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The accuracy of the Faddeev random phase approximation (FRPA) method is tested by calculating the total
and ionization energies of a set of light atoms up to Ar. Comparisons are made with the results of coupled-
cluster singles and doubles (CCSD), third-order algebraicdiagrammatic construction [ADC(3)], and with the
experiment. It is seen that even for two-electron systems, He and Be2+, the inclusion of RPA effects leads to
satisfactory results and therefore it does not over-correlate the ground state. The FRPA becomes progressively
better for larger atomic numbers where it gives≈5 mH more correlation energy and it shifts ionization potentials
by 2-10 mH, with respect to the similar ADC(3) method. The ionization potentials from FRPA tend to reduce
the discrepancies with the experiment.
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I. INTRODUCTION

Ab-initio studies of electronic systems aim at a direct solution of theSchrödinger equation in terms of the underlying Coulomb
interaction, thus avoiding phenomenological input [1]. Most contemporary investigations of molecular and atomic systems
employ the coupled-cluster (CC) method [2] due to its favorable accuracy and the gentle scaling of computational requirements
with increasing number of particles. One can thus calculatemolecules for which full configuration interaction (FCI) would not
be feasible. Another approach with analogous characteristics is the Green’s function (GF) theory (or, equivalently, propagator
theory) [3–6]. An early scheme based on this approach is the outer-valence GF (OVGF) [7, 8] which expands ionization
energies up to third order in perturbation theory. The OVGF is very practical and computationally simple, and it has found
several applications to studies of ionization spectra [8–12]. However, it becomes inaccurate whenever inner and outer-valence
ionization energies (IEs) are subject to shake-up contaminations [13–15]. In such cases one needs to resort at least to the
third-order algebraic diagrammatic construction [ADC(3)] method [16, 17]. The ADC(n) approach is an intermediate state
representation [18, 19] of the GF made to be consistent with perturbation theory up to ordern. Thus, it is size consistent and
can be systematically improved by going to higher orders. For the one-body propagator, ADC(3) implies to perform explicit
configuration mixing between valence electrons and shake-up configurations such as two-hole–one-particle (2h1p) and/or two-
particle–one-hole (2p1h) [21]. These states are mixed together by ADC(3) theory in a Tamm-Dancoff approximation (TDA)
fashion. The accuracy of the ADC(3) approach has been testedin several studies for both IEs [20, 21] and excited states [22, 23].

Green’s function theory has also extensive applications tosolid states physics where the most successful scheme is theGW
approximation (GWA) [24–26]. The GWA describes the modification of electrons through repeated interactions with collec-
tive particle-hole (ph) excitations of the system, which are described in the random phase approximation (RPA). The RPAis
essential for extended systems because it screens the Coulomb interaction at large distances [5, 6]. Thus, it guarantees finite
correlation energies in metals and the uniform electron gas[27–30]. In contrast, the TDA plasmon spectrum is incorrectand
even diverges at small momenta. The GWA, however, is not always satisfactory. As an example two-particle (pp) or two-hole
(hh) configurations—that would be included by ADC(3) but notin GWA—are necessary to explain satellite structures above
and below the Fermi surface [31]. How to include these effects efficiently in GWA is still being researched [32]. Conversely, the
inclusion of RPA in atomic and molecular studies may be advantageous for describing long-range (van der Waals) forces and
dissociation processes [33–35]. Thus, a practical method that combines ADC(3) with RPA might become beneficial to the fields
above.

In a recent publication we have considered theab-initio calculation of the Ne atom using Green’s function theory in the so-
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FIG. 1: The self-energyΣ⋆(ω) separates exactly into a mean-field term,ΣMF , and the polarization propagatorsR(2p1h/2h1p)(ω) for the 2p1h/2h1p
motion, as shown in a). Upon expansion ofR(ω) in Feynman diagrams, one obtains the series of diagrams b) for the self-energy. The diagram
c) is another—more complicated—term appearing in the expansion of R(2p1h)(ω). This is also included in the FRPA contribution of Fig. 3
but it introduces a time ordering not generated by FTDA/ADC(3). Dashed lines are antisymmetrized Coulomb matrix elementsVαβ,γδ, single
lines represent the reference state (a HF propagator), and the double lines represent the correlated propagator of Eq. (1). All diagrams are time
ordered, with time propagating upward.

called Faddeev random phase approximation (FRPA) [36], which was originally proposed for studies of nuclear structure[37–41]
This approach completely includes 2p1h and 2h1p states in the self-energy but expands these configurations in terms of couplings
between valence particles and (simpler) ph and pp/hh excitations that are calculated using RPA. By calculating these excitations
in TDA one is led back to the ADC(3) scheme. Stated otherwise,the FRPA can be seen as an extension of ADC(3) that employs
RPA for pairs of electron and hole excitations (see also Ref.[42] for a discussion). The inclusion of RPA opens a possibleway
for treating long-range correlations in both finite and extended electron systems on a equal footing. Yet, there remain anumber
of issues that need to be addressed before this approach can be made useful for electronic structure calculations. First, it is not
guaranteeda priory that this method will perform equally well as the ADC(3) for few-electron cases: while Pauli correlations
are fully included up to 2p1h/2h1p level, the use of RPA still includes violations for morecomplex excitations. Instabilities and
self-screening problems induced by RPA may become more evident in light systems [32]. Moreover, the conclusions of Ref.[36]
were based on calculations made for only one system (the Ne atom) and the single particle basis was not optimized to guarantee
the full convergence of core electrons. Hence, a deeper investigation of its accuracy is still in order. Second, the inclusion
of Pauli exchange at the 2p1h/2h1p level introduces technical complications with respect to the standard GWA approach and
suitable computational schemes will need to be developed for applications to extended systems. This work addresses thefirst
question by applying FRPA to a set of light atoms and using correlation consistent bases for extrapolating to the basis set limit.

The essential features of FRPA are reviewed in Sec. II, for the paper to be self-contained. References to the details of the
formalism are also given. In our calculations we adopt gaussian basis sets and discuss the accuracy of extrapolations tothe basis
set limit in Sec. III A. The results for total energies and IEsare given in Sec. III B and the major conclusions are summarized in
Sec. IV.

II. FORMALISM

In the present study we consider the calculation of the single-particle propagator [4, 6],

gαβ(ω) =
∑

n

(zn
α)
∗zn
β

ω − ε+n + iη
+
∑

k

zk
α(z

k
β
)∗

ω − ε−k − iη
, (1)

whereα, β, ..., label a complete orthonormal basis and
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α = 〈Ψ

N+1
n |c†α|Ψ

N
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0 ,
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In these definitions,cα (c†
β
) are second quantization destruction (creation) operators, |ΨN+1

n 〉, |ΨN−1
k 〉 are the eigenstates, and

EN+1
n , EN−1

k the eigenenergies of the (N ± 1)-electron system. Therefore, the poles of the propagatorreflect the electron affinities
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(EAs) and IEs. Eq. (1) also yields the total binding energy via the Migdal-Galitskiı̆-Koltun sum rule [6],

EN
0 =

1
2

∑

k

∑

α,β

(

uαβ + ε
−
k δαβ
)

zk
β(z

k
α)
∗ (3)

whereuαβ represent the matrix elements of the one-body part of the hamiltonian (kinetic energy plus nuclear attraction) and the
k-sum runs only over the eigenstates of the (N-1)-electron systems.

The one-body Green’s function solves the Dyson equation (from hereafter, summations over repeated indices are implied)

gαβ(ω) = g0
αβ(ω) + g0

αγ(ω)Σ⋆γδ(ω) gδβ(ω) , (4)

whereg0(ω) is the propagator for a free particle. The irreducible self-energyΣ⋆
γδ

(ω) acts as an effective, energy-dependent,
potential that can be written as [43, 44]

Σ⋆αβ(ω) = ΣMF
αβ + Σ̃αβ(ω) (5)

=

∫

dω
2πi

Vαγ,βδ gδγ(ω) e−iωη+ +
1
4

Vαλ,µν
[

R(2p1h)
µνλ,µ′ν′λ′

(ω) + R(2h1p)
µνλ,µ′ν′λ′

(ω)
]

Vµ′ν′,βλ′ ,

andVαβ,γδ are antisymmetrized Coulomb matrix elements. In Eq. (5) we have emphasized the mean-field (MF) contribution
to the self-energy. This generalizes the Hartree-Fock (HF)potential by replacing the Slater MF with the (correlated) density
matrix extracted from the dressed propagator (1). TheΣMF is represented by the first diagram on the right hand side in Figs. 1a)
and 1b). The remaining term,Σ̃(ω), accounts for deviations from the mean-field and depends onthe 2p1h and 2h1p polarization
propagators,R(2p1h)(ω) andR(2h1p)(ω). These involve the simultaneous propagation of 2p1h (or 2h1p) and higher excitations.
Eq. (5) is represented in Fig.1a) in terms of Feynman diagrams. TheR(ω) can also be expanded in terms of Coulomb matrix
elements and unperturbed propagators, as shown in Figs. 1b)and 1c).

A. The Faddeev random phase approximation method

The Faddeev approach consists in expandingR(2p1h) andR(2h1p) in terms of couplings between single electrons or holes and
ph, pp or hh excitations [36, 45]. Information about the latter is fully contained in the ph polarization propagator thatdescribes
excited states of theN-electron system
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and the two-particle propagator that describes the addition/removal of two electrons
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These Green’s functions are calculated as resummations of ring and ladder diagrams using either the TDA or the RPA,

Π
(T DA/RPA)
αβ,γδ

(ω) = Π0 (T DA/RPA)
αβ,γδ

(ω) + Π0 (T DA/RPA)
αβ,µν

(ω) Vµη,νρΠ
(T DA/RPA)
ρη,γδ

(ω) , (8)

gII (T DA/RPA)
αβ,γδ

(ω) = g0 (T DA/RPA)
αβ,γδ

(ω) +
1
4

g0 (T DA/RPA)
αβ,µν

(ω) Vµν,ρη gII (T DA/RPA)
ρη,γδ

(ω) . (9)

The difference between the two approximations is in the choice of thepropagators for non the interacting ph (Π0) and pp/hh (g0)
configurations. Both of these contain a term that conserves the direction of time propagation and one that inverts it. By including
only the first term the TDA equations are obtained. If both contributions are retained, one is led to the RPA. The RPA induces
extra time orderings in the resummations of Eqs. (8) and (9) as shown in Fig. 2 for the ph case. These account for 2p2h and more
complicated admixtures in the ground state that are generated by correlations.
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FIG. 2: Expansion of the ph propagatorΠ(ω) in a series of ring diagrams. The diagrams resummed by TDA are shown in the first line.
The second line gives examples of time-inversion patterns that are generated only by RPA, these account for the presenceof 2p2h and more
complicated configurations in the correlated ground state.The diagrams are time ordered, with time propagating upward.
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FIG. 3: Left: Example of one of the diagrams forR(2p1h)(ω) that are summed to all orders by means of the Faddeev method.Each of the ellipses
represent an infinite sum of rings [Π(ω)] or ladders [gII(ω)], as generated by Eqs. (8) and (9). Contributions of all possible partial waves are
included. Right: The corresponding contribution to the self-energy, obtained upon insertion ofR(2p1h)(ω) into Eq. (5). This representation
is valid for both the FTDA and FRPA approaches, the difference between the two being in the diagrams implicitly resummed insideΠ(ω)
andgII(ω) (see Fig. 2).

The R(2p1h)(ω) andR(2h1p)(ω) propagators are obtained by first calculatingΠ andgII and then by recoupling them to single
electron or hole states, as shown in Fig. 3. This is done by solving the set of Faddeev equations detailed in Refs. [36, 45].We
refer to this procedure as Faddeev TDA (FTDA) or Faddeev RPA depending on the approximation chosen to solve Eqs. (8) and
(9). The Faddeev summation and the diagram depicted in Fig. 3are the same in both cases. Contributions from ph, pp and hh
excitations in all possible partial waves are included in FRPA/FTDA since this is required for a complete solution of the problem.
In order to fulfill Pauli constraints up to 2p1h and 2h1p levelin the expansion forR(ω) one must employ the generalized version
of RPA (in which the Coulomb matrix elements are the antisymmetrized ones). Two separate sets of Faddeev equations are used
for R(2p1h)(ω) andR(2h1p)(ω).

The Faddeev procedure can be recast in terms of two diagonalizations in the 2p1h and the 2h1p configuration spaces. In each
case one solves anon-hermitian eigenvalue problem [45]

HFd F = F EFd F†F = 1 , (10)

whereEFd = diag{E(n)
Fd} and the Faddeev hamiltonianHFd is constructed from the solutions of Eqs. (8) and (9). TheR(2p1h)

propagator is written in terms of the eigenvectorsF(n) and eigenenergiesE(n)
Fd ,

R(2p1h)
αβγ,µνλ

(ω) =
∑

n

(

U F(n)
)(2p1h)

αβγ

1

ω − E(n)
Fd + iη

(

F(n)†U†
)(2p1h)

µνλ
, (11)

and an analogous relation holds forR(2h1p). In Eq. (11), the matrixUαβγ,p1p2h is a correction vertex chosen—in analogy with
ADC(3) theory—as the minimum coupling that ensures consistency with perturbation theory up to third order. When contracted
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with Vαλ,µν in Eq. (5), it reproduces exactly the same effective coupling amplitudes of ADC(3) [17]. The explicit form of the
FTDA/FRPA equations is given in Ref. [36] and their reduction to a matrix diagonalization (10) is described in [45].

Inserting Eq. (11) into (5) and (4), the Dyson equation is transformed into a diagonalization problem
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‖z‖2 + ‖w(2p1h)‖
2 + ‖w(2h1p)‖

2 = 1 ,

which can be solved directly for the IE and EA,ε+/−, and the corresponding residues,zα, in the single particle propagator (1).
In the particular case of the FTDA, one finds that the Faddeev hamiltonian is hermitian and is equivalent to the same effective
interaction among 2p1h or 2h1p states in ADC(3). In this caseHFT DA = FEFT DAF† and Eq. (12) reduces to the usual Dyson
ADC(3) matrix.

III. RESULTS

We considered a set of neutral atoms and ions corresponding to shell- and subshell-closures with Z≤18. The calculations of
the smallest systems (He, Be and Be2+) were performed using the correlation-consistent polarization valence gaussian bases, cc-
pVXZ, of increasing quality from double- to quintuple-zeta(X=2-5). For the larger atoms it was found that a sizable fraction of
the correlation energy is lost with similar bases. The remaining systems were therefore calculated with the corresponding core-
valence bases, cc-pCVXZ, which include additional compactgaussians to improve the description of the core electrons.This
choice was seen to speed up the convergence and led to accurate results for these atoms [55]. The correction to the correlation
energies induced by the extra core orbits increases with thenumber of electrons and it was found to be≈40 mH for Ne and
≈300 mH for Mg, in the cc-pCVQZ basis.

The bases for the Be2+ (Mg2+) ions were obtained from the cc-p(C)VXZ sets for He (Ne) but scaling the corresponding
single-particle orbits to correct for the different atomic number,

φi
Be2+/Mg2+

(

r
)

∝ φi
He/Ne

(

r
Z
N
)

(13)

where Z is the nuclear charge and N=Z-2 the number of electrons.
Correlation and ionization energies were computed with both the FTDAc/ADC(3)c and the FRPAc methods. In this notation,

the letter ’c’ indicates the self-consistent treatment of the sole MF diagram in the self-energy. This means thatΣMF was derived
by iterating Eq. (4) and the first term on the right hand side in(5) [the first diagram in Figs. 1a) and 1b)]. In other words,ΣMF

is renormalized by evaluating it directly in terms of the fully correlated propagator, instead of the reference state. This aspect is
important since it consistently includes all the perturbation theory contributions up to third-order and more. The dynamic part
of the self-energỹΣ(ω) was instead calculated in terms of a HF reference state. Theground-state energies were also compared
to the results of CC singles and doubles (CCSD) theory, starting from the same HF reference state.

A. Convergence

Total binding energies predicted by both Green’s function theory and CCSD are compared with the results of full configuration
interaction (FCI) in Table. I. For Ne atom in cc-pCVDZ, Green’s functions and CCSD agree with each other and deviate from
the exact result by less than 2 mH. FRPA gives just a very smallcorrection but it halves the discrepancy between FTDA and
FCI. The total correlation energy for this basis is 233 mH. The atom of Be is the most difficult case among those discussed here
due to the fact that this is not a good closed-shell system. Inthis case, a near degeneracy between the 2s and 2p orbitals leads to
very soft excitations of the Jπ=1−, S=1 states and drives the ph-RPA equations close to instability. The FRPA was thus solved
by employing the TDA approximation of the polarization propagator, Eq.(6), in this channel alone (all other partial waves were
treated properly in RPA). The resulting correlation energies agree with FTDAc/ADC(3)c, indicating that RPA is not crucial for
this small system, but neither does it introduce spuriosities by over-correlating the ground state. FCI calculations of Be were
possible for all bases up to quintuple-zeta and are reproduced by CCSD with high accuracy. However, FTDAc/ADC(3)c and
FRPAc are consistently behind by about 9 mH, corresponding to 10% of the total correlation energy. This is the most serious
discrepancy obtained in this work and suggests a limitationof the FRPA—in its present form—for near-degenerate systems.
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To overcome this, it may be necessary to introduce self-consistency in the polarization propagatorR(ω), to account for orbit
relaxation, or to improve the treatment of the excitation spectrum of the polarization propagator beyond bare ph states[46] [56].
The close agreement between FTDAc/ADC(3)c and FRPAc in Table. I is a welcome feature since for a few electrons in the Be
atom one should expect RPA-like effects (that is, several ph excitations admixed in the ground state) to be negligible. The RPA
is not optimal for few-body systems since breaking of the Pauli principle may become substantial in these cases. Nevertheless,
this result (and the one for He discussed below) suggests that it can be safely applied also in this regime without overestimating
ground-state correlations. The usual issues of RPA for cases of near degeneracy remain and may lead to instabilities in certain
partial waves, as described above. In the worst case it is still possible to release the RPA requirement in such channels and obtain
reasonable results.

Extrapolations to the basis set limit were obtained from twoconsecutive sets according to

EX = E∞ + AX−3 , (14)

whereX is the cardinal number of the basis. This relation is known togive proper extrapolations for correlation energies [1].
Table II gives some examples of the calculated binding energies for all basis sizes and shows the convergence of the extrapolated
results. In the smallest systems, up to Ne, we find changes of less than 2 mH between the last two extrapolations (X=T ,Q and
X=Q,5). This number can be taken as a measure of the uncertainty in reaching the basis set limit. For the larger atoms Mg is the
one that converges more slowly, with a difference of 10 mH (we found 7 mH for Ar). Calculations with X=6 are beyond present
computational capabilities. However, given the fast convergence with increasing cardinal number, it appears safe to assume an
uncertainty of≤5 mH for Mg and Ar.

In general, IEs and EAs tend to converge faster because they represent differences of total energies between the N-electron
ground state and the excited states of (N±1) electrons. Inaccuracies in the correlation energies aresimilar and therefore could
cancel each other to a large extent. Eq. (14) is preserved when taking differences of correlation energies that obey the same trend
and therefore one may expect that a similar behaviour applies to IEs for large basis sets. However, this is not always guaranteed
especially in cases where shakeup configurations are important. For smaller bases these contributions are less stable with respect
to changing basis set and can affect IEs differently. The possible behaviours are displayed in Table. IIfor the calculated IEs of
Ar. The 3p orbit has a strong one-hole character and converges smoothly. Here, the difference of only 0.4 mH between the last
two extrapolations indicates that a convergence asX−3 effectively takes place. We obtained similar trends for the other cases.
The only remarkable exception is the 3s hole in Ar which has a large admixture of 2h1p configurations. The calculated IE shows
an oscillatory behaviour, however, a monotonic convergence could still happen for larger bases, once shakeup contributions have
stabilized. In Sec. III B, we will apply Eq. (14) also to extrapolate ionization energies. We estimate an error up to 2 mH for the
larger atoms and<1 mH for the smaller ones.

Etot Ne Be
———— ———————————————
cc-pCVDZ cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z

ADC(3)c/FTDAc -128.7191 -14.6089 -14.6154 -14.6314 -14.6375
FRPAc -128.7210 -14.6084 -14.6150 -14.6310 -14.6371
CCSD -128.7211 -14.6174 -14.6236 -14.6396 -14.6457

full CI -128.7225 -14.6174 -14.6238 -14.6401 -14.6463

TABLE I: Total binding energies (in Hartrees) for Ne and Be obtained for cc-p(C)VXZ bases of different sizes. The results obtained with
ADC(3)c and FRPAc (with self-consistency in the MF diagram)and with the CCSD methods are compared to FCI calculations.

B. Ground states and ionization energies of simple atoms

Table III shows the ground state energies extrapolated fromX=Q,5 for both Green’s function and CCSD methods. These
are compared to the corresponding Hartree-Fock results andthe experiment. The empirical values are from Refs. [47–49]and
have been corrected by subtracting relativistic effects. The CCSD results for He and Be2+ are equivalent to FCI, from which
we see that FRPAc misses 1 mH, or 2%, of the correlation energyof He. In larger systems FRPAc explains at least 99% of
the correlation energies and all calculations, including CCSD, agree with the experiment within the uncertainty expected from
basis extrapolation. For Z≥10, the inclusion of RPA correlations predicts about 5 mH more binding than the corresponding
FTDAc/ADC(3)c. The atom of Be is the only exception to this trend as already noted above. In this case the 9 mH difference
between FRPAc and CCSD is seen also in the basis limit. Based on the agreement between FCI and CCSD in Tab.I, the remaining
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cc-p(C)VDZ cc-p(C)VTZ cc-p(C)VQZ cc-p(C)V5Z Experiment

Etot: Be calc. -14.6084 -14.6150 -14.6310 -14.6371 -14.6674
extrap. -14.6178 -14.6427 -14.6436

Ne calc. -128.7210 -128.8643 -128.9079 -128.9226 -128.9383
extrap. -128.9246 -128.9397 -128.9381

Mg calc. -199.8147 -199.9507 -200.0033 -200.0271 -200.054
extrap. -200.0080 -200.0417 -200.0519

IE: Ar (3p) calc. 0.5623 0.5695 0.5751 0.5770 0.579
extrap. 0.5725 0.5792 0.5788

Ar (3s) calc. 1.0985 1.0616 1.0599 1.0622 1.075
extrap. 1.0461 1.0586 1.0646

TABLE II: Convergence of total energies and IEs (in Hartrees) in the FRPAc approach. First lines: energies calculated using double (X=D)
to quintuple (X=5) valence orbits basis sets. Second lines: results extrapolated from two consecutive sets using Eq. (14). The Be atom was
calculated with the cc-pVXZ bases, while Ne, Mg and Ar were done using cc-pCVXZ. The experimental values are from Refs. [48–50].

discrepancy with the experiment (≈15 mH) may be due the basis set employed which is probably not capable to accommodate
the relevant correlation effects. We have attempted FRPAc calculations with the aug-cc-pVXZ bases which should allow for a
better description of the valence orbits but without any appreciable change in the results.

The Ne atom was also computed in the FRPA approach by using a Hartree-Fock basis with a discretized continuum [36]. The
basis set was chosen as large as possible to approach the basis set limit for IEs and EAs but was not optimized for treating core
orbits. The total binding energy obtained was 128.888 H, away from the basis set limit of Table. III and the experiment.

Hartree-Fock FTDAc FRPAc CCSD Experiment

He -2.8617 (+42.0) -2.9028 (+0.9) -2.9029 (+0.8) -2.9039 (-0.2) -2.9037
Be2+ -13.6117 (+43.9) -13.6559 (-0.3) -13.6559 (-0.3) -13.6561 (-0.5) -13.6556
Be -14.5731 (+94.3) -14.6438 (+23.6) -14.6436 (+23.8) -14.6522 (+15.2) -14.6674
Ne -128.5505 (+387.8) -128.9343 (+4.0) -128.9381 (+0.2) -128.9353 (+3.0) -128.9383
Mg2+ -198.83 7 (+444) -199.226 (-5) -199.228 (-7) -199.225 (-4) -199.221
Mg -199.616 (+438) -200.048 (+6) -200.052 (+2) -200.050 (+4) -200.054
Ar -526.820 (+724) -527.543 (+1) -527.548 (-4) -527.536 (+8) -527.544

σrms [mH] 392 9.5 (3.6) 9.5 (3.4) 6.9 (4.2)

TABLE III: Hartree-Fock, ADC(3)c/FTDAc, FRPAc and CCSD total energies (in Hartrees) extrapolated from the cc-p(C)VQZ and cc-p(C)V5Z
basis sets. He, Be2+ and Be where calculated with the cc-pVXZ bases, while cc-pCVXZ bases were used for the remaining atoms. The
deviations from the experiment are indicated in parentheses (in mHartrees). The experimental energies are from Refs. [47–49]. Therms errors
in parentheses are calculated by neglecting the Be results.

Ionization energies are shown in Table. IV, together with the predictions from Hartree-Fock theory and the second-order
self-energy (obtained by retaining only the first two diagrams of Fig. 1b). Second-order corrections account for a largepart
of correlations but still lead to sizable errors. The additional correlations included in the present calculations appear to reduce
this error substantially. The FTDAc/ADC(3)c results give a measure of the importance of a treatment that is consistent with
at least third order perturbation theory [13]. Correctionsare particularly large for states with higher ionization energies where
the density of 2h1p states is increased. Since configurationmixing among these states is not introduced by strict second-order
perturbation theory, calculations at least at the level of FTDAc are required in these cases. Configuration mixing amongthe
2h1p states reduces the errors in the 1s state in Be by a factor of five. Another effect is the fragmentation of the 3s orbit of Ar.
Second-order calculations predict this as a quasiparticlestate 36 mH away from the empirical energy and carrying 0.81 of the
total orbit’s intensity. A small satellite state with relative intensity of 0.10 is calculated at larger separation energies. The mixing
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with 2h1p configurations corrects the energies of both peaksand redistributes their strengths more correctly. For the FRPAc
calculation the peak at 1.065 H has intensity of 0.61, close to the experimental values (peak at 1.075 H with intensity 0.55 [50]).
The second peak is obtained at 1.544 H and carries the remaining strength of the original quasiparticle.

Adding the effects of collective RPA excitations has a larger impact on ionization than on correlation energies. Almost all the
calculated IEs shift closer to the experimental values by a few mH. The only exceptions are the two-electron He atom, where
the RPA approach tends to overestimate correlations, and the first ionization of Be, where soft excitations tend to invalidate the
RPA. In general, therms error for the valence orbits of Table. IV lowers from 13.7 to 10.6 mH, passing from FTDAc to FRPAc.

The FRPAc first and second IEs of the Ne atom computed using thediscretized continuum basis of Ref. [36] are 0.801 and
1.795 H. These are in good agreement with the extrapolationsof Table. IV and gives us further confidence in applying Eq. (14)
also for quasiparticle states.

Hartree-Fock (2nd order)c FTDAc/ FRPAc Experiment [51, 52]
ADC(3)c

He 1s 0.918 (+14) 0.9012 (-2.5) 0.9025 (-1.2) 0.9008 (-2.9) 0.9037

Be2+: 1s 5.6672 (+116) 5.6542 (-1.4) 5.6554 (-0.2) 5.6551 (-0.5) 5.6556

Be 2s 0.3093 (-34) 0.3187 (-23.9) 0.3237 (-18.9) 0.3224 (-20.2) 0.3426
1s 4.733 (+200) 4.5892 (+56) 4.5439 (+11) 4.5405 (+8) 4.533

Ne 2p 0.852 (+57) 0.752 (-41) 0.8101 (+17) 0.8037 (+11) 0.793
2s 1.931 (+149) 1.750 (-39) 1.8057 (+24) 1.7967 (+15) 1.782

Mg2+: 2p 3.0068 (+56.9) 2.9217 (-28.2) 2.9572 (+7.3) 2.9537 (+3.8) 2.9499
2s 4.4827 4.3283 4.3632 4.3589

Mg 3s 0.253 (-28) 0.267 (-14) 0.272 (-9) 0.280 (-1) 0.281
2p 2.282 (+162) 2.117 ( -3) 2.141 (+21) 2.137 (+17) 2.12

Ar 3p 0.591 (+12) 0.563 (-16) 0.581 (+2) 0.579 (≈0) 0.579
3s 1.277 (+202) 1.111 (+36) 1.087 (+12) 1.065 (-10) 1.075
3s 1.840 1.578 1.544

σrms [mH] 81.4 29.3 13.7 10.6

TABLE IV: Ionization energies obtained with Hartree-Fock,second-order perturbation theory for the self-energy, FTDAc and with the full
Faddeev-RPAc (in Hartrees). All results are extrapolated from the cc-p(C)VQZ and cc-p(C)V5Z basis sets (see Table III). The deviations from
the experiment (indicated in parentheses) and therms errors are given in mHartrees. The experimental energies are from Ref. [51, 52].

IV. CONCLUSIONS AND DISCUSSION

We have performed microscopic calculations of total and ionization energies in order to assess the accuracy of the Faddeev
RPA approach for light atoms. The FRPA is an expansion of the many-body self-energy that makes explicit the coupling between
particles and collective excitations. This formalism includes all contributions from perturbation theory up to thirdorder, which
is crucial for a correct prediction of IEs for outer-valenceelectrons in atomic and molecular systems. At the same time,it also
includes full resummations of RPA diagrams necessary to screen the long-range Coulomb interaction in extended systems[5, 6].
While the FRPA completely includes the ADC(3) theory, it hadnever been tested for very small systems where violation of the
Pauli Principle—that are inherent to the RPA method—may hinder satisfactory results. We find that this is not the case andthe
FRPA is accurate even for the two-electron problem.

In general, FTDAc/ADC(3)c and FRPAc give very similar results for the lightestsystems while the inclusion of ground-state
correlations via RPA theory leads to small but systematic improvements as the atomic number increases. For total binding
energies, their difference is negligible in the He and Be atoms while the FRPAc yelds ≈5 mH more correlation energy for
atomic numbers Z≥10. Except for the lightest atoms, 99% of the the total correlation energy is normally recovered and the total
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energies obtained agree well with CCSD (as expected from theestimates for ADC(3) in Ref. [21]). The discrepancies with the
experimental data are also within the errors estimated for the extrapolation to the basis set limit. The only notable exception is
the neutral Be atom, for which the small gap at the Fermi surface complicates the extraction of the correlation energy. Inthis
case, the discrepancy obtained with respect to the experiment appears to be mostly due to deficiencies in the basis set. However,
a smaller fraction of it is probably related to missing correlations and/or to the lack of full self-consistency in the FRPAc (HF
reference states were used).

Similar trends are found for the ionization energies. For the two-electron cases, He and Be2+, FRPAc does not introduce
improvements with respect to FTDAc/ADC(3)c but it gives again sensible predictions. The above problems in describing the
correlations in neutral Be are also reflected in the results for the first ionization energy. For all other cases, the use ofRPA shifts
IEs by 2-10 mH and always brings them closer to the experiment. On average, therms error for outer valence IEs lowers from
13.7 to 10.6 mH by adding RPA effects. The 3s orbit in Ar is found to be fragmented and configuration mixingeffects between
2h1p states are required to obtain the correct ionization energy and relative intensity.

Numerically, the FRPA can be implemented as a diagonalization in 2p1h-2h1p space, implying about the same cost as an
ADC(3) calculation. The present study was based on numerical codes originally developed for spherical systems [37, 45].
A first extension to molecular geometries has also been developed and first results for diatomic structures support the present
conclusions [53]. Due to the inclusion of RPA excitations, the FRPA method holds promise of bridging the gap between accurate
descriptions of quasiparticles in finite and extended systems. Investigating the feasibility of FRPA for larger molecules and the
electron gas is therefore a priority for future research efforts. Consistent calculations of quasiparticle properties in these cases,
once feasible, will also be useful for constraining functionals in quasiparticle density functional theory [54].
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