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Abstract

In a recent research (S. Olivares, et al., New J. Phys. 21 (2019) 103045) we

have demonstrated that a homodyne-like scheme, exploiting a “low-intensity”

local oscillator, can be used to perform optical state tomography of both quan-

tum and classical states of light. The reconstruction method directly uses the

homodyne-like probability distribution retrieved from the detector. Here, we

further investigate the role played by the local oscillator in this respect. In

particular, we study to some extent how its intensity affects the quantum-state

reconstruction procedure by focusing on the case of the Fock states |1〉 and |2〉,

whose homodyne-like probability distributions are sensibly affected by the actual

value of the LO intensity. The analysis is performed on Monte Carlo simulated

experiments taking also into account the quantum detection efficiency.
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1. Introduction

The development of quantum technologies requires quantum resources that

can be practically exploited. Therefore, the full characterization of the quan-

tum states to be employed represents an unavoidable step. Among the tech-

niques proposed in the optical domain, homodyne tomography is one of the5

most used, giving it access to the full description of a quantum state in terms

of Wigner function and density matrix [1, 2]. From the experimental point of

view, quantum-state tomography is based on measurements performed with a

homodyne detector, namely an interferometric scheme in which the signal state

under examination is mixed with a second field, called local oscillator (LO), at a10

balanced beam splitter (BS). In the traditional scheme, the LO is a macroscopic

coherent field that can be described classically. The two outputs of the interefer-

ometer are detected by two p-i-n photodiodes, whose difference photocurrent is

formed, amplified, rescaled by the LO amplitude and recorded as a function of

the LO phase. The application of suitable reconstruction methods to the data15

from homodyne detection allows the full characterization of the signal state.

Among them, the most used are maximum-likelihood methods [3, 4, 5, 6, 7, 8]

and algorithms based on the so-called pattern functions [9, 10, 11, 12, 13, 14, 15].

We have recently proved that quantum-state tomography can be achieved

also with a homodyne-like scheme, in which a low-intensity LO and photon-20

number-resolving detectors are used instead of a macroscopic LO and p-i-n

photodiodes. Moreover, the possibility to develop homodyne detection strate-

gies using e.g multiplexed schemes has been discussed also in [16] and [17].

In Ref. [18] we have shown the experimental reconstruction of classical states,

such as coherent states and phase-averaged coherent states, obtained by means25

of hybrid photodetectors, which are commercial detectors endowed with par-

tial photon-number resolution and a linear response up to 100 photons. One

main limitation of this class of detectors is the quantum efficiency, which is

roughly 50% in the green spectral region and can be further reduced in a realis-

tic setup. A valid alternative, especially for what concerns the high value of the30
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quantum efficiency, is represented by transition-edge sensors (TES), and some

homodyne-like detection schemes employing them have been very recently pub-

lished [19, 20]. Nevertheless, one of the main limitations of TES is given by their

dynamic range, which is approximately equal to 10 detected photons. Thus,

TES cannot be used to investigate the so-called mesoscopic intensity domain,35

in which the intensity of the LO can reach values as large as 50 photons. On

the contrary, the most promising photon-number-resolving detectors that can

be operated over a wide dynamic range are Silicon photomultipliers (SiPMs).

They are essentially a matrix of avalanche diodes, called cells, connected in

parallel to a single output. Each diode is reverse-biased at a voltage value ex-40

ceeding the breakdown threshold, and it works in Geiger Müller regime, yielding

a standard output signal at any detection event. Assuming that at most one

photon impinges on a single cell, the number of fired cells gives the number of

incident photons. Unfortunately, these detectors are affected by some spurious

effects, such as dark counts, cross talk and afterpulses. Moreover, the current45

value of their quantum efficiency is up to 60%. In the context of quantum-

state tomography, such drawbacks unavoidably affect the reconstructed state.

Nevertheless, we notice that SiPMs response can be suitably modelled [21] and,

by properly acting on the control parameters, such as the bias voltage and the

integration gate, it is possible to substantially reduce all the spurious effects50

[21, 22]. These parameters also control the photon-number-resolving capability

of SiPMs, that is the ability to distinguish among one, two, three or more pho-

tons. For instance, reducing the integration gate can improve the separation

among peaks, thus enhancing the determination of the statistical properties of

light. Thanks to the optimized operation of SiPMs, we have recently proved55

that such detectors can be exploited to test both nonclassical correlations and

subPoissonianity of optical states [22].

In this paper we investigate the effects on the reconstruction procedure of

varying the intensity of the LO. In Ref. [18] we have demonstrated that the

scheme can be suitable for the reconstruction of both classical and nonclassical60

states of light (such as cat states), upon optimization of the value of the LO
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with respect to the signal state. The results obtained in Ref. [18] suggest that

the intensity of the LO must be increased not only when the energy of the re-

constructed states increases, but also when the states exhibit peculiar Wigner

functions with, for instance, many oscillations in the phase space. In this last65

scenario, increasing the LO intensity allows a better sampling of the correspond-

ing “discretized” homodyne probability distributions and, thus, a more faithful

tomographic reconstruction. Here, we aim at studying the effect of the inten-

sity of the LO on the fidelity of the tomographic reconstruction and we consider

the paradigmatic cases of the Fock states |1〉 and |2〉, which show an increasing70

number of oscillations of the homodyne probability distributions, both in the

case of a perfect detection efficiency and in the non ideal one.

2. Materials and methods

The standard homodyne scheme mentioned in the Introduction allows to

retrieve the information about the quadrature operators x̂φ of the signal state by

recording the difference photocurrent, described by the operator, ∆Î, between

the two BS outputs. Here, φ is the relative phase between the signal and the

LO, which is assumed to be a highly excited classical coherent field. If β is the

complex amplitude of the LO and â and â†, with [â, â†] = 1, are the annihilation

and creation operators of the signal field, respectively, one can show that

lim
|β|→∞

(
∆Î√
2|β|

)n
=

(
â†eiφ + âe−iφ√

2

)n
≡ x̂nφ, (1)

where n ∈ N.

In the case of homodyne-like detection, the physical quantity which we have

access to is given by the photon-number difference ∆ = m− n between the two

outputs of the detectors, whose probability distribution pD(∆, φ) reduces to the

standard homodyne one pHD(x, φ) when the LO becomes intense [23, 19, 20],

namely,

pD(∆, φ)→ pHD(x = ∆/(
√

2|β|), φ)/(
√

2|β|), (2)
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where |β| is the amplitude of the LO described by a coherent state with complex

amplitude β = |β| eiφ. In this case, one finds(
∆Î√
2|β|

)n
= x̂nφ +

γ
(n)
φ (â, â†)

|β|2
, (3)

γ
(n)
φ (â, â†) being a suitable function of the annihilation and creation operators75

which can be obtained performing direct calculations. For instance, the first

three terms are γ
(1)
φ (â, â†) = 0, γ

(2)
φ (â, â†) = â†â, and γ

(3)
φ (â, â†) = 3 â†x̂φâ+ x̂φ.

The last term in Eq. (3) scales as 1/|β|2, where |β|2 is the energy of the LO,

and it vanishes in the limit |β|2 � 1, as one may expect: this is the stan-

dard homodyne detection working regime. However, in the presence of a low80

intensity LO, the function γ
(n)
φ (â, â†) in Eq. (3) can become relevant for the

tomographic reconstruction method based on the homodyne-like probabilities,

since it affects their moments and, thus, also the moments of the reconstructed

quadratures. Therefore, the contribution of γ
(n)
φ (â, â†), whose actual expecta-

tion value is state-dependent, should be made negligible by properly choosing85

the LO intensity in the homodyne-like detection scheme.

In Ref. [18], we have demonstrated that the probability distribution for the

photon-number difference can be written in terms of the joint photon-number

statistics q(m,n) measured at the two BS outputs:

pD(∆, φ) =
∑

m,n:m−n=∆

q(m,n), (4)

in which [24, 25]

q(m,n) =

∫
C
d2ζP (ζ)e−µc(ζ,β)−µd(ζ,β) [µc(ζ, β)]n[µd(ζ, β)]m

n!m!
. (5)

In this expression, P (ζ) is the Glauber-Sudarshan P -representation of the generic

signal state ρ =
∫
C d

2ζP (ζ)|ζ〉〈ζ|, whereas µc(ζ, β) = |β + ζ|2/2 and µd(ζ, β) =

|β − ζ|2/2 are the mean values of the distributions of the two BS output modes

c and d. In the case of a non-ideal detection, the effect of a quantum efficiency90

ηk 6= 0 (k, being equal to c, d) on the output modes may be taken into account

by replacing µk(ζ, β) with ηkµk(ζ, β).
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Here, we consider the reconstruction of the Fock state ρ = |ν〉〈ν|, ν ∈ N,

whose Glauber-Sudarshan P -representation is given by

P (ζ) =

ν∑
m=0

(
ν

m

)
1

m!

(
∂2

∂ζ∂ζ∗

)m
δ2(ζ), (6)

for which the joint photon-number distribution reads as

q(m,n) =
e−|β|

2/2

√
ν!

[
ν∑
k=0

(
ν

k

)√(
n+m− ν
m− k

)
(−1)n−ν+k

√
2n+m

× βn+m−ν
√
n!m!√

(m− k)!(n− ν + k)!(n+m− ν)!

]2

. (7)

An analogous expression of q(n,m) can be written in the case of a non-ideal

detection efficiency. Since it is quite clumsy, we decided not to show it here.

As already demonstrated in Ref. [18], the knowledge of the homodyne-like

distribution can be exploited to calculate the elements ρnm of the density matrix

of the Fock states. By following the methods proposed by Leonhardt et al. in

[9], for a homodyne-like detection we have

ρnm =

∫ π

0

dφ

∫ +nmax

−nmax

d∆ pD(∆, φ)Fnm(∆, φ). (8)

The functions Fnm(∆, φ) are a set of sampling functions written as [9]

Fnm(∆, θ) = fnm(∆) exp[i(n−m)θ], (9)

where the pattern functions fnm(∆) can be expressed in terms of regular and

irregular wave functions, ψn(∆) and φm(∆), respectively:

fnm(∆) = 2xψn(∆)φm(∆)−
√

2(n+ 1)ψn+1(∆)φm(∆)

−
√

2(m+ 1)ψn(∆)φm+1(∆), (10)

with m ≥ n. Quite simple expressions for the numerical computation of these95

functions can be found in the original paper [9].

3. Results

3.1. Single-photon Fock states

The analysis we present in the following concerns the Fock states |1〉 and

|2〉 and is based on Monte Carlo simulated experiments. In order to properly
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Figure 1: Joint-photon-number distribution in the case of Fock state |1〉 for η = 1 and different

choices of the LO intensity. Left: |β|2 = 5, Right: |β|2 = 50. Note that the different ranges in

the three axes of the two panels are due to the fact that the joint-photon-number distributions

are built with two different choices of LO.
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Figure 2: Homodyne-like distribution pD in the case of Fock state |1〉 for η = 1 and different

choices of the LO intensity (blue points). Left: |β|2 = 5, Right: |β|2 = 50. In each panel,

the theoretical homodyne distribution is shown as red solid line. The fidelity between the two

curves is equal to 99.612% for |β2| = 5 and 99.999% for |β2| = 50. In order to compare pD

and pHD, we suitably rescaled the photon-number difference ∆ appearing in Eq. (4).

evaluate the statistical errors in the reconstruction procedure, for each state

we repeat the simulation 10 times and use 30,000 data in each run. First of

all, we consider the state |1〉 with η = 1 and η < 1 (for the sake of simplicity

we assume that both the detectors have the same quantum efficiency η). To

investigate the role played by the intensity of the LO in the reconstruction of

the state, we consider six possible intensity values, namely |β|2 = 5, 10, 20, 30,

40, and 50. In Fig. 1, we show, for the two extreme values, the joint photon-

number distribution, which exhibits a double-peak structure, as expected. Note

that, the larger the value of |β|2 the better the distinction between the two

peaks and the“resolution” of the distribution. The corresponding homodyne-
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Figure 3: Reconstruction of the density matrix in the case of Fock state |1〉 for η = 1 and

different choices of the LO intensity. Left: |β|2 = 5, Right: |β|2 = 50.

like distributions, obtained from Eq. (4) for the joint-probability distributions

in Eq. (7), are shown in the panels of Fig. 2 for |β|2 = 5 and |β|2 = 50, together

with the theoretical homodyne probability distributions

pHD(x, φ) =
1√
2
e−x

2

√
2

π
2x2. (11)

By comparing the homodyne-like distributions with the corresponding homo-

dyne ones, we can clearly see that the larger the intensity |β|2, the better the100

superposition. In general, it is interesting to notice that the two distributions are

well superimposed even for a small imbalance between signal and LO. Indeed,

for the values of |β|2 of Fig. 2, the fidelities fH =
∑N
i=1

√
pi,D pi,HD between the

two distributions are equal to 99.612% and 99.992%, respectively.

The slight discrepancy between homodyne and homodyne-like distributions

does not prevent the reconstruction of the density matrix according to the

method presented in [9]. However, the direct observation of the obtained matri-

ces in Fig. 3 witnesses the limitations imposed by a low-intensity LO. Indeed, in

the left panel, corresponding to the case in which |β|2 = 5, the density matrix

exhibits a peak at n = 1 which is lower than 1. On the contrary, in the right

panel, corresponding to the case in which |β|2 = 50, the reconstruction is defi-

nitely better. Note that, the maximum error on a single element of the density

matrix is equal to 0.014 for |β|2 = 5 and 0.009 for |β|2 = 50, whereas the mean

error on a single reconstructed element is equal to 0.006 for |β|2 = 5 and 0.004

for |β|2 = 50.
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Figure 4: State fidelity in the case of Fock state |1〉 as a function of the LO intensity for η = 1.

The dashed line corresponds to the fitting function ga
(
|β|2

)
with a = 0.144± 0.008.

Since the Fock states are diagonal, the state fidelity can be evaluated as fS =∑ν
m=0

√
ρmm,exp ρmm,th. For the two cases shown in Fig. 3, fS is equal to

97.02± 0.29 % and 99.67± 0.16 %, respectively. We note that, in the quantum

regime, only very high values of the fidelities can be considered acceptable when

dealing with the reliable generation of a required quantum state [26]. In order

to better emphasize the dependence of fidelity on the intensity of the LO, in

Fig. 4 we plot fS as a function of |β|2, where the saturation at 1 at increasing

intensity values of the LO is clearly visible. The data can be numerically fitted

by the function

ga
(
|β|2

)
= 1− a

|β|2
(12)

where a is a real fitting parameter. It is worth noting that the scaling 1/|β|2105

appearing in ga
(
|β|2

)
is consistent with the scaling of the additional term in

Eq. (3): in the limit |β|2 � 1, the results of the homodyne-like detection ap-

proaches those corresponding to the standard homodyne one.

When η < 1, the reconstructed state is no longer that expected in the ideal

case, i.e. for η = 1. For instance, in the case of the Fock state |1〉, it has been

demonstrated, theoretically, numerically and experimentally, that its density

matrix displays two terms on the diagonal, namely a peak corresponding to 0

photon in addition to that corresponding to 1 photon [27]. More in general, in

the case of the Fock state |ν〉, the reconstructed density matrix [28]

ρ =

n∑
ν=0

(
n

ν

)
ην(1− η)n−ν |ν〉〈ν| (13)
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Figure 5: Joint-photon-number distribution in the case of Fock state |1〉 for η = 0.4 and

different choices of the LO intensity. Left: |β|2 = 5, Right: |β|2 = 50.
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Figure 6: Homodyne-like distribution pD in the case of Fock state |1〉 for η = 0.4 and different

choices of the LO intensity (blue points). Left: |β|2 = 5, Right: |β|2 = 50. In each panel,

the theoretical homodyne distribution is shown as red solid line. The fidelity between the two

curves is equal to 99.599% for |β|2 = 5 and 99.947% for |β|2 = 50. In order to compare pD

and pHD, we suitably rescaled the photon-number difference ∆ appearing in Eq. (4).

is given by n+ 1 contributions. In the following we present the results achieved

for the Fock states |1〉 in the case η = 0.4, which is a reliable value of the110

detection efficiency of commercial photon-number-resolving detectors.

In Fig. 5, we plot the joint probability distributions for the extreme values

of the LO, namely, |β|2 = 5 and |β|2 = 50. Note that, due to the low quantum

efficiency, it is no more possible to distinguish the two peaks shown in the

analogous Fig. 1. The same result holds for the corresponding homodyne-like115

distributions in Fig. 6. Indeed, instead of having a good separation between

the peaks, we have a unique large structure with only a small dip on the top.

Moreover, it is well evident that the higher the LO intensity the better the

superposition to the standard homodyne distribution. On the other hand, the

weaker the LO, the higher the contribution to pD(x, φ) at x = 0: This is clear120

10



Figure 7: Reconstruction of the density matrix in the case of Fock state |1〉 for η = 0.4 and

different choices of the LO intensity. Left: |β|2 = 5, Right: |β|2 = 50.
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Figure 8: State fidelity in the case of Fock state |1〉 as a function of the LO intensity for

η = 0.4. The dashed line corresponds to the fitting function ga
(
|β|2

)
with a = 0.224± 0.017.

by inspecting the plot with |β|2 = 5 in Fig. 6.

The application of the reconstruction method to the case under examina-

tion yields to the results shown in Fig. 7, where the presence of the vacuum

contribution, ρ00, is clearly visible. We notice that for |β|2 = 5 also the peak

corresponding to ρ22 on the diagonal is visible. This depends on the fact that,125

when the signal and the LO are similar, the assumption that the LO can be

classically treated does not hold anymore and thus the reconstructed state con-

tains information both on the signal and on the LO. Here, the maximum error

on a single element of the density matrix is equal to 0.019 for |β|2 = 5 and 0.012

for |β|2 = 50, whereas the mean error on a single reconstructed element is equal130

to 0.006 for |β|2 = 5 and 0.005 for |β|2 = 50. In this case, the fidelities to the

expected states are equal to 95.27± 0.43% for |β|2 = 5 and to 99.55± 0.18% for

|β|2 = 50. As also proved by the values of fidelity reported in Fig. 8, the larger
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Figure 9: Joint-photon-number distribution in the case of Fock state |2〉 for η = 1 and different

choices of the LO intensity. Left: |β|2 = 5, Right: |β|2 = 50.

the LO the better the reconstruction. We also note that, compared to the case

with η = 1, the values of fidelity are slightly worse. This is due to the fact that135

not only the signal is affected by a low quantum efficiency, but also the intensity

of the LO, which is now reduced by a factor η.

3.2. Two-photon Fock states

The results achieved so far give proof of the possibility to fully characterize

a single-photon Fock state even in the presence of a low-intensity LO. This can140

be obtained both in the ideal case and in the presence of an imperfect detection.

In this Section we want to explore the situation of more populated Fock

states, namely two-photon Fock states. First of all, we consider a Fock state |2〉

for η = 1 and compare the results with those achieved in the previous Section.

We consider the same values of |β|2, namely 5, 10, 20, 30, 40, and 50. In Fig. 9145

we show the joint probability distribution for the two extreme cases.

The distributions exhibit three peaks, which become more separated at in-

creasing intensity values of the LO. The same holds for the homodyne-like dis-

tributions shown in Fig. 10. Here, for |β|2 = 5, it is also quite evident the

discrepancy between the homodyne-like and the homodyne distributions, which

in this case reads as

pHD(x, φ) = e−x
2

√
1

π

H2(x)

8
, (14)

Hν(x) being the Hermite polynomial with ν = 2.
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Figure 10: Homodyne-like distribution pD in the case of Fock state |2〉 for η = 1 and different

choices of the LO intensity (blue dots). Left: |β|2 = 5, Right: |β|2 = 50. In each panel, the

theoretical homodyne distribution is shown as red solid line. The fidelity between the two

curves is equal to 98.525% for |β|2 = 5 and 99.962% for |β|2 = 50. In order to compare pD

and pHD, we suitably rescaled the photon-number difference ∆ appearing in Eq. (4).

Figure 11: Reconstruction of the density matrix in the case of Fock state |2〉 for η = 1 and

different choices of the LO intensity. Left: |β|2 = 5, Right: |β|2 = 50.

Concerning the reconstruction of the density matrix, the corresponding plots

are shown in Fig. 11: in the case |β|2 = 5 the density matrix is not very well

reconstructed due to the presence of diagonal elements other than 2, while in150

the case |β|2 = 50 it is properly retrieved. Note that, the maximum error on a

single element of the density matrix is equal to 0.010 for |β|2 = 5 and 0.010 for

|β|2 = 50, whereas the mean error on a single reconstructed element is equal to

0.005 for |β|2 = 5 and 0.004 for |β|2 = 50. The fidelities to the expected states

are equal to 89.93± 0.42% for |β|2 = 5 and to 98.76± 0.14% for |β|2 = 50. The155

fidelity between each reconstructed matrix and the corresponding theoretical

one as a function of the LO intensity is highlighted in Fig. 12.

As the last case, we consider the reconstruction of the Fock state |2〉 for
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Figure 12: State fidelity in the case of Fock state |2〉 as a function of the LO intensity for

η = 1. The dashed line corresponds to the fitting function ga
(
|β|2

)
with a = 0.508± 0.017.

Figure 13: Joint-photon-number distribution in the case of Fock states |2〉 for η = 0.4 and

different choices of the LO intensity. Left: |β|2 = 5, Right: |β|2 = 50.

a detection efficiency η = 0.4. In Fig. 13 we compare the joint probability

distributions. As already noticed in the case of the single-photon Fock state,160

also for |2〉 the two peaks are almost superimposed because of the low quantum

efficiency. At the same time, the homodyne-like distributions in Fig. 14 do not

exhibit nothing more than one large peak with a small dip on the top.

It is interesting to notice the appearance of more than one non null con-

tribution in the density matrix of Fig. 15, due to the low quantum efficiency.165

Moreover, the height of the non null contributions of the diagonal tends to the

expected values at increasing intensity values of the LO. In this case, the maxi-

mum error on a single element of the density matrix is equal to 0.014 for |β|2 = 5

and 0.010 for |β|2 = 50, whereas the mean error on a single reconstructed ele-

ment is equal to 0.004 for |β|2 = 5 and 0.004 for |β|2 = 50. The fidelities to the170

expected states are equal to 94.61 ± 0.16% for |β|2 = 5 and to 99.22 ± 0.14%

for |β|2 = 50. The larger the photon-number state, the stricter the requirement

14
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Figure 14: Homodyne-like distribution pD in the case of Fock states |2〉 for η = 0.4 and

different choices of the LO intensity (blue dots). Left: |β|2 = 5, Right: |β|2 = 50. In each

panel, the theoretical homodyne distribution is shown as red solid line. The fidelity between

the two curves is equal to 99.322% for |β|2 = 5 and 99.988% for |β|2 = 50. In order to compare

pD and pHD, we suitably rescaled the photon-number difference ∆ appearing in Eq. (4).

Figure 15: Reconstruction of the density matrix in the case of Fock states |2〉 for η = 0.4 and

different choices of the LO intensity. Left: |β|2 = 5, Right: |β|2 = 50.

on the LO, as also quantified by the state-fidelity values shown in Fig. 16 as a

function of the LO intensity. It is worth noting that for the Fock state |2〉 the

closeness of the reconstructed state to the expected one is slightly worse than175

for |1〉. This result can be ascribed to the fact that the increase of the intensity

of the Fock state requires a more populated LO.

4. Conclusions

In this paper, we have investigated the role of the LO used in a homodyne-

like scheme for optical state tomography. In particular, we have tested how180

its intensity affects the different steps of the applied procedure in the case of

Fock states |1〉 and |2〉, obtained by Monte-Carlo simulations. In general, we
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Figure 16: State fidelity in the case of Fock state |2〉 as a function of the LO intensity for

η = 0.4. The dashed line corresponds to the fitting function ga
(
|β|2

)
with a = 0.312± 0.023.

can conclude that even a small imbalance between the signal state and the LO

allows a reliable state reconstruction, at variance with the standard homodyne

detection. However, the higher the intensity of the LO the better the recon-185

struction, as testified by the state fidelity, which exhibits an inverse dependence

on the intensity of the LO. The actual value of intensity of the LO depends

on the particular state under investigation and, more in detail, it depends on

the behavior of its Wigner function and, thus, of its quadrature probability dis-

tributions. This result can be understood considering the general expression190

reported in Eq. (3).

The simulations are performed both in the case of an ideal detection efficiency,

i.e. η = 1, and in the case of a non-ideal one. In particular, we considered

η = 0.4, since it represents a reliable value of the quantum efficiency of com-

mercial photon-number-resolving detectors, such as hybrid photodetectors [29]195

and silicon photomultipliers [22]. It is interesting to notice that, even in this

non-ideal condition, in which not only the signal state but also the LO is re-

duced, the reconstructed states resemble the theoretical expectation. All these

results lead us to emphasize that the macroscopic nature of the LO in standard

homodyne detection is not necessary for the state reconstruction, but it is re-200

quired by the presence, in the scheme, of detectors operating in the macroscopic

regime, i.e. the p-i-n photodiodes. Remarkably, a strong LO is also a way to

avoid drawbacks from the detector dark current noise and, for instance, allows

the quantum analysis of very weak entangled beams [30]. On the contrary, the
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use of a low-intensity LO and of photon-number-resolving detectors gives us205

the opportunity to investigate the role of the LO intensity and to better under-

stand the real limitations in the reconstruction procedure. Thanks to its hybrid

nature, the homodyne-like detection scheme can find applications in a Quan-

tum Communication context exploiting both continuous- and discrete-variable

states. In this case, one should switch between two quite different detection210

setups, namely standard homodyne detection and photon counting. While it is

not possible requiring photon-number-resolving power to a homodyne detector,

the homodyne-like configuration allows us to retrieve information both about

the photon-number statistics and the quadrature field. This can be useful, for

instance, for applications to Quantum Key Distribution [31] and to state dis-215

crimination with coherent [32] or squeezed [33] states of light.
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