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We extend the formalism of self-consistent Green’s function theory to include three-body interactions and
apply it to isotopic chains around oxygen for the first time. The third-order algebraic diagrammatic construction
[ADC(3)] equations for two-body Hamiltonians can be exploited upon defining system-dependent one- and
two-body interactions coming from the three-body force, and correspondingly dropping interaction-reducible
diagrams. The Koltun sum rule for the total binding energy acquires a correction due to the added three-
body interaction. This formalism is then applied to study chiral two- and three-nucleon forces evolved to low
momentum cutoffs. The binding energies of nitrogen, oxygen and fluorine isotopes are reproduced with good
accuracy and demonstrate the predictive power of this approach. Leading order three-nucleon forces consistently
bring results close to the experiment for all neutron rich isotopes considered and reproduce the correct driplines
for oxygen and nitrogen. The formalism introduced also allows to calculate form factors for nucleon transfer on
doubly magic systems.

PACS numbers: 21.10.-k, 21.30.Fe, 21.60.De

Introduction. - The ultimate goal of ab-initio nuclear theory
is to achieve accurate predictions of nuclear properties that are
consistent with the underlying theory of QCD. Advancing on
this problem is presently of primary importance in the mid
mass region of the nuclear chart, in response to significant ad-
vances in the discovery of new nuclides at radioactive isotope
facilities [1]. Moreover, parameter free predictions would
help reducing uncertainties in our knowledge of those dripline
isotopes that are currently beyond experimental reach [2]. It
has now become clear that accurate predictions require the
explicit inclusion of multi-nucleon forces [3–5]. For the oxy-
gen chain, it has been shown that the Fujita-Miyazawa three-
nucleon force (3NF) is responsible for explaining the anoma-
lous dripline at 24O [3]. Ref. [6] confirmed this result by con-
sidering approximated chiral 3NFs at leading order (N2LO).
However, no investigation of 3NF’s effects on neighboring
isotopic chains has been made to date. In this Letter, we find
that a correct inclusion of N2LO 3NFs consistently reproduces
the observed binding energies and that 3NFs similarly affect
the behaviour near the driplines for other isotopes as well.

Concerning the calculation of mid mass nuclei, break-
throughs were possible over the last decade due to the intro-
duction of many-body methods that scale gently with increas-
ing particle number. Self consistent Green’s function theory
(SCGF) [7, 8], coupled cluster (CC) [4, 6, 9] and in-medium
similarity renormalization group (IM-SRG) [10, 11] have
been employed in ab-initio calculations of doubly closed shell
nuclei with masses up to A∼60. For open-shells, semi-magic
isotopes can be calculated by breaking particle conservation
symmetry and reformulating theories in terms of Hartree-Fock
Bogolioubov reference states, as done in Gorkov theory [12–
15] and in IM-SRG [16]. Calculations based on IM-SRG have
been performed for ground state energies. On the other hand,
the state-of-the-art SCGF theory can also be extended to the
Gorkov approach [12, 14] and it gives access to a wealth of
nuclear structure information. This includes the addition or

removal of one or two nucleons to and from the calculated
ground states [17–19] and direct link to microscopic optical
potentials [20, 21].

This Letter extends the scope of SCGF to include 3NFs
in finite nuclei. We define density dependent one- and two-
body interactions derived from the 3NF part of the Hamilto-
nian and work out the correction to the Koltun sum rule to
obtain binding energies. This allows us to fully include chiral
3NFs in the third-order algebraic diagrammatic construction
[ADC(3)] equations commonly used in quantum chemistry
applications [22, 23]. The method is applied to study chiral
3NFs in the oxygen, nitrogen and fluorine isotopic chains, as
well as the spectra of single neutron states in the sd shell. This
opens the possibility of probing modern realistic nuclear inter-
actions on a wide range of experimental data, including exci-
tation spectra, the evolution of shell closures, and the position
of driplines.

Formalism. We employ Green’s function (or propagator)
theory and calculate the single particle propagator [24],

gαβ(ω) =
∑

n

〈ΨA
0 |cα|Ψ

A+1
n 〉〈ΨA+1

n |c†β|Ψ
A
0 〉

ω − εA+1
n + iη

+

+
∑

k

〈ΨA
0 |c
†

β|Ψ
A−1
k 〉〈ΨA−1

k |cα|ΨA
0 〉

ω − εA−1
k − iη

, (1)

where greek indices α, β, ... label a complete orthonormal
basis set and εA+1

n ≡ (EA+1
n − EA

0 ) and εA−1
k ≡ (EA

0 − EA−1
k )

are the nucleon addition and separation energies, respectively.
In Eq. (1), |ΨA+1

n 〉, |ΨA−1
k 〉 are the eigenstates and EA+1

n , EA−1
k

are the eigenenergies of the (A ± 1)-nucleon system. Hence,
gαβ(ω) describes the exact propagation of a single nucleon and
hole excitations through the system. From Eq. (1) we also
extract the one-body reduced density matrix,

ραβ = 〈ΨA
0 |c
†

βcα|Ψ
A
0 〉 =

∫
C↑

dω
2πi

gαβ(ω) , (2)
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where the integration contour C ↑ is taken on the upper half of
the imaginary plane.

We start our calculations with the intrinsic Hamiltonian
H(A) = H − Tc.m.(A) = U(A) + V(A) + W in which the ki-
netic energy of the center of mass (c.o.m.) has been subtracted
and we put in evidence the dependence on the number of nu-
cleons A. The terms U, V and W collect all the one-, two-
and three-nucleon contributions, respectively. Based on this,
we define system dependent one- and two-body effective in-
teractions obtained by contraction with the correlated density
matrix, Eq. (2),

Ũαβ = Uαβ + Vαγ, βδ ρδγ +
1
2

Wαγδ, βµν ρµγ ρνδ , (3)

Ṽαβ,γδ = Vαβ,γδ + Wαβµ,γδν ρνµ . (4)

All matrix elements are properly antisymmetrized and sum-
mation over repeated indices are implied here and in the fol-
lowing. The resulting Hamiltonian, H̃ = Ũ + Ṽ + W, can be
proved to lead to the same Green function (1) as the original
Hamiltonian with the caveat that only interaction-irreducible
terms are retained in the diagrammatic expansion [25]1. Equa-
tions (3) and (4) generalize the idea of normal ordering of the
Hamiltonian to fully correlated densities. In this work we keep
only the Ũ and Ṽ terms and discard diagrams with explicit
interaction-irreducible 3NFs. The error associated with this
truncation has been seen to be negligible in Refs. [26, 27] 2.
The single particle propagator gαβ(ω) can then be calculated
by exploiting the effective one- and two- body interactions
with the already available two-body formalisms.

We first solve the spherical Hartree-Fock (HF) equations
for the full Hamiltonian in a given model space. The resulting
propagator, gHF

αβ (ω), is then used as a reference state to calcu-
late the energy-dependent part of the self-energy. We employ
the ADC(3) method [22, 23] and write the self-energy as

Σ?αβ(ω) =Σ∞αβ + Σ′αβ(ω) (5)

=Ũαβ + Cαn

[
1

ω −M

]
n n′

C†n′β + Dαk

[
1

ω −N

]
k k′

D†k′β ,

where M (N) are interaction matrices in the 2p1h (2h1p) space
and C (D) are the corresponding coupling strengths to the sin-
gle particle states. In the ADC(3), these matrices are con-
structed to guarantee that all diagrams up to third order are
included in Eq.(5). In general, the ADC(n) approach defines
a hierarchy of truncation schemes of Eq. (5) for increasing or-
der n that guides systematic improvements of the method. The
correlated propagator gαβ(ω) is finally obtained by solving the
Dyson equation,

gαβ(ω) = gHF
αβ (ω) + gHF

αγ (ω)Σ?γδ(ω)gδβ(ω) , (6)

1 A diagram is said to be interaction-reducible if it can be factorized in two
lower-order diagrams by cutting an interaction vertex or, equivalently, if it
is connected and there exists a group of lines (interacting or not) that leave
an interaction vertex and eventually all return to it.

2 This would be the analogous to the NO2B approximation of Ref. [27] but,
here, not tight to the choice of any reference state.

which is diagonalized using a Lanczos algorithm as explained
extensively in [28, 29]. Note that we employ the sc0 approxi-
mation of Refs. [15, 29] where only the Σ′αβ(ω) contribution of
Eq. (5) depends on the reference states gHF

αβ (ω). This implies
the iterative solutions of Eq. (6) to evaluate Σ∞αβ=Ũαβ − UHF

αβ

in terms of the final correlated density matrix, Eq. (3).
In the presence of 3NFs, the ground state energy can still

be inferred from the Koltun sum rule (SR) that now acquires
a correction:

EA
0 =
∑
α β

1
4πi

∫
C↑

dω
[
Uαβ + ωδαβ

]
gβα(ω) −

1
2
〈ΨA

0 |W |Ψ
A
0 〉 .

(7)
Eq. (7)—based on the exact propagator—is still an exact equa-
tion. However, it requires to evaluate the expectation value of
the 3NF part of the Hamiltonian 〈ΨA

0 |W |Ψ
A
0 〉, with an accuracy

comparable to the many-body approximation in use. We cal-
culate this correction at first order in W using fully correlated
propagators,

〈W3ρ〉 =
1
6

Wαβγ, µνξ ρµα ρνβ ρξγ , (8)

that implicitly includes relevant higher order terms from stan-
dard many-body perturbation theory. We found that it is
mandatory to use fully dressed propagators—the solution of
Eq. (6)—but that this is also sufficient to account for all rele-
vant contributions. The next order correction is given by

〈WT DA〉 =
1
4

Wαβγ,µνξ ρµα ∆Γνξ,βγ , (9)

where ∆Γ is the two-body density matrix after subtraction of
the zeroth-order contribution coming from two fully corre-
lated but non-interacting nucleons, to avoid double counting
with Eq. (8). We estimated this using in Tamn-Dancoff ap-
proximation (TDA) [30] and found its contribution to be small
compared to our estimated errors, as discussed below.

The binding energy and spectra of neighboring even-odd
isotopes are extracted from the poles of propagator (1), how-
ever this requires a proper correction to account for the vari-
ation in the kinetic energy of the c.o.m. motion with chang-
ing A. To extract the energy of a system with mass A ± 1, we
recalculate gαβ(ω) for the doubly closed subshell A-nucleon
system but with a H̃(A ± 1) corrected Hamiltonian. We then
obtain:

EA±1 = ±εA±1
0 [H̃(A ± 1)] + EA

0 [H̃(A ± 1)] , (10)

where we made explicit the dependence on the c.o.m. correc-
tion for the Hamiltonian and EA

0 [H̃(A± 1)] is calculated using
the corrected Koltun SR.

Results. We perform calculations using chiral effective field
theory (EFT) two-nucleon (2N) and 3NFs evolved to low mo-
mentum scales by using free-space similarity renormalization
group (SRG) [31, 32]. The original 2N interaction is N3LO
with cutoff Λ2N=500 MeV [33, 34]. For the 3NF we use
the N2LO interaction in a local form [35] with a reduced cut-
off of Λ3N=400 MeV and low-energy constants cD=-0.2 and
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FIG. 1. (Color online) Convergence of 16O and 24O as a func-
tion of increasing size of the model space for ~ω=24 MeV and
λS RG=2.0 fm−1. Left: Binding energies from the corrected Koltun
sum rule, Eq. (7), as obtained from the induced and full interac-
tions. Right. Expectation value 〈ΨA

0 |W |Ψ
A
0 〉 obtained at first order

only, Eq. (8), (full lines) and with correction from two-body TDA
ladders, Eq. (9) (dashed lines).

cE=0.098 refitted to reproduce the 4He binding energies, as
discussed in Ref. [36]. This choice of Λ3N softens the contri-
butions of two-pion 3NF terms, herby minimizing the impact
of evolved 4NF. The 3NF obtained by evolving only the orig-
inal 2N-N3LO Hamiltonian will be referred to as “induced”
3NF and it is independent of the pre-existing 3N-N2LO in-
teraction. Similarly, the “full” Hamiltonian is generated by
evolving both initial 2N and 3NFs together. Since two-pion
exchange diagrams that incorporate physics from the Fujita-
Miyazawa 3NF appear at leading order in the chiral 3N-N2LO
force, their effects are incorporated only in the full Hamilto-
nian. Calculations were performed in model spaces up to 12
harmonic oscillator shells [Nmax ≡ max (2n + l) = 11], includ-
ing all 2N matrix elements and limiting 3NF ones to configu-
rations with N1+N2+N3 ≤ N3NF,max=14.

Figure 1 shows the convergence pattern of total binding en-
ergies for 16O and 24O as a function of the model space size.
The convergence is optimized by the choice of the chosen os-
cillator frequency which is close to the minimum of the ~ω
dependence for the present interaction [11]. The staggering
between adjacent results is due to the particular truncation of
3NF matrix elements and the alternate parities of harmonic os-
cillator shells. Separate exponential fits to the calculated 24O
energies, for Nmax either even or odd, differ by 100 keV and
are within 600 keV of the Nmax=11 result. Similarly, changing
~ω between 20 and 24 MeV we find up to 450 keV variation in
our results (see Fig. 2). Overall, these errors amount to about
0.6% of the total binding energy. The right panel of Fig. 1
demonstrates the similar convergence of the 〈ΨA

0 |W |Ψ
A
0 〉 ex-

pectation values. The contribution of 〈WT DA〉, Eq. (9), is never
bigger than 300 keV and represents a small correction to the
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FIG. 2. (Color online) Differences between calculated and experi-
mental ground state energies of oxygen isotopes for the full interac-
tion with different values of ~ω and λS RG. Results for 15O and 23O
are obtained from two separate calculations, one for neutron addition
and one for neutron removal (see text). Dots and diamonds for 23O
are almost indistinguishable with the scale of this plot.

Koltun SR. A proper study of the contributions to 〈W〉 will be
addressed in a forthcoming publication. For the present pur-
poses, we sum the above uncertainties to make a conservative
estimate for our convergence error of 1% for the calculated
total binding energies.

The differences between calculated binding energies and
the experiment, are demonstrated in Fig. 2 for different val-
ues of ~ω and λS RG. Refs. [11, 27] studied variations of λS RG

within larger intervals than the one considered here and found
uncertainties of at most a few per cent. This gives an estimate
of the error due to neglecting 4NF and higher terms. Our re-
sults with λS RG in the limited range 1.88-2.0 fm−1 do not ex-
ceed variations of 0.5% and this in agreement with Ref. [27].

From previous studies based on the ADC(3) method, we
expect an accuracy of the many-body truncation scheme of
about 1% [37, 38]. The extrapolated 16O ground state (Fig. 1)
is over bound at -130.8(1) MeV but in close agreement with
the -130.5(1) MeV obtained from IM-SRG [11], giving fur-
ther confirmation of the accuracy achieved by different many-
body methods. Note that the energies of 15O and 23O can
be obtained in two different ways, from either neutron ad-
dition or removal on neighboring sub-shell closures. Re-
sults in Fig. 2 differ by at most 400 keV, again within the
estimated uncertainty of our many-body truncation scheme.
The correction in Eq. (10) is crucial to obtain this agree-
ment. For ~ω=24 MeV and λS RG=2.0 fm−1, the discrepancy
in 15O (23O) is 1.65 MeV (1.03MeV) when neglecting the
changes in kinetic energy of the c.o.m. but it reduces to only
190 keV (20 keV) when this is accounted for. This gives us
confidence that a proper separation of the center of mass mo-
tion is being reached.

Fig. 2 also gives a first remarkable demonstration of the pre-
dictive power of chiral 2N+3N interactions: accounting for
the precision of our many-body approach and dependence on
λS RG found in Ref. [27], we expect an accuracy of at least 5%
on binding energies. All calculated values agree with the ex-
periment within this limit. Note that the interactions employed
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FIG. 3. (Color online) Top. Evolution of single particle energies for
neutron addition and removal around sub-shell closures of oxygen
isotopes. Bottom. Binding energies obtained from the Koltun SR and
the poles of propagator (1), compared to experiment (bars) [39–41].
All points are corrected for the kinetic energy of the c.o.m. motion.
For all lines, red squares (blue dots) refer to induced (full) 3NFs.

were only constrained by 2N and 3H/4He data.

Figures 3 and 4 collect our results for the oxygen, nitro-
gen and fluorine isotopes calculated with ~ω=24 MeV and
λS RG=2.0 fm−1. The top panel of Fig. 3 shows the predicted
evolution of neutron single particle spectrum (addition and
separation energies) of oxygen isotopes in the sd shell. In-
duced 3NFs reproduce the overall trend but predict a bound
d3/2 when the shell is filled. Adding pre-existing 3NFs—
the full Hamiltonian—raises this orbit above the continuum
also for the highest masses. This gives a first principle con-
firmation of the repulsive effects of the two-pion exchange
Fujita-Miyazawa interaction discussed in Ref. [3]. The con-
sequences of this trend are demonstrated by the calculated
ground state energies shown in the bottom panel and in Fig. 4:
the induced Hamiltonian systematically under binds the whole
isotopic chain and erroneously places the dripline at 28O due
to the lack of repulsion in the d3/2 orbit. Pre-existing 3NFs
are substantial and increase with the mass number up to 24O,
when the unbound d3/2 orbit starts being filled. At the same
time, the d5/2 quasiparticle states are lowered by about 1 MeV
between 16O and 24O, which provides extra binding through
the Koltun SR formula (7) and corrects the slope of binding
energies. As a result, the inclusion of N2LO 3NFs consis-
tently brings calculations close to the experiment and repro-
duces the observed dripline at 24O [42–44]. Our calculations

predict 25O to be particle unbound by 1.54 MeV, larger than
the experimental value of 770 keV [41] but within the esti-
mated errors. The ground state resonance for 28O is suggested
to be unbound by 5.2 MeV with respect to 24O. However this
estimate is likely to be affected by the presence of the contin-
uum which is important for this nucleus but neglected in the
present work.
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FIG. 4. (Color online) Binding energies of odd-even nitrogen and
fluorine isotopes calculated for induced (red squares) and full (green
dots) interactions. Experimental data are from [39, 40, 45].

The same mechanism affects neighboring isotopic chains.
This is demonstrated in Fig. 4 for the semi-magic odd-even
isotopes of nitrogen and fluorine. Induced 3NF forces con-
sistently under bind these isotopes and even predict a 27N
close in energy to 23N. This is fully corrected by full 3NFs
that strongly bind 23N with respect to 27N, in accordance with
the experimentally observed dripline. The repulsive effects of
filling the d3/2 is also observed in 29F. However, the inclusion
of an extra proton provides enough extra binding to keep this
isotope bound by about 890 keV (calculated) with respect to
25F, closer to the experimental value of 3.55 MeV [45]. The
induced interaction alone would overestimate this binding and
N2LO 3NFs are fundamental in achieving the correct balanc-
ing between the attraction generated by the extra proton and
the repulsion due to the filling of the neutron sd shell.

In conclusion, we have considered the extension of the
SCGF method to include three-body Hamiltonians. By prop-
erly defining system dependent effective one- and two-body
interactions that include the relevant contribution from 3NFs,
calculations can be performed with formalisms the already
exist for two-body Hamiltonians. This approach, however,
goes beyond usual truncations based on normal ordering of the
Hamiltonian and employs fully correlated densities instead of
unperturbed reference states. We applied this approach for the
first time to study SRG-evolved chiral 2N and 3N interactions
on the isotopic chains of nitrogen, oxygen and fluorine. We
find that chiral 3NF at N2LO are crucial in predicting the bind-
ing energies of these isotopes and that the findings of Ref. [3]
apply to other isotopic chains, as well as to the dripline of
nitrogen. Within the estimated errors due to the many-body
techniques and the dependence on the SRG evolutions, we
find a remarkable agreement between our calculations and the
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experimental energies along all three isotopic chains.

Recent works [14, 15] clearly show that state of the art
SCGF methods can be extended to the corresponding Gorkov
formalism for open shells, which is now underway. This
would not only allow direct calculations of semi-magic even-
even isotopes with analogous quality as above but would also
allow extracting a wealth of information on neighbor isotopes
reachable by transfer of one or two nucleons.
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