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The accuracy of the Faddeev random phase approximationAJRRe&hod is tested by calculating the total
and ionization energies of a set of light atoms up to Ar. Canispas are made with the results of coupled-
cluster singles and doubles (CCSD), third-order algetata@igrammatic construction [ADC(3)], and with the
experiment. It is seen that even for two-electron systenesaktl B&", the inclusion of RPA fects leads to
satisfactory results and therefore it does not over-caigehe ground state. The FRPA becomes progressively
better for larger atomic numbers where it givgssmH more correlation energy and it shifts ionization paedat
by 2-10 mH, with respect to the similar ADC(3) method. Theization potentials from FRPA tend to reduce
the discrepancies with the experiment.
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I. INTRODUCTION

Ab-initio studies of electronic systems aim at a direct solution oSttleddinger equation in terms of the underlying Coulomb
interaction, thus avoiding phenomenological input [1]. Sflcontemporary investigations of molecular and atomid¢esys
employ the coupled-cluster (CC) method [2] due to its falsg@ccuracy and the gentle scaling of computational requents
with increasing number of particles. One can thus calcutaikecules for which full configuration interaction (FCI) wld not
be feasible. Another approach with analogous charadtaristthe Green’s function (GF) theory (or, equivalentisggagator
theory) [3-6]. An early scheme based on this approach is therwalence GF (OVGF) [7, 8] which expands ionization
energies up to third order in perturbation theory. The OV&Wary practical and computationally simple, and it has tbun
several applications to studies of ionization spectra 23—However, it becomes inaccurate whenever inner and -aalence
ionization energies (IEs) are subject to shake-up contatioins [13—15]. In such cases one needs to resort at leaketo t
third-order algebraic diagrammatic construction [ADG@)ethod [16, 17]. The ADGY{) approach is an intermediate state
representation [18, 19] of the GF made to be consistent véttugbation theory up to order. Thus, it is size consistent and
can be systematically improved by going to higher orders. tke® one-body propagator, ADC(3) implies to perform explic
configuration mixing between valence electrons and shakesafigurations such as two-hole—one-particle (2h1pjartado-
particle—one-hole (2p1h) [21]. These states are mixedthegdy ADC(3) theory in a Tamm-Danffcapproximation (TDA)
fashion. The accuracy of the ADC(3) approach has been tessederal studies for both IEs [20, 21] and excited stat2s33].

Green’s function theory has also extensive applicatiorsotol states physics where the most successful scheme @#the
approximation (GWA) [24-26]. The GWA describes the modifma of electrons through repeated interactions with @slle
tive particle-hole (ph) excitations of the system, whick described in the random phase approximation (RPA). The iRPA
essential for extended systems because it screens themimirteraction at large distances [5, 6]. Thus, it guaranfiite
correlation energies in metals and the uniform electron[8&s30]. In contrast, the TDA plasmon spectrum is incoresud
even diverges at small momenta. The GWA, however, is notyawatisfactory. As an example two-particle (pp) or twoehol
(hh) configurations—that would be included by ADC(3) but motGWA—are necessary to explain satellite structures above
and below the Fermi surface [31]. How to include thefeats dficiently in GWA is still being researched [32]. Conversehe t
inclusion of RPA in atomic and molecular studies may be athgaous for describing long-range (van der Waals) forcds an
dissociation processes [33—-35]. Thus, a practical metmaiccbmbines ADC(3) with RPA might become beneficial to thie$ie
above.

In a recent publication we have consideredabenitio calculation of the Ne atom using Green'’s function theoryhi@ $0-
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FIG. 1: The self-energ¥* (w) separates exactly into a mean-field teE¥!, and the polarization propagatd®&1V211P) () for the 2plii2hlp
motion, as shown in a). Upon expansiorR{y) in Feynman diagrams, one obtains the series of diagranms H)é self-energy. The diagram
c) is another—more complicated—term appearing in the esiparof R?P1W(w). This is also included in the FRPA contribution of Fig. 3
but it introduces a time ordering not generated by FTAIAC(3). Dashed lines are antisymmetrized Coulomb matexnentsV,s,s, single
lines represent the reference state (a HF propagator) hardbuble lines represent the correlated propagator oflEgA(l diagrams are time
ordered, with time propagating upward.

called Faddeev random phase approximation (FRPA) [36wvas originally proposed for studies of nuclear strucfre-41]
This approach completely includes 2p1h and 2h1p stateg isdifrenergy but expands these configurations in termsupficms
between valence particles and (simpler) ph anthipexcitations that are calculated using RPA. By calcudgtivese excitations
in TDA one is led back to the ADC(3) scheme. Stated othentliiselFRPA can be seen as an extension of ADC(3) that employs
RPA for pairs of electron and hole excitations (see also R&].for a discussion). The inclusion of RPA opens a possidg

for treating long-range correlations in both finite and exlied electron systems on a equal footing. Yet, there remaimeber

of issues that need to be addressed before this approacle caade useful for electronic structure calculations. Firss not
guaranteea priory that this method will perform equally well as the ADC(3) fewf-electron cases: while Pauli correlations
are fully included up to 2pJRBh1p level, the use of RPA still includes violations for monplex excitations. Instabilities and
self-screening problems induced by RPA may become moreetid light systems [32]. Moreover, the conclusions of [R&6)
were based on calculations made for only one system (thed¥e) @ind the single particle basis was not optimized to gueean
the full convergence of core electrons. Hence, a deepestigation of its accuracy is still in order. Second, the usbn

of Pauli exchange at the 2p2i1p level introduces technical complications with respeche standard GWA approach and
suitable computational schemes will need to be developeddplications to extended systems. This work addressefgshe
guestion by applying FRPA to a set of light atoms and usingetation consistent bases for extrapolating to the basimsie.

The essential features of FRPA are reviewed in Sec. I, ferpéper to be self-contained. References to the detailseof th
formalism are also given. In our calculations we adopt gandsasis sets and discuss the accuracy of extrapolatidhe tmsis
set limit in Sec. lll A. The results for total energies and HEs given in Sec. Il B and the major conclusions are sumradriiz
Sec. IV.

II. FORMALISM

In the present study we consider the calculation of the shpglrticle propagator [4, 6],
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wherea, 8, ..., label a complete orthonormal basis and
Z = (e, et =ERTT By,
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In these definitionsg, (c;) are second quantization destruction (creation) opesats}*®), |¥}'~1) are the eigenstates, and
EN+L, EL\“l the eigenenergies of th&l & 1)-electron system. Therefore, the poles of the propagefiect the electronfinities



(EAs) and IEs. Eq. (1) also yields the total binding energythie Migdal-Galitskii-Koltun sum rule [6],
1 - .
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whereu,s represent the matrix elements of the one-body part of theltaman (kinetic energy plus nuclear attraction) and the
k-sum runs only over the eigenstates of the (N-1)-electrstesys.
The one-body Green'’s function solves the Dyson equatiam{fnereafter, summations over repeated indices are in)plied

Gp(@) = dog(@) + &0, (0) E35(w) Gop(w) 4

whereg®(w) is the propagator for a free particle. The irreducible-aeiérgyz;d(w) acts as anféective, energy-dependent,
potential that can be written as [43, 44]

D) = M+ Sew) (5)
dw

- 1
= | 5 Vorss Gn(@) €+ ZVouy [ REPD v (@) + RED (@) | Vv -
andV,g s are antisymmetrized Coulomb matrix elements. In Eq. (5) aeeremphasized the mean-field (MF) contribution
to the self-energy. This generalizes the Hartree-Fock (ptfgntial by replacing the Slater MF with the (correlatedpsity
matrix extracted from the dressed propagator (1). TNeis represented by the first diagram on the right hand sidegs. Bia)
and 1b). The remaining terrii(w), accounts for deviations from the mean-field and dependse8plh and 2h1p polarization
propagatorsR@P1" (w) and R?"P)(w). These involve the simultaneous propagation of 2p1h (4p2hnd higher excitations.
Eq. (5) is represented in Fig.1a) in terms of Feynman diagraiheR(w) can also be expanded in terms of Coulomb matrix
elements and unperturbed propagators, as shown in Figandiic).

A. TheFaddeev random phase approximation method

The Faddeev approach consists in expan®®gl” andR"P in terms of couplings between single electrons or holes and
ph, pp or hh excitations [36, 45]. Information about thedais fully contained in the ph polarization propagator ttescribes
excited states of thN-electron system
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and the two-particle propagator that describes the adgigmoval of two electrons
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These Green’s functions are calculated as resummatioisgodund ladder diagrams using either the TDA or the RPA,
(TDA/RPA) _ 140 (TDA/RPA) 0 (TDA/RPA) (TDA/RPA)
Haﬁy s (w) = Haﬁ’y p (w) + Haﬁw (W) Vipvp pr s (), (8)
1
I1 (TDA/RPA 0 (TDA/RPA; 0 (TDA/RPA) I1 (TDA/RPA
s @) = o @) + 2G0T 0) Vi 6,55 (@) ©)

The diference between the two approximations is in the choice gitbagators for non the interacting @i°j and pghh (g°)
configurations. Both of these contain a term that consehe=ditection of time propagation and one that inverts it. iyuding
only the first term the TDA equations are obtained. If bothtdbations are retained, one is led to the RPA. The RPA induce
extra time orderings in the resummations of Eqgs. (8) andg8hawn in Fig. 2 for the ph case. These account for 2p2h and mor
complicated admixtures in the ground state that are gesgblst correlations.
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FIG. 2: Expansion of the ph propagaf(w) in a series of ring diagrams. The diagrams resummed by TRAshown in the first line.
The second line gives examples of time-inversion pattdrasare generated only by RPA, these account for the preséE2h and more
complicated configurations in the correlated ground sfiite.diagrams are time ordered, with time propagating upward

FIG. 3: Left: Example of one of the diagrams 82" (w) that are summed to all orders by means of the Faddeev mefaath. of the ellipses
represent an infinite sum of ringH(w)] or ladders §' (w)], as generated by Egs. (8) and (9). Contributions of alkjibe partial waves are
included. Right: The corresponding contribution to the self-energy, olatdinpon insertion oR?*(w) into Eq. (5). This representation
is valid for both the FTDA and FRPA approaches, th@edence between the two being in the diagrams implicitly mesed insidell(w)
andg' (w) (see Fig. 2).

The RPN () and R"P)(w) propagators are obtained by first calculatligindg'' and then by recoupling them to single
electron or hole states, as shown in Fig. 3. This is done hyrepthe set of Faddeev equations detailed in Refs. [36, W&].
refer to this procedure as Faddeev TDA (FTDA) or Faddeev Réffedding on the approximation chosen to solve Egs. (8) and
(9). The Faddeev summation and the diagram depicted in Fige he same in both cases. Contributions from ph, pp and hh
excitations in all possible partial waves are included ifrPBETDA since this is required for a complete solution of thetpeon.

In order to fulfill Pauli constraints up to 2p1h and 2h1p lanehe expansion foR(w) one must employ the generalized version
of RPA (in which the Coulomb matrix elements are the antisytiired ones). Two separate sets of Faddeev equationsate us
for RPN () andRAMP) (1),

The Faddeev procedure can be recast in terms of two diagatiahis in the 2pl1h and the 2h1p configuration spaces. In each

case one solvesrn-hermitian eigenvalue problem [45]

Hed F = FEgq FlFF=1, (10)

whereErq = diag{E®)} and the Faddeev hamiltonidivq is constructed from the solutions of Egs. (8) and (9). Rfe™
propagator is written in terms of the eigenvectstd and eigenenergi ('2,

(2p1h) _ (n)\(2p1h) 1 (it 1)2PL)
thﬁ%ﬂwl(w) - Z (U F )aﬁy _gM (F U ),ml ’ (11)
n w EF qtim

and an analogous relation holds ®RF"™P. In Eq. (11), the matriX)ygsy.pph iS @ correction vertex chosen—in analogy with
ADC(3) theory—as the minimum coupling that ensures coesist with perturbation theory up to third order. When coctied
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with Vo, in EQ. (5), it reproduces exactly the sanféeetive coupling amplitudes of ADC(3) [17]. The explicit forof the
FTDA/FRPA equations is given in Ref. [36] and their reduction toatrir diagonalization (10) is described in [45].
Inserting Eq. (11) into (5) and (4), the Dyson equation iasfarmed into a diagonalization problem

MF iyt i
Z z (U v )2plh (U v )2h1p z
&| Wapnn |=| (VWpn  (FEraFT), 0 Wapth | (12)
W2hip (VU)Zhlp 0 (F Erq FT)zhlp W2hip

2 2 2
1zl + Iwepyll® + lIWenpll© = 1,

which can be solved directly for the IE and E£;/~, and the corresponding residues, in the single particle propagator (1).
In the particular case of the FTDA, one finds that the Faddeewiltonian is hermitian and is equivalent to the sarffective
interaction among 2p1h or 2h1p states in ADC(3). In this ddseoa = FEFtpaF' and Eq. (12) reduces to the usual Dyson
ADC(3) matrix.

I11. RESULTS

We considered a set of neutral atoms and ions corresporalsttgll- and subshell-closures witkxZ8. The calculations of
the smallest systems (He, Be andBevere performed using the correlation-consistent padion valence gaussian bases, cc-
pVXZ, of increasing quality from double- to quintuple-z€¥=2-5). For the larger atoms it was found that a sizable fraatio
the correlation energy is lost with similar bases. The reingisystems were therefore calculated with the correspgrabre-
valence bases, cc-pCVXZ, which include additional comgactssians to improve the description of the core electrdhss
choice was seen to speed up the convergence and led to &cmsalts for these atoms [55]. The correction to the cdicgla
energies induced by the extra core orbits increases witmuingber of electrons and it was found to 440 mH for Ne and
~300 mH for Mg, in the cc-pCVQZ basis.

The bases for the Be (Mg?*) ions were obtained from the cc-p(C)VXZ sets for He (Ne) halisg the corresponding
single-particle orbits to correct for theftérent atomic number,

i ) Z
¢|Be2+/Mg2+(r) o« Phenelr N) (13)

where Z is the nuclear charge anegEl2 the number of electrons.

Correlation and ionization energies were computed witl tiee FTDA¢ADC(3)c and the FRPAc methods. In this notation,
the letter 'c’ indicates the self-consistent treatmentef$ole MF diagram in the self-energy. This means It was derived
by iterating Eq. (4) and the first term on the right hand sidé&inthe first diagram in Figs. 1a) and 1b)]. In other worB¥F
is renormalized by evaluating it directly in terms of theljudorrelated propagator, instead of the reference stdtes. aspect is
important since it consistently includes all the pertuidratheory contributions up to third-order and more. Theatyit part
of the self-energ¥(w) was instead calculated in terms of a HF reference state giidvend-state energies were also compared
to the results of CC singles and doubles (CCSD) theory,stgfitom the same HF reference state.

A. Convergence

Total binding energies predicted by both Green’s functiwoty and CCSD are compared with the results of full configoma
interaction (FCI) in Table. I. For Ne atom in cc-pCVDZ, Gré&sfunctions and CCSD agree with each other and deviate from
the exact result by less than 2 mH. FRPA gives just a very sooatection but it halves the discrepancy between FTDA and
FCI. The total correlation energy for this basis is 233 mHe @tom of Be is the most flicult case among those discussed here
due to the fact that this is not a good closed-shell systerthisrcase, a near degeneracy between the 2s and 2p orhaiddstte
very soft excitations of the"31~, S=1 states and drives the ph-RPA equations close to instabilite FRPA was thus solved
by employing the TDA approximation of the polarization pagator, Eq.(6), in this channel alone (all other partial @awere
treated properly in RPA). The resulting correlation enesgigree with FTDAADC(3)c, indicating that RPA is not crucial for
this small system, but neither does it introduce spuriesitiy over-correlating the ground state. FCI calculatidrBeowere
possible for all bases up to quintuple-zeta and are repemtibg CCSD with high accuracy. However, FTDA®C(3)c and
FRPACc are consistently behind by about 9 mH, correspondiri®b of the total correlation energy. This is the most seriou
discrepancy obtained in this work and suggests a limitadiothe FRPA—in its present form—for near-degenerate system



To overcome this, it may be necessary to introduce selfistamgy in the polarization propagatBfw), to account for orbit
relaxation, or to improve the treatment of the excitatioectpum of the polarization propagator beyond bare ph sfa63$56].
The close agreement between FTDADC(3)c and FRPAc in Table. | is a welcome feature since fava électrons in the Be
atom one should expect RPA-lik@ects (that is, several ph excitations admixed in the grotete)sto be negligible. The RPA
is not optimal for few-body systems since breaking of theliRainciple may become substantial in these cases. Nesiedh,
this result (and the one for He discussed below) suggedtd ttem be safely applied also in this regime without oveneating
ground-state correlations. The usual issues of RPA forscakeear degeneracy remain and may lead to instabilitiesritaio
partial waves, as described above. In the worst case itlipatisible to release the RPA requirement in such channelshbtain
reasonable results.

Extrapolations to the basis set limit were obtained from ¢@nsecutive sets according to

Ey = Eo, + AX3, (14)

whereX is the cardinal number of the basis. This relation is knowgit@ proper extrapolations for correlation energies [1].
Table Il gives some examples of the calculated binding eegfgr all basis sizes and shows the convergence of thepeatad
results. In the smallest systems, up to Ne, we find changesssfthan 2 mH between the last two extrapolatiofsi(,Q and
X=Q,5). This number can be taken as a measure of the uncertairggching the basis set limit. For the larger atoms Mg is the
one that converges more slowly, with ddrence of 10 mH (we found 7 mH for Ar). Calculations witk-&are beyond present
computational capabilities. However, given the fast coggace with increasing cardinal number, it appears safetorae an
uncertainty o5 mH for Mg and Ar.

In general, IEs and EAs tend to converge faster because ¢pegsent dierences of total energies between the N-electron
ground state and the excited states of:{)lelectrons. Inaccuracies in the correlation energiesiangar and therefore could
cancel each other to a large extent. Eq. (14) is preserved takeg diferences of correlation energies that obey the same trend
and therefore one may expect that a similar behaviour apfditEs for large basis sets. However, this is not alwaysajaed
especially in cases where shakeup configurations are iamoFor smaller bases these contributions are less stithleaspect
to changing basis set and caffiegt IEs diferently. The possible behaviours are displayed in Tablerlthe calculated IEs of
Ar. The 3p orbit has a strong one-hole character and consemeothly. Here, the fierence of only 0.4 mH between the last
two extrapolations indicates that a convergencX aseffectively takes place. We obtained similar trends for theotases.
The only remarkable exception is the 3s hole in Ar which hasge admixture of 2h1p configurations. The calculated IEvsho
an oscillatory behaviour, however, a monotonic convergeoald still happen for larger bases, once shakeup cotitritshave
stabilized. In Sec. 111 B, we will apply Eq. (14) also to extdate ionization energies. We estimate an error up to 2 mkhi
larger atoms ané1 mH for the smaller ones.

Etot Ne Be

cc-pCvDZ cc-pvDZ cc-pvVTZ cc-pvQZz cc-pVsZ
ADC(3)¢FTDAC -128.7191 -14.6089 -14.6154 -14.6314 -14.6375
FRPAC -128.7210 -14.6084 -14.6150 -14.6310 -14.6371
CCSD -128.7211 -14.6174 -14.6236 -14.6396 -14.6457
full Cl -128.7225 -14.6174 -14.6238 -14.6401 -14.6463

TABLE I: Total binding energies (in Hartrees) for Ne and Beaibed for cc-p(C)VXZ bases of fierent sizes. The results obtained with
ADC(3)c and FRPACc (with self-consistency in the MF diagramil with the CCSD methods are compared to FCI calculations.

B. Ground states and ionization energies of simple atoms

Table Il shows the ground state energies extrapolated ex®,5 for both Green’s function and CCSD methods. These
are compared to the corresponding Hartree-Fock resultsheneixperiment. The empirical values are from Refs. [47-a4@]
have been corrected by subtracting relativistieets. The CCSD results for He and®Bere equivalent to FCI, from which
we see that FRPAc misses 1 mH, or 2%, of the correlation er@rée. In larger systems FRPAc explains at least 99% of
the correlation energies and all calculations, includit@SD, agree with the experiment within the uncertainty eigetérom
basis extrapolation. For10, the inclusion of RPA correlations predicts about 5 mH enoinding than the corresponding
FTDACc/ADC(3)c. The atom of Be is the only exception to this trend lasaaly noted above. In this case the 9 miffetience
between FRPAc and CCSD is seen also in the basis limit. Basdte@greement between FCl and CCSD in Tab.l, the remaining



cc-p(C)vDz cc-p(C)VTZ cc-p(C)vQz cc-p(C)vbz Experiment
Etot: Be calc. -14.6084 -14.6150 -14.6310 -14.6371 -14.6674
extrap. -14.6178 -14.6427 -14.6436
Ne calc. -128.7210 -128.8643 -128.9079 -128.9226 -128.938
extrap. -128.9246 -128.9397 -128.9381
Mg calc. -199.8147 -199.9507 -200.0033 -200.0271 -200.054
extrap. -200.0080 -200.0417 -200.0519
IE: Ar (3p) calc. 0.5623 0.5695 0.5751 0.5770 0.579
extrap. 0.5725 0.5792 0.5788
Ar (3s) calc. 1.0985 1.0616 1.0599 1.0622 1.075
extrap. 1.0461 1.0586 1.0646

TABLE II: Convergence of total energies and IEs (in Hart)éaghe FRPAc approach. First lines: energies calculatéugusouble (%D)
to quintuple (X=5) valence orbits basis sets. Second lines: results exatgpiofrom two consecutive sets using Eq. (14). The Be atos wa
calculated with the cc-pVXZ bases, while Ne, Mg and Ar weraalasing cc-pCVXZ. The experimental values are from Ref3-$0].

discrepancy with the experiment15 mH) may be due the basis set employed which is probablyapztlde to accommodate
the relevant correlationfiects. We have attempted FRPAc calculations with the augv¢Z bases which should allow for a
better description of the valence orbits but without anyrapjable change in the results.

The Ne atom was also computed in the FRPA approach by usingteeeld-ock basis with a discretized continuum [36]. The
basis set was chosen as large as possible to approach thesdtdsnit for IEs and EAs but was not optimized for treatiogec
orbits. The total binding energy obtained was 128.888 H ydwan the basis set limit of Table. 11l and the experiment.

Hartree-Fock FTDAcC FRPAcC CCSD Experiment
He -2.8617 £42.0) -2.9028+0.9) -2.9029 £0.8) -2.9039 (-0.2) -2.9037
Be* -13.6117 ¢43.9) -13.6559 (-0.3) -13.6559 (-0.3) -13.6561 (-0.5) 6536
Be -14.5731494.3) -14.6438+23.6) -14.6436+23.8) -14.652215.2) -14.6674
Ne -128.5505387.8) -128.9343+4.0) -128.938140.2) -128.935343.0) -128.9383
Mg? -198.83 7 {-444) -199.226 (-5) -199.228 (-7) -199.225 (-4) -199.221
Mg -199.616 ¢438) -200.0486) -200.052 ¢2) -200.050 {4) -200.054
Ar -526.820 ¢724) -527.543(1) -527.548 (-4) -527.536+8) -527.544
Orms [MH] 392 9.5 (3.6) 9.5(3.4) 6.9 (4.2)

TABLE IlI: Hartree-Fock, ADC(3)fFTDAc, FRPAc and CCSD total energies (in Hartrees) extipadlfrom the cc-p(C)VQZ and cc-p(C)V5Z
basis sets. He, Be and Be where calculated with the cc-pVXZ bases, while cc-¥Z\bases were used for the remaining atoms. The
deviations from the experiment are indicated in parenthésenHartrees). The experimental energies are from R&fs49]. Theemserrors

in parentheses are calculated by neglecting the Be results.

lonization energies are shown in Table. IV, together with pinedictions from Hartree-Fock theory and the secondrorde

self-energy (obtained by retaining only the first two diagsaof Fig. 1b). Second-order corrections account for a laeyé

of correlations but still lead to sizable errors. The additil correlations included in the present calculationsappo reduce
this error substantially. The FTDADC(3)c results give a measure of the importance of a treatrat is consistent with
at least third order perturbation theory [13]. Correctians particularly large for states with higher ionizatiorergies where
the density of 2h1p states is increased. Since configuratiging among these states is not introduced by strict secoddr

perturbation theory, calculations at least at the level DDAc are required in these cases. Configuration mixing antbag
2h1p states reduces the errors in tisesthte in Be by a factor of five. Anotheffect is the fragmentation of thes®rbit of Ar.

Second-order calculations predict this as a quasipadtale 36 mH away from the empirical energy and carrying Of&he
total orbit’s intensity. A small satellite state with releg intensity of 0.10 is calculated at larger separatiorrgies. The mixing
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with 2h1p configurations corrects the energies of both peakisredistributes their strengths more correctly. For tReAC
calculation the peak at 1.065 H has intensity of 0.61, cloghé experimental values (peak at 1.075 H with intensit$ (68]).

The second peak is obtained at 1.544 H and carries the remgatriength of the original quasiparticle.

Adding the dfects of collective RPA excitations has a larger impact oliz@tion than on correlation energies. Almost all the
calculated IEs shift closer to the experimental values bgvarhH. The only exceptions are the two-electron He atom, her
the RPA approach tends to overestimate correlations, anfirgh ionization of Be, where soft excitations tend to ifndate the
RPA. In general, thems error for the valence orbits of Table. IV lowers from 13.7 @@ mH, passing from FTDAc to FRPAc.

The FRPACc first and second IEs of the Ne atom computed usindisiceetized continuum basis of Ref. [36] are 0.801 and
1.795 H. These are in good agreement with the extrapolatibhable. IV and gives us further confidence in applying Ed.) (1
also for quasiparticle states.

Hartree-Fock (¥ order)c FTDA¢ FRPAC Experiment [51, 52]
ADC(3)c

He 1s 0.918<14) 0.9012 (-2.5) 0.9025 (-1.2) 0.9008 (-2.9) 0.9037
Be?: 1s 5.6672€116) 5.6542 (-1.4) 5.6554 (-0.2) 5.6551 (-0.5) 5.6556
Be 2s 0.3093 (-34) 0.3187 (-23.9) 0.3237 (-18.9) 0.3224.220 0.3426

1s 4.733 £200) 4.5892 £56) 4.5439 £11) 4.5405 £8) 4.533
Ne 2p 0.852¢57) 0.752 (-41) 0.810117) 0.8037 £11) 0.793

2s 1.931 £149) 1.750 (-39) 1.805724) 1.7967 £15) 1.782
Mg?*: 2p 3.0068 £56.9) 2.9217 (-28.2) 2.95727.3) 2.9537 £3.8) 2.9499

2s 4.4827 4.3283 4.3632 4.3589
Mg 3s 0.253 (-28) 0.267 (-14) 0.272 (-9) 0.280 (-1) 0.281

2p 2.282 ¢162) 2.117 (-3) 2.141421) 2.137 ¢17) 2.12
Ar 3p 0.591 ¢12) 0.563 (-16) 0.58142) 0.579 &0) 0.579

3s 1.277 £202) 1.111 £36) 1.087 ¢12) 1.065 (-10) 1.075

3s 1.840 1.578 1.544
Oorms [MH] 81.4 29.3 13.7 10.6

TABLE 1V: lonization energies obtained with Hartree-Fodlecond-order perturbation theory for the self-energy, & Bnd with the full
Faddeev-RPAc (in Hartrees). All results are extrapolatechfthe cc-p(C)VQZ and cc-p(C)V5Z basis sets (see TableThE deviations from
the experiment (indicated in parentheses) andtiisserrors are given in mHartrees. The experimental energefam Ref. [51, 52].

1V. CONCLUSIONSAND DISCUSSION

We have performed microscopic calculations of total andzimtion energies in order to assess the accuracy of the Badde
RPA approach for light atoms. The FRPA is an expansion of theyabody self-energy that makes explicit the coupling leev
particles and collective excitations. This formalism ird#s all contributions from perturbation theory up to tharder, which
is crucial for a correct prediction of IEs for outer-valergdectrons in atomic and molecular systems. At the same itratso
includes full resummations of RPA diagrams necessary &esche long-range Coulomb interaction in extended systgng$.
While the FRPA completely includes the ADC(3) theory, it eber been tested for very small systems where violatiohef t
Pauli Principle—that are inherent to the RPA method—magéirsatisfactory results. We find that this is not the casetlaad
FRPA is accurate even for the two-electron problem.

In general, FTDAGADC(3)c and FRPAc give very similar results for the lightegstems while the inclusion of ground-state
correlations via RPA theory leads to small but systematipromements as the atomic number increases. For total lgndin
energies, their dierence is negligible in the He and Be atoms while the FRPAdsyeb mH more correlation energy for
atomic numbers 210. Except for the lightest atoms, 99% of the the total cati@h energy is normally recovered and the total
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energies obtained agree well with CCSD (as expected froragtimates for ADC(3) in Ref. [21]). The discrepancies with t
experimental data are also within the errors estimatechiektrapolation to the basis set limit. The only notablespxion is
the neutral Be atom, for which the small gap at the Fermi sert@mplicates the extraction of the correlation energyhis
case, the discrepancy obtained with respect to the experappears to be mostly due to deficiencies in the basis setev,

a smaller fraction of it is probably related to missing ctatiens angor to the lack of full self-consistency in the FRPAc (HF
reference states were used).

Similar trends are found for the ionization energies. Fer tilio-electron cases, He andBeFRPAc does not introduce
improvements with respect to FTDARDC(3)c but it gives again sensible predictions. The abawablems in describing the
correlations in neutral Be are also reflected in the resattthie first ionization energy. For all other cases, the ugeR# shifts
IEs by 2-10 mH and always brings them closer to the experin@ntaverage, thems error for outer valence IEs lowers from
13.7 to 10.6 mH by adding RPAtects. The 3orbit in Ar is found to be fragmented and configuration mixetigcts between
2h1p states are required to obtain the correct ionizatienggrand relative intensity.

Numerically, the FRPA can be implemented as a diagonadizati 2p1h-2hlp space, implying about the same cost as an
ADC(3) calculation. The present study was based on nunmesazdes originally developed for spherical systems [37,. 45]
A first extension to molecular geometries has also been degdland first results for diatomic structures support tiesemt
conclusions [53]. Due to the inclusion of RPA excitatiot& FRPA method holds promise of bridging the gap betweerratzu
descriptions of quasiparticles in finite and extended systdnvestigating the feasibility of FRPA for larger moléiand the
electron gas is therefore a priority for future researbres. Consistent calculations of quasiparticle propsiitithese cases,
once feasible, will also be useful for constraining functts in quasiparticle density functional theory [54].
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