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Abstract: Binary fission is the most common mode of bacterial cell division and is mediated by a
multiprotein complex denominated the divisome. The constriction of the Z-ring splits the mother
bacterial cell into two daughter cells of the same size. The Z-ring is formed by the polymerization of
FtsZ, a bacterial protein homologue of eukaryotic tubulin, and it represents the first step of bacterial
cytokinesis. The high grade of conservation of FtsZ in most prokaryotic organisms and its relevance
in orchestrating the whole division system make this protein a fascinating target in antibiotic research.
Indeed, FtsZ inhibition results in the complete blockage of the division system and, consequently,
in a bacteriostatic or a bactericidal effect. Since many papers and reviews already discussed the
physiology of FtsZ and its auxiliary proteins, as well as the molecular mechanisms in which they are
involved, here, we focus on the discussion of the most compelling FtsZ inhibitors, classified by their
main protein binding sites and following a medicinal chemistry approach.
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1. FtsZ

1.1. FtsZ and the Cell Division Process

Cell division is primarily coordinated by the multiprotein complex called the divisome. Several
authors consider the whole bacterial cycle divisible into multiple steps, whose sequence leads to the
formation of the divisome [1,2].

The trigger point of the process is the binding of FtsZ monomers to GTP, resulting in FtsZ
polymerization into single-stranded filaments, following a defined ring-like structure: the Z-ring.
This stage is regulated and controlled by multiple mechanisms, both positive and negative, since
the correct localization of FtsZ polymerization is essential for obtaining appropriate daughter cells.
It should take place at mid-cell. The Z-ring seems not to be composed of a single and circular FtsZ
protofilament, but of cross-linked protofilament patches [2,3]. Indeed, the presence of several FtsZ
protofilaments crosslinked was demonstrated only in vitro so far, i.e., when treated with divalent
cations. Nevertheless, a definitive proof of in vivo protofilament lateral interactions is still missing.

After its formation, the Z-ring it is tethered to the cell membrane by a wide number of
FtsZ-interacting proteins; for instance, in Escherichia coli, ZipA and FtsA tether the Z-ring through a
specific conserved region of the protein, the C-terminal tail (or CTT), discussed later in this review.

Lastly, the maturation of the divisome is reached with the recruitment of several other proteins
specifically involved in the synthesis of the cell wall (i.e., FtsI in E. coli).
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The final division is obtained through the constriction of the membrane, together with its
invagination and the biosynthesis of peptidoglycan [2,3]. In particular, in E. coli, the essential
septal transpeptidase FtsI moves directionally along the septum, promoting the biosynthesis of the
peptidoglycan in concert with cell division [4]. Thus, FtsZ results as the main actor of this essential
process, due to its peculiar functions: the ability to bind GTP, to polymerize into protofilaments,
and to crosslink, coordinating the formation of the Z-ring, the crucial and limiting step of the cell
division cycle.

1.2. FtsZ and Eukaryotic Tubulins

The homology between FtsZ and eukaryotic tubulins was exhaustively studied. The similarity
among these proteins was proven at different levels; they share the ability to bind and hydrolyze GTP,
as well as polymerize into protofilaments in a GTP-dependent manner [5]. Moreover, the GGGTGTG
sequence of FtsZ is known to be also the signature motif of α-, β-, and γ-tubulins and is directly related
to their ability to bind the GTP [6]. Even if FtsZ and tubulins demonstrated a high functional homology,
their amino-acidic sequences largely diverge [7], making FtsZ a potential target for antimicrobial
molecules with selective activity on prokaryotic cells.

1.3. FtsZ, Its Structure, and Main Inhibitor Binding Sites

Even if FtsZ functionality in the cell division process is widely conserved among most prokaryotic
organisms, the structural conservation is strictly dependent on the specific protein portion. FtsZ could
be divided into five main domains as reported in Figure 1: (1) the N-terminal subunit, which is
unstructured and characterized by a poor conservation, has no particularly known functions; (2) the
globular core, already largely studied, is highly conserved and it presents the important GTP-binding
site; (3) the C-terminal linker, previously known as “variable spacer”, is characterized by a low degree
of conservation and by a poor structuration; (4) the C-terminal Tail (CTT) is short and crucial for
the interactions between FtsZ and several auxiliary proteins and for establishing lateral interaction
between protofilaments in the Z-ring; (5) lastly, the C-terminal variable region (CTV) is able to promote
lateral interactions in the absence of modulatory proteins [2,8].

More broadly, FtsZ can also be divided into the two main regions: The N-terminal domain, which
contains the globular core and the GTP-binding site, and the C-terminal domain, including the CTT
and the CTV. The two parts are connected by a central helix (H7) [9].

This second partition is especially convenient when considering the two main known binding sites
for FtsZ inhibitors, the GTP-binding site and the interdomain site. These two protein sequences are
hereunder considered and intensively examined, as we chose them as the criterion for the classification
of the most interesting and promising FtsZ inhibitors developed in literature so far.

1.3.1. GTP-Binding Site

As all the members of the tubulin superfamily, FtsZ polymerizes “head to tail” in a GTP-dependent
manner. GTP–FtsZ binds at the bottom end of the filament completing the GTPase catalytic site.
Hydrolysis of GTP decreases the interaction of the protein with the nucleotide and consequently
results in the disassembling of the protofilament [1]. In Methanococcus jannaschii, a hyperthermophilic
methanogen bacterium, six different FtsZ regions interact with GTP: loops T1–T4, the region for sugar
binding, and the region for base recognition [10]. Considering the cruciality of the GTP binding ability
of the protein, the GTP-binding site is widely conserved, as the whole globular core, not only among the
different bacterial species, but also in eukaryotic tubulins. As a result, it became a target for designing
broad-spectrum antibacterial agents.

Moreover, no drug-resistant mutants are reported in the literature so far, presumably because the
GTP-binding site is essential for the correct recognition of GTP molecules. Amino-acid substitutions at
this binding pocket might cause improper recognition of GTP molecules and, thus, hinder the normal
GTP hydrolysis process, losing the energy source to drive the polymerization of FtsZ monomers.
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Figure 1. Graphical representation of FtsZ main subunits and sequence alignment of FtsZ from 
representative organisms: Staphylococcus aureus (Sau), Bacillus subtilis (Bsu), Escherichia coli (Eco), and 
Pseudomonas aeruginosa (Pae). Alignments: * = same residues, : = equivalent residues, ∙ = partial 
alignment. The sequences were obtained from uniport.org (identifiers (IDs): P0A031, P17865, 
P0A9A6, P47204) and aligned with EMBL-EBI Clustal Omega (www.ebi.ac.uk/Tools/msa/clustalo/). 

1.3.2. Interdomain Site 

A wide number of FtsZ inhibitors interact with the interdomain binding site, a second interesting 
domain located in a long cleft between the C-terminal domain and the H7 helix of FtsZ. It spans over 
an extended surface and includes an area in a similar position to the taxol-binding site of tubulin. 
This interdomain cleft, located between the N-terminal and the C-terminal domains, opens and closes 
during the functional cycle of FtsZ as the protein switches between conformations with different 
propensity to polymerization in protofilaments. The site shows only a relatively limited conservation 
across FtsZs of different bacterial species. As a result, variations in the amino-acidic composition and 
site accessibility could account, at least in part, for the observed differences in the susceptibility of 

Figure 1. Graphical representation of FtsZ main subunits and sequence alignment of FtsZ from
representative organisms: Staphylococcus aureus (Sau), Bacillus subtilis (Bsu), Escherichia coli (Eco), and
Pseudomonas aeruginosa (Pae). Alignments: * = same residues, : = equivalent residues, · = partial
alignment. The sequences were obtained from uniport.org (identifiers (IDs): P0A031, P17865, P0A9A6,
P47204) and aligned with EMBL-EBI Clustal Omega (www.ebi.ac.uk/Tools/msa/clustalo/).

1.3.2. Interdomain Site

A wide number of FtsZ inhibitors interact with the interdomain binding site, a second interesting
domain located in a long cleft between the C-terminal domain and the H7 helix of FtsZ. It spans over
an extended surface and includes an area in a similar position to the taxol-binding site of tubulin.
This interdomain cleft, located between the N-terminal and the C-terminal domains, opens and closes
during the functional cycle of FtsZ as the protein switches between conformations with different
propensity to polymerization in protofilaments. The site shows only a relatively limited conservation
across FtsZs of different bacterial species. As a result, variations in the amino-acidic composition
and site accessibility could account, at least in part, for the observed differences in the susceptibility
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of FtsZ from different bacterial strains to the same inhibitor or to inhibitors belonging to similar
chemotypes [11]. While this variability may pose a challenge for the development of broad-spectrum
antimicrobials, the specificity of this area and its structural divergence from the corresponding portions
of tubulin may rule out potential toxicity concerns of inhibitors targeting the GTP-binding site, which
shows a high homology between the two proteins.

In addition to FtsZ inhibitors targeting these two binding sites, some exceptions are reported.
Among them, cinnamaldehyde, which is characterized by a minimum inhibitory concentration (MIC)
of 7.5 mM and 3.8 mM vs. E. coli and Bacillus Subtilis, respectively, neither interacts with the GTP site
nor with the interdomain site. In silico studies predicted cinnamaldehyde to interact with G295 and
V208, involving also the T7 loop. [12]

1.4. FtsZ Inhibitors: How to Properly Evaluate Them

Currently, several FtsZ inhibitors are known in literature, both natural and synthetic. Several
experimental procedures should be performed to properly ensure that FtsZ is the primary target
of a putative inhibitor. All the possible assays, together with their aims and the most significant
examples, were outstandingly summarized in the review of Kusuma and co-workers [13]. Following
their guideline, the FtsZ inhibitory evaluation can be achieved with both in vitro and in vivo assays.

1.4.1. In Vitro Assays

Saturation transfer difference NMR (STD-NMR), X-ray crystallography, surface plasmon resonance
(SPR), and isothermal titration calorimetry (ITC) are the four most important methods to evaluate
the direct interaction with FtsZ, even if further ones could be set up and performed. Among these
assays, STD-NMR is commonly used to evaluate which are the moieties involved in the interaction
with the target, while ITC assesses the binding constant of any compound for FtsZ. After having
investigated the affinity, it is also important to evaluate if and how FtsZ enzymatic activity changes
when treated with the xenobiotic. For this aim, the most commonly used assays are 90◦ angle light
scattering, GTP-dependent polymerization, and polymerization sedimentation assays. Potentially,
colloidal aggregation of the tested compounds could disrupt the three-dimensionality of FtsZ, resulting
in antimicrobial effects independently from the specific inhibition of FtsZ activity.

1.4.2. In Vivo Assays

In vitro assays are very useful to evaluate direct interactions. Nevertheless, in this kind of
experiment, several factors are not considered, such as cell membrane permeability, efflux pump
activity, and several others. Usually, in vivo assays are recommended for a more accurate assessment of
antimicrobial efficacy. Among them, the most common method is the examination of any morphological
change; indeed, inhibition of the bacterial division system results in an abnormal lateral growth,
leading to elongated, filamentous, or enlarged cells. This evaluation can be easily performed using
phase-contrast microscopy and should be followed or preceded by other specific assays.

As a result, in order to confirm the binding of compounds with FtsZ and its consequent inhibition,
any researcher should proceed using a multi-assay approach, which combines both in vitro and in vivo
experiments (Figure 2).
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As suggested by Kusuma and co-workers [13], the first step to evaluate the cell division inhibition
should be the phenotype evaluation. This quick and simple experiment allows easily excluding
non-active compounds and, in contrast, could give an initial strong proof of division inhibition.

Secondly, ITC, SPR, or other binding assays can directly evaluate in vitro FtsZ interaction,
supporting the interaction with the target and giving additional information (i.e., Kd). Lastly,
enzymatic assays can measure if FtsZ activity is altered by the presence of the given compound.
Positive results from all these approaches yield strong evidence of the inhibition of the cell division
system consequent to the inhibition of FtsZ. The following steps should be the evaluation of the
promising derivatives in an animal model, together with the study of their pharmacokinetics.

2. FtsZ Inhibitors

Hereafter, we present the most compelling FtsZ inhibitors discovered in the last decade, coming
from various research groups (see Table 1). We decided to divide them considering the two binding
sites and highlighting the best chemical classes. For each class, we deeply evaluate the most significant
compounds, together with their antimicrobial results and the most significant details.

Table 1. General overview of the best FtsZ inhibitors. MIC—minimum inhibitory concentration;
IC50—half maximal inhibitory concentration; STD—saturation transfer difference; ITC—isothermal
titration calorimetry.

Site Class (Figure) Best
Compounds MICs Evidence for FtsZ Inhibition References

2.1. GTP-binding site

2.1.1. Pyrimidines (3) N6–N8

S. aureus: 4–8 µM
Enterococcus faecalis:
4–8 µM
E. faecium: 4–8 µM

• Polymerization assay;
• GTPase activity assay;
• Microscopy evaluation.

[14,15]

2.1.2. Zantrins (4) N11 S. aureus: 5 µM
E. coli: DRC39: 10 µM

• IC50 evaluation;
• Molecular modeling. [16–19]

2.1.3. Chrysophaentins (5) N17 S. aureus: 5–9 µM
E. faecium: 5–6 µM

• Polymerization assay;
• GTPase activity assay;
• STD-NMR;
• Molecular modeling.

[20–22]

2.1.4. GTP analogues and
derivatives (6) N23-N26 B. subtilis: 8.5 µM

S. aureus: 5–50 µM

• Microscopy evaluation;
• Sedimentation assay;
• Polymerization assay;
• Molecular modeling.

[23,24]

2.2. Interdomain site

2.2.1. Benzamides (7) I3; I4; I7–I12
B. subtilis: <1 µM
S. aureus: 1.6–2.8 µM
E. coli N43: 19–42 µM

• Polymerization assay;
• GTPase activity assay;
• Microscopy evaluation;
• Molecular modeling;
• X-ray crystallography.

[25–49]

2.2.2. Berberine analogues
and derivatives (8) I20–I22

B. subtilis: 2.8–8 µM
S. aureus: 2.7–8 µM
E. coli: 5.5 µM

• Polymerization assay;
• GTPase activity assay;
• Microscopy evaluation;
• STD-NMR;
• ITC.

[50,51]

2.2.3. Phenantridium
derivatives (9) I25 B. subtilis: 12.7 µM

S. aureus: 51 µM

• Microscopy evaluation;
• Polymerization assay;
• Molecular modeling.

[52]

2.2.4. Indoles (10) I26 B. subtilis: 4.5 µM
S. aureus: 4.5–9.1 µM

• Polymerization assay;
• GTPase activity assay;
• Microscopy evaluation.

[53]
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2.1. GTP-Binding Site Inhibitors

2.1.1. Pyrimidines

Chan and coworkers started from an initial virtual screening to identify a novel class of FtsZ
inhibitors, potentially useful for further chemical modifications. They screened a library of more than
20,000 compounds (both natural and synthetic), downloaded from Analyticon Discovery, for binding
at the GTP-binding site of the M. jannaschii FtsZ (Protein Data Bank (PDB) 1W5B) [54].

No physicochemical property filtering was employed prior to docking,
considering that natural products do not generally respect Lipinsky rules for
permeation and absorption. From these calculations N1 in Figure 3, 4-(((2R, 4S,
5R)-5-(2-methyl-6-(thiophen-2-yl)pyrimidin-4-yl)-quinuclidin-2-yl)methylcarbamoyl)butanoic
acid arose as a promising derivative. They purchased it and tested it in vitro; the resulting mild
activities on both Staphylococcus aureus American Type Culture Collection (ATCC) 29213 (449 µM) and
E. coli ATCC 25922 (897 µM) and the ability to inhibit FtsZ GTPase activity (half maximal inhibitory
concentration (IC50) = 317.2 µM) made N1 the starting hit for sequential in silico optimization and
structure–activity relationship (SAR) study, achieving a wide series of first-generation quinuclidines.
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Among them, N2 and N3 emerged (Figure 3). N2 showed more than 17-fold improved antibacterial
activities (25 µM on S. aureus ATCC 29213 and 49 µM on E. coli ATCC 25922) and a 10-fold more potent
GTPase inhibition (IC50 = 37.5 µM), whereas N3 had half of N2 inhibitory activities (MIC of 50 µM on
S. aureus ATCC 29213 and 76 µM on E. coli ATCC 25922, and IC50 = 73.2 µM) but it is still promising.

Moreover, N2 was proven to strongly interfere with FtsZ assembly, without affecting tubulin
polymerization [54], while N3 was tested in combination with several β-lactam antibiotics. This study
showed how methicillin and imipenem activities against methicillin-resistant S. aureus (MRSA) were
strongly enhanced by N3, and how the activity of quinuclidine itself was also improved [55]. Similar
results are in line with that accomplished with benzamide derivatives PC190723 [25] and TXA707 [26,27],
better explained later.

The same researchers then aimed at further improving antimicrobial activity and at simplifying
the structural complexity of the quinuclidine scaffold, which, through its rigidity, could limit the
interaction with the target. They moved to simpler amines, in lieu of the quinuclidine, such as cyclic
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amines, piperazines, and linear amines. The best results were achieved with a seven-membered
homopiperazine ring, with a substituted benzyl group, and with the benzyl group having a bulky
group at the para-position [56]. A few discrete candidates stood out and the most encouraging was
N4 (Figure 3), with enhanced antimicrobial activities toward S. aureus ATCC 29213 (8 µM) and nine
clinically isolated antibiotic-resistant S. aureus strains (MIC ranging from 1 to 6 µM). However, neither
N4 nor these other second-generation pyrimidines exhibited inhibitory activity toward the growth of
E. coli ATCC 25922. The researchers attributed it to a potential poor penetration into these bacteria,
even though no further investigations were performed on mutated E. coli, as done for PC190723 and
its prodrug TXA436 [28] and for the benzodioxane derivatives [29], described in a later paragraph of
this work.

Nevertheless, Chan and coworkers studied the spontaneous resistance of N4 in MRSA and
evaluated that the rate of spontaneous resistant mutants was as low as <1 × 109. They also highlighted
the potential of N4 for further animal studies, after having performed a preliminary measure of in vivo
toxicity and efficacy, testing N4 in a Galleria mellonella model [57]. Investigation on N4 mode of action
by STD-NMR and by biochemical assays confirmed the inhibition of S. aureus FtsZ. Specifically, NMR
data indicated that the pyrimidine proton is in close relationship with the protein, while polymerization
and GTPase assays showed how N4 suppresses FtsZ self-polymerization, via disrupting FtsZ GTPase
hydrolysis. Furthermore, exposure of B. subtilis cells to N4 resulted in cell elongation and lack of the
mid-cell foci.

Recently, Fang and coworkers designed, synthetized, and evaluated novel
2,4-disubtituted-6-thiophenyl-pyrimidines (N5–N8 in Figure 3), which were tested over a
number of Gram-positive and Gram-negative bacterial strains (see Table 2), both sensitive and resistant
to several antibiotics [14,15]. Their strategy in the design of these molecules was to keep the piperidine
ring, which resulted as essential from the previously mentioned STD-NMR studies, and to substitute
it with methyl and 4-pyridyl groups at position 2-, to investigate the steric effect at this position.
The strong difference in antibacterial potency between N5 and N6–N8 revealed that the pyridyl group
is crucial for the maintenance of a potent inhibitory activity.

Table 2. MICs of Pyrimidines N1–N8. ATCC—American Type Culture Collection.

Strain
MIC (µM)

N1 N2 N3 N4 N5 N6 N7 N8

S. aureus ATCC 29213 897.1 24.6 50 8 52 4 4 8
S. aureus ATCC 29247 − − 50 5.8 52 − − −

S. aureus ATCC BAA-1717 * − − − 5.8 52 − − −

S. aureus ATCC BAA-1720 * − − − 11.7 52 4 4 8
S. aureus ATCC BAA-41 * − − 50 11.7 52 4 4 8

S. aureus ATCC BAA-1747 * − − − − 52 − − −

S. aureus ATCC 43300 * − − − 11.7 − 4 4 8
S. aureus USA300 #757 − − − 11.7 − − − −

S. aureus USA300 #1799 − − − 11.7 − − − −

S. aureus USA300 #2690 − − − 11.7 − − − −

S. aureus ATCC 33591 * − − − − − 4 4 8
S. aureus ATCC 33592 * − − − − − 4 4 8

B. subtilis 168 − − 50 − 52 4 4 8
E. faecalis ATCC 29212 − − 50 − 208 4 4 8

E. faecalis ATCC 51575 ** − − − − 208 4 8 8
E. faecium ATCC 49624 − − − − 208 4 8 8

E. faecium ATCC 700221 ** − − − − 208 4 8 8
S. epidermidis ATCC 12228 − − − − − 4 4 8

E. coli ATCC 25922 449.0 49.2 76 >64 208 >208 >208 >208
E. coli ATCC BAA-2469 − − − − 208 − − −

P. aeruginosa ATCC BAA-2108 − − − − >208 − − −

Klebsiella pneumoniae ATCC
BAA-1144 − − − − >208 − − −

* methicillin-resistant S. aureus (MRSA), ** vancomycin-resistant.
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N5–N8 exhibited a stronger antibacterial activity against Gram-positive bacteria than
Gram-negative strains; the author explained this behavior as a poor ability of these compounds
to bypass the Gram-negative outer membrane.

Regarding Gram-positive bacteria, they showed promising MIC values on methicillin-resistant S.
aureus (as MRSA: ATCC BAA-41, ATCC BAA-1717, ATCC BAA-1720, ATCC BAA-1747, ATCC 33591,
ATCC 33592, ATCC 43300), as well as on vancomycin-resistant E. faecalis (ATCC 51575) and E. faecium
(ATCC 700221). The activity of N5 was lower than N6–N8 across the whole panel of strains, suggesting
a better outcome of the 4-pyridine ring in the interaction with the GTP-binding site, if compared to the
methyl pendant.

However, all these third-generation pyrimidines proved to be bactericidal (minimum bactericidal
concentration (MBC)/MIC ratio values of 1 or 2), to disrupt FtsZ polymerization, to inhibit the FtsZ
GTPase activity, and to induce cell elongation. Furthermore, in addition to N4, N5–N8 seemed not
to induce the development of S. aureus resistant mutants and did not show any toxicity on human
erythrocytes, suggesting a promising further development.

2.1.2. Zantrins

In 2004, Margalit and coworkers performed a high-throughput protein-based chemical screening
aimed at identifying potential molecules able to target FtsZ, specifically inhibiting its GTPase activity [16].
They started from 18,320 compounds and used a real-time, enzyme-coupled, fluorescent assay in a
384-well plate format.

Only 23 compounds were proven to directly inhibit FtsZ GTPase, and five of them (Z1–Z5, here
called N9–N13, in Figure 4) were able to ~50% inhibit E. coli FtsZ GTPase activity at concentrations
<50 µM. These compounds were named Zantrins because of their ability to act as FtsZ guanosine
triphosphatase inhibitors. Specifically, N9, N10, and N12 act as FtsZ assembly destabilizers, resulting
in a diminution of protofilaments length and abundance, whereas N11 and N13 act as FtsZ assembly
stabilizers, inducing protofilaments pairing and bundling. Moreover, N11 acts as a strong stabilizer,
while N13 acts as a weaker one.Antibiotics 2020, 9, 69 9 of 28 
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The IC50s of N9–N13 were evaluated against both E. coli and Mycobacterium tuberculosis FtsZ
GTPases. The IC50s vs. E. coli, ranging between 4 and 25 µM, were significantly higher than the latter
ones, whose values were one order of magnitude lower than the former.

The Zantrins were tested over a wide range of Gram-positive and Gram-negative strains (see
Table 3); only N9 and N10 showed an inhibitory activity on E. coli; the author hypothesized N11–N13
as substrates of the resistance–nodulation–division (RND) efflux pump AcrAB, the major E. coli
efflux pump. Therefore, N9–N13 were evaluated over an E. coli AcrAB-null strain (DRC 39),
showing an increased activity for N10 and N11, whereas N9, N12, and N13 maintained the initial
inhibitory potencies.

Table 3. MICs of Zantrins N9–N13.

Strain
MIC (µM)

N9 N10 N11 N12 N13

S. aureus H 2.5 1.25 5 10 >80
S. aureus clinical MRSA 2.5 2.5 10 10 >80

Streptococcus pneumoniae TIGR 4 0.3 2.5 5 10 >80
Clostridium perfringens Strain 13 5 10 80 5 >80

B. subtilis 168 1.25 2.5 2.5 2.5 2.5
B. cereus CIP 3852 0.6 5 20 2.5 2.5

E. coli MC 1000 20 40 >80 >80 >80
E. coli DRC 39 20 5 10 >80 80

Shigella dysenteriae 60R 10 10 20 >80 >80
Vibrio cholerae N16961 5 5 5 >80 >80

P. aeruginosa PAK 40 >80 >80 >80 >80

N9–N11 MICs showed promising activity versus Shigella dysenteriae and Vibrio cholerae. However,
almost all the Zantrins were significantly more potent over Gram-positive strains, even on
methicillin-resistant S. aureus. These initial data highlighted Z3 (N11) as having a drug-like structure
and, thus, being a promising lead for further synthetic modifications [17,18].

A few years later, Anderson and researchers conducted preliminary SAR studies in N11,
understanding that modifications at the halogen para-substitutions at the styryl portion negatively
affected the activity [17]. Furthermore, the simplification of the diethylamino group into the
dimethylamino one of N14 resulted in a better IC50 (12 µM vs. 20 µM of N11). No MICs were
found in the literature concerning N14, but its promising IC50 was the starting point for additional
modifications by the same research group.

Nepomuceno reported a couple of years later an SAR study in which N11 and N14 were modified
on the benzoquinazoline core, replacing the fused benzene with groups with different steric and
electronic properties, on the 4-chlorostyryl fragment, substituting it with several isosters, or on the
amino ethyl side chain, modifying one or both the nitrogen atoms or evaluating positively charged
amines [18].

The best results were achieved with N15 (IC50 = 24 µM), featuring a 6-methyl-quinazoline instead
of the benzoquinazoline ring, and with N16 (IC50 = 24 µM), a trifluoroacetate benzoquinazoline
ammonium derivative. Any alteration in the 4-chlorostyril fragment resulted in the complete loss of
inhibitory activity (IC50 > 128 µM).

Zantrins were always recognized to bind the GTPase binding site; nevertheless, a few months ago,
Sogawa and coworkers deeply analyzed N11 and N14 in their binding properties with M. tuberculosis
FtsZ [19].

They precisely evaluated the interactions of N11 and N14 with FtsZ at an electronic level, using
ab initio fragment molecular orbital calculations, and they searched for binding sites all over the
protein sequence. Their study suggested that the binding site is in the vicinity of the H6/H7 loop and
that it is distinct from the GTP-binding site of M. tubercolosis FtsZ. These novel results suggested that
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further analyses should be performed, such as STD-NMR or co-crystallization, in order to permanently
confirm them.

2.1.3. Chrysophaentins

In 2010 Plaza and coworkers evaluated marine natural products as a potential source of FtsZ
inhibitors, thanks to their peculiar chemical structures and considering their strong antimicrobial
activities [20].

They prepared a methanol extract of the chrysophyte alga Chrysophaeum taylori and evaluated the
inhibition activity on the growth of S. aureus, MRSA, E. faecium, and vancomycin-resistant E. faecium
(VREF).

Eight macrocycles were isolated and characterized by NMR and MS, establishing their chemical
structures. Further antimicrobial evaluation, enzymatic assays, transmission electron microscopy
(TEM), STD-NMR, and molecular docking were performed. All these data highlighted chrysophaentin
A (N17, see Figure 5) as a valuable FtsZ inhibitor, able to inhibit the growth of all the bacterial strains (see
Table 4), thanks to its ability to block both FtsZ GTPase activity and polymerization. STD-NMR studies
gained insight into its binding mode to FtsZ, identifying the GTP-binding site as its binding pocket.
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Table 4. MICs of chrysophaentins N17–N18.

Strain
MIC (µM)

N17 N18

S. aureus 25293 9.2 34
S. aureus MRSA BAA-41 4.6 34

S. aureus MDRSA BAA-44 9.2 34
S. aureus UAMS-1 9.2 34

CA-MRSA USA 300-LAC 9.2 34
E. faecium * 6.1 * −

E. faecium VREF * 4.6 * −

* Expressed as MIC50.

The same research group developed an SAR study from N17, including natural and synthetic
chrysophaentins, aiming at simplifying its structure and enlarging the S. aureus-tested strains, including
clinical methicillin-resistant (MRSA) and multidrug-resistant (MDRSA) strains and clinical isolates
(UAMS-1 and CA-MRSA USA 300-LAC). N18, a synthetic fragment of N17, showed comparable
antimicrobial results, even if slightly lower than its parent molecule [21].

Using GTPase and competition assays, together with NMR and fluorescence data, they
demonstrated that N17 and N18 inhibit both the GTPase and the polymerization activities of the
protein, disrupting FtsZ assembly and, thus, the Z-ring in live bacteria [22].
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2.1.4. GTP Analogues and Derived Synthetic Inhibitors

Nucleotide derivatives were also evaluated as FtsZ inhibitors, able to interfere with FtsZ
polymerization. In this context, a huge study was that performed by Läppchen and Andreu and their
research groups. They started designing and synthetizing a structurally diverse series of 8-substituted
GTP analogues [58–60] and investigated their effect on both FtsZ and tubulin, calculated their ability
to interfere with FtsZ polymerization and GTPase activity, and evaluated the antimicrobial activity of
their prodrugs.

BrGTP and MeOGTP, named N19 and N20 in Figure 6, were the most potent GTP analogues.
The former was the first to be discovered [59]; it was proven to inhibit both E. coli FtsZ polymerization
(IC50 = 37 µM) and its associated GTPase activity (IC50 = 60.2 µM).
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N20, designed a few years later [60], was even more potent, with an IC50 on FtsZ polymerization
of 10 µM and a similar IC50 on GTPase activity (15 µM).

N19 and N20 stabilities to hydrolysis were calculated by HPLC and resulted to be less than
3%; furthermore, their binding affinities to FtsZ were determined using a method developed by the
same research group [61]. The results suggested that the inhibitory potencies are strictly related to
the binding affinities. Moreover, both N19 and N20 potently promoted tubulin polymerization and
assembly, even more strongly than GTP itself. A few years later, the same researchers combined NMR
experiments, biochemical assays, and molecular modeling to determine the conformations of N19 and
N20, both free and bound to FtsZ, using two different FtsZ proteins [62]. Both the GTP analogues
generated important modifications at the interface between FtsZ monomers, in terms of size, shape,
and electrostatic surface.

Finally, Huecas and collaborators further elucidated the inhibition mode of N19 and N20 using a
mant fluorophore-based assay [63]. Despite the interesting inhibition profile of N19 and N20, none of
their prodrugs resulted as having acceptable antibacterial activities [58]. This lack of antimicrobial
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potency was attributed to the probable poor penetration across the bacterial cell envelope and prompted
the researchers to the evaluation of smaller molecules, targeting the same binding site without having
a nucleotide structure.

They evaluated compounds from literature, conducted a virtual screening campaign, and tested
in-house compounds, after a docking evaluation on the B. subtilis FtsZ GTP-binding site [23]. The most
encouraging molecules were N21–N23 (Figure 6), previously described as anticancer agents.

All three derivatives of this first generation of molecules showed high affinity for FtsZ; N21 had
a kb of 4.3 × 105 M−1 while N22 and N23 constants were more than three times higher (kb(N22) =

1.5 × 106 and kb(N23) = 1.3 × 106). They resulted in an inhibition of the growth of Gram-positive
strains, with mild (N21 and N22) to good (N23) values (see Table 5). Unfortunately, the activity on
Gram-negative strains was scarce to null for all three compounds, and their inhibition mode on FtsZ
function was not well elucidated.

Table 5. MICs of non-nucleotide GTP analogues N21–N26.

Strain
MIC (µM)

N21 N22 N23 N24 N25 N26

B. subtilis 168 >100 38 8.5 − −

S. aureus ATCC 29213 69 38 17 − − −

S. aureus 12160636 * 69 38 17 − − −

S. aureus MDRSA Mu50 80 − − 50 5 7
E. faecium 12160560 ** >100 74 8.5 − − −

E. faecalis ATCC 29212 >100 74 4.3 − − −

E. faecalis 12165475 *** >100 74 8.5 − − −

E. faecalis V583 ** >100 − − >100 50 50
S. pneumoniae ATCC 49619 138 74 68.2 >100 74 68.2
P. aeruginosa ATCC 27853 >100 >100 >100 50 >100 >100

K. pneumoniae ATCC 700603 >100 >100 >100 >100 >100 >100
E. coli ATCC 35218 >100 >100 >100 50 >100 >100

* MRSA, ** multidrug-resistant (MDR), *** levofloxacin-resistant.

Therefore, the researchers moved to a second generation of compounds [24]. They started from
the chemical structures of N21 and N24, a different in-house compound not published before including
a 3,5-biphenyl core instead of the 1,3-naphtalene one of N21.

In this SAR study, the gallate core hydroxy groups were replaced by methoxide ones or the
number of the substituents was reduced. They also eliminated one of the polyhydroxybenzoate
moieties and removed or replaced the ester spacers. They designed and synthetized more than 30
derivatives, which were evaluated for their solubility in aqueous buffer, for their ability to bind the
GTPase binding site, for their binding specificity, and for their antimicrobial activity on Gram-positive
and Gram-negative strains.

N25 and N26 (Figure 6) were identified as compounds able to specifically inhibit FtsZ with
high affinity and selectivity over the inhibition of tubulin polymerization, interfering with bacterial
cytokinesis, disrupting cell viability through modification of FtsZ assembly and hampering cell
division. Their antibacterial activity was promising toward Gram-positive bacteria, including
multidrug-resistant strains.

2.2. Interdomain Site Inhibitors

2.2.1. Benzamides

Benzamide-based inhibitors form the most well studied and numerous group of FtsZ inhibitors
reported so far. They include compounds with considerable structural diversity, organized around
three main structural features (see Figure 7):
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• A benzamide core, which is maintained through the whole series and is fundamental for activity.
The 2,6-difluoro substitution was proven to increase activity. The benzamide group interacts via
hydrogen bonds with specific residues in the T7 loop of FtsZ (e.g., Val207 and Leu209 in S. aureus)
which are conserved across different species [11];

• An alkylenoxy or alkylenamine linker region of different lengths;
• A variable terminal region including either an alkyl chain (functionalized or non-functionalized)

or a heterocyclic moiety, which is accommodated in a narrow, deep, and hydrophobic cavity
inside the interdomain cleft. In general, affinity is promoted by the possibility to form additional
interactions and is strongly limited by the hydrophobic nature and steric constraints of the
binding site. A wide variety of groups of different size, conformation, and electronic properties
were evaluated, and this variability is likely at the source of the different pharmacological and
physicochemical profiles of the different inhibitors.
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The original interest in this class was sparked by the inhibitory activity of 3-methoxybenzamide
(3-MBA, I1) on the growing rate of B. subtilis [30]. Despite the weak on-target antimicrobial activity
(MIC = 26490 µM), 3-MBA was an attractive starting point for fragment-based drug design, due to its
low molecular weight and its ability to penetrate cell membranes. A medicinal chemistry program
carried out by Prolysis, Inc. (now Biota Ltd.) explored the SAR of the starting molecule in order to
ameliorate on-target activity and drug-like properties. In a first phase, the effect of substituents on
the benzamide ring was evaluated, with the identification of the 2,6-difluoro substitution pattern
and the homologation from methoxy to ethoxy as positive for activity. Further elongation of the
alkyl chain led to a first lead compound, 2,6-difluorononyloxybenzamide (DFNBA, I2), with greatly
increased antibacterial activity (MICs of 0.125 ug/mL on B. subtilis and 0.5 ug/mL on S. aureus) [31].
Interestingly, the antimicrobial potency was retained in methicillin-resistant S. aureus (MRSA) strains.
The improvement of the suboptimal drug-like properties of DFNBA was the object of a second
phase of the program, in which the long alkyl chain was systematically substituted with different
heterocycles in order to decrease logP, the number of rotatable bonds, and the binding to plasma
proteins, as well as to introduce potential sites for additional hydrogen bonds. The best results were
obtained with thiazolopyridines and, specifically, the 6-chloro derivative PC190723 (I3) provided the
best combination of bactericidal activity, metabolic stability, and overall drug-like properties [32].
In general, hydrophobic substitutions on the heterocyclic system appear to be highly favored in
terms of activity. In a different study [33], the same group proceeded with the target validation for
PC190723, demonstrating the direct and concentration-dependent inhibition on the GTPase activity
of FtsZ through the development of specific assays. Furthermore, promising in vivo activity on
murine models of infection was shown, with an impressive 100% survival of mice inoculated with a
potentially lethal dose of S. aureus compared to 0% survival in the non-treated controls. The biological
evaluation of PC190723 on a broader set of bacterial strains revealed a consistent antimicrobial potency
across several Staphylococcus species (including multidrug-resistant S. aureus strains) and substantial
inactivity against a mixed panel of different Gram-positive and Gram-negative strains (see Table 6).
According to existing data, PC190723 is generally considered to have bactericidal action. It binds
selectively to the interdomain cleft of a specific conformation of FtsZ in which the C-terminal domain
is rotated up and away from helix H7 and the N-terminal domain. This conformation decreased
assembly cooperativity with higher propensity to aggregation, and PC190723 is considered to act as a
FtsZ polymer stabilizer, with a mechanism of action similar to the stabilization of eukaryotic tubulin
polymers induced by taxol [34]. Co-crystallization with S. aureus FtsZ located the binding site within a
deep cleft formed by the C-terminal half of the H7 helix, the T7 loop, and the C-terminal four-stranded
β-sheet [25,35]. PC190723 is the most well characterized FtsZ inhibitor to date, and the thorough
evaluation of its pharmacological and physicochemical profile highlighted some potentially critical
issues for its development and deployment as an innovative antimicrobial into clinic. Specifically,
it generates resistant mutants with a significantly high frequency and, given the size constraints of
the binding pocket, this issue may be difficult to address through chemical modifications alone. It is
considered to be best suitable for combination therapies and an interesting synergistic effect with
β-lactam drugs was reported. When co-administered with imipenem, PC190723 was able to restore
β-lactam susceptibility in MRSA clinical isolates and murine infection models and, in turn, imipenem
markedly lowered the frequency of PC190723-resistant mutants [25]. Only two (G196A and N263K)
of the six spontaneous S. aureus mutant isolates are devoid of major morphological and/or growth
alterations. Interestingly, G196 mutants (which account for 70–75% of all isolates) retain sensibility to
smaller 3-MBA, suggesting that resistance could originate from the inaccessibility of larger benzamides
to the binding pocket [36]. A second critical issue lies in the hydrophobicity of PC190723 (ClogP = 2.64)
and in the consequent poor water solubility and potentially problematic formulation, especially in terms
of oral availability. TXY436 (I4), an N-Mannich base prodrug derivative of PC190723, is associated
with a 100-fold increase in solubility compared to the parent molecule when formulated in an acidic
(pH = 2.6) citrate aqueous solution compatible with in vivo administration. TXA436 is converted in
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PC190723 with suitable kinetics at physiologic pH and retains complete on-target potency against
both MRSA and methicillin-sensitive S. aureus (MSSA). Moreover, TXA436 solutions are suitable for
both intravenous and oral administration (bioavailability of 73% in mice), as it is efficacious in murine
models of infection and shows minimal toxicity to mammalian Vero cells [37]. In a similar way, TXY541
(I5), a methylpiperidine 4-carboxamide prodrug of PC190723, is 143 times more soluble than its parent
molecule in orally available acidic citrate formulations and retains its bactericidal antistaphylococcal
activity, with minimal toxicity on mammalian cells and borderline frequency of resistant mutants [38]. A
third potentially critical feature of PC190723 and its prodrugs involves the observed marked differences
in susceptibility across different bacterial species. PC190723 MICs (Table 6) indicate an optimal activity
against Gram-positive B. subtilis and B. cereus and numerous strains of Staphylococcii, while it appears
to be practically inactive on Gram-positive Enterococcii and Streptococcii and Gram-negative E. coli, P.
aeruginosa, and Haemophilus influenzae. The original developers identified residue 307 in S. aureus FtsZ
and corresponding residues in other species as determinants for species-specific susceptibility. This key
position at the entrance to the narrow binding pocket is occupied by a valine in sensitive species, while
non-sensitive species feature larger polar residues (arginine or histidine) in corresponding positions,
which could partially block the access to the binding site and reduce FtsZ inhibition. To support
this hypothesis, the authors reported increased MICs in B. subtilis mutant V307H strain for 3-MBA
and PC190723 (two-fold and four-fold, respectively) [33]. In a later study [39], Kaul and coworkers
further elaborated on the topic and postulated that Glu34 and Arg208, conserved in non-susceptible
Enterococcii and Streptococcii (corresponding to His33 and Val207 in S. aureus and Gln33 and Val307 in B.
subtilis), could form an intramolecular salt bridge, which could in turn interfere with the binding of
PC190723 and TXY541 to the target binding site. The relevance of steric hindrance and binding site
accessibility across species was further supported by the in silico comparison of FtsZ from different
microorganisms. Kusuma et al. [11] reported that, in the context of a general conservation of FtsZ
across species, staphylococcal FtsZs show closer homology among each other compared to FtsZs
from other species. One key difference lies in the degree of curvature of the H7 helix, which in turn
determines the size and shape of the binding cleft and, more specifically, the size of the cleft opening,
which is significantly larger in Staphylococcii compared to B. subtilis, M. tuberculosis, Aquifex Aeolicus,
and P. aeruginosa.

Biochemical assessment of the effects of PC190723 on the GTPase activity and the polymerization
of isolated FtsZ showed filament morphology alterations and increased bundling only for S. aureus
and B. subtilis FtsZ, while FtsZ from E. coli was identified as non-susceptible. However, the increase
in GTPase activity and HPLC analyses supported the binding of PC190723 on E. coli FtsZ [40]. Such
binding was later demonstrated through fluorescence anisotropy studies, and PC190723 (delivered
as TXY436) was shown to interact with a binding site on E. coli FtsZ similar to the one on S. aureus
FtsZ with an approximately nine-fold lower affinity [28]. In the same work, PC190723 was found to
inhibit the polymerization of E. coli FtsZ in a concentration-dependent manner, suggesting a different
mechanism of action from the one observed in S. aureus. Even more interestingly, the susceptibility of
E. coli to the compound was restored after the genetic or pharmacological inactivation of RND efflux
pump AcrAB, with MICs shifting from >155 µM (practically inactive) to 19.4 µM. Similar effects were
also observed in Gram-negative Acinetobacter baumannii and K. pneumoniae, with MICs going from
>155 µM to 38.8 µM and 19.4 µM, respectively. These findings support the idea that PC190723 is a
substrate of AcrAB and that the intrinsic resistance of some wild-type Gram-negative bacteria may
be at least in part due to the activity of this efflux system, as opposed to being the exclusive result of
insufficient affinity and/or limited accessibility to the binding site. Given the widespread distribution
of AcrAB and other RND efflux pumps across Gram-negative species, these results shine a new
light on species-specific susceptibility to PC190723 (and related benzamides) and open an interesting
avenue for association therapies for highly clinically relevant pathogens. Despite its improved
bioavailability profile, TXY436 shows suboptimal in vivo pharmacokinetic properties. Cytochrome
P450 (CYP450)-mediated dechlorination/oxygenation of TXY436 activation product PC190723 results
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in rapid elimination and a short half-life. The replacement of chlorine with metabolically stable,
electron-withdrawing, and hydrophobic –CF3 in methylpiperidine 4-carboxamide prodrug TXA709
(I6) successfully increased the half-life and reduced the high doses required for in vivo oral activity
in mice. TXA707, the activation product of TXA709, is able to rescue sensitivity of MRSA to various
β-lactams [26,27]. As previously observed with PC190723 [25], the synergistic effects result from
inhibitor-induced delocalization of FtsZ, which in turn alters the localization of penicillin-binding
proteins (PBPs) and, consequently, causes a reduction in the required concentration of the β-lactam.
Originating from the same medicinal chemistry program, benzyl bromo-oxazole 2,6-difluorobenzamide
I7 is four- to eight-fold more potent than PC190723 and is the most potent antistaphylococcal benzamide
so far, with MICs of 1.40–2.81 µM against several Staphylococcus strains [41]. The R-(+) form is the most
potent and is associated with a 133-fold decrease in MIC compared to the S-(−) form. Interestingly, it
retains some activity against G196A S. aureus, the most common resistant mutant induced by PC190723,
with a 32-fold decrease in susceptibility (MIC = 7.9µM). In addition, the frequency of resistant mutations
is comparable to that observed with PC190723, but the most frequent isolates show compromised
fitness in vitro. A compelling explanation for the improved resistance profile was provided in a later
work on close analogue TXA6101 (I8) [42], which has antistaphylococcal potency comparable to I7
and is active on TXA707-resistant G193D and G196S mutants (MIC = 2 µM). In TXA707, the five-
and six-membered rings (thiazole and pyridyl) are fused together and have no rotational flexibility.
Conversely, in TXA6101 the five- and six-membered rings (5-bromo oxazole and phenyl) are not fused
and are connected by a freely rotatable single bond. This enhanced flexibility reduces steric clashes
with more hindered Asp193 and Ser196 and expands activity to TXA707-resistant mutants, supporting
the relevance of conformation for binding site accessibility and, ultimately, antimicrobial potency and
susceptibility. In the same work, the role of the bromine atom on the oxazole ring (not present in
TXA707) was investigated and was considered as highly positive for affinity and activity, thanks to
extensive additional interactions with hydrophobic amino-acid residues on the C-terminal subdomain
of S. aureus FtsZ.

In the years following the discovery of PC190723, the work of several groups significantly expanded
the structure–activity relationships of benzamide-based FtsZ inhibitors, mainly through modifications
in the heterocyclic portion of the molecule. In a series of papers, Valoti and coworkers focused on the
exploration of the 1,4-benzodioxane scaffold and on the effects of substituents and stereochemistry
on FtsZ inhibition. In particular, the role of the 1,4-dioxane oxygen atoms was evaluated and they
(especially O-1) were identified as crucial for the maintenance of high antibacterial potency, most
likely thanks to the formation of additional hydrogen bonds in the binding site. The replacement with
different hydrogen bond acceptor groups (such as N-methyl) proved to be detrimental, possibly due to
steric clash in the limited space of the binding cleft [43]. Moreover, the effect of substituents on the
phenyl moiety of benzodioxane was studied, and substitutions in position 7 (meta to O-1) resulted as
the best in terms of activity. From the screening of numerous hydrophilic/hydrophobic, differently
hindered, and bioisosteric substitutions in position 7, I9 (7-chloro) [44] and I10 (7-carboxymethyl) [45]
emerged as the most promising derivatives, with MICs on S. aureus of 0.7 µM and 1.6 µM, respectively.
In accordance with previous results on the binding of benzamide FtsZ inhibitors, hydrophilic and
bulky substituents are disfavored, leading in some cases to dramatic loss in activity. Interestingly, the
evaluation of single enantiomers identified the (S) form of I9 as the most active, being four times more
potent than the (R) form. Both compounds show minimal cytotoxicity on mammalian cell with very
high therapeutic indexes. The on-target activity of I9 and I10 was confirmed with FtsZ GTPase activity
and polymerization activity assays, which supported a polymer-stabilizing mechanism of action for
this class of inhibitors, similarly to that previously observed for PC190723 [43]. The morphological
analysis of treated bacteria using TEM showed swelling and septum malformations consistent with
inhibitory activity on FtsZ. In recent work [29], docking simulations corroborated the binding of this
class of compounds to the interdomain site of S. aureus, maintaining the key interactions described
for PC190723. In addition to the promising activity on MSSA and MRSA strains, I9 showed activity
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against M. tuberculosis (MIC = 22.5 µM) and both vancomycin-susceptible (VSE) and -resistant (VRE)
E. faecalis, with MICs of 72 µM. On the other hand, both I9 and I10 are practically inactive on various
strains of E. coli, but the activity of I10 was partially recovered (MIC = 42.2 µM) in E. coli N43, a mutant
strain lacking the AcrA component of the AcrAB efflux pump. In line with that previously observed
for TXA436, this result suggests that this class of compounds may be substrates for AcrAB and that
wild-type E. coli non-sensitivity to I9 and I10 (and related compounds) may not be exclusively due to
the complete non-susceptibility of E. coli FtsZ. The effect of the pharmacological inhibition of AcrAB
on the activity of these compounds is yet to be evaluated and may represent an interesting option for
combination therapies.

Table 6. MICs of benzamides I3–I6.

Strain
MIC (µM)

I3 I4 I5 I6

S. aureus ATCC 29213 2.81 2.42 - 3.89
S. aureus ATCC 19636 2.81 1.21 4.15 3.89

S. aureus ATCC 43300 * 2.81 1.21 4.15 7.77
S. aureus ATCC BAA-44 ** 2.81 − − −

S. aureus 8325-4 1.40 1.21 4.15 3.89
S. aureus ATCC 49951 1.40 2.42 − −

S. aureus ATCC 33591 1.40 1.21 4.15 7.77
S. epidermidis ATCC 12228 2.81 − − −

S. haemolyticus ATCC 29970 1.40 − − −

S. hominis ATCC 27844 2.81 − − −

S. lugdunensis ATCC 43809 2.81 − − −

S. saprophyticus ATCC 15305 2.81 − − −

S. warneri ATCC 49454 2.81 − − −

B. cereus ATCC 14579 2.81 − − −

B. subtilis 168 2.81 − − −

S. pneumoniae ATCC 49619 >180 − − −

S. pyogenes ATCC 51339 >180 − − −

S. pyogenes ATCC 19615 >180 − − −

S. agalactiae ATCC 12386 >180 − − −

E. faecalis ATCC 19433 90.0 − − −

E. faecalis ATCC 51575 *** 90.0 − − −

E. faecium ATCC 19434 180 − − −

E. coli ATCC 25922 >180 >155 − −

E. coli N43 − 19.4 − −

Haemophilus influenzae ATCC 49247 >180 − − −

P. aeruginosa ATCC 27853 >180 − − −

K. pneumoniae ATCC 13883 − >155 − −

Acinetobacter baumannii ATCC 19606 − >155 − −

* MRSA, ** multidrug-resistant S. aureus (MDRSA). *** multidrug-resistant E. faecalis.

The role of different heterocycles in the SAR of heteroaryloxy-benzamide FtsZ inhibitor was
further investigated by Bi et al. with the development and antimicrobial evaluation of a series of
isoxazole-benzamide analogues [46]. Starting from the activity data of a first series of isoxazol-3-yl
derivatives, the authors relied on docking simulations to identify affinity determinants and guide later
structure-based optimization. In addition to confirming the expected hydrogen bond and hydrophobic
interactions, simulations highlighted a potential additional ion–dipole interaction between the nitrogen
of isoxazole and a nearby negatively charged residue (Asp199). By switching the relative positions of
the N and O atoms, N gets closer to Asp199 and becomes able to establish the additional interaction.
As a result of the increased affinity, isoxazol-5-yl derivative I11 is two- to eight-fold more potent than
the corresponding isoxazol-3-yl compound and is the most potent analogue in the series, with MICs
of 0.04 µM on B. subtilis, 0.08 µM on B. pumilus, and 5.2 µM on S. aureus. The FtsZ inhibition effect
of I11 was supported by the concentration-dependent stimulation of B. subtilis FtsZ polymerization
and by microscopic observation of the filamentation of treated B. pumilus. TEM visualization
confirmed the increase in B. subtilis FtsZ protofilament size and thickness and increased bundling



Antibiotics 2020, 9, 69 18 of 28

of protofilaments. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)-based
assays revealed minimal cytotoxicity on HeLa cells, and I11 showed interesting preliminary in vivo
efficacy results, being able to significantly reduce the bacterial count in a murine model of systemic
MRSA infection. In a more recent work, the same research group designed and synthesized six
series of 1,3,4-oxadiazol-2-one, 1,2,4-triazol-3-one, and pyrazolin-5-one derivatives and evaluated their
antimicrobial activity [47]. The 1,3,4-oxadiazol-2-one-based I12 was identified as the most potent
compound with an interesting bactericidal action against B. subtilis (MIC = 0.3 µM), B. pumilus (MIC =

2.3 µM), and various strains of S. aureus (MIC = 1.2–2.4 µM), despite substantial inactivity against E. coli
and P. aeruginosa (Table 7). As in the previous study, the on-target effect was confirmed with B. subtilis
FtsZ light scattering polymerization assays and morphometric observation of treated B. pumilus.
Docking simulations indicated binding in the same pocket as PC190723 and congeners, with the amide
and the ethereal oxygen involved in hydrogen bonds and the heterocyclic moiety accommodated in the
hydrophobic channel. Prompted by the activity of I12, the authors proceeded with the evaluation of a
large number of structural modifications. Conversion of the phenyl into benzyl with the introduction
of an extra methylene group led to decreased activity, highlighting once again the steric constraints of
the narrow binding site. Accordingly, a third series of analogues with more flexible ethyloxy linkers
showed a more limited decrease in activity (MICs 0.28 to 9 µM). Modifications at the oxazolone core
in the attempt to reduce the rate of degradation by hydrolysis led invariably to detrimental effects
on activity, probably due to steric hindrance or to increased hydrophilicity. Stability studies of I12
revealed good liver microsome stability profile and rapid biodegradation in mouse plasma in vitro.
The short half-life (2.5 h) may not be optimal for further drug development, and ways to improve the
biostability of I12 are still under research.

Table 7. MICs of benzamides I7–I13.

Strain
MIC (µM)

I7 I8 I9 I10 I11 I12 I13

S. aureus ATCC 29213 2.81 2.42 0.53 1.58 − − 28.0
S. aureus ATCC 19636 2.81 1.21 − − − − −

S. aureus ATCC 43300 * 2.81 1.21 1.10 − 5.17 2.34 −

S. aureus ATCC 25923 − − − − 5.17 2.34 3.50
S. aureus ATCC BAA−44 ** 2.81 − − − − − −

S. aureus 8325-4 − 1.21 − − − − −

S. aureus ATCC 49951 − 2.42 − − − − −

S. aureus ATCC 33591 − 1.21 − − − − −

S. epidermidis ATCC 12228 2.81 − − − − − −

S. haemolyticus ATCC 29970 1.40 − − − − − −

S. hominis ATCC 27844 2.81 − − − − − −

S. lugdunensis ATCC 43809 2.81 − − − − − −

S. saprophyticus ATCC 15305 2.81 − − − − − −

S. warneri ATCC 49454 2.81 − − − − − −

B. cereus ATCC 14579 2.81 − − − − − −

B. subtilis 168 2.81 − − − − − −

B. subtilis ATCC9372 − − − − 0.04 0.29 0.87
B. pumilus CMCC63202 − − − − 0.08 2.34 −

S. pneumoniae ATCC 49619 >180 − − − − − 224
S. pyogenes ATCC 51339 >180 − − − − − −

E. coli ATCC 25922 >180 >155 − − >165 >150 448
E. coli DH5α − − >281 − − − −

E. coli D22 − − − >337 − − −

E. coli N43 − − − 42.2 − − −

H. influenzae ATCC 49247 >180 − − − − − −

P. aeruginosa ATCC 27853 >180 − − − >165 >150 897
K. pneumoniae ATCC 13883 − >155 − − − − −

A. baumannii ATCC 19606 − >155 − − − − −

* MRSA, ** MDRSA.
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Interestingly, non-heterocyclic derivatives were the object of study as direct analogues of DFNBA
(I2), in some cases with interesting results in terms of antimicrobial activity. After the screening of
a number of modifications of the 3-alkoxy sidechain, Bi et al. identified branched alkyl derivative
I13 [48] as the most potent compound with MICs of 0.88 µM on B. subtilis and 3.5–31.0 µM on
various strains of S. aureus (Table 7). On the other hand, I13 was practically inactive on S. pyogenes,
S. pneumoniae, E. coli, and P. aeruginosa. In accordance with the general model for the interaction,
hydrophobic alkylhalide chains of suitable length were tolerated, while bulkier and rigid cycloalkyls
led to decreased activity. Lui et al. reported the interesting activity of nonylaminobenzamide I14 [49]
with MIC = 5.8 µM on S.aureus and substantial inactivity on E. coli. Time–kill curves suggested a
bacteriostatic action and, interestingly, biochemical and morphological evaluations indicated reduced
GTPase activity and inhibition of S. aureus FtsZ polymerization and delocalization of the Z-ring,
supporting a different mechanism of action from polymer-stabilizing PC190723 and analogues. I14
also showed promising results as a possible adjuvant antimicrobial in association with different classes
of β-lactams. Combinations with methicillin, cloxacillin, amoxicillin, cefuroxime, and meropenem
were assayed against a panel of 28 clinical MRSA strains and showed synergistic effects, possibly with
bactericidal effects.

2.2.2. Berberine Analogues and Related Quinolinium Compounds

Berberine (I15 in Figure 8) is a plant alkaloid with moderate antimicrobial activity [64] and FtsZ
inhibition properties [65]. Sun et al. performed docking studies to identify the berberine-binding site on
S. aureus FtsZ and obtained the best scores in the interdomain site, with strikingly similar poses to the
binding mode of PC190723 [66]. The two molecules have similar planarity, shape, length, and alignment
of the ring system. Berberine established extensive hydrophobic interactions with nearby residues
Ile197, Leu200, Val203, Leu209, Met226, Leu261, Val297, and Ile311, while the positively charged amine
was found to interact with Asp199. The model indicated the possibility of additional hydrophobic
interactions through lipophilic substituents in position C-9. Propyl 4-chlorophenoxy compound I16
(Figure 8) was the most potent among the tested derivatives, with greatly increased antimicrobial
potency against a panel of clinically relevant drug-resistant Gram-positive and Gram-negative strains
compared to berberine (Table 8). The inhibitory mechanism on FtsZ is supported by the inhibition of
S. aureus FtsZ GTPase activity (IC50 = 37.8 µM) and by the inhibition of S. aureus FtsZ polymerization
(~70%) in light scattering assays. TEM visualization of S. aureus FtsZ protofilaments in vitro showed
reduced size, thickness, and bundling. I16 induces filamentation of B. subtilis and causes dispersion
and mis-localization of GFP-tagged E. coli FtsZ. Additional studies on berberine analogues and, more
specifically, on the SAR of C-13 substituted cycloberberines led to the development and characterization
of I17 (Figure 8). Despite its promising antistaphylococcal activity, with MICs of 1.8–7.4 µM against 10
MSSA and MRSA strains (including drug-resistant clinical isolates), I17 has critical pharmacokinetic
issues, specifically regarding oral bioavailability (0.8% in mice). In simulations, I17 docked efficiently at
the interdomain site, with the extra o-methylbenzyl ring engaged in additional hydrophobic interactions.

Prompted by the interesting antimicrobial activity of berberine and its analogues, Sun and
coworkers explored the potential and the structure–activity relationships of the quinolinium scaffold
in a recent series of studies.
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Table 8. MICs of berberines I15–I22.

Strain
MIC (µM)

I15 I16 I17 I18 I19 I20 I21 I22

S. aureus ATCC 29213 360 3.50 7.35 4.15 3.09 2.80 2.72 2.02
S. aureus ATCC 25923 − − − − 3.09 − − 4.04

S. aureus ATCC 29247 * 360 7.00 − − − 2.80 − −

S. aureus ATCC BAA-41 ** 551 7.00 − 4.15 3.09 2.80 5.45 4.04
S. aureus ATCC 33591 ** − − 3.67 − 3.09 − 5.45 −

S. aureus ATCC 33592 ** − − − − 3.09 − − −

S. aureus ATCC 43300 ** − − 3.67 − 3.09 − 2.72 8.07
S. aureus ATCC BAA-1717 ** − − − − 3.09 2.80 − −

S. aureus ATCC BAA-1720 ** − − − − 3.09 2.80 − −

S. aureus ATCC BAA-1747 ** − − − − − 2.80 − −

S. aureus ATCC BAA-976 ** − − 3.67 − − − − −

S. aureus ATCC BAA-1708 ** − − 7.35 − − − − −

S. epidermidis ATCC 12228 360 3.50 − − 1.54 1.40 1.36 −

E. faecium ATCC 49624 >551 7.00 − 8.31 3.09 3.74 1.36 4.04
E. faecium ATCC 700221 *** >551 7.00 − 8.31 3.09 3.74 2.72 8.07

E. faecalis ATCC 29212 >551 7.00 − − 6.17 2.80 1.36 8.07
E. faecalis ATCC 51575 − − − − 6.17 2.80 − −

B. subtilis 168 360 7.00 − 4.15 0.77 2.80 2.72 8.07
E. coli ATCC 25922 >1405 56.0 − 12.4 6.17 5.61 5.45 >129

E. coli ATCC BAA−2469 § − − − 12.4 6.17 5.61 5.45 >129
P. aeruginosa ATCC BAA-2108 §§ − − − 100 24.7 11.2 10.9 >129
K. pneumoniae ATCC BAA-2470 § − − − 100 − − − >129
K. pneumoniae ATCC BAA-1144 § >1405 112 − − 24.7 44.9 87.2 −

A. baumannii ATCC 19606 §§ − − − − 24.7 − 87.2 >129
Enterobacter cloacae BAA-1143 § − − − − − − − >129

* Ampicillin−resistant, ** methicillin resistant, *** vancomycin−resistant, § expresses beta−lactamases, §§ MDR.
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Interestingly, this group of structurally related compounds appear to act through two opposite
mechanisms, being either inhibitors or enhancers of FtsZ polymerization activity. I18 [67] is the
most potent in a series of quaternary N-methylbenzoindolo[3,2-b]-quinoline analogues, with good
bactericidal activity on both MSSA and MRSA (MIC = 4.1 µM), vancomycin-sensitive and -resistant
E. faecium (MIC = 8.3 µM), and E. coli (MIC = 12.5 µM, including a beta-lactamase producing strain).
In addition, it shows moderate activity on drug-resistant strains of Gram-negative P. aeruginosa and K.
pneumoniae (MIC = 100 µM), in clear contrast to the very weak activity of berberine (MIC > 400 µM).
Docking simulations suggested binding in the interdomain cleft, favored by hydrophobic interactions
and by the ionic interaction of the positive nitrogen with negatively charged Asp199. The planarity of
the molecule may represent a key factor for accessibility to the narrow space of the binding site and,
given the inter-species differences in the opening size, may be determinant for broad-spectrum activity.
Moreover, the indole nitrogen can form additional hydrogen bonding with the backbone carbonyl of
Thr309, providing an explanation for the better activity of I18 compared to its benzofuroquinolinium
counterpart. The inhibition of both GTPase activity and polymerization was demonstrated with the
well-established combination of GTPase assays and light scattering polymerization assays on S. aureus
FtsZ, confirming the on-target mechanism of action. The typical filamentation of treated B. subtilis
further supports the inhibitory action of FtsZ. Based on a benzofuroquinolinium scaffold, I19 [68] shares
the same mechanism of action as its predecessor, with similar activity on Staphylococcii (MIC = 1.5–3µM),
Enterococcii (MIC = 3–6 µM), and E. coli (MIC = 6 µM) and improved potency on Gram-negative
P. aeruginosa, K. pneumonia, and A. baumannii (MIC = 25 µM). In addition, it appears to restore the
sensitivity of MRSA to methicillin and to be devoid of toxicity on mammalian cells and human
erythrocytes. I20 [50] and its p-hydroxy analogue I21 [51] further reduce the activity gap between
Gram-positive and Gram-negative strains, with MICs as low as 6 µM on E. coli (including a MDR strain)
and 12 µM on MDR P. aeruginosa (Table 8). The predicted binding mode on S. aureus FtsZ involves
docking in the interdomain cleft, with a network of hydrophobic and ionic interactions. An additional
hydrogen bond can be found between Asp199 and the hydrogen of the methyl group, together with
van der Waals interactions with a few nearby residues (e.g., Gln192 and Gly196). The hydroxyl of
I21 is predicted to form two hydrogen bonds: with the backbone carbonyl of Val203 and with the
backbone amide of Leu209. The extended SAR for the 3-methylbenzo[d]thiazol-methylquinolinium is
reported in a distinct paper, with no substantial improvements in antibacterial activity [69]. The same
authors synthesized and tested a library of indolylquinolinium analogues [70], with the most potent
compound (I22) showing no significant improvement in the activity on Gram-positive strains and
marked reduction of potency on Gram-negative strains, in some cases with MIC > 130 µM (Table 8). I20,
I21, and I22 share the same bactericidal mechanism of action, as shown by GTPase and polymerization
activity assays. All three compounds disrupt GTP hydrolysis in a concentration-dependent manner
while enhancing the formation of FtsZ protofilaments. Therefore, they act as polymer-stabilizing
agents, most likely through the promotion of a highly elongation-prone FtsZ conformer, in a similar
way to that observed for PC190723 and related benzamides.

2.2.3. Phenantridium Derivatives

Sanguinarine (I23 in Figure 9) is a benzofenantridium plant alkaloid with antimicrobial activity,
able to perturb the formation of the Z−ring and to cause filamentation of B. subtilis and E. coli.
It inhibits the assembly of FtsZ and reduces the bundling of protofilaments in vitro [71]. However,
it also inhibits the polymerization of tubulin into microtubules and it is toxic to mammalian cells [72].
Liu et al. aimed at developing non−toxic and potent antimicrobials from the structural simplification
of sanguinarine. The 5−methylphenantridium derivative I24 [73] shows moderate activity against
Gram−positive bacteria and substantial inactivity against Gram−negative ones (Table 9), with an
overall activity profile comparable to parent molecule I23. On the other hand, when tested for their
effect on mammalian tubulin, none of the analogues enhanced polymerization at concentrations
higher than positive control paclitaxel. The evaluation of on−target effects with specific assays and
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the determination of toxicity on mammalian cells are not reported, and the potential of I23 and
congeners as novel FtsZ inhibitors is difficult to evaluate with current data. As a continuation of
their work on the 5−methylphenantridium scaffold, the same authors synthesized and tested three
series of 4−substituted 5−methyl−2−phenylphenantridium analogues. The effect of substitution
on C−4 was generally positive, with 4−methyl derivatives being more active than 4−methoxy and
4−unsubstituted ones. Additionally, the effect of substitutions on the phenyl ring was evaluated,
with a clear indication that electron−withdrawing groups are favored over electron−donating ones.
Accordingly, I25 [52] is the most potent compound in the series, with outstanding MICs of 0.16–5.2 µM
on various drug−sensitive and −resistant strains of Gram−positive bacteria (Table 9), performing much
better than reference compounds ciprofloxacin and oxacillin. Kinetic inhibition profiles indicated a
bactericidal effect. Microscopic morphometric evaluation showed elongation and swelling of treated
B. subtilis and S. aureus, respectively, consistent with the disruption of cell division processes. Light
scattering assays displayed concentration−dependent reduction of B. subtilis FtsZ polymerization
activity. Taken together, this evidence supports the on−target mechanism of action of I25 as FtsZ
inhibitor. Molecular docking simulations suggested the binding of I25 in the interdomain cleft of FtsZ,
favored by extensive hydrogen bond and hydrophobic interactions.
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Table 9. MICs of phenantridium inhibitors I23–I25.

Strain
MIC (µM)

I23 I24 I25

S. aureus ATCC 29213 20.8 − −

S. aureus ATCC 25923 20.8 51 0.15
S. aureus ATCC 43300 ** − − 0.64

S. epidermidis * 166 102 0.32
S. pyogenes 20.8 12.7 2.58

S. pyogenes * 20.8 25.5 5.16
B. subtilis ATCC 9372 20.8 12.7 0.15

B. pumilus ATCC 63202 − − 0.15
E. coli ATCC 25922 >333 >408 −

P. aeruginosa ATCC 27853 >333 >408 −

* Penicillin−resistant, ** methicillin−resistant.

2.2.4. Indoles (Tiplaxtinin)

In a cell−based screening for morphology alterations in B. subtilis, Sun et al. identified tiplaxtinin
(I26 in Figure 10) as a promising hit, out of a library of 150 small molecule candidates. Tiplaxtinin
is already known for being an efficacious plasminogen activator inhibitor−1 (PAI−1) inhibitor and a
potential antithrombotic agent, with no reported toxicity and good oral availability in mice. It displays
good antimicrobial potency on a group of Gram−positive bacteria, with MICs of 4.55–9.10 µM, despite
substantial inactivity on E. coli, P. aeruginosa, and K. pneumoniae (MIC > 109µM) (Table 10). The on−target
activity of I26 on S. aureus FtsZ was thoroughly assessed through light scattering polymerization
assays, GTPase assays, and TEM microscopy, revealing concentration−dependent enhancement of
polymerization, a decrease in GTPase activity, and a significant increase in protofilament bundling
in the presence of the compound. Moreover, I26 induces the mis−localization of GFP−tagged FtsZ
in discrete and punctate foci, indicating the mis−formation of the Z−ring [53]. Docking simulations
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predicted the binding of I26 in the interdomain cleft, supported by hydrophobic interactions in the
lipophilic channel and by a set of additional interactions with specific functional groups. The good
FtsZ inhibitory activity, together with the available knowledge on toxicity and oral bioavailability,
makes the tiplaxtinin scaffold a promising candidate for further structural optimization and for the
characterization of its efficacy in in vivo models of infection.
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Table 10. MICs of Tiplaxtinin (I26).

Strain
MIC (µM)

I26

S. aureus ATCC 29213 4.55
S. aureus ATCC 29247 * 4.55

S. aureus ATCC BAA−41 ** 9.10
S. aureus ATCC 33591 ** 9.10
S. aureus ATCC 33592 ** 9.10
S. aureus ATCC 43300 ** 9.10

S. aureus ATCC BAA−41 ** 9.10
S. aureus ATCC BAA−1717 ** 4.55
S. aureus ATCC BAA−1720 ** 4.55
S. aureus ATCC BAA−1747 ** 4.55

E. faecium ATCC 49624 9.10
E. faecium ATCC 700221 *** 9.10

E. faecalis ATCC 29212 910
B. subtilis 168 4.55

E. coli ATCC 25922 >109
P. aeruginosa ATCC BAA−2108 §§ >109
K. pneumoniae ATCC BAA−1144 § >109

* Ampicillin−resistant, ** methicillin−resistant, *** vancomycin−resistant, § expresses beta−lactamases, §§ MDR.

3. Conclusions

Some interesting trends emerged from the presented data; here, we summarize them, hoping that
these conclusions could be useful for the further development of FtsZ inhibitors as antimicrobial agents.

Concerning interspecies susceptibility, strong differences were reported even among compounds
having the same or similar chemotypes. Most of the presented classes appear to predominantly
affect Gram−positive strains, while having scarce to null effects on the inhibition of FtsZ in
Gram−negative species.

We noticed a strict classification of some of these compounds as “inactive on Gram−negative strains”
that may be misleading, as the overall view of this topic is much more complicated and diversified.
Indeed, a progressive reduction of the activity gap between Gram−positive and Gram−negative strains
during the sequential optimization of quinolinium compounds was reported. On the contrary, the
structural simplification of the quinuclidine scaffold of N2 to more flexible amines caused the loss of
Gram−negative inhibitory activity. A similar outcome was also observed in S. aureus, considering the
activity of flexible analogue I8 on resistant S. aureus strains. In our opinion, these results suggest that an
efficient structural optimization could balance the differences in susceptibility between Gram−positive
and Gram−negative bacteria.
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Several factors seem to play a role in the determination of susceptibility: (a) the spatial
characteristics of the FtsZ binding sites across different species, independently of the Gram staining,
as exemplified by the inactivity of some benzamide inhibitors (notably, PC190723) on Gram−positive
Enterococcii and Streptococcii; (b) the differences in the amino−acidic sequence of the binding sites
(especially for the interdomain binding site) across different species; (c) being a substrate for the
most common membrane efflux pumps, as exemplified by the partial recovery of activity of two
benzamide−based inhibitors (I4 and I10) and pyrimidine N4 after the genetic or pharmacological
deactivation of AcrAB.

Moreover, we noticed an overall imbalance in the number and in the variety of Gram−positive
strains vs. Gram−negative strains tested during antimicrobial activity assays, with a clear abundance of
the former, specifically Staphylococcii. Even if this disproportion could be related to the most interesting
initial antimicrobial results and to the availability of crystal structures for rational design, we believe
that a more balanced approach could be beneficial for a more exhaustive study of the topic.

Furthermore, the variety of Gram−negative strains tested was usually limited to E. coli,
K. pneumoniae (both expressing AcrAB), and P. aeruginosa, which have an extensive array of
cromosomically encoded RND efflux pumps, very limited membrane permeability, and a known
intrinsic non−susceptibility to several antimicrobials. We believe that the previously mentioned results
with efflux pump inhibitors (EPIs) stress the potential of using FtsZ inhibitors in broad−spectrum
associations, as well as of evaluating the susceptibility of both existing and newly developed leads to
efflux pumps. Indeed, a growing knowledge on FtsZ inhibitors could be a highly valuable resource for
their future development, given the clinical relevance and the generally limited therapeutic options
available for Gram−negative bacteria.
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