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Abstract. We address the analysis of a constitutive model for the evolution of a shape-memory alloys at
finite strains. The model has been presented in

Evangelista09
[20] and corresponds to a suitable finite-strain version of

the celebrated Souza-Auricchio model for SMAs
Auricchio-Petrini02,souza98
[4, 46]. We reformulate the model in purely variational

fashion under the form of a rate-independent process. Existence of suitably weak (energetic) solutions
to the model is obtained by passing to the limit within a constructive time-discretization procedure.

1. Introduction

Shape-memory alloys (SMAs) show an abrupt diffusionless stress and temperature driven marten-
sitic phase change. At the macroscopic level, this results in an amazing thermomechanical behavior.
At a certain (suitably high) temperature regimes these materials are superelastic, namely, they recover
comparably large deformations during mechanical loading-unloading cycles. At lower temperatures se-
verely deformed specimens regain their original shape after a thermal treatment. This is the so-called
shape-memory effect

Fremond02
[23].

The SMAs specific thermomechanical behavior is not present (at least to a comparable extent) in
materials traditionally used in Engineering and is at the basis of a variety of innovative applications to
aeronautical, structural, earthquake, and biomedical technologies

duerig90,duerig03
[15, 16], just to mention a few hot topics.

This fact motivated the recent intense research toward a comprehensive and effective the description of the
complex thermomechanical behavior of SMAs. The relevant Engineering literature on SMAs modeling
is vast and a whole menagerie of models have been advanced having ambitions for different ranges of
applicability (from lab single-crystal experiments to commercially exploitable tools) and different abilities
to fit particular experiments and to explain microstructures, stress/strain relations, or hysteresis. In the
macroscopic-phenomenologial setting, the reader shall be minimally referred to

auricchio97b,Falk90,Fremond87,govindjee01, helm03,lagoudas06,lagoudas07,levitas98,patoor06,raniecki94,reese07,thambur01,thiebaud07
[10, 21, 22, 24, 26, 29, 30,

32, 42, 43, 44, 48, 49] and to the survey
roub
[45].

We are here concerned here with a phenomenological, internal-variable-type model for polycrystalline
shape-memory bosy originally advanced in the small-strain regime by Souza, Mamiya, & Zouain
souza98
[46] and then combined with finite elements by Auricchio & Petrini

Auricchio-Petrini02,auricchio04a,auricchio04b
[4, 5, 6], hence referred to

as Souza-Auricchio in the following. This model, describe very efficiently both the superelastic and
the shape-memory behavior. Moreover it shows a remarkable robustness with respect to parameters
and discretizations despite its simplicity: the constitutive behavior of the material is determined by
8 easly-fitted material parameters (note that linearized thermo-plasticity with linear hardening already
requires 5 material parameters). The Souza-Auricchio model has a sound mathematical foundation: it has
been analyzed from the viewpoint of existence and approximation of solutions of the isothermal three-
dimensional quasi-static evolution problem in

ams
[3] and convergence rates for space-time discretizations

mpps,mpps2
[38, 39]. Results in the non-isothermal case have also been obtained

els2,Krejci-Stefanelli09,Krejci-Stefanelli10,mpp,mpp2
[18, 27, 28, 40, 37]. Moreover,
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extensions of the original model to residual plasticity
c3,auricchio07b,els
[7, 8, 17], more realistic non-symmetric behaviors

and transformation-dependent material parameters
ars2
[9], and the ferromagnetic shape-memory effect

paperalpha,gamm,bs,bks,hmm
[1, 2,

11, 12, 47] are also available.

This note is focused on the finite-strain version of the Souza-Auricchio model advanced by Evange-
lista, Marfia, & Sacco

Evangelista09
[20]. Note that shape-memory devices are generally engineered in order to

exploit activation strains up to 8%. This sets clearly beyond the possible reach of linearized elasticity
theory calling for a finite-strain analysis instead. In the paper

Evangelista09
[20] the Authors propose a finite-strain

choice for the free energy of the material, a specific flow rule for the internal variable, and formally verify
the recovery of the small-strain Souza-Auricchio model upon strain linearization. Moreover, some com-
ments on algorithmical aspects of a possible fully-implicit time-discretization of the constitutive relation
and the integration of the latter in some finite elements test is reported.

A first issue of this paper is that of reformulating the finite-strain model of
Evangelista09
[20] in a purely variational

fashion. This complements the analysis of
Evangelista09
[20] where material relations (in particular, the flow rule) are

presented via the classical complementary formalism. The variational reformulation of the model bears
a clear mathematical advantage as it provides the possibility of recasting the constitutive relation in
terms of symmetric right Cauchy-Green tensors only. In particular, this amounts in reproducing at the
finite-strain level the remarkable agreement of the original small-strain Souza-Auricchio model with the
structure of generalized plasticity theory.

Secondly, the variational reformulation of the model allows us to settle the material constitutive prob-
lem within the now quite developed theory of rate-independent processes. This in turn provides the
possibility of proving that a time-discretization of the material constitutive relation is actually conver-
gent with respect to the time-step size. In particular, the material consitutive relation is proved to admit
a suitaby defined variational solution, the so-called energetic solution

Mielke-Theil04
[41]. Note that no convergence nor

existence proof is reported in
Evangelista09
[20].

We directly develop our analysis in the non-isothermal regime, by however letting the temperature of
the body being given a-priori. This assumption seems justified in case of a shape-memory body which
is thin in at least one direction and for slowly varying loads. In this case, one could assume that the
heat which is mechanically produced within the sample gets immediately transfered to the surrounding
heat bath. This perspective is followed in

els2,mpp,mpp2
[18, 40, 37] in the small-strain regime. On the contrary, a

fully thermomechanically coupled problem for the small-strain model is solved in one spatial dimension in
Krejci-Stefanelli09,Krejci-Stefanelli10
[27, 28]. Note that the smoothness on the given teperature here assumed is weaker than the corresponding
one from

mpp,mpp2
[40, 37] exactly in the same spirit as in

els2
[18].

The paper is organized as follows. In Section 2 we recall the basics of the model from
Evangelista09
[20] and comment

on dissipativity whereas Section 3 is devoted to the variational reformulation of the model. Then, Section
4 brings to the convergence proof of time-incremental approximations and, in particular, to the existence
of energetic solutions.

2. The model

The aim of this section is that of recalling the model from
Evangelista09
[20]. We shall limit ourselves to mention

the essential modeling features and notation. The Reader is instead referred to
Evangelista09
[20] for additional details

and comments as well as some numerical evidence of the performance of the model.

2.1. Tensors. We shall use bold capital letters for 2-tensors in Rd×d (d = 2, 3) and double capitals
(e.g., T) for 4-tensors. Let Rd×d be the space of 2-tensors endowed with the natural scalar product
A:B

.
= AijBij (summation convention) and the corresponding norm |A|2 .

= A:A for allA, B ∈ Rd×d.The
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symbol Rd×dsym denotes the subspace of symmetric tensors. The space Rd×dsym is orthogonally decomposed

as Rd×dsym = Rd×ddev ⊕ R1, where R1 is the subspace spanned by the identity 2-tensor 1 and Rd×ddev is the

subspace of symmetric and deviatoric tensors. In particular, for all A ∈ Rd×dsym , we let trA
.
= A:1 and

devA
.
= A − (trA)1/d so that A = devA + (trA)1/d. On the other hand, the identity 4-tensor I is

given by Iij`k
.
= δi`δjk and we have I:A = A:I = A. We shall use the classical notation

GL+(d)
.
= {A ∈ Rd×d | detA > 0},

SL(d)
.
= {A ∈ Rd×d | detA = 1}, SO(d)

.
= {A ∈ SL(d) | A>A = AA> = 12}.

The 2-tensors T:B and B:T are classically defined by (B:T)ik := BjlTj`ik and (T:B)ik := Tik`jB`j ,
respectively. Given the smooth function B 7→ A(B) we shall denote by ∂BA the 4-tensor defined by
(∂BA)ikj` := ∂Bj`

Aik or, equivalently,

∂BA:C :=
d

dα
A(B + αC)

∣∣∣
α=0

∀C ∈ Rd×d.

In particular, we have that

(∂BA:C)ik = ∂Bj`
AikCj`, (C:∂BA)ik = Cj`:∂Bik

Aj`,

for all C ∈ Rd×d. Note that the associative property (C:∂BA):D = C:(∂BA:D) holds for every C,D ∈
Rd×d, and hence we can write C:∂BA:D without ambiguity. Note also that ∂AA = I. The 4-tensor
T1:T2 is defined by (T1:T2)ijk` := (T1)ijmn(T2)mnk`. In particular, if A is a function of B and C is a
function of D (all 2-tensors), we have

(∂BA:∂DC)ikj` = ∂Bmn
Aik∂Dj`

Cmn.

We have thatA:(T1:T2) = (A:T1):T2 and (T1:T2):B = T1:(T2:B) for everyA,B ∈ Rd×d so that brackets
can be omitted. Finally, the product derivative formulas

∂A(BC):D = (∂AB:D)C +B(∂AC:D) (2.1) eq:2

B:∂A(CD) = BD>:∂AC +C>B:∂AD (2.2) dervi

will turn out to be useful in the following.

2.2. Deformation gradient. Let ϕ : Ω → Rd denote the deformation of the SMA sample from the
reference configuration Ω ⊂ Rd. We shall classically decompose the deformation gradient Dϕ as

Lee69
[31]

Dϕ = F = F elF tr

where F el stands for the elastic deformation gradient whereas F tr denotes the inelastic (or transformation)
part and is constrained to F tr ∈ SL(d) in order to encode classical plastic incompressibility.

In order to formulate the model, we will rely on the right Cauchy-Green deformation tensor

C
.
= F>F

and the corresponding elastic and inelastic analogues

Cel
.
= F>elF el, Ctr

.
= F>trF tr.

In particular, one shall note that Ctr ∈ SLsym(d)
.
= SL(d) ∩ Rd×dsym .
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2.3. Free energy. The free energy of the body is assumed to be decomposed as

ψ
.
= ψel(Cel) + ψtr(Ctr, θ). (2.3) psi

Here, θ denotes the absolute temperature of the sample, ψel is the elastic part of the free energy whereas
ψtr stands for the inelastic part.

As for the elastic part of the energy, we shall simply assume it to be smooth far from the set where
detF = detF el ≤ 0, frame indifferent, and isotropic. In particular, ψel is derived from an elastic potential
W ∈ C1(GL+(d)) via ψel(Cel)

.
= W (F el) with W : Rd×d → [0,∞] such that

W (RF el) = W (F el) ∀R ∈ SO(d), F el ∈ Rd×d, (2.4) frame

W (F elR̂) = W (F el) ∀R̂ ∈ SO(d), F el ∈ Rd×d, (2.5) isotropy

|∂F el
W (F el)F

>
el | ≤ c0(W (F el) + 1). (2.6) smooth

The above assumptions are nothing but frame-indifference (
frame
2.4), isotropy (

isotropy
2.5), and the controllability of

the Kirchhoff tensor (
smooth
2.6). In particular, they are completely compatible with the standard polyconvexity

frame. Note that the functional W can be additionally asked to fulfill

W (F el)→∞ for detF el → 0+.

The specific form for the inelastic energy ψtr is chosen as

ψtr(Ctr, θ)
.
= b(θ − θM )+|Etr|+

h

2
|Etr|2 + IεL(Etr) (2.7) psit

where Etr is the inelastic Green-St. Venant tensor

Etr
.
=

1

2
(Ctr − 12),

b > 0, θM > 0 is the critical martensite-austenite transition temperature at zero stress, h > 0 is a
kinematic hardening modulus, and IεL is the indicator function of the set {Etr ∈ Rd×d | |Etr| ≤ εL}
with εL > 0 representing a measure of the maximal strain which is obtainable via martensitic variants
reorientation. In particular, we have that

IεL(Etr)
.
=

{
0 if |Etr| ≤ εL
∞ else.

We shall stick to the specific form (
psit
2.7) for the inelastic energy for the sake of reference with the original

model in
Evangelista09
[20]. Still, let us mention that the considerations developed hereafter apply to a much broader

class of energies, possibly including kinematic-hardening finite-strain plasticity.

Throughout this work we shall assume the absolute temperature t 7→ θ(t) to be given. This in particular
motivates the absence of the classical purely caloric term cV θ(1− ln θ) in the expression of the free energy
(
psi
2.3) (cV being the specific heat). Note that, even by including such term into the free energy, the model

is not directly suited for describing fully coupled thermomechanical evolutions as the choice (
psit
2.7) (which

is motivated in the isothermal frame) would prescribe the non-monotone temperature-entropy relation

s
.
= −∂θψ = cV ln θ − bH(θ − θM )|Etr|

where H stands for the classical Heaviside function. Further details on this issue are to be found in
Krejci-Stefanelli09,Krejci-Stefanelli10
[27, 28].
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2.4. Clausius-Duhem inequality. Let us complement the analysis of
Evangelista09
[20] and provide some detail in

the direction of the Clausius-Duhem inequality for the body. In particular, this reduces to check that, at
least for smooth evolutions,

−ψ̇ − sθ̇ + S:
1

2
Ċ − q · ∇θ

θ
≥ 0 (2.8) CD0

where s is the entropy, S is the second Piola-Kirchhoff stress tensor, and q is the heat flux. With the aid
of (

psi
2.3), we manipulate the term −ψ̇ + S:Ċ/2 in the above left-hand side as follows

−ψ̇ + S:
1

2
Ċ = − d

dt

(
ψel(F

−>
tr CF

−1
tr ) + ψtr(Ctr, θ)

)
+ S:

1

2
Ċ

= −∂θψθ̇ − ∂Cel
ψel:
(
− F−>tr Ḟ

>
trF
−>
tr CF

−1
tr + F−>tr ĊF

−1
tr − F

−>
tr CF

−1
tr Ḟ trF

−1
tr

)
− ∂Ctr

ψtr:Ċtr + S:
1

2
Ċ

= −∂θψθ̇ +
(
S − 2F−1tr ∂Cel

ψelF
−>
tr

)
:
1

2
Ċ

+ ∂Cel
ψelCel:F

−>
tr Ḟ

>
tr +Cel∂Cel

ψel:Ḟ trF
−1
tr − ∂Ctr

ψtr:Ċtr

= −∂θψθ̇ +
(
S − 2F−1tr ∂Cel

ψelF
−>
tr

)
:
1

2
Ċ

+
(

2F−1tr Cel∂Cel
ψelF

−>
tr − 2∂Ctr

ψtr

)
:
1

2
Ċtr (2.9) CD

where we used the coaxiality of Cel and ∂Cel
ψel (which in turn follows from isotropy (

isotropy
2.5)), the identity

Ċtr = Ḟ
>
trF tr + F>trḞ tr, and the short-hand notation ∂Cel

ψel = ∂Cel
ψel(F

−>
tr CF

−1
tr ) and ∂Ctr

ψtr =
∂Ctr

ψtr(Ctr, θ) (here and in the following). We shall systematically make use of the symbol ∂ for the
subdifferential of a convex function

Brezis73
[13]. In particular, given any φ : Rd×d → (−∞,∞] convex, we denote

its subdifferential ∂φ as

B ∈ ∂φ(A) ⇐⇒ φ(A) <∞ and B:(T −A) ≤ φ(T )− φ(A) ∀T ∈ Rd×d.

Note incidentally that, as ψtr is non-smooth, the symbol ∂Ctr
ψtr represents a selection in the convex set

∂Ctr
ψtr(Ctr, θ).

2.5. Constitutive relations and flow rule. We let the second Piola-Kirchhoff stress tensor S be given
by

S
.
= 2F−1tr ∂Cel

ψelF
−>
tr

and define

T
.
= F−1tr MF−>tr −A (2.10) T

where

M
.
= 2Cel∂Cel

ψel, A
.
= 2∂Ctrψtr (2.11) M

are the so-called Mandel stress and back stress, respectively
reese07
[44]. Owing to the computation in (

CD
2.9), the

tensor T is the thermodynamic force associated with the internal variable Ctr for we have that

2F−1tr Cel∂Cel
ψelF

−>
tr − 2∂Ctr

ψtr = F−1tr MF−>tr −A = T .

Let us stress that both the Mandel stress M and the back stress A are symmetric (M by the coaxiality

of Cel and ∂Cel
ψel and A by the current choice of ψtr) so that T = F−1tr MF−>tr −A is symmetric as

well.
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The dissipative evolution of the material is prescribed by the associative flow rule

Ċtr = ζ̇∂T f(F tr,T ). (2.12) flow

for some yield function f : Rd×d × Rd×dsym → R, such that for all F tr ∈ Rd×d the function f(F tr, ·) is
convex and positively 1-homogeneous (f(F tr, λT ) = λf(F tr,T ) for all λ ≥ 0), along with the classical
Kuhn-Tucker complementarity conditions

ζ̇ ≥ 0, f ≤ 0, ζ̇f = 0. (2.13) KT

Following
Evangelista09b,Evangelista09
[19, 20], we focus on the specific choice for yield function f given by

f(F tr,T ) = |dev (F trTF
>
tr)| − r (2.14) f

where r > 0 plays the role of a given yield stress.

Along with this choice, the flow rule (
flow
2.12)-(

KT
2.13) reads

Ċtr ∈


ζ̇F>tr

dev (F trTF
>
tr)

|dev (F trTF
>
tr)|
F tr if dev (F trTF

>
tr) 6= 0,

ζ̇F>tr{B ∈ Rd×ddev ∩ Rd×dsym : |B| ≤ 1}F tr if dev (F trTF
>
tr) = 0.

(2.15) flow2

Note that all evolutions t 7→ Ctr(t) fulfilling the latter flow rule and starting from a symmetric initial
datum will stay symmetric for all times.

2.6. Dissipativity. The above choices for constitutive relations and flow rule entail the validity of the
Clausius-Duhem inequality (

CD0
2.8), at least for smooth evolutions. Indeed, we may equivalently rewrite

(
flow
2.12)-(

KT
2.13) or (

flow2
2.15) as

T ∈ ∂Ċtr
R(F tr, Ċtr) (2.16) diss

where R(F tr, ·)
.
= f∗(F tr, ·) is the classical Legendre conjugate of f(F tr, ·). Namely, by the 1-homogeneity

of f , the function R(F tr, ·) is the support function of the convex set {T ∈ Rd×dsym | f(F tr,T ) ≤ 0}. In
particular,

R(F tr, Ċtr)
.
= sup{T :Ċtr | f(F tr,T ) ≤ 0}.

Namely, R(F tr,0) = 0 and we have that, for all (F tr, Ċtr) with R(F tr, Ċtr) <∞,

∂Ċtr
R(F tr, Ċtr)

.
=
{
T ∈ Rd×dsym | T :(B − Ċtr) ≤ R(F tr,B)−R(F tr, Ċtr) ∀B ∈ Rd×d

}
.

Since the right-hand side of (
CD
2.9) equals sθ̇+T :Ċtr/2 by definition of the entropy s

.
= −∂θψ and we have

T :Ċtr

(
diss
2.16)

≥ R(F tr, Ċtr)−R(F tr,0) = R(F tr, Ċtr) ≥ 0,

by choosing the classical Fourier flux q
.
= −κ∇θ, κ > 0 we have that

− ψ̇ − sθ̇ + S:
1

2
Ċ − q · ∇θ

θ
≥ 1

2
R(F tr, Ċtr) + κ∇θ · ∇θ

θ
≥ 0.

In particular, the Clausius-Duhem inequality holds true.
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3. Variational reformulation

As already commented, one of the main issues of this paper is that of reformulating the constitutive
problem in a purely variational fashion. This yields a clear advantage with respect to the original formu-
lation of

Evangelista09b,Evangelista09
[19, 20]. In particular, owing to the variational setting we are able to prove the convergence of

the time-discretization scheme. Moreover, we shall be using the variables θ,C (given) and Ctr (unknown)
only and the model with turn out to be not directly depending on F tr. This possibility is indeed the
effect of the overall isotropy and frame-indifference assumptions and, although not new in the setting of
finite strain plasticity, it was not yet pointed out in connection with shape-memory alloys. Eventually,
as an effect of this variational reformulation we will be able to exhibit an existence theory in Section

energetic
4

below.

The first step in the direction of reformulating variationally the model consists in avoiding the use of
the tensor Cel in the definition of the free energy ψ (

psi
2.3). By recalling that

F tr = RC
1/2
tr = C

1/2
tr R̂ for some R, R̂ ∈ SO(d) (3.1) RR

we have that

ψel(Cel) = ψel(F
−>
tr CF

−1
tr ) = ψel(R

−>C
−1/2
tr CC

−1/2
tr R−1) = ψel(C

−1/2
tr CC

−1/2
tr ). (3.2) revised

The last equality above is a consequence of (
frame
2.4)-(

isotropy
2.5). Indeed, let for brevity S = C

−1/2
tr CC

−1/2
tr =

O>DO with O ∈ SO(d) and D diagonal and positive definite. Hence

ψel(R
−>SR−1) = ψel(R

−>O>DOR−1) = W (R−>O>D1/2OR−1)
(
frame
2.4)+(

isotropy
2.5)

= W (O>D1/2O) = ψel(S)

whence (
revised
3.2) follows. Let us now define

ψ̂(C,Ctr, θ)
.
= ψel(C

−1/2
tr CC

−1/2
tr ) + ψtr(Ctr, θ).

Let us now compute R(F tr, Ċtr) from the specific form of f(F tr,T ) in (
f
2.14) as

R(F tr, Ċtr) = sup
{
T :Ċtr

∣∣ T ∈ Rd×dsym , |dev (F trTF
>
tr)| ≤ r

}
= sup

{
T :Ċtr

∣∣ T ∈ Rd×dsym , |dev (C
1/2
tr TC

1/2
tr )| ≤ r

}
= sup

{
B:C

−1/2
tr ĊtrC

−1/2
tr

∣∣ B ∈ Rd×dsym , |devB| ≤ r
}

=

{
r|dev (C

−1/2
tr ĊtrC

−1/2
tr )| if tr (C

−1/2
tr ĊtrC

−1/2
tr ) = 0

∞ else.

=

{
r|C−1/2tr ĊtrC

−1/2
tr | if tr (C

−1/2
tr ĊtrC

−1/2
tr ) = 0

∞ else.

We hence define the dissipation R̂ : Rd×dsym × Rd×dsym → [0,∞] as (the meaning of the factor 1/2 will
become clear in the proof of Theorem

represent
3.1 below)

R̂(Ctr, Ċtr)
.
=

{ r

2
|C−1/2tr ĊtrC

−1/2
tr | if tr (C

−1/2
tr ĊtrC

−1/2
tr ) = 0

∞ else.

The core of this section resides in the following result where we prove that one can rewrite the consti-

tutive material relation from (
T
2.10)-(

KT
2.13) for the internal variable Ctr in terms of R̂ and ψ̂ only.
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represent Theorem 3.1 (Constitutive relation). The constitutive material relation from (
T
2.10)-(

KT
2.13) can be equiv-

alently restated as

∂Ċtr
R̂(Ctr, Ċtr) + ∂Ctr

ψ̂(C,Ctr, θ) 3 0. (3.3) const

Proof. Indeed, relations (
flow
2.12) and (

KT
2.13) are equivalent to (

diss
2.16) and hence to

2∂Ċtr
R̂(Ctr, Ċtr) 3 T .

Hence, the statement follows by proving directly that

−1

2
T ∈ ∂Ctr

ψ̂(C,Ctr, θ) = ∂Ctr
ψel(C

−1/2
tr CC

−1/2
tr ) + ∂Ctr

ψtr(Ctr, θ). (3.4) Tnew

Let us work out the two terms in the above right-hand side separately. We shall preliminarily observe
that, for all B ∈ Rd×d, we have the following

∂F trF
−T
tr :B = −F−>tr B

>F−>tr ∂F trF
−1
tr :B = −F−1tr BF

−1
tr , (3.5) T00

(∂Ctr
F>tr:B)> = ∂Ctr

F tr:B, (∂Ctr
F tr:B)> = ∂Ctr

F>tr:B, (3.6) T00

∂F tr
(F−>tr CF

−1
tr ):B = −F−>tr B

>F−>tr CF
−1
tr − F

−>
tr CF

−1
tr BF

−1
tr

= −F−>tr B
>Cel −CelBF

−1
tr = ∂F>tr(F

−>
tr CF

−1
tr ):B>, (3.7) T3

B = ∂Ctr
Ctr:B = ∂Ctr

(F>trF tr):B = (∂Ctr
F>tr:B)F tr + F>tr(∂Ctr

F tr:B). (3.8) T02

In particular, relation (
T02
3.8) entails that, for all B ∈ Rd×d,

F−>tr BF
−1
tr = F−>tr (∂Ctr

F>tr : B) + (∂Ctr
F tr : B)F−1tr . (3.9) T4

Hence, given B ∈ Rd×d one has that

∂Ctr
ψel(C

−1/2
tr CC

−1/2
tr ):B = ∂Cel

ψel:∂F tr
(F−>tr CF

−1
tr ):∂Ctr

F tr:B

= −∂Cel
ψel:F

−>
tr (∂Ctr

F>tr:B)F−>tr CF
−1
tr − ∂Cel

ψel:F
−>
tr CF

−1
tr (∂Ctr

F tr:B)F−1tr

= −∂Cel
ψelCel:F

−>
tr (∂Ctr

F>tr:B)−Cel∂Cel
ψel:(∂Ctr

F tr:B)F−1tr

(
T4
3.9)
= −Cel∂Cel

ψel:[F
−T
tr (∂Ctr

F>tr:B) + (∂Ctr
F tr:B)F−1tr ]

= −Cel∂Cel
ψel:F

−T
tr BF

−1
tr = −F−1tr Cel∂Cel

ψelF
−>
tr :B

= −1

2
F−1tr MF−>tr :B. (3.10) quattro

In the second identity above we have used (
T3
3.7) by replacing B by ∂CtrF tr:B.

Namely, we have finally checked that

∂Ctr
ψ̂ = ∂Ctr

ψel(C
−1/2
tr CC

−1/2
tr ) + ∂Ctr

ψtr(Ctr, θ) = −1

2
(M −A) ≡ −1

2
T

and (
Tnew
3.4) holds. �

3.1. Dissipation distance. Let us close this Section by observing that the dissipation functional R̂

defines a left-invariant Finsler metric. Hence, one can coordinate to R̂ a global metric by letting D̂ :
Rd×d × Rd×d → [0,∞] be defined by

D̂(Ctr,0,Ctr,1)

.
= inf

{∫ 1

0

R̂(Ctr, Ċtr)
∣∣∣ Ctr ∈ C1([0, 1];Rd×d), Ctr(0) = Ctr,0, Ctr(1) = Ctr,1

}
.
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Note in particular that

D̂(Ctr,0,Ctr,1) = D̂(1,Ctr,1C
−1
tr,0) ∀Ctr,0, Ctr,1 ∈ Rd×d,

D̂(1,Ctr,1) <∞ =⇒ Ctr,1 ∈ SL(d).

The interested Reader is referred to the papers
Carstensen02,Mielke02,Mielke03
[14, 33, 34] for additional details.

4. Existence of energetic solutions
energetic

We shall now turn our attention to the existence of suitably weak solutions to the constitutive material
relation (

const
3.3). To this aim, assume to be given t 7→ θ(t) > 0 and t 7→ C(t) ∈ Rd×dsym and set for the sake

of notational simplicity

e(t,Ctr)
.
= ψ̂(C(t),Ctr, θ(t))

throughout. In order to make precise the solution notion we shall be dealing with we need to introduce
the stable states S(t) at time t ∈ [0, T ] as

S(t)
.
= {Ctr ∈ SLsym(d) | e(t,Ctr) <∞ and e(t,Ctr) ≤ e(t,B) + D̂(Ctr,B) ∀B ∈ SLsym(d)}. (4.1) stable

An energetic solution
Mielke05,Mielke-Theil04
[35, 41] corresponds to a trajectory Ctr : [0, T ]→ Rd×d such that Ctr(0) = Ctr,0,

where Ctr,0 is some given initial datum, and

Ctr(t) ∈ S(t) ∀t ∈ [0, T ], (4.2) stability

e(t,Ctr(t)) + Diss [0,t](Ctr) = e(0,Ctr(0)) +

∫ t

0

∂te(s,Ctr(s))ds ∀t ∈ [0, T ] (4.3) energy

where the total dissipation Diss [0,t](Ctr) in the time interval [0, t] is given by

Diss [0,t](Ctr)
.
= sup

{
N∑
i=1

D̂(Ctr(t
i−1),Ctr(t

i))
∣∣∣ 0 = t0 < t1 < · · · < tN = t

}
the supremum being taken among all partitions of the interval [0, t]. Note that Diss [0,T ](Ctr) <∞ implies
that Ctr(t) ∈ SL(d) for all times. Let us now formulate the assumptions on C and θ as

C ∈W 1,1(0, T ;Rd×dsym), det C(t) ≥ α0 > 0 ∀t ∈ [0, T ], (4.4) assp1

θ ∈W 1,1(0, T ). (4.5) assp2

Theorem 4.1 (Existence of energetic solutions). Let (
assp1
4.4)-(

assp2
4.5) hold and Ctr,0 ∈ S(0). Then, there

exist an energetic solution of (
const
3.3).

The proof of this theorem is developed in the remainder of this section and follows by adapting the
by-now classical argument of

Mielke-Theil04
[41]. In particular, we shall proceed by time-discretization. An interesting

by-product of this procedure relies in the possibility of approximating the limit problem constructively.
Note that some numerical computation for this model has been provided in

Evangelista09
[20]. Here, we somehow

complement the theory by rigorously proving convergence of the numerical scheme.

4.1. Incremental minimization. Assume to be given a partition of [0, T ] which we identify with the
corresponding vector τ = (τ1, . . . , τNτ ) of strictly positive time-steps. Note that we indicate with super-
scripts the elements of a generic vector. In particular τ j represents the j-th component of the vector τ
(and not the j-th power of the scalar τ).
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We let t0τ
.
= 0 and recursively define

tiτ
.
= ti−1τ + τ i, Iiτ

.
= [ti−1τ , tiτ ) for i = 1, . . . , Nτ ,

and we will use the symbol τ = maxi=1,...,Nτ τ
i, for the maximum time-step (fineness of the partition).

Moreover, we will make use of the notation (B0
τ , . . . ,B

Nτ
τ ) for elements in (Rd×d)Nτ+1 and let Bτ :

[0, T ] → Rd×d be the corresponding piecewise constant interpolant on the intervals Iiτ , namely Bτ (t)
.
=

Bi−1
τ for all t ∈ Iiτ , i = 1, . . . , Nτ and Bτ (T )

.
= BNτ

τ .

As we are given (C, θ) : [0, T ] → Rd×dsym × (0,∞), we define (Ci
τ , θ

i
τ )

.
= (C(tiτ ), θ(tiτ )). Then, we look

for a vector (C0
tr,τ , . . . ,C

Nτ
tr,τ ) ∈ (SLsym(d))Nτ+1 such that

C0
tr,τ = Ctr,0, (4.6) d1

Ci
tr,τ ∈ Arg min

{
e(tiτ ,Ctr) + D̂(C i−1

tr,τ ,Ctr)
∣∣∣ Ctr ∈ SLsym(d)

}
for i = 1, . . . ,Nτ . (4.7) d2

Hence, the solution Ctr,τ is obtained by sequentially minimizing on SLsym(d)

Ctr 7→ ψel(C
−1/2
tr Ci

τC
−1/2
tr ) + ψtr(Ctr, θ

i
τ ) + D̂(Ci−1

tr,τ ,Ctr).

Such incremental solution clearly exists as the above functional turns out to be coercive and lower
semicontinuous and SLsym(d) is closed.

4.2. Discrete stability and estimates. Let us show that Ci
tr,τ ∈ S(tiτ ) for i = 1, . . . , Nτ . Indeed, by

using the minimality (
d2
4.7) and the triangle inequality for D̂, we have that, for all B ∈ SLsym(d),

e(tiτ ,C
i
tr,τ ) + D̂(Ci−1

tr,τ ,C
i
tr,τ ) ≤ e(tiτ ,B) + D̂(Ci−1

tr,τ ,B)

≤ e(tiτ ,B) + D̂(Ci−1
tr,τ ,C

i
tr,τ ) + D̂(Ci

tr,τ ,B)

whence stability follows. Furthermore, again by minimality (
d2
4.7) the following inequality holds

e(tiτ ,C
i
tr,τ ) + D̂(Ci−1

tr,τ ,C
i
tr,τ ) ≤ e(ti−1τ ,Ci−1

tr,τ ) +

∫ tiτ

ti−1
τ

∂se(s,C
i−1
tr,τ )ds.

By summing up we get the discrete upper energy estimate for the piecewise constant Ctr,τ

e(tmτ ,Ctr,τ (tmτ )) + Diss[tiτ ,tmτ ](Ctr,τ )

≤ e(tiτ ,Ctr,τ (tiτ )) +

∫ tmτ

tiτ

∂se(s,Ctr,τ (s))ds for i ≤ m. (4.8) upediscr

Our next aim is that of showing a control on the power of external actions. In particular, for all given
Ctr ∈ K

.
= {Ctr ∈ SLsym(d) | |Ctr − 12| ≤ 2εL} (recall (

psit
2.7)), we have

∂te(t,Ctr) = ∂Cψel(C
−1/2
tr C(t)C

−1/2
tr ):Ċ(t) + ∂tψtr(Ctr, θ(t)). (4.9) dpar1

Due to assumption (
assp2
4.5) and to the explicit form (

psit
2.7) of the inelastic energy ψtr(Ctr, θ), we have that

t 7→ ψtr(Ctr, θ(t)) ∈W 1,1(0, T ) and

∂tψtr(Ctr, θ(t)) = bH(θ(t)− θM )|Etr|θ̇(t) for a.e. t ∈ (0, T ) (4.10) dpar3

where H is the Heaviside function. As for the first term in the right-hand side of (
dpar1
4.9) we compute by

(
dervi
2.2)

∂Cψel(C
−1/2
tr C(t)C

−1/2
tr ) = ∂Aψel(A)|

A=C
−1/2
tr CC

−1/2
tr

:∂C(C
−1/2
tr C(t)C

−1/2
tr )

= C
−1/2
tr ∂Aψel(A)|

A=C
−1/2
tr C(t)C

−1/2
tr

C
−1/2
tr . (4.11) dpar2
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Let us observe that assumption (
assp1
4.4) entails in particular that C ∈ L∞(0, T ;Rd×dsym). Moreover, we have

that

Ctr ∈ K ⇒ |Ctr|+ |C−1tr | ≤ cK

where cK > 0 depends on data only. From the smoothness of the square root
Gurtin81
[25, pag. 23] an analogous

bound holds true for |C1/2
tr | + |C−1/2tr |. In particular, given the above bounds, one can check that

|F el|+ |F−1el | is also a priori bounded in terms of data and |C(t)|. Now, we remark that, for all B ∈ Rd×d,
one has

∂F el
W (F el)F

>
el :B = F el∂Cel

ψel(Cel)F
>
el :(B +B>).

Hence, we can control the first term in the right-hand side of (
dpar1
4.9) as follows (recall (

RR
3.1), which implies

C
−1/2
tr CC

−1/2
tr = R>CelR)∣∣∂Cψel(C

−1/2
tr C(t)C

−1/2
tr ):Ċ(t)

∣∣
=
∣∣F el∂Aψel(A)|

A=C
−1/2
tr C(t)C

−1/2
tr

F>el :F
−>
el C

−1/2
tr Ċ(t)C

−1/2
tr F−1el

∣∣
= |F elR

>∂Cel
ψel(Cel)RF

>
el : F−>el C

−1/2
tr Ċ(t)C

−1/2
tr F−1el |

= |F el∂Cel
ψel(Cel)F

>
el : F−>el RC

−1/2
tr Ċ(t)C

−1/2
tr RTF−1el |

=
1

2
|∂F el

W (F el)F
>
el : F−Tel RC

−1/2
tr Ċ(t)C

−1/2
tr RTF−1el |

≤ 1

2
c0(W (F el) + 1)|F−>el RC

−1/2
tr Ċ(t)C

−1/2
tr RTF−1el |

≤ c(ψel(C
−1/2
tr C(t)C

−1/2
tr ) + 1)|Ċ(t)|.

where c depends on data only. Hence, we can conclude that

|e(t,Ctr)| ≤ γ(t)(1 + e(t,Ctr)) (4.12) bound

where t 7→ γ(t)
.
= ce(|Ċ(t)|+ |θ̇(t)|) ∈ L1(0, T ) and ce > 0 depends on data only. Moreover, note that for

almost all times t ∈ [0, T ] the power Ctr 7→ ∂te(t,Ctr) turns out to be continuous on K as a consequence
of the smoothness of ψel and the continuity of the inverse on SL(d) and of the square root in Rd×dsym .

Now, from the minimality (
d2
4.7) we deduce that the piecewise constant Ctr,τ satisfies Ctr,τ (t) ∈ K for

every t ∈ [0, T ]. Moreover, owing to the bound (
bound
4.12), the discrete upper energy estimate (

upediscr
4.8) entails

via Gronwall (see
Mielke05
[35]) that

sup
τ

(
sup
t∈[0,T ]

e(t,Ctr,τ (t)) + Diss[0,T ](Ctr,τ )
)
<∞ (4.13) bddissip

Let us now take a sequence of partitions τ k such that τ k → 0 as k → ∞. Let Ck
tr

.
= Ctr,τk

be the corresponding discrete solutions. From the bound (
bddissip
4.13) and Helly’s selection principle (see,

e.g.,
Mielke-Mainik
[36]) we can deduce the existence of a (not relabeled) subsequence Ck

tr and of a function Ctr ∈
BVD̂([0, T ]; SLsym(d))

.
= {t ∈ [0, T ] 7→ Ctr(t) ∈ SLsym(d) | Diss[0,T ](Ctr) <∞} such that

Ck
tr(t)→ Ctr(t) as k →∞ ∀t ∈ [0, T ].

We now aim at showing that the limit function Ctr is an energetic solution of (
const
3.3), namely that it

satisfies the stability condition (
stability
4.2) and the energy balance (

energy
4.3).
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Stability of the limit function. We first show that the set S[0,T ]
.
= {(t,Ctr) ∈ [0, T ] × SLsym(d) :

Ctr ∈ S(t)} is closed in [0, T ]× SLsym(d). Let us take (tn,C
(n)
tr ) ∈ S[0,T ] such that tn → t∗ in [0, T ] and

C
(n)
tr → C∗tr in SLsym(d). Since C

(n)
tr ∈ S(tn), we have e(tn,C

(n)
tr ) <∞ and

e(tn,C
(n)
tr ) ≤ e(tn, Ĉtr) + D̂(C

(n)
tr , Ĉtr) ∀Ĉtr ∈ SLsym(d).

By passing to the limit for n → ∞ and using the continuity of ψ̂ (restricted to Rd×dsym × K × R), we

immediately get that (t∗,C∗tr) ∈ S[0,T ]. Let us now fix t ∈ [0, T ] and define stk
.
= max{tiτk

| tiτk
≤ t}. We

have that stk → t and Ck
tr(s

t
k) = Ck

tr(t)→ Ctr(t) as k →∞. Since Ck
tr(s

t
k) ∈ S(stk), by the closedness of

S[0,T ] we have that Ctr(t) ∈ S(t).

Upper energy estimate. Along with the above notation. the discrete upper energy estimate (
upediscr
4.8) can

be rewritten as

e(stk,C
k
tr(s

t
k)) + Diss[0,stk](C

k
tr) ≤ e(0,Ctr,0) +

∫ stk

0

∂se(s,C
k
tr(s))ds.

By observing that Diss[0,stk](C
k
tr) = Diss[0,t](C

k
tr), passing to the limit as k → ∞, and exploiting the

bound (
bound
4.12), relation (

bddissip
4.13), the lower semicontinuity of the functional Diss[0,t], and the Lebesgue’s

Dominated Convergence Theorem, we deduce the upper energy estimate

e(t,Ctr(t)) + Diss[0,t](Ctr) ≤ e(0,Ctr,0) +

∫ t

0

∂se(s,Ctr(s))ds ∀t ∈ [0, T ].

Lower energy estimate. Let us take a sequence of partitions τm of the interval [0, t], with τm → 0 as
m→∞. Since Ctr(t) ∈ S(t), for every t ∈ [0, T ], we have (setting for brevity Nm

.
= Nτm

and tjm
.
= tjτm

)

e(tjm,Ctr(t
j
m)) + D̂(Ctr(t

j−1
m ),Ctr(t

j
m))

= e(tj−1m ,Ctr(t
j
m)) +

∫ tjm

tj−1
m

∂se(s,Ctr(t
j
m))ds+ D̂(Ctr(t

j−1
m ),Ctr(t

j
m))

≥ e(tj−1m ,Ctr(t
j−1
m )) +

∫ tjm

tj−1
m

∂se(s,Ctr(t
j
m))ds.

Summing up for j = 1, . . . , Nm we deduce that

e(t,Ctr(t))− e(0,Ctr,0) + Diss[0,t](Ctr)

≥
Nm∑
j=1

[
e(tjm,Ctr(t

j
m))− e(tj−1m ,Ctr(t

j−1
m ))

]
+

Nm∑
j=1

D̂(Ctr(t
j−1
m ),Ctr(t

j
m))

≥
∫ t

0

∂se(s,C
(m)

tr (s))ds, (4.14) lee3

where C
(m)

tr is defined as C
(m)

tr (t) = Ctr(t
j
m) for every t ∈ (tj−1m , tjm]. By recalling(

dpar1
4.9)-(

dpar3
4.10), the integral

on the right-hand side is given by the sum of two contributions, namely∫ t

0

∂se(s,C
(m)

tr (s))ds =

∫ t

0

bH(θ(s)− θM )|E(m)

tr (s)|θ̇(s)ds

+

∫ t

0

∂Cψel((C
(m)

tr (s))−1/2C(C
(m)

tr (s))−1/2)
∣∣∣
C=C(s)

: Ċ(s)ds
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where E
(m)

tr = (C
(m)

tr − 12)/2. As Ctr ∈ BVD̂([0, T ]; SLsym(d)), we have that Ctr is continuous on [0, T ]

with the exception of at most a countable set of points
Mielke-Mainik
[36, Thm. 3.3]. Hence, we have C

(m)

tr (t)→ Ctr(t)
for a.e. t ∈ (0, T ). We can then apply Lebesgue’s Dominated Convergence Theorem to conclude that∫ t

0

bH(θ(s)− θM )|E(m)

tr (s)|θ̇(s)ds −→
∫ t

0

bH(θ(s)− θM )|Etr(s)|θ̇(s)ds

Next, by recalling the continuity of the power term and assumption (
assp1
4.4), we may use again Lebesgue’s

theorem and show that ∫ t

0

∂Cψel((C
(m)

tr (s))−1/2C(s)(C
(m)

tr (s))−1/2):Ċ(s)ds

→
∫ t

0

∂Cψel((Ctr(s))
−1/2C(s)(Ctr(s))

−1/2):Ċ(s)ds.

Hence, the integral on the right-hand side of (
lee3
4.14) converges to∫ t

0

bH(θ(s)− θM )|Etr(s)|θ̇(s)ds+

∫ t

0

∂Cψel((Ctr(s))
−1/2C(s)(Ctr(s))

−1/2):Ċ(s)ds

and, by taking the limit m→∞, we get the desired lower energy estimate

e(t,Ctr(t)) + Diss[0,t](Ctr) ≥ e(0,Ctr,0) +

∫ t

0

∂se(s,Ctr(s))ds ∀t ∈ [0, T ].

In particular, we have proved that Ctr fulfills both the stability (
stability
4.2) and the energy equality (

energy
4.3).

Namely, Ctr is an energetic solution.
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