, 0.08 mM bestatin, 0.03 mM pepstatin A, 

0.028 mM E-64) (Sigma) and homogenized with a Dounce homogenizer (10 strokes, 

tight). In each reaction tube, 10 μl of Triton CF-54 1.5% (v/v) in chloroform/methanol 

(2:1) was mixed with 0.5-50 nmol of [3-3H(sphingosine)]LacCer (corresponding to 45 

nCi) from a stock solution in chloroform/methanol (2:1) and dried under N2. To this 
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mixture, 8 μl of 750 mM sodium cacodylate-HCl buffer, pH 6.6, 4 μl of 125 mM 

MgCl2, 4 μl of 125 mM 2-mercaptoethanol, 10 μl of 5 mM CMP-NeuAc, and 10 μl of 

cell homogenate (containing 200 μg of protein) was added in a total reaction volume 

of 50 μl. Negative controls were performed using heat-inactivated cell homogenates 

(100 °C for 3 min). The incubation was performed at 37 °C for 3 h with continuous 

shaking. The reaction was stopped by adding 1.5 ml of chloroform/methanol (2:1). 

The reaction mixture was analyzed by HPTLC using the solvent system 

chloroform/methanol/water (55:20:3 by volume). Radioactive lipids were detected 

and quantified by radioactivity imaging as described below. 

 

Determination of in vitro cell motility by wound healing assay  

Cells grown in 100-mm culture dishes as confluent monolayers were mechanically 

scratched using a 200-μl pipette tip. Cells were washed with complete culture medium 

and then incubated in the presence of complete culture medium for different times 

allowing wound healing. Phase contrast images of the wounds were taken in nine 

random fields immediately after wounding (time 0) and after 24 and 48 hours, and 

wound width was measured. Each experimental point was in duplicate, and data were 

expressed as the mean values ± S.D. of three independent experiments. 

 

Cell adhesion assay 

Cell adhesion to defined matrix components was accomplished as previously 

described (220). In brief, flat-bottomed, polystyrene, 24-well plates were incubated 

overnight at 4 °C with 40 μg fibronectin in 250 μl of PBS (160 μg/ml) per well. 

Human fibronectin (Sigma) was used as substrates. Plates were washed with 500 μl of 

1 % bovine serum albumin (BSA) in PBS twice to remove unbound fibronectin and 

also to block any remaining reactive surfaces. Nonspecific cellular binding was 

determined by using wells coated only with 1 % BSA. After the wells were washed 
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with PBS, 1×105 cells per well in 250 μl of RPMI-1640 medium was plated, and the 

cells were incubated at 37 °C for 30 min for attachment to the fibronectin substrate. 

After nonadherent cells were washed off, 25 μl of 3-(4,5-dimethylthiazol-2-yl)-2, 

5-diphenyltetrazolium bromide (MTT) (5 mg/ml) was added to the culture and 

incubated at 37 °C for 3 h, and then 250 μl of soluble solution (0.1 M HCl in 10% 

SDS (w/v) solution) was added and mixed completely, and then was incubated at 

37 °C overnight. Optical density (absorbance at 570 nm minus that at 650 nm) was 

measured to evaluate cells attached to the substrate. 

 

Protein quantification with DC assay 

The protein quantification was performed through Bio-radTM DC assay. This DC 

assay is a colorimetric assay for protein concentration following detergent 

solubilization and is based on the reaction of protein with an alkaline copper tartrate 

solution and Folin reagent.  

The protein standard used in this assay should be dissolved in the same solvent as the 

samples. Add 5 μl of each concentration of the standard, which is bovine serum 

albumin (BSA), to a 96 well in triple. Then 25 μl of reagent A and 200 μl reagent B, 

which were both supplied in Bio-radTM DC assay kit, were added respectively in each 

well. Shake the plate with a rotator for 15 min and then the absorbance at 750 nm was 

measured with the spectrophotometer. The sample readings were compared with the 

ones of the standard. The assay is linear between 1.5 and 7.5 μg of protein amount. 

 

Western blotting 

Cell homogenates, gradient fractions and immunoprecipitation samples were analyzed 

by SDS-PAGE and immunoblotting using mouse monoclonal anti-Cav-1-pY14 (BD 

Transduction Laboratories), mouse polyclonal anti-integrin α5 (BD Transduction 

Laboratories), rabbit monoclonal anti-c-Src (Cell Signaling), rabbit polyclonal 
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anti-caveolin-1 (BD Transduction Laboratories), anti-Src-pY416 (Cell Signaling), 

anti-Src-pY527 (Cell Signaling) followed by reaction with secondary horseradish 

peroxidase-conjugated antibodies and enhanced chemiluminescence detection (Pierce). 

β-actin or β-tubulin was used as loading control (anti-β-actin rabbit polyclonal 

antibody is from Santa Cruz, anti-β-tubulin mouse monoclonal antibody is from 

Sigma-Aldrich). The data acquisition was performed using a GS-700 Imaging 

Densitometer and acquired blots were elaborated using the Quantity One software 

(BioRad). Each experimental point was performed in triplicate, and data were 

expressed as the mean values ± S.D. of three independent experiments. 

 

c-Src inhibition 

A2780 cells grown in 100-mm culture dishes as confluent monolayers were pretreated 

for 6 h with 3 μM SU6656 Src inhibitor (Sigma) or with the equal volume of dimethyl 

sulfoxide (DMSO) (control), then confluent cell monolayers were wounded and cell 

motility was assessed by wound healing assay as described above. Cells were 

maintained in the presence of DMSO or 3 μM SU6656 for the duration of the 

migration assay. 

 

Administration of exogenous gangliosides 

A2780 confluent monolayer cells were washed with serum-free culture medium and 

then incubated in the presence of 50 μM GM3, GM2, GM1 or GD1a in serum-free 

medium for up to 48 hours [205]. The following experiments were conducted after the 

treatment. 
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Glucosylceramide synthase inhibition 

To study the effects of ganglioside synthesis inhibition, the GlcCer synthase inhibitor 

D-PDMP (D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol) was used 

(221). As negative control, cells were treated with the inactive stereoisomer L-PDMP 

under the same experimental conditions. D- and L-PDMP were kindly provided by Dr. 

Jin-ichi Inokuchi (Tohoku Pharmaceutical University, Japan). The compounds were 

dissolved in distilled water at a concentration of 4 mM. The stock solution was stored 

at -20 °C and diluted with cell culture medium to a final concentration of 10 µM or 20 

µM just before use. A2780/HPR and A2780/SAT-I cells were seeded and cultured in 

the presence of D- or L-PDMP for 48 h. The effects of PDMP on ganglioside 

synthesis were detected by analyzing the lipid composition of the treated cells. 

 

Lipid extraction and determination 

At the end of the treatment periods, cells adherent to the dishes were harvested in 

ice-cold water (2 ml) by scraping with a rubber policeman. In the case of gradient 

fraction, water was omitted. Cells floating in the culture medium were collected by 

centrifugation. Both adherent and floating cells were analyzed to determine the 

content of radioactivity associated with lipids. The samples were lyophilized, and 

lipids were extracted twice with chloroform/methanol 2:1 by volume (first extraction, 

1.5 ml; second extraction, 0.25 ml). The total lipid extracts were subjected to a 

two-phase partitioning as previously described (222), resulting in the separation of an 

aqueous phase containing gangliosides and an organic phase containing all the other 

lipids. 

Aliquots of total lipid extracts, aqueous and organic phases were analyzed by HPTLC. 

The phospholipid content was determined in the organic phase as phosphate after 

perchloric acid digestion by the method of Bartlett (223). The ganglioside content was 

determined as lipid-bound sialyc acid by the resorcinol method (224). Cholesterol was 
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quantified by visualization with 15% concentrated sulfuric acid in 1-butanol (217). 

The quantity of cholesterol was determined by densitometry and comparison with 

0.1-2 μg of standard compounds. 

The radioactivity associated with cells, lipids, lipid extracts, and aqueous or organic 

phases was determined by liquid scintillation counting. Radioactive lipids were 

detected and quantified by radioactivity imaging performed with a Beta-Imager 2000 

instrument (Biospace, Paris, France) using an acquisition time of about 48 h. The 

radioactivity associated with individual lipids was determined with the specific 

β-Vision software provided by Biospace. 

 

Determination of in vitro cell motility by Phagokinetic Gold Sol Assay 

Phagokinetic assays with gold colloid-coated plates were performed as described 

(225). Briefly, 24-mm coverslips were coated with 1% bovine serum albumin (BSA) 

(Sigma-Aldrich) and then immersed in the colloidal gold solution (226,227). 

Two-thousand cells were seeded on the gold colloid-coated coverslips and incubated 

at 37°C. Images of the phagokinetic tracks were taken after different times by the use 

of a phase contrast microscope. The tracks of at least 50 cells were videocaptured and 

the areas cleared from gold colloid by cell phagocytosis, representing the migration 

response, were quantified by the use of Image J software. 

 

siRNA transfection 

A2780/HPR or A2780/SAT-I cells were plated in 6-well plates or 100-mm dishes and, 

when grown at 50% confluence, were transfected with CAV1 siRNA (Qiagen, cat. no. 

SI00299635) or with scrambled siRNA duplexes (Qiagen, All stars negative control 

siRNA cat. no. 1027280) as transfection control. The optimal condition for the 

transfection was 32 nM siRNA in Opti-MEM with Lipofectamine 2000 (1%, v/v) 

(Invitrogen), following the protocol provided by the manufacturer. Fresh medium was 
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added 24 h after transfection, and experiments were conducted for different times up 

to 72 h. In the case of the cell motility analysis by wound healing assay, cells were 

pre-treated with siRNA for 48 h before the assay, and siRNA administration was 

repeated after 48 h. 

 

Immunofluorescence analysis of caveolin-1 

A certain number of A2780 and A2780/HPR cells were plated on 24-mm round 

sterilized coverslips. A2780/HPR cells were transfected with scrambled siRNA or 

siRNA targeting CAV1 mRNA as described above. After 72 h, cells were first washed 

with PBS, then fixed with 4% paraformaldehyde in PBS and incubated for 10 minutes 

at room temperature. The coverslips were washed once with PBS and then the cells 

were permeabilized with 0.2% Triton X-100 for 5 minutes at room temperature. Three 

washes with PBS were performed and then the aspecific binding sites were blocked 

through incubation with blocking buffer (10% horse serum, 1% BSA in PBS) for 1 

hour at room temperature. After that, the coverslips were washed with PBS and 

incubated with the primary antibodies diluted in 1% BSA in PBS (dilution of 1:250 

for the caveolin-1 antibody) overnight at 4° C. The following day the coverslips were 

washed three times with PBS and then incubated with FITC-conjugated secondary 

antibodies (anti-rabbit for caveolin-1) diluted 1:25 in 1% BSA in PBS for 45 minutes 

at room temperature avoid light. Three washes with PBS and one with water were 

performed and then the coverslips were dried very well. The coverslips were fixed on 

microscope slides with a drop of 90% glycerol and observed under an Olympus BX50 

fluorescence microscope. The acquisition time of the fluorescence was the same for 

every sample. The slides were observed with a magnification of 100 × under the 

oil-immersion lens. 

Src immunocomplex kinase assay 

Cells were lysed in RIPA buffer (50 mM Tris HCl, pH 7.4, 150 mM NaCl, 2 mM NaF, 



MATERIALS AND METHODS 
 

39 
 

1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 0.2% SDS, 0.5% sodium deoxycholate, 

1 mM Na3VO4, 1 mM PMSF, 75 mU/ml aprotinin). Protein concentration was 

adjusted to 1 µg/µl with RIPA buffer. 500 µg of proteins from each sample were used 

for immunoprecipitation. Samples were pre-cleared for non specific binding by 

adding 10 µl G protein-coupled magnetic beads (Dynabeads, Invitrogen). Precleared 

samples were incubated with 4 µg anti-Src antibody (clone GD11, Millipore, 

Temecula, CA) or normal rabbit IgG, previously adsorbed on 10 µl G protein-coupled 

beads following manufacturer’s instruction for 1 h at 4 °C. The anti-Src 

immunoprecipitated samples, conjugated to the magnetic beads were recovered and 

incubated with 10 µCi [γ-32P]ATP (Perkin Elmer) and 10 µM ATP in Kinase buffer 

(30 mM HEPES, pH 7.5, 10 mM MgCl2, 2 mM MnCl2, 0.2 mM Na3VO4, 2 mM NaF, 

1 mM DTT, 1 mM PMSF and 75 mU/ml aprotinin) at 37 °C for 1 h. The reaction was 

stopped by adding equal volume of ice-cold 2 × RIPA buffer, beads were washed with 

ice-cold RIPA buffer and boiled at 100 °C for 5 min with 2 × Laemmli buffer. The 

samples were separated by SDS-PAGE and proteins were transferred to 

polyvinylidene difluoride (PVDF) membranes. PVDF membranes were analyzed by 

autoradiography by exposing to Kodak BioMax MR Film (Sigma-Aldrich) at -80 °C 

for certain time, or were acquired with a Beta-Imager 2000 instrument (Biospace, 

Paris, France) using the acquisition time of about 48 h. c-Src protein level was 

detected by western blotting as described above. 

 

Treatment of cell cultures with [1-3H]sphingosine 

24 h after seeding, cells were incubated in the presence of 3 × 10-8 M 

[1-3H]sphingosine (5 ml/dish) in culture medium for 2 h (pulse). After the pulse, the 

medium was replaced with fresh medium without radioactive sphingosine, and cells 

were further incubated for up to 4 days (chase). Under these conditions, all 

sphingolipids (including ceramide, SM, neutral glycolipids, and gangliosides) and 

phospholipids (obtained by recycling of radioactive ethanolamine formed in the 
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catabolism of [1-3H]sphingosine) were metabolically radiolabeled (45,217,228). 

 

Preparation of DRM fractions by sucrose gradient centrifugation 

Cells were subjected to homogenization and to ultracentrifugation on discontinuous 

sucrose gradient, as previously described (217). Briefly, cells were harvested, lysed in 

1% Triton X-100 in TNEV (10 mM Tris-HCl buffer, pH 7.5, 150 mM NaCl, 5 mM 

EDTA) in the presence of 1 mM Na3VO4, 1 mM PMSF, and 75 mU/mL aprotinin, and 

Dounce homogenized (10 strokes, tight). Cell lysate was centrifugated for 5 min at 

1300 × g to remove nuclei and cellular debris. The postnuclear supernatant (PNS) was 

mixed with an equal volume of 85% sucrose (w/v) in TNEV, placed at the bottom of a 

discontinuous sucrose gradient (30-5%), and centrifugated for 17 h at 200,000 × g at 

4 °C with ultra-centrifuge Beckman Coulter optima L-90K. After ultracentrifugation, 

eleven fractions were collected starting from the top of the tube. The protein levels 

and lipid distribution were analyzed individually in each fraction. Moreover, equal 

amounts of the low-density fractions 4, 5 and 6 were put together to obtain the DRM 

fraction, whereas equal amounts of the high-density fractions 9, 10 and 11 were put 

together to obtain the HD fraction. The fractions 7 and 8 were also put together to 

obtain the intermediate fraction. The entire procedure was performed at 0-4°C in the 

ice immersion. For investigating the metabolism of sphingolipids and phospholipids, 

cells were previously labeled with [1-3H]sphingosine. The radioactive lipids were 

analyzed as described above.
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GM3 synthase overexpression in A2780 cells 

 

In order to investigate the role of gangliosides in A2780 human ovarian carcinoma 

cells, we stably overexpressed the cDNA encoding sialyltransferase-I (GM3 synthase 

or SAT‐I) in A2780 cells. The sialyltransferase‐I is a key enzyme which controls the 

sialylation step of ganglioside GM3 synthesis from lactosylceramide (LacCer).  

As shown in Figure 1, the SAT-I mRNA levels (Panel A) and GM3 synthase activity 

measured in vitro on the natural substrate LacCer (Panel B) were markedly 

up-regulated in the three SAT-I transfected clones (4T, 28T and 31T) with respect to 

wild type and mock transfected A2780 cells. The mRNA level of GM3 synthase in 

A2780/HPR cells was also detected. Both of the mRNA level of SAT-I and GM3 

synthase activity were much higher compared to A2780 wild type cell, consistent with 

the previous result that the content of GM3 is higher in A2780/HPR cells than A2780 

cells. 

 
Figure 1. SAT-I expression in A2780/SAT-I transfected clones. 
SAT-I cDNA was cloned into a plasmid expression vector under the 
control of CMV promoter. A2780 cells were transfected with the 
empty expression vector (A2780 mock) or the vector containing the 
SAT-I cDNA; selection was performed in the presence of geneticin 
and, after 30 days, some colonies were subcloned and expanded. 
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(Panel A) SAT-I mRNA levels were assessed in A2780 and A2780 
transfectant (one mock and 3 SAT-I-transfected clones, 4T, 28T, and 
31T) cells by RT-PCR. ACTB mRNA expression was measured as 
an internal control. Patterns are representative of those obtained in 
three different experiments. (Panel B) In vitro GM3 synthase 
activities were measured on cell lysates using 100 μM radioactive 
LacCer as a substrate. Data are expressed as nmoles LacCer 
converted into GM3/h × mg cell protein, and are the means ± S.D. of 
three different experiments. *, p < 0.01 versus A2780 cells. 

 

The lipids composition of transfectants were also evaluated (data not shown), 

indicating that phospholipids and cholesterol levels were not changed in cells with 

high GM3 synthase activity, while the ganglioside content was 2.2- and 2.0-fold 

higher in 4T and 28T SAT-I transfectants with respect to control cells, respectively. 

This increase in the ganglioside content in SAT-I transfectants was due to higher 

levels of GM3, GM2 and GD1a (229). 

 

Effect of overexpression of SAT-I on the in vitro motility of A2780 

cells 

 

We investigated the effect of increased GM3 synthase expression levels on A2780 in 

vitro motility. Overexpression of GM3 synthase did not significantly affect the growth 

rate of A2780 cells (data not shown). On the other hand, wound healing assay 

revealed that the in vitro motility of all SAT-I trasfectants (4T, 28T and 31T) was 

strongly reduced when compared with wild type or mock-transfected A2780 cells. 

A2780/HPR cells which endogenously express high levels of GM3 synthase, also 

showed a lower in vitro motility than A2780 cells. Above all, high levels of GM3 

synthase expression were sufficient to negatively regulate the in vitro motility of 

A2780 human ovarian carcinoma cells without influencing the cell growth and this 

may be due to the consequent increase of cellular ganglioside levels. 
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Figure 2. Effect of GM3 synthase (SAT-I) overexpression on the 
in vitro motility of A2780 cells. In vitro motility of A2780, 
A2780/HPR and A2780 cells transfected with the empty expression 
vector (mock) or the vector containing the SAT-I cDNA (clones 4T, 
28T, and 31T) were assessed by the wound healing assay. Confluent 
monolayers were wounded with a 200-μl pippet tip; phase-contrast 
microscopy images of the wound (upper panel shows representative 
images for each data set) have been recorded at different times and 
the wound width has been measured at 0, 24, and 48 h. Data are 
expressed in mm and are the means ± S.D. of three different 
experiments. *, p < 0.05 versus A2780 cells. 
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In vitro adhesive ability of A2780, A2780/HPR and A2780/SAT-I cells 

 

The α5β1 integrin has been reported to bind to the extracellular matrix components 

fibronectin, type I collagen, and laminin (230). The ability of the SAT-I transfected 

monoclonal cells to adhere to fibronectin, major ligand of α5β1 integrin, was 

compared with that of A2780 wild-type cells and A2780/HPR cells. Adhesion to 

bovine serum albumin (BSA) was also examined as a non α5β1 integrin-mediated 

adhesion control. Adhesion was examined after a 30 min incubation of the cells on the 

coated wells using a MTT reduction assay as described in Materials and Methods 

section. After 30 min of incubation, there was nearly no cell binding to BSA coated 

wells. On the fibronectin coated wells, both SAT-I tansfected cells and A2780/HPR 

cells had a strong adhesive ability compared to A2780 wild-type cells. Since the cell 

adhesive ability usually has a reversed behavior of in vitro cell motility, this data is 

consistent with the motility result observed previously. GM3 synthase overexpression 

resulted in an increase of cell adhesion, meanwhile a decrease of cell in vitro motility, 

suggesting a possible role of gangliosides in controlling cell motility and adhesion. 

 
Figure 3. In vitro adhesion assay of A2780, A2780/HPR and 
A2780/SAT-I cells. Human fibronectin and bovine serum albumin 
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(BSA) were coated in 24-well plate at 4 °C overnight. On the other 
day, after wash with PBS, 1×105 cells were plated in each well and 
were incubated at 37 °C for 30 min allowing cell adhesion. Then 
nonadherent cells were washed off. MTT assay was performed to 
evaluated the number of adherent cells as described in “Materials 
and Methods”. Data are the means ± S.D. of three different 
experiments. *, p < 0.05 versus A2780 cells. 

 

Expression of caveolins in A2780 and A2780/SAT-I-transfected clones 

 

Caveolin-1 has the potential as a molecular organizer for ganglioside-modulated 

signaling complexes. Caveolin-1, as the main structural component of caveolae (89), 

not only localizes in lipid-enriched membrane domain, but also transmits the signaling 

from ganglioside formed complexes. In general, caveolin-1 is supposed to concentrate 

signaling molecules (74,94,119) within specialized membrane domains, but its 

functional importance is still unclear (6). Caveolin-1 has a phosphorylation site, 

tyrosine 14, which is supposed to regulate Src activation. Caveolin-1 can also act as a 

membrane adapter, coupling the integrin subunit to cytosolic Src-family protein 

tyrosine kinases (174). Since inhibition of integrin-mediated Src signaling by 

gangliosides negatively regulates tumor cell adhesion and motility, the link between 

caveolin-1 and glycosphingolipids is worthy to be further investigated. 
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Figure 4. Expression of caveolins in A2780 and 
A2780/SAT-I-transfected clones. (Panel A) mRNA levels of 
CAV1 and CAV2 were assessed by RT-PCR. GAPDH and ACTB 
mRNA expressions were measured as an internal control. (Panel B) 
Caveolin-1 protein levels were assessed by Western blotting. Equal 
amounts of cellular proteins (corresponding to 30 μg) were 
separated by SDS–PAGE and transferred to polyvinylidene 
difluoride (PVDF) membranes. Membranes were probed using 
specific anti-caveolin-1 and anti-β-actin monoclonal antibodies. 
Patterns are representative of those obtained in three different 
experiments. 

 

The expression of caveolin-1 in A2780 cells has been determined through 

semi-quantitative PCR for mRNA levels analysis (Figure 4, Panel A), and through 

SDS-PAGE followed by Western blotting analysis for the protein analysis (Figure 4, 

Panel B). Both of caveolin-1 mRNA and protein levels were markedly up-regulated in 

all SAT-I transfected clones (4T, 28T and 31T) compared with wild type and 

mock-transfected A2780 cells, in which the protein level of caveolin-1 is very low, in 

agreement with previous published data (231). This difference was specific within the 

caveolin gene family for caveolin-1, since caveolin-2 mRNA levels were not affected 

and caveolin-3 was not detectable in our cells (data not shown). 

Since caveolin-1 was upregulated in all the cells characterized by a high expression of 

the enzyme GM3 synthase (including A2780/HPR cells), we were inclined to explore 
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the possible connection between the two membrane components: ganglioside and 

caveolin-1. 

 

Effect of c-Src activity on A2780 cell in vitro motility 

 

Since Src kinases can act as a downstream effector of caveolin-1-mediated signaling 

(174), we tested the effect of Src kinase inhibition on the motility of A2780 cells. The 

in vitro motility of A2780 cells was strongly reduced in the presence of 3 μM SU6656 

(a selective Src inhibitor) assessed by wound healing assay (Figure 5, Panel A). The 

inhibition of Src was confirmed by detecting active and inactive form of Src through 

Western blotting. As shown in Figure 5 (Panel B), there was only a strong reduction 

of active form of Src (Src-pY416) in the presence of the inhibitor of Src. However, 

the total Src expression and inactive form of Src (Src-pY527) were not changed. Thus 

we may draw the conclusion that Src activity is also involved in modulating A2780 

human ovarian carcinoma cell motility. The relationship among Src activity, 

caveolin-1 and glycosphingolipid is worthy to be further studied. 
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Figure 5. Effect of the c-Src inhibitor on in vitro motility of 
A2780 cells. A2780 cells were incubated in 10% FBS containing 
medium in the presence of equal volume of dimethyl sulfoxide 
(DMSO), as a negative control or 3 μM SU6656 Src inhibitor. 
(Panel A) Monolayers were wounded and wound width was 
measured at 0, 24, and 48 hours, phase-contrast microscopy images 
of the wounds (upper panel shows representative images for each 
data set). (Panel B) After 48 hours, proteins were exacted for 
analyzing c-Src activity by probing with specific antibodies against 
active form of Src (Src-pY416) and inactive form of Src 
(Src-pY527). Data are expressed in mm and are the means ± S.D. of 
three different experiments. *, p < 0.05 versus controls, cells treated 
with vehicle only. 
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Effect of exogenous administration of gangliosides on the in vitro 

motility of A2780 cells 

 
Figure 6. Effect of exogenous administration of gangliosides on 
in vitro motility of A2780 cells. A2780 cell confluent monolayers 
were wounded and incubated in serum-free medium in the presence 
of vehicle (Control) or 50 μM of GM3, GM2, GM1, or GD1a for up 
to 48 h. Phase-contrast microscopy images of the wound (upper 
panel shows representative images for each data set) have been 
recorded at different times, and the wound width (lower panel) has 
been measured at 0, 24, and 48 h. Data are expressed in mm and are 
the means ± S.D. of three different experiments. *, p < 0.05 versus 
controls, cells treated with vehicle only. 
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To validate and substantiate the hypothesis that changes in the ganglioside patterns 

consequent to SAT-I overexpression could be responsible for the reduced motility in 

A2780 cells, we incubated cells in the presence of exogenous gangliosides under 

experimental conditions that allowed us to increase by 3- to 20-fold the trypsin-stabile 

cellular content of the administered ganglioside (data not shown). Under these 

conditions, we observed that the exogenous administration of GM3 and GM2, both 

natural components of A2780 cells, and of GM1, virtually absent from these cells, 

effectively reduced the in vitro motility of these cells. On the other hand, GD1a, 

present as a minor ganglioside in A2780 cells but representing 15-22% of total 

gangliosides of SAT-1-transfected clones, had no effect on A2780 cell motility 

(Figure 6). 

 

Effect of exogenous administration of gangliosides on A2780 cells in 

vitro adhesive ability 

 

As reported above, SAT-I overexpression altered A2780 human ovarian carcinoma 

cell adhesive ability. If the content of gangliosides related to the cell adhesion was 

further verified by exogenous administration of gangliosides in A2780 cells. Briefly, 

A2780 cells were pre-treated with gangliosides for 48 hours as described in Materials 

and Methods section. Cell adhesion assay was conducted by using fibronectin-coated 

24-well plates. As shown in figure 7, there was no significant difference of the 

tendency of binding to BSA-coated wells among control, ganglioside GM3- and 

GD1a-treated A2780 cells. However, the cells treated with ganglioside GM3 attached 

more strongly to the fibronectin coated plated, compared to control and GD1a treated 

cells. Since exogenous administration of ganglioside GM3 significantly reduced the 

A2780 cell motility, but GD1a did not, we supposed that in A2780 human ovarian 

carcinoma cells, high levels of ganglioside GM3 resulted in a relatively high adhesion, 

thus, inhibited the cell in vitro motility. Notably, fibronectin, as an important 
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extracellular matrix, has a specific affinity to integrin α5β1, which is the main type of 

integrin expressed in A2780 cells, suggesting that integrin α5β1 is involved in 

GM3-mediated A2780 cell in vitro motility and adhesion. 

 
Figure 7. Effect of exogenous administration of gangliosides on 
in vitro adhesion of A2780 cells. A2780 cell confluent monolayers 
were pre-treated with vehicle (Control) or 50 μM GM3 or GD1a in 
serum-free condition for 48 hours. After that, cells were counted and 
were used for evaluating cell adhesive ability following the 
procedure as described in “Materials and Methods”. Data are the 
means ± S.D. of three different experiments. *, p < 0.05 versus 
controls, cells treated with vehicle only. 
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Effect of PDMP treatment on ganglioside patterns in A2780/HPR and 

SAT-I cells 

 

High expression levels of GM3 synthase, leading to high cellular gangliosides content, 

in both A2780/HPR and A2780/SAT-I-transfected cells were associated with a 

reduction of in vitro cell motility and an increase of cell adhesion. Accordingly, 

treatment with exogenous gangliosides was able to reduce the motility and increase 

the adhesion of low GM3 synthase A2780 cells, suggesting a role of gangliosides in 

controlling the motility of these cells. To confirm this hypothesis, we assessed the 

effect of the pharmacological manipulation of ganglioside levels on the in vitro 

motility of A2780/HPR and SAT-I cells. Treatment of A2780/HPR and SAT-I cells 

with the specific GlcCer synthase inhibitor D-PDMP strongly reduced gangliosides 

content after 2 days (Figure 9) and almost completely abolished GlcCer, LacCer, and 

ganglioside synthesis after 5 days (Figure 8). L-PDMP (the inefficient isomer, used as 

a negative control) had no effect on glycosphingolipid levels in A2780/HPR and 

SAT-I cells. Both of L- and D-PDMP did not alter the expression ceramide and 

sphingomyelin (SM) expression in A2780/HPR and SAT-I cells. Taken together, we 

know that the effect of D-PDMP is specific inhibition of the glycosphingolipids 

synthesized from GlcCer, however, the isomer L-PDMP is not. According to this, 

PDMP treatment can be an appropriate model to study the role of ganglioside in 

A2780 cells. 
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Figure 8. Effects of PDMP treatment on the sphingolipid 
composition in A2780/HPR cells. A2780/HPR cells were treated 
with the specific glucosylceramide synthase inhibitor D-PDMP to 
achieve sphingolipid depletion. The ineffective stereoisomer 
L-PDMP has been used as a negative control. Here are the 
sphingolipid patterns of A2780/HPR cells untreated (Control), 
treated with 10 μM and 20 μM L-PDMP or treated with 10 and 20 
μM D-PDMP for 5 days. Cell lipids were extracted with 
chloroform/methanol/water, 2:1:0.1 by volume, subjected to a 
two-phase partitioning. Aqueous phases (left panel) and organic 
phases (right panel) lipids were analyzed by HPTLC, using 
chloroform/methanol/0.2% aqueous CaCl2 50:42:11 by volume 
(spray reagent, p-dimethylaminobenzaldehyde) for aqueous phases; 
and chloroform/methanol/water, 55:20:3 by volume (spray reagent, 
aniline/diphenylamine) for organic phases as solvent system 
respectively. The equivalent to 1 mg (for aqueous phases) or 500 μg 
(for organic phases) of cell proteins were loaded on each lane. SM, 
sphingomyelin. PE, phosphatidylethanolamine. 
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Figure 9. Effects of PDMP treatment on the sphingolipid 
composition in A2780/SAT-I cells. A2780/SAT-I 4T cells were 
treated with 20 μM L- or D-PDMP for 24 and 48 hours. Cell lipids 
were extracted with chloroform/methanol/water, 2:1:0.1 by volume, 
subjected to a two-phase partitioning. Aqueous phases (left panel) 
and organic phases (right panel) lipids were analyzed by HPTLC, 
using chloroform/methanol/0.2% aqueous CaCl2 50:42:11 by 
volume (spray reagent, p-dimethylaminobenzaldehyde) for aqueous 
phases; and chloroform/methanol/water, 55:20:3 by volume (spray 
reagent, 15% H2SO4 in 1-butanol) for organic phases as solvent 
system respectively. The equivalent to 1 mg (for aqueous phases) or 
1 mg (for organic phases) of cell proteins were loaded on each lane. 
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Effect of PDMP treatment on in vitro motility of A2780/HPR and 

SAT-I cells 

 

Treatment with L- or D-PDMP was not toxic; however, it slightly reduced 

A2780/HPR cell proliferation in a dose-dependent manner (data not shown). Since 

PDMP treatment influenced cell number, phagokinetic gold sol assay (PGSA) was 

carried out to determine in vitro cell motility instead of wound healing assay. 

Phagokinetic gold sol assay is highly independent from the cell number and analyzes 

the migration behavior of the single cell. The assay is based on the principle that 

migrating cells ingest, push to one side, or collect on their dorsal surface small 

particles in their path. At least fifty of single cells were analyzed for each situation. 

Treatment with D-PDMP, but not with L-PDMP, was able to significantly increase 

the motility of A2780/HPR and SAT-I cells as shown in Figure 10 and 11. Above all, 

these results further support a role for gangliosides in the regulation of A2780 human 

ovarian cancer cell motility, demonstrating that the high content of gangliosides 

resulted in low cell in vitro motility; on the contrary, low content of gangliosides 

resulted in high cell motility. 
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Figure 10. Effect of PDMP treatment on in vitro motility of 
A2780/HPR cells. A2780/HPR cells were treated with 10 or 20 μM 
of L- or D-PDMP for 48 hours. Phagokinetic gold sol assay (PGSA) 
was performed as described in “Materials and Methods”. L- or 
D-PDMP was maintained in the medium for the whole duration of 
the assay. Phase-contrast microscopy images of the areas of the 
tracks cleared by the cells (upper panel shows representative images 
for each data set) have been recorded at time 0 and after 24 and 48 
hours. Average track areas (means ± S.D. of 50 measurements) 
normalized for the different cell size are reported in the bar graph 
(lower panel). *, p < 0.05 versus controls, cells treated with vehicle 
only. 
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Figure 11. Effect of PDMP treatment on in vitro motility of 
A2780/SAT-I cells. A2780/SAT-I 4T cells were treated with 10 μM 
of L- or D-PDMP for 48 hours. Phagokinetic gold sol assay (PGSA) 
was performed as described in “Materials and Methods”. The L- or 
D-PDMP was maintained in the medium for the whole duration of 
the assay. Phase-contrast microscopy images of the areas of the 
tracks cleared by the cells (upper panel shows representative images 
for each data set) have been recorded at time 0 and after 48 hours. 
Average track areas (means ± S.D. of 50 measurements) normalized 
for the different cell size are reported in the bar graph (lower panel). 
*, p < 0.05 versus controls, cells treated with vehicle only. 
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Effect of PDMP treatment on A2780/SAT-I cells in vitro cell adhesion 

 

Since we have known that PDMP treatment altered the in vitro cell motility of 

A2780/SAT-I cells, and cell motility is tightly correlated with the adhesive ability in 

this cell. We supposed that PDMP treatment may also affect the cell adhesion. To 

confirm our assumption, A2780/SAT-I 4T monoclonal cells were pretreated with 

PDMP for 2 days to inhibit the endogenous gangliosides synthesis. The adhesive 

ability of these cells was analyzed by following cell adhesion assay as described in 

Materials and Methods section. As shown in Figure 12, D-PDMP treatment 

significantly reduced the cell adhesion. However, L-PDMP treatment had no effect on 

cell adhesion, which was similar as the non treatment control. 

Above all, the A2780 cells with high ganglioside GM3 content, including exogenous 

administration (in A2780 wild type cells), endogenous expression (in A2780/HPR and 

SAT-I cells), have a high cell adhesion and low motility. This characteristic can be 

conversed by manipulated depletion of gangliosides levels, indicating that ganglioside 

GM3 plays an important role in modulating both the cell motility and adhesion in 

A2780 cells. The mechanism of this regulation and if other molecules also take part in 

this procedure, need to be further investigated. 
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Figure 12. Effect of PDMP treatment on in vitro adhesion of 
A2780/SAT-I cells. A2780/SAT-I 4T cells were pre-treated with 10 
μM L- or D-PDMP for 48 hours. After that, cells were counted and 
were used for evaluating cell adhesive ability following the 
procedure as described in “Materials and Methods”. Data are the 
means ± S.D. of three different experiments. *, p < 0.05 versus 
controls, cells treated with vehicle only. 

 

Transient silencing of caveolin-1 in A2780/HPR and SAT-I cells 

 

As shown above, the caveolin‐1 level is different in A2780 cells and the cells that 

have higher expression level of GM3 synthase, both A2780/HPR cells and SAT‐I 

clones. To further study the correlation between gangliosides and caveolin‐1 and their 

effects on cell motility in our cell model, we silenced caveolin-1 expression from 

mRNA levels in the A2780/HPR cells and A2780/SAT‐I transfected cells using the 

system of small interference RNA (siRNA) that permits a transient silencing of the 

target gene. The cells, which were transfected with scrambled siRNA sequences under 

the same experiment condition, were used as transfection control. The silencing 
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efficacy was evaluated through western blot analysis and immunofluorescence with 

the use of a specific antibody. The silencing of siRNA targeting to caveolin-1 gene 

induced a reduction of about 60 % and 90 % in A2780/HPR and A2780/SAT-I cells 

for 72 hours transfection, respectively, of the caveolin-1 protein expression respect to 

control scramble transfected cells (Figure 13, Panel A). 

To verify if the reduction in the total expression of caveolin-1 was accompanied by a 

reduced expression of this protein at the plasma membrane level, an 

immunofluorescence analysis was performed with specific anti‐caveolin‐1 antibody in 

scrambled and CAV1 siRNA transfected A2780/HPR cells. The cells were previously 

plated on the sterile glass coverslips and the first transient transfection with scrambled 

or caveolin-1 siRNA was performed after 24 hours and repeated after 48 hours to 

obtain the maximum possible reduction of caveolin-1 expression. After 48 hours, the 

cells were fixed, permeabilized and incubated with primary anti‐caveolin-1 antibody, 

followed by incubation with FITC‐conjugated secondary antibody. The membrane 

expression of caveolin-1 in scrambled A2780/HPR cells was clearly visible allowing 

the determination of cell boundaries, while in the caveolin-1 siRNA transfected cells, 

the cell membranes were not visible indicating that the caveolin‐1 silencing caused a 

strong reduction in caveolin-1 membrane localization (Figure 13, Panel B). The 

plasma membrane distribution of phosphorylation site of caveolin-1, Cav-1-pY14, 

was also detected by this immunofluorescence method (data not shown). Since 

caveolin-1 is phosphorylated in active regions of the cell membrane, such as focal 

adhesions, the presence of Cav-1-pY14 is not spread to the entire membrane but 

limited to a few clusters. For this reason the immunofluorescence of scrambled 

A2780/HPR cells with a specific antibody of Cav-1-pY14 showed just a few visible 

spots of cell membrane. In the siRNA transfected A2780/HPR cells these Cav-1-pY14 

clusters on the cell membrane were no longer visible and this result was in agreement 

with the reduction of Cav-1-pY14 expression analysed by western blot (data not 

shown). These data suggest that the caveolin‐1 silencing in A2780 cells is not only 
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able to reduce the total expression of caveolin‐1, but also can reduce the protein 

localization on the cell membrane and its activation consequent to pY14 

phosphorylation. 
 

 
Figure 13. Caveolin-1 silencing in A2780/HPR and 
A2780/SAT-I-transfected A2780 cells. A2780/HPR and 
SAT-I-transfected A2780 cells have been transfected with siRNA 
targeting to CAV1 gene to reduce the expression of caveolin-1. 
(Panel A) Western blot analysis and quantification of caveolin-1 
expression in A2780/HPR and SAT-I-transfected A2780 cells 
transfected with siRNA targeting to CAV1 mRNA (black bars) or 
with scrambled siRNA as transfection control (Scr) (gray bars). 
Analysis has been performed 24 hours and 72 hours after siRNA 
administration. β-tubulin was detected as a loading control. Patterns 
are representative of those obtained in three independent 
experiments (upper panel). The amount of caveolin-1 present in each 
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sample was determined by densitometry, normalized respect to 
β-tubulin, and expressed as a percentage of time-matched controls. 
Data are the means ± S.D. of three independent experiments. (Panel 
B) Detection of caveolin-1 protein by immunofluorescence analysis. 
Untransfected A2780 cells (left) and A2780/HPR cells transfected 
with scrambled siRNA (middle) or with siRNA targeting to CAV1 
(right) were permeabilized, exposed to a rabbit monoclonal 
anti-caveolin-1 antibody, and then incubated with a secondary 
anti-rabbit antibody conjugated to FITC as described under 
“Materials and Methods”. Fluorescence images are representative of 
those obtained in three independent experiments. *, p < 0.01 versus 
controls, cells treated with vehicle only. 

 

Effect of caveolin-1 silencing on the proliferation level and in vitro 

cell motility in A2780/HPR and A2780/SAT-I cells 

 

Since the levels of caveolin-1 expression were elevated in GM3 synthase 

overexpressed A2780 cells, if caveolin-1 is involved in ganglioside GM3 mediated 

cell motility, is worthy to be determined. Before that, if the transfection influences the 

cell proliferation levels need to be checked. The cells were previously silenced with 

the siRNA targeting to caveolin-1 gene, and then cell proliferation levels were 

measured by MTT reduction assay as described before. There was no difference 

between caveolin-1 silenced cells and scramble sequence transfected cells in the rate 

of cell growth (Figure 14, Panel A).  

According to this result, wound healing assay could be used to assess the in vitro 

motility of caveolin-1 silencing in A2780/HPR and A2780/SAT-I cells. To verify this, 

caveolin-1 was silenced by siRNA transfection as described before, and after 24 hours 

the wound healing assay was performed and continued for another 48 hours. As 

shown in Figure 14 (Panel B), the in vitro motility of A2780/HPR and SAT-I 

transfected A2780 cells, assessed by wound healing assay, was markedly higher in 

caveolin-1 silenced cells compared with scramble sequence transfected cells. A 

significant difference in cell motility was evident already after 48 hours. Seventy two 
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hours after the scratch, the caveolin-1 knocked down A2780/HPR and SAT-I 

transfected cells completely healed the wound, suggesting a leading role of caveolin-1 

in the regulation of the cell motility signal in this cell model. 

At the end of wound healing assay, the cells were lysed for protein and lipid analysis. 

The protein expression of caveolin-1 analyzed by Western blotting showed a similar 

reduction pattern as previous result in caveolin-1 silenced cells (data not shown). The 

gangliosides compositions analyzed by HPTLC showed that there was no any 

difference between caveolin-1 silenced cells and scramble sequence transfected 

A2780 cells (data not shown). 

 

 
 

 

Figure 14. Effects of caveolin-1 silencing on cell proliferation 
level and in vitro cell motility of A2780/HPR and A2780/SAT-I 
cells. (Panel A) Cell proliferation level of A2780/HPR and 
A2780/SAT-I cells transfected with siRNA for CAV1 gene or with 
scrambled siRNA was analyzed by MTT reduction assay measured 
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after 24, 48 and 72 hours plated cells. (Panel B) Wound healing 
assay was performed on the cited cells, as described in Materials and 
Methods section. Phase-contrast images of the wounds were 
recorded at different times and the wound widths were measured. 
Data are expressed in percentage respect to cells treated with 
scrambled sequence and are the means ± S.D. of three different 
experiments. *, p < 0.001 versus controls. 

 

Effects of exogenous administration of gangliosides on caveolin-1 

expression and caveolin-1 phosphorylation level 

 

Since silencing of caveolin-1 by siRNA influenced the existence of pY14 Cav-1 on 

the cell plasma membrane as shown above, implied that maybe not only caveolin-1 

was involved in gangliosides mediated cell signals, but also the caveolin-1 

phosphorylation plays a certain role in this regulation. The tyrosine phosphorylation 

site 14 (pY14) of caveolin-1 is considered as the active form of caveolin-1. Moreover, 

it is the major phosphorylation site of c-Src in vitro (176). Although its functional 

importance is still unclear, the following study is trying to reveal the role of pY14 

Cav-1 under ganglisodies regulation. 

A2780 cells were exogenously administrated with gangliosides under experiment 

condition. The cells were lysed for detecting caveolin-1 and pY14 Cav-1 expression. 

As shown in Figure 15, only ganglioside GM3 treatment slightly increased caveolin-1 

expression. Meanwhile, treatment of ganglioside GM3, GM2 and GM1, but not GD1a, 

significantly increased the phosphorylation levels of caveolin-1 normalized by 

β-tubulin. mRNA levels of caveolin-1 were also analyzed by semi-quantitative PCR 

and the results of mRNA levels showed the similar tendency as the protein levels 

(data not shown). This data recalled us to the effect of gangliosides treatment on the 

cell motility in A2780 cells. It confirmed again that caveolin-1 participated in 

gangliosides modulating cell signaling, and it suggested that gangliosides mediated 

A2780 cell motility through caveolin-1 phosphorylation.  
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Figure 15. Effects of exogenous administration of gangliosides 
on caveolin-1 expression and caveolin-1 phosphorylation level. 
A2780 cell confluent monolayers were administrated with vehicle 
(Control) or 50 μM of GM3, GM2, GM1, or GD1a for up to 48 h. 
After that, cells were analyzed by Western blotting detection using 
specific antibodies against caveolin-1 and Cav-1-pY14. β-tubulin 
was simultaneously detected as a loading control. Patterns are 
representative of those obtained in three independent experiments 
(left panel). The amounts of caveolin-1 and Cav-1-pY14 present in 
each sample were determined by densitometry, normalized respect 
to β-tubulin respectively, and expressed as a percentage of control 
(right panel). Data are the means ± S.D. of three independent 
experiments. *, p < 0.01 versus controls, cells treated with vehicle 
only. 
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Effects of PDMP treatment on caveolin-1 expression and caveolin-1 

phosphorylation level 

 

In order to demonstrate that pY14 Cav-1 takes part in gangliosides regulation of 

A2780 cell motility, A2780/SAT-I 4T cells were treated with L- or D-PDMP for 24 

hours or 48 hours. After the treatment, cells were lysed to analyze by Western blotting 

with specific antibodies against caveolin-1 and pY14 Cav-1. As shown in Figure 16, 

both L- and D-PDMP treatment had no effect on caveolin-1 expression. However, 

D-PDMP, but not L-PDMP treatment was able to reduce caveolin-1 phosphorylation 

levels in A2780/SAT-I cells in a time dependent manner. Thus, in A2780 cell model, 

the phosphorylation level of caveolin-1 is related to gangliosides patterns, further 

indicating that gangliosides modulation of A2780 cells through caveolin-1 

phosphorylation. 
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Figure 16. Effects of PDMP treatment on caveolin-1 expression 
and caveolin-1 phosphorylation level. A2780/SAT-I 4T cells were 
treated with 20 μM L- or D-PDMP for 24 and 48 hours. Total cell 
lysate from control or PDMP treatment cells were analyzed by 
Western blotting detection using specific antibodies against 
caveolin-1 and Cav-1-pY14. β-tubulin was simultaneously detected 
as a loading control. Patterns are representative of those obtained in 
three independent experiments (lower panel). The amount of 
caveolin-1 and Cav-1-pY14 present in each sample were determined 
by densitometry, normalized respect to β-tubulin respectively, and 
expressed as a percentage of time-matched controls (uppper panel). 
Data are the means ± S.D. of three independent experiments. *, p < 
0.01 versus controls, cells treated with vehicle only. 
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Effects of the modulation of caveolin-1 and cellular ganglioside levels 

on c-Src activity 

 

These results indicate that both gangliosides and caveolin-1 exert an inhibitory 

regulation on the motility of A2780 human ovarian carcinoma cells. In addition, they 

suggest that gangliosides and caveolin-1 might be organized in a multimolecular 

complex together with c-Src and integrin receptors. Several papers indicated that 

GM3 is able to negatively affect cell motility stabilizing the formation of a 

integrin/tetraspanin membrane complex, leading to the inhibition of c-Src 

(81,86,232,233). On the other hand, caveolin-1 suppression of metastatic potential in 

osteosarcoma (234) and melanoma (235) has been linked to the inhibition of c-Src 

activation. In addition, we have previously shown that the motility of low GM3 

synthase-expressing A2780 cells was reduced in the presence of a Src inhibitor, and 

that c-Src was less active in A2780 SAT-I-transfected cells (4). To confirm the role of 

c-Src in the control of cell motility in this cell model, we assessed Src kinase activity 

after different treatments were able to modify the gangliosides or caveolin-1 levels in 

these cells, resulting in variations in the cell in vitro motility. 
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Figure 17. Effects of the modulation of caveolin-1 and cellular 
ganglioside levels on c-Src activity. (Panel A) A2780/HPR cells 
were treated with 10, 20 μM L- or D-PDMP for 48 hours. Total cell 
lysate from control or PDMP treatment cells were analyzed by 
Western blotting detection using specific antibodies against c-Src, 
c-Src-pY416 and c-Src-pY527. β-tubulin was simultaneously 
detected as a loading control. Patterns are representative of those 
obtained in three independent experiments. (Panel B-D) c-Src 
activity has been measured as autophosphorylation using an 
immunocomplex kinase assay as described under “Materials and 
Methods”. Briefly, c-Src has been immunoprecipitated with a 
specific monoclonal antibody from cell lysates obtained under the 
different experimental conditions. Immunoprecipitates have been 
incubated with 10 μM [γ-32P]ATP. After incubation, proteins 
associated with each sample have been separated by SDS-PAGE. 
The total amount of c-Src associated with each sample has been 
determined by Western blotting and densitometry (left panels). The 
amount of radioactivity associated with the band corresponding to 
c-Src protein has been determined by autoradiography and has been 
normalized for the total c-Src content associated with each sample 
(right panels). (Panel B) Effect of caveolin-1 silencing in 
A2780/HPR cells. A2780/HPR cells were transfected with siRNA 
targeting to CAV1 mRNA (black bars) or with scrambled siRNA as 
control (white bars). Analysis has been performed 48 hours after 
siRNA transfection. (Panel C) Effect of gangliosides depletion by 
treatment with D-PDMP in A2780/HPR cells. A2780/HPR cells 
were treated with 20 μM D-PDMP (balck bars) or with vehicle 
(white bars) for 48 h. (Panel D) Effect of exogenous gangliosides 
administration in A2780 cells. Cells were treated with 50 μM of 
GM2 for 48 h or with 50 μM of GM3 for 24 and 48 h in serum-free 
medium as described under “Materials and Methods”. Data are the 
means ± S.D. of four independent experiments. *, p < 0.05 versus 
controls, cells treated with vehicle only. 
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We first checked c-Src and its phosphorylation sites expression under the treatment of 

L- or D-PDMP in A2780/HPR cells through Western blotting analysis. As shown in 

Figure 17 (Panel A), the levels of both c-Src and the inactive form of Src (pY527 

c-Src) were not changed by L- or D-PDMP treatment. However, the expression of the 

active form of Src (pY416 c-Src) was strongly elevated in the case of D-PDMP 

treatment, indicating that c-Src turned to be an active form in the absence of 

gangliosides. 

This result is further confirmed by immunocomplex kinase assay, which is specific 

useful for detecting tyrosine protein kinase activity. In A2780/HPR cells, abolition of 

gangliosides synthesis by D-PDMP treatment (associated with increased cell motility) 

led as well to c-Src kinase activation with similar levels of c-Src protein (Figure 17, 

Panel C). However, the exogenous administration of monosialoganliosides GM3 and 

GM2 to A2780 wild type cells (a treatment able to strongly inhibit the cells in vitro 

motility) was able to significantly inhibit c-Src autophosphorylation, even if in this 

case we observed an increased amount of c-Src protein in the ganglioside treated 

samples, which might represent a compensatory mechanism (Figure 17, Panel D). 

Transient silencing of caveolin-1 in A2780/HPR cells (that positively affected in vitro 

cell motility) resulted in a higher c-Src kinase activity with respect to control cells 

transfected with scrambled sequence, not affecting the total cellular levels of c-Src 

(Figure 17, Panel B). These data strongly suggest that the activity of c-Src, which is 

inversely correlated with cell motility, is regulated by the membrane gangliosides 

composition and/or the presence of caveolin-1. 
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Effects of PDMP treatment on lipids gradient distribution in 

A2780/SAT-I cells 

 

We have known that D-PDMP treatment inhibited the gangliosides synthesis in 

A2780/SAT-I cells, in order to analyze the effect of the inhibitor on the gangliosides 

localized in cell membrane; we prepared a ganglioside- and caveolin-1 enriched 

detergent resistant membrane (DRM) fraction from SAT-I transfected cells treated 

with L- or D-PDMP under experimental condition. To do this, cells were lysed in the 

presence of Triton X-100 and subjected to discontinuous sucrose gradient 

centrifugation as described in Materials and Methods section. To validate the 

experimental conditions used for the fractionation, the distribution of sphingolipids, 

phosphatidylethanolamine (PE) and phosphatidylserine (PS) along the gradient 

fractions were evaluated after lipid metabolic labeling with [1-3H]sphingosine. As 

expected, the low density detergent resistant membrane fraction (fractions 4, 5 and 6) 

was highly enriched in sphingolipids (ceramide, GlcCer, sphingomyelin (SM) and 

gangliosides), and relatively depleted of glycerophospholipids. The major amount of 

glycerophospholipids (phosphatidylethanolamine (PE) and phosphatidylserine (PS)) 

existed in high density fraction (fractions 9, 10 and 11). The fractions 7 and 8 were 

put together as the intermediate fraction. D-PDMP treatment only slightly reduced the 

distribution of glycerophospholipids in DRM fraction, however, did not change 

sphingolipids and other glycerophospholipids distribution in this case (Figure 18, 

Panel A and B). Cholesterol, another important membrane lipid, which is supposed to 

bind with caveolin-1 in DRM fraction, was also analyzed by HPTLC. As shown in 

Figure 18 (Panel C), there was a significant shift of cholesterol from both DRM 

fraction and intermediate fraction to high density fraction. However, D-PDMP did not 

alter the total levels of cholesterol in the cells (data not shown). This movement may 

be caused by the dynamic of caveolin-1 (Figure 19, Panel A); however, the 

mechanism is needed to be explored. 
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Figure 18. Effects of PDMP treatment on lipids gradient 
distribution in A2780/SAT-I cells. After metabolic labeling of 
A2780/SAT-I 4T cell lipids with [1-3H]sphingosine, cells were 
treated with 20 μM L- or D-PDMP for 48 hours. Cell gradient 
fractions were prepared by sucrose gradient centrifugation after lysis 
in the presence of 1% Triton X-100 as described under “Materials 
and Methods”. The relative quantities of each lipid in pooled DRM 
(fractions 4-6), Intermediate (fractions 7-8) and HD (fractions 9-11) 
fractions were calculated by densitometry and were expressed as 
percentage of total signal assessed in the histogram. (Panel A-B) 
The lipids of different fractions were extracted with 
chloroform/methanol, 2:1 by volume. The radioactive lipids were 
separated by HPTLC, using chloroform/methanol/water 55:20:3 by 
volume. After that, the plate was acquired under Beta-Imager 2000 
instrument for at least 3 days. The radioactivity image was 
quantified with the specific β-Vision software provided by Biospace. 
The detectable glycerophospholipids in these samples are 
phosphatidylethanolamine (PE) and phosphatidylserine (PS). The 
detectable sphingolipids include ceramide, GlcCer, sphingomyelin 
(SM) and gangliosides. (Panel C) The lipids of different fractions 
were also subjected to a two-phase partitioning and were divided 
into aqueous phase and organic phase. Cholesterol exists in the 
organic phase. After methanolyzation to get rid of the 
glycerophospholipids, the organic phases were analyzed by HPTLC, 
using hexane/ethyl acetate 3:2 by volume (spray reagent, 
anisaldehyde). Data are the means ± S.D. of three independent 
experiments. *, p < 0.05 versus controls, cells treated with vehicle 
only. 
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Effects of PDMP treatment on protein gradient distribution in 

A2780/SAT-I cells 

 

Since PDMP treatment also influenced the caveolin-1 phosphorylation levels, altered 

Src activity, and changed the integrin-mediated cell adhesion, we are interested to 

know these protein gradient distributions in the treatment of PDMP. The distributions 

of proteins usually regard as positive (caveolin-1) or negative (integrin α5) lipid raft 

markers along the gradient fractions were analyzed by immunoblotting using specific 

antibodies. As shown in Figure 19, the DRM fraction prepared from SAT-I 

transfected cells was highly enriched in caveolin-1, whereas integrin α5 was largely 

recovered in the high density fraction of the gradient. 

Under the treatment of D-PDMP, but not L-PDMP, was able to concentrate 

caveolin-1 to intermediate fraction from both DRM fraction and high density fraction, 

and this difference was significant (Panel A). There was also a shift of c-Src from 

DRM fraction to intermediate fraction, however, the distribution did not change in the 

high density fraction after PDMP treatment (Panel C).  

As mentioned above, integrin α5 mediated A2780 cells attachment to fibronectin. 

Furthermore, integrin α5 usually binds together with gangliosides that forms a 

gangliosides/integrin α5 complex to regulate cell signals. After D-PDMP treatment, 

integrin α5 moved out from high density fraction, which existed most of the proteins 

(about 90%) of the cells, to the DRM fraction and intermediate fraction (Panel B). 

Although the distributions of caveolin-1, c-Src and integrin α5 were altered in 

different patterns, the total expressions of these proteins were not changed by PDMP 

treatment, suggesting that gangliosides-mediated cell signals via these molecules, not 

only change the phosphorylation level and kinase activity, but also through changing 

the distribution of these molecules in the DRM fractions. The mechanism of this 

regulation and the composition of this signaling complex are worthy to be 

investigated. 
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Figure 19. Effects of PDMP treatment on protein gradient 
distribution in A2780/SAT-I cells. After metabolic labeling of 
A2780/SAT-I 4T cell lipids with [1-3H]sphingosine, cells were 
treated with 20 μM L- or D-PDMP for 48 hours. Cell gradient 
fractions were prepared by sucrose gradient centrifugation after lysis 
in the presence of 1% Triton X-100 as described under “Materials 
and Methods”. The gradient fractions were mixed with 5×sample 
buffer by the ratio 4:1. The protein distribution was determined by 
Western blotting, using specific antibodies against caveolin-1, 
integrin α5 and c-Src. The relative quantities of each protein in 
pooled DRM (fractions 4-6), Intermediate (fractions 7-8) and HD 
(fractions 9-11) fractions were calculated by densitometry and were 
expressed as percentage of total signal assessed in the histogram. 
(Panel A and C) Caveolin-1 and c-Src distribution were detected by 
Western blotting. The loading volume is 1/100 of the total volume of 
each fraction. (Panel B) For assessing integrin α5 distribution, the 
loading volume is 1/50 of the total volume from fraction 4 to 9, the 
loading volume is 1/100 of the total volume for fraction 10 and the 
loading volume is 1/1500 of the total volume for fraction 11. 
Patterns are representative of those obtained in three independent 
experiments. 
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The pieces of evidence provided in my thesis, together with our previously published 

results (229), indicate that, in human ovarian cancer cells, an increased cellular 

gangliosides content, caused by the enhanced expression of GM3 synthase, is 

paralleled by a marked up-regulation of the membrane adaptor protein caveolin-1. 

The result of concomitantly high levels of gangliosides and caveolin-1 is a marked 

reduction of in vitro cell motility. Up-regulation of caveolin-1 and reduced cell 

motility were observed in two cellular models in which higher GM3 synthase activity 

with respect to wild type cells has been obtained by two entirely different procedures: 

the genetic manipulation of GM3 synthase levels by its stable overexpression in the 

case of SAT-I-transfected A2780 cells, or the selective pressure in the presence of a 

drug, N-(4-hydroxyphenyl)retinamide) in the case of A2780/HPR cells. The existence 

of a causal connection between high levels of gangliosides and caveolin-1 and the 

observed reduction of cell motility is supported by the depletion experiments, as 

shown in Figure 10, Figure 11 and Figure 14. Both caveolin-1 silencing and block of 

gangliosides biosynthesis by pharmacological inhibition of glucosylceramide synthase 

led to a strong enhancement of cell motility. These results indicate that high levels of 

caveolin-1 and high levels of gangliosides are necessary, but not sufficient, if 

independent, to down-regulate cell motility. Thus, the regulation of cell motility 

requires a certain degree of cooperation between gangliosides and caveolin-1. 

Caveolin-1, an integral membrane protein originally discovered as a main structural 

component of caveolae, soon gained a role as a molecular organizer for multiprotein 

signaling complexes, due to its ability to interact with several proteins involved in 

signal transduction and to concentrate whole signaling modules in specialized plasma 

membrane areas, allowing their functional regulation. Caveolin-1 is insoluble in cold 

non-ionic detergents (236), and can be enriched in low density, Triton 

X-100-insoluble membrane fractions. These fractions, highly enriched also in 

cholesterol and sphingolipids, putatively correspond to lipid rafts. Thus, caveolin-1 at 

the plasma membrane is concentrated in a lipid-rich membrane environment, and 

lipids affect several of the functionally relevant properties of caveolin-1. Caveolin-1 

and sphingolipids not only co-localize in the same detergent-resistant membrane 
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fraction, but several pieces of evidence indicate that they can be close enough in 

specialized membrane subdomains to allow a direct interaction between the 

transmembrane domain of caveolin and the hydrophobic moiety of the lipid (217,237). 

In SAT-I-transfected A2780 ovarian carcinoma cells, photoreactive GM3 is able to 

label caveolin-1 in a detergent resistant membrane preparation (4). In a few cases, it 

has been as well reported that detergent-resistant association of caveolin-1 and 

sphingolipids is strong enough to allow co-immunoprecipitation. Caveolin-1 can be 

immunoprecipitated by a monoclonal antibody to ganglioside GD3 in CHO cells 

transiently transfected by GD3 synthase cDNA (238). 

Here we have reported that caveolin-1 and gangliosides are enriched in a Triton 

X-100 insoluble fraction and that a significant portion of the sphingolipids associated 

with the DRM fraction can be recovered upon immunoprecipitation with 

anti-caveolin-1 antibody (239). Therefore, we hypothesize that the formation of a 

ganglioside/caveolin-1 complex, occurring in cells with concomitantly high levels of 

both components, might be involved in the negative regulation of ovarian carcinoma 

cell motility. We tried to elucidate the downstream signaling pathway possibly 

affected by the ganglioside/caveolin-1 complex. Our results indicated that integrin 

receptor subunits and the non-receptor tyrosine kinase c-Src are cooperated together 

with caveolin-1 and sphingolipids within detergent-resistant membrane fractions. 

Moreover, integrin receptor subunits and c-Src co-immunoprecipitate with caveolin-1. 

Caveolin-1 (6,7) and Src kinases (172,173) are typically associated with 

sphingolipid-enriched membrane domains or other subtypes of lipid rafts also in other 

cell types. In addition, it has been suggested that caveolin-1 might act as a membrane 

adapter coupling integrin receptors to Src kinases (174), and that caveolin-1-mediated 

inactivation of the integrin/Src/FAK pathway might be responsible for the inhibition 

of metastatic potential in melanoma (235). Our results strongly support the hypothesis 

that the inactivation of c-Src by a ganglioside/caveolin-1 complex might result in the 

downregulation of ovarian carcinoma cell motility. We have previously shown that a 

Src inhibitor was able to inhibit the motility of A2780 cells (expressing low GM3 

synthase and low caveolin-1), and that c-Src was less active in SAT-I-transfected cells 
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(4), characterized by high caveolin-1 levels. Now we report that treatments able to 

reduce the content of caveolin-1 (CAV1 siRNA) or of gangliosides (glucosylceramide 

synthase inhibition) in A2780/HPR and in SAT-I-transfected A2780 cells, led to 

enhanced c-Src kinase activation and increased motility. On the other hand, 

ganglioside administration to A2780 cells, able to reduce their motility, resulted in 

c-Src kinase inactivation. 

Moreover, we noticed that changing of gangliosides content by D-PDMP treatment 

did not influence the expression of caveolin-1, c-Src and integrin, but altered the 

distribution of these molecules. Caveolin-1 moved to the intermediate fraction, which 

the composition is still unclear so far. Meanwhile c-Src showed the similar pattern as 

caveolin-1. Interestingly, integrin α5 (also for β1 subunit) (data not shown) shifted 

from high density to both DRM and intermediate fractions. All of these results imply 

that the changing of gangliosides compositions resulted in the shift of molecules 

related to gangliosides signaling. D-PDMP treatment can also reduce caveolin-1 

motility (data not shown), thus we supposed that caveolin-1 may bind to other 

molecules in the case of PDMP treatment. Since both caveolin-1 and integrin α5 

inclined to move the intermediate fraction under this condition, integrin α5 is 

supposed to be a probably candidate associated with caveolin-1 and slows down the 

motility of caveolin-1 after D-PDMP treatment. 

Taken together, all these data suggest a novel role of gangliosides in the regulation of 

cell motility in human ovarian carcinoma cells, by affecting the organization of a 

signaling complex organized by caveolin-1 and integrin α5, responsible for Src 

inactivation.  

Our results call the attention to two aspects that probably deserve future consideration. 

First, despite the much higher expression of caveolin-1, the morphological analysis 

revealed the absence of caveolae both in A2780/HPR and SAT-I-transfected A2780 

cells, as the wild-type A2780 cells. This finding might seem in contrast with the usual 

association between caveolin-1 and caveolae, but is indeed in agreement with the 

diverse and multiple caveolae-independent roles of caveolin-1 that have been 

described in the last few years (6,7,240). The second aspect is related to the 
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observation that cellular ganglioside or GM3 synthase levels can regulate the 

expression of caveolin-1. Yamagata et al. showed that GD1a ganglioside regulated 

caveolin-1 expression in FBJ mouse osteosarcoma cells (241). Also in that case, the 

concomitant increase in a certain ganglioside and in caveolin-1 seems to be related to 

the possible role of caveolin-1 as a tumor suppressor. FBJ mouse osteosarcoma cells 

and A2780 human ovarian carcinoma cells exist in different phenotypic variants, 

characterized by strikingly different in vitro cell motility. For both cell types, the low 

motility variants are characterized by high ganglioside and high caveolin-1 expression, 

while the high motility variants contain low ganglioside and low caveolin-1 levels. 

Treatment of the highly motile FBJ-LL osteosarcoma cell line with exogenous GD1a 

ganglioside or transfection with GM2/GD2 synthase cDNA resulted in the 

upregulation of caveolin-1 expression with reduced metastatic potential and 

suppressed cell adhesion to vitronectin (242). Similarly, GM3 synthase-transfected 

A2780 ovarian carcinoma cells were characterized by an increased expression of 

caveolin-1 and reduced in vitro cell motility. However, the mechanism underlying the 

regulation of caveolin-1 expression by the cellular gangliosides levels is totally 

unknown. The relationship between gangliosides and other molecules related to this 

signaling pathway need to be further investigated.
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