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Abstract

We investigate the class of continuous images of non-commutative Valdivia
compact spaces, in particular its subclass of weakly non-commutative Cor-
son countably compact spaces. A key tool is the study of non-commutative
Corson countably compact spaces and their stability. The results are the non-
commutative version of results by O. Kalenda (2003). Moreover, we present a
study of retractional skeletons on Aleksandrov duplicates of ordinal spaces.
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1 Introduction

In order to investigate structural properties of certain topological and Banach spaces,
it is often convenient to define special families of retractions on them. For example
Amir and Lindenstrauss used projectional resolution of identity (PRI) to charac-
terize Eberlein compact spaces [I]. This line of research continued for a long time
exploring relations between some classes of compact spaces and non-separable Ba-
nach spaces, for example Corson and Valdivia compact spaces, Weakly Lindelof de-
termined spaces (WLD) and Plichko spaces. This kind of spaces have been widely
studied, we refer to [§] for a survey in these topics.

A compact space K is called Corson if it is homeomorphic to a subset of

Y(') = {x € R" : supp(w) is countable}

for a set I'. A compact space K is called Valdivia if it is homeomorphic to some
K' C RY with K' N Y(T) dense in K.

In this work we will use retractional skeletons that yield a generalization of Valdivia
and Corson compact spaces. In [I1] the authors introduced the definition of retrac-
tional skeleton and they proved that a compact space is Valdivia if and only if it
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has a commutative retractional skeleton. In [2] it is proved that a compact space is
Corson if and only if it has a full retractional skeleton. There is a dual formulation
of retractional skeleton in Banach space, called projectional skeleton [10]. This defi-
nition is strictly related with Plichko spaces and weakly Lindel6f determined spaces
(WLD), mentioned above. The paper is organized as follows.

In the remaining part of the introductory section notations and basic notions con-
cerning topology and Banach space theory addressed in this paper are given.

In Section 2 the classes of non-commutative Corson countably compact spaces and
weakly non-commutative Corson countably compact spaces are introduced. These
notions are the non-commutative counterparts of similar notions introduced in [7].
Moreover several stability properties are studied.

In Section 3 the class of weakly non-commutative Valdivia compact spaces is intro-
duced. Also in this case several stability properties are studied.

In Section 4 the definition of [0, n)-sum is recalled. Relations between [0, 7)-sum and
countably compact spaces are investigated. Results about ordinal spaces are given.
In Section 5 the definition of Aleksandrov duplicates is recalled. Some relations
between Aleksandrov duplicates and retractional skeletons are given.

In Section 6 consequences of previous sections are studied in Banach space theory
setting.

We denote with wy the set of natural numbers (including 0) with the usual order.
Given a set X we denote by [X]=%0 the family of all countable subsets of X and by
| X| the cardinality of the set X. As usual we denote with N, the smallest infinite
cardinal.

All the topological spaces are assumed to be Hausdorff and completely regular.
Given a topological space T we denote by A the closure of A C T. We say that
A C T is countably closed if C' C A for every C' € [A]S*°. A topological space
T is a Fréchet-Urysohn space if for every A C T and x € A there is a sequence
{Zn}new, € A such that z,, — z. T denotes the Cech-Stone compactification of
T. We use S' to indicate the complex numbers with absolute value equal to one.
As in [2], we will use non-commutative Valdivia compacta to indicate the class of
compact spaces with retractional skeleton.

Given a topological compact space K we use C(K) to indicate the space of all
real-valued continuous function on K or the space of all complex-valued continuous
function on K with the usual norm. Additionally we will use C'(K,R) and C(K,C)
where we want to differentiate. By the Riesz representation theorem the elements of
C(K)* are considered as measures. P(K) stands for the space of probability mea-
sures with the weak*-topology. If u € C(K)*, we denote by |u| its total variation.
If 11 is a non-negative measure, we denote by suppu the support of the measure p,
i.e. the set of those points € K such that each neighborhood of x has positive
p-measure. The support of a measure u € C(K)* coincides with the support of its
total variation |u|.

We shall consider Banach spaces over the field of real or complex numbers (most
proofs work simultaneously for both cases, when necessary we will point out ex-
plicitly the differences). Given a Banach space X and a subset A C X we denote
by span(A) and conv(A) the linear hull and the convex hull respectively. By is
the norm-closed unit ball of X (i.e. the set {x € X : ||z|| < 1}). As usual



X* stands for the (topological) dual space of X. Given A C X we denote by
At ={x* € X*: 2*(x) =0, Vo € A}. A set D C X* is said r-norming if

|z|| < rsup{|z*(z)|: ¥ € DN Bx-}

for every x € X. We say that a set D C X* is norming if it is r-norming for some
r > 1.

2 Non-commutative Corson countably compact spaces

In this paper we will use retractional skeletons also in countably compact setting.
We recall the following definition.

Definition 2.1. A retractional skeleton in a countably compact space X is a family
of continuous retractions {rs}scr, indexed by an up-directed partially ordered set T',
such that

(1) rs[X] is a metrizable compact space for each s € T,
(17) if s,t €', s <tthenr,=r0org=rs0ry,

(ii7) given sp < 51 < ... in I', ¢ = sup,,¢,, Sn exists and ry(z) = lim, o 75, () for
every x € X,

(i) for every z € X, x = limyer 74(x).

We say that D = J .- 7s[X] is the set induced by the retractional skeleton {rg}cr
in X.

If D= X we will say that {r,}scr is a full retractional skeleton and X is a non-
commmutative Corson countably compact space.

We recall some useful and well-known results about retractional skeletons.

Theorem 2.2. [10, Theorem 32] Assume D is induced by a retractional skeleton in
a compact space K. Then:

(i) D is dense in K and for every countable set A C D, A is metrizable and
contained i D.

(13) D is a Fréchet-Urysohn space.
(1ii) D is a normal space and K = D.

In particular we observe that given a retractional skeleton, in a compact space
X, its induced space D is countably compact.

Proposition 2.3. [3, Proposition 4.5] Let X be a countably compact space. Then X
has a full retractional skeleton if and only if it is induced by a retractional skeleton
n BX.

Moreover, if {rs}ser is a full retractional skeleton in X, then there is a retractional
skeleton { Rs}ser in BX inducing X such that Ry [x=rs for every s € T.
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We observe that non-commutative Corson countably compact spaces are a gener-
alization of Corson countably compact spaces given in [7]. Moreover, let X be a
countably compact space, it is a Corson countably compact space if and only if X
has a commutative full retractional skeleton. In fact:

(=) Let h : X — [0,1]" be a continuous injection of X into (I, for some set T,
then h(X) is a Valdivia compact space, hence by |11, Theorem 6.1] it has a commu-
tative retractional skeleton such that its induced subspace is h(X). Hence X has a
commutative full retractional skeleton.

(<) Suppose that X has a commutative full retractional skeleton. Then by Propo-
sition [2.3] X is induced by a commutative retractional skeleton on SX. Hence by
[11, Theorem 6.1], X is a dense Y-subspace of X, hence it is a Corson countably
compact space.

Lemma 2.4. [2, Lemma 3.5] Let K be a compact space, F C K closed subset and
let D C K be such that D is induced by a retractional skeleton in K. If DN F s
dense in F', then D N F' is induced by a retractional skeleton in F'.

Proposition 2.5. [10, Proposition 31] The class of non-commutative Valdivia com-
pacta is closed under arbitrary products. Moreover if { K, }new, i a countable family
of non-commutative Valdivia compact spaces and D, C K, s an induced subspace
for every n € wy, then D = [] D, is an induced space of K = [ K,.
newo newo

Now we give the definition of weakly non-commutative Corson countably com-
pact space, which is a generalization of weakly Corson countably compact space
introduced in [7].

Definition 2.6. Let X be a countably compact space, we say that it is a weakly
non-commutative Corson countably compact space if there exists a continuous onto
mapping f : Y — X such that Y is a non-commutative Corson countably compact
space.

We now give the definition of the countably compact version of the one-point
compactification.

Definition 2.7. Let {X,}aca be a family of countably compact spaces, we say that

X = (P X,) U {oo} is an one-point countably compact modification of topological
acA
sum if X is countably compact and each X, is a clopen subset of X.

We observe that the previous definition is different from the definition of one-
point modification given in [7]. Using that definition, Lemma 2.1 of [7] is not correct.
In fact, let A = {1,2}, X; = Xy = [0,w;) with usual topology and X be the one-
point compatification of X; @& X,, moreover we observe that by [8, Example 1.10]
the space X is not Valdivia. Let I'; = [0,w;) and

fi ZXZ' — E(Fl)

Q= X[0,q)



for i = 1,2. Asin [7, Lemma 2.1| we define I' = {(i,v) : i € A,y € T} U{(i, A) :
i€ A}and f: X - RV

filz)(v) reX;yvel;
f(.flf)(l,’)/) = 1, ZEEXZ‘,’}/:A
0, otherwise.

Claim: f is not continuous. In fact, let {a}a<,, C X7, it is a converging net to oo in

X.

Using the definition of f, {f(a)}a<., does not converge to f(oco) in R!. Hence

it cannot be continuous.
Finally, we observe that using Definition 2.7) Lemma 2.1 of [7] is correct.

Lemma 2.8. The class of non-commutative Corson countably compact spaces is
closed under

(1) countably closed subspaces,

(2) countable products,

(3) finite topological sums,

(4) ome-point countably compact modifications of topological sums,

(5) quotient images.

Proof. (1) Let Y be a countably closed subspace of a non-commutative Corson

countably compact space X, then it is a countably compact space. We notice
that Y is a closed subspace of X. In fact let # € Y: by Theorem X
is a Fréchet-Urysohn space, then there exists a sequence {z,}ncw, C Y that
converges to x € X and, since Y is countably closed, it follows that z € Y. By
Proposition BX has a retractional skeleton with X as induced space. Since
Y is closed in X we have Y N X =Y. Hence by Lemma it follows that Y
is a non-commutative Corson countably compact space.

Let { X}, }rnew, be a countable family of non-commutative Corson countably com-
pact spaces. For every n € wy, by Proposition X, is an induced sub-
space of the non-commutative Valdivia compact space 5X,,. By Proposition
[1,.co, BXn is non-commutative Valdivia and [], ., Xn is an induced subspace.

Hence HHEWO X, is a non-commutative Corson countably compact space.

Let X1, ..., X,, be a finite collection of non-commutative Corson countably com-

n

pact spaces and define the topological sum X = € Xj. Using the countably
k=1

compactness of every X}, it is easy to prove that X is countably compact.

It remains to prove that X has full retractional skeleton. For every k =1,....n
X}, has a full retractional skeleton, then let (I'y, <;) be an up-directed partially
ordered set and {r*}.cr, be a full retractional skeleton on Xj. Now we define a
family of retractions on X, let

I' = {’)/ = (’}/1, ...,’)/n) c Fl X ... X Fn}
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equipped with the following order: given ~v,0 € I' we will say that v < ¢ if and
only if v, <j Oy for every k=1, ..., n.

For every v € I' we define r, : X — X as follows: given z € X we have z € X},
for some k, then we put

_ Lk
ry(z) =73 ().
Since 7, is continuous on every Xy, it is continuous on X. Moreover, since

{r*}ser, is a full retractional skeleton on Xj, for every k = 1,...,n, it is easy to
check that {r,},er is a full retractional skeleton on X.

Let { X, }aca be a family of non-commutative Corson countably compact spaces

and X = (€ X,) U {oc} be a one-point countably compact modification of
acA
topological sum of them.

For every o € A there exist an up-directed partially ordered set (I, <,) and a
full retractional skeleton {r¢}ser, on X,.
We define I',, = I',U{0} and a relation <, such that if we restrict <, to 'y x ',
we have the same order of (I'y,=<,) and 0 <, s, for every s € T',. This way
(T, <.) is an up-directed partially ordered set, for every o € A.
Let

P={ye ] 180 <N

acA

where S(v) = {a € A: y(a) # 0}. Given 71,72 € ' we will say that v < v
if and only if 71 () <, 72(«) for every a € A. For every v € I" we define the
retraction r, : X — X as follows:

o if v =00, 7y(z) = 00,

e if x # oo there exists an a € A such that x € X, then

r(z) = {T3<a>(x) if (o) # 0,
' > if y(a) =0,

Claim: for every v € I' the retraction r, is a continuous mapping.
Let v € I we study the continuity of r, at each point:

e if z = o0, let U be an open neighborhood of z then X \ U is a countably
compact space. Moreover, since each X, is open and X \ U is a countably
compact space, we have that the cardinality of F = {a € A : (X\U)NX, #
0} is finite. Let V = X \ U,cp Xa, it is a neighborhood of z and V C U.
By definition of r, we have r, (V') C V; hence we have the continuity in x.

e if o # oo, since each X, is clopen and the restriction of r, on each X, is
continuous, we conclude that r, is continuous in x.

It proves the claim.
It remains to prove that {r,}.cr is a full retractional skeleton on X.

(¢) Since ry[X] = ( @ 15, [Xa]) U{oc} is countably compact, regular and
aeS(y)
has a countable network we have that it is metrizable and compact.



(17) Let v1,72 € I' such that v; < 7. If 2 = oo it is trivial that r,,(z) =
Ty © 7oy () = 74, 0 74, (z). Then, suppose z € X, for some o € A, three
cases are possible:

e v (a) =0 and () = 0 we have

o (T) =74y 0795 (7) = 7y 07, (3) = 00.
e 71(a) =0 and y2(a) # 0 we have

T (T’Yz (l‘)) =T (T’C;Q(a)(x>> =00 =Ty (.’E)

and
T (T4, (2)) = 74, (00) = 00 =1, (2)

e vi(a) # 0 and 2 () # 0 we have:

T (T, (2)) = 7"31@(7‘32(&) (z)) = 7”31((1) (x) = ry ()
and
T (T, (7)) = Tsz(a)(@l(a) (z)) = (@) (x) =74y (2).

(ii1) Let v1 < 72 < ... and v = sup,c,, Yn, then for every a € A we have
y(a) = sup,c,, Tn(@). Let x € X, two cases are possible

e 1 = oo: we have r,, () = oo for every n € wy then liem T, () = 2.
newq
e r # oco: there exists @ € A such that x € X,,. If o ¢ S(7) then « ¢
S(v,) for each n € wy; hence r,(z) = r,, (x) = co. If & € S(7), then
there exists ny € wp such that for every n > ng we have a € S(7,);

hence using the fact that the family {r¢}scr, is a full retractional skele-
ton on X, we have that r(z) = rf, (z) = 7}161510 S oy(T) = 711613% 7, ().

(iv) For every v € A and = € X, there exists s € I', such that r%(z) = =
then for every v € I' such that s <, vy(a) we have r,(x) = x. Therefore
lim,ep 7y (x) = x. The case x = oo is trivial.

Finally it is trivial that X = (J, 7 [X].

(5) It follows immediately combining |3, Theorem 1.1] and [13, Theorem 3.6].
This completes the proof. n

Using the same argument as in |7, Lemma 2.2| it is possible to prove the follow-
ing result about stability properties of weakly non-commutative Corson countably
compact spaces.

Lemma 2.9. The class of weakly non-commutative Corson countably compact is
closed under

(1) countably closed subspaces,
(2) countable products,

(8) continuous images,



(4) finite unions,
(5) finite topological sums,

(6) one-point countably compact modifications of topological sums.

3 Weakly non-commutative Valdivia compact spaces

Now we give the definition of weakly non-commutative Valdivia compact space which
is a generalization of the commutative one introduced in [7].

Definition 3.1. A compact space K is said weakly non-commutative Valdivia com-
pact if it has a dense countably compact subspace which is weakly non-commutative
Corson.

Next two results are the non-commutative version of |7, Proposition 3.1] and
[8, Lemma 1.17].

Proposition 3.2. A compact space K is weakly non-commutative Valdivia if and
only if it is a continuous image of a non-commutative Valdivia compact.

Proof. We start by proving the “if part”. Let L be a non-commutative Valdivia
compact space and f : L — K be a continuous onto mapping.

Let D be an induced subspace of L, hence by Theorem it is a dense non-
commutative Corson countably compact space. Since f is a continuous mapping
we have that f(D) C K is a dense weakly non-commutative Corson countably com-
pact space. Hence K is a weakly non-commutative Valdivia compact space.
Conversely let D be a dense weakly non-commutative Corson countably compact
subspace of K. Then there exist a non-commutative Corson countably compact
space A and a continuous surjection f : A — D. By Proposition we have that
BA is a non-commutative Valdivia compact space. Let 5f : A — K be the contin-
uous extension of f.

Since D is dense in K, D C Sf(BA) and Bf(SA) is closed we have that Sf is a sur-
jection. Thus K is a continuous onto image of a non-commutative Valdivia compact
space. ]

We prefer to omit the proof of the following result because it is completely
analogous to |8 Lemma 1.17].

Proposition 3.3. Let K be a compact space with a countable dense set of Gg points.
If K is a continuous image of a non-commutative Valdivia compact space then K is
metrizable.

Corollary 3.4. Let K be a compact space with a countable dense set of Gs points.
If K s a continuous image of a non-commutative Corson countably compact space
then K 1is metrizable.

Using Proposition [3.3] Corollary and |8, Example 1.18] we have some ex-
amples of compact spaces which are neither weakly non-commutative Corson nor
weakly non-commutative Valdivia.



Proposition 3.5. Let {K,}aca be a family of non-commutative Valdivia compact

spaces. Then the one-point compactification of K = @ K, is a non-commutative
acA
Valdivia compact space.

We will not provide the full proof because we use the same idea of Lemma [2.8
point (4).

Proof. We will use the same notations of point (4) Lemma [2.8f We define the
up-directed partially ordered set I' and the family of retractions {r,},er as well.
Moreover, we observe that each K, is clopen in the one-point compactification of
K, hence the continuity of every r, follows in the same way of point (4) Lemma
It remains to prove that {r,},er is a retractional skeleton. Points (i), (i) and (4ii)
follow as in point (4) Lemma

(iv) If © = o0, 1y(z) = oo for every v € I', hence it is clear that linF1 ry(z) = .
~eE

Suppose otherwise x € K, for some a € A, by definition of (I', <) there exists
Yo € I such that y(a) # 0 for every v > 79, hence we have r,(z) = rf, (z) for
such 7. Since {r%}scr, is a retractional skeleton on K, we deduce that linrl ry(z) =
e

lim r%(x) = . O
SEFa

Proposition 3.6. The class of weakly non-commutative Valdivia compact spaces is
closed under

(1) arbitrary products,

(2) one point compactifications of arbitrary topological sums,
(3) continuous images,

(4) finite unions.

Moreover if K is weakly non-commutative Valdivia compact and L is a subset of K
which can be written as the closure of the union of an arbitrary family of G5 subsets
of K, then L is weakly non-commutative Valdivia as well.

Proof. (1) Let {K,}aeca be a family of weakly non-commutative Valdivia compact
spaces. Then there exists a continuous onto mapping f, : L, — K,, where L,

is a non-commutative Valdivia compact space for every a € A.
We define K = [[ K, and L = [] L,. By Proposition 2.5 L is a non-

acA acA
commutative Valdivia compact space. Finally let f : L. — K defined by

fW)(a) = fa(y(a)), it is clearly onto and moreover, since it is coordinatewise
continuous, it is continuous.

(2) Tt follows, using Proposition , by the same argument of the previous point.

Points (3)-(4) are trivial. Finally let K be a weakly non-commutative Valdivia
compact and L C K such that L = UﬁeB Z3, where B is a set and Zg is a G5 subset
of K, for every f € B. Let D C K be a dense weakly non-commutative Corson



countably compact subspace. Now we want to prove that L N D is dense in L. In
fact

LnD=|JznD>(|Jz)nD=]J(ZsnD).
BeB BeB peB

Taking the closure

LnD> | J(ZsnD)> | (ZsnD)> | Zs.
peB BeB BeB

In the last part we have used [2, Lemma 3.3]. Therefore we have L D LN D D L.
Moreover L N D is a closed subspace of D, hence it is weakly non-commutative
Corson, therefore L is weakly non-commutative Valdivia. O]

Now we want to use the previous results to prove the equivalent of [7, Theorem
3.6] in the non-commutative case.

Theorem 3.7. Let K be a compact space. Consider the following assertions.
(1) K is weakly non-commutative Valdivia.

(2) (Be(k,cys, w*) is weakly non-commutative Valdivia.

(3) (Bekry-, w*) is weakly non-commutative Valdivia.

(4) P(K) is weakly non-commutative Valdivia.

Then 1 = 2 < 3 < 4. If K has a dense set of Gs points, then all three assertions
are equivalent.

Proof. (1) = (2) Let K be a weakly non-commutative Valdivia compact space,
then it is a continuous image of a non-commutative Valdivia compact L. Using [10],
Proposition 28] C'(L, C) has 1-projectional skeleton then it is clear that (Be(r,c)+, w*)
is non-commutative Valdivia. Hence, since (Bgk c)-,w*) is a continuous image of
(Be(rcys, w*), it is a weakly non-commutative Valdivia compact space.

(2) = (3) Suppose that (Bck oy, w*) is a weakly non-commutative Valdivia com-
pact space.

We want to show that (Bek )<, w*) is a continuous images of (Be(x ¢+, w*). To do
that, consider the following map:

¢ : (Bowk,cysw*) = (Bogry, w")
p — Re(p).

It is clear that it is a surjection. To prove that ¢ is a continuous mapping, it is
sufficient to observe that for every f € C'(K,R) we have Re(u)(f) =Reu(f).

(3) = (4) Since P(K) = {p € C(K)* : |p|]| < 1& p(lg) = 1}, P(K) is a weak*
closed weak* G5 subset of (Bo(x)«, w*). Hence, Proposition gives the assertion.
(4) = (2) Suppose P(K) is weakly non-commutative Valdivia. By Proposition
the space P(K) x S! is weakly non-commutative Valdivia, finally by (1) = (4)
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P(P(K) x S') is weakly non-commutative Valdivia. By [12, Proposition 2.38] the
barycenter mapping
T P(BC(K,(C)*> — (Bc(K@)*,w*)

is surjective and continuous. Moreover, since P(K) x S contains all the extreme
points of (Bek )+, w*), using [I12, Theorem 2.31] we obtain that the restriction of
r to P(P(K) x S') is surjective as well. Hence, since P(P(K) x S') is weakly
non-commutative Valdivia, we have that (Bek,c)-, w*) is weakly non-commutative
Valdivia, too.

(4) = (1) If K has a dense set of G5 points, it follows in the same way as [7, Theorem
3.6]. 0

Now we give the non-commutative version of [7, Theorem 3.7], we recall the
definition of property (M).

Definition 3.8. A compact space K is said to have the property (M) if every Radon
probability measure on K has separable support.

Theorem 3.9. Let K be a weakly non-commutative Corson compact space with
property (M), then (Bek)+, w*) is weakly non-commutative Corson as well.

Proof. The proof of the real case follows as in the commutative case |7, Theorem
3.7|, using Proposition below instead of [8, Proposition 5.1].

Suppose that K is a weakly non-commutative Corson compact space with property
(M), then using the real case and Lemma 2.9, (Bex gy, w*) X (Bokry,w*) is
weakly non-commutative Corson as well. Now consider

¢ : (BC(K,R)*vw*) X (BC(K,]R)*vw*) — (O(Kv C)*)w*)u

defined by ¢(u,v) = p +iv. 1 is clearly continuous, hence ¢ ((Bck gy, w*) X
(Be(k rys, w*)) is weakly non-commutative Corson. Finally, since (Beok oy, w*) is a
weak* compact space and (Bc ko), w*) C ¥((Bokrys w*) X (Bekrys, w*)), it is a
weak* closed subspace of ((Beoxry+, w*) X (Bekry-, w*)). Therefore, by Lemma
m, (Bek,cy+, w*) is a weakly non-commutative Corson compact space. m

Now we give the non-commutative version of [8, Proposition 5.1|. For sake of
completeness we will give the full proof although the last part is the same of the
commutative one.

Proposition 3.10. Let K be a non-commutative Valdivia compact and D C K be
an induced subspace. Then the sel

S={ueC(K) : supp(u) is a separable subset of D}

is 1-norming and induced by a 1-projectional skeleton in C(K).

Proof. The real case follows by combining the first part of the complex case below
and the second part of |8 Proposition 5.1].

Let {rs}ser be a retractional skeleton on K such that D = |, 7s[K]. It is standard
to define a 1-projectional skeleton {Ps}ser in C'(K, C) as follow

Py(f)=fors.
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Let S = U,er PS(C(K,C)*) be the induced subspace. It is well known that it
is 1-norming (hence weak*-dense in C'(K,C)*) linear and weak*-countably closed.
Moreover, (Bek o)+, w*) has retractional skeleton and S N (Bek,c)», w*) is an in-
duced subspace.

Now we want to prove that

S={peC(K,C)*: suppu is a separable subset of D}.

We will prove the double inclusion.

e “D” Let u be a real measure in the set on the right-hand side, then using the
same argument of [8 Proposition 5.1] we obtain p € S.
Now, let u be a complex measure in the set on the right-hand side, then,
by the previous sentence, its total variation |u| belongs to S . Hence there
exists so € I' such that P}|u| = |u| for every s > s, in particular, by Riesz
representation theorem, for every f € C(K,C) we have

/K Fdlu) = /K foradlu] 1)

Moreover, by the Radon-Nikodym theorem there exists a measurable function
h such that du = hd|u| and |h(z)| = 1 for every x € K.
Claim: There exists a ¢t € I" such that for every continuous function f the

equality
[ £endil= [ (ror) -l
K K

holds.

Indeed, let ¢t € T' such that t > s¢ and suppp C r[K]: such t exists by the
o-completeness of I' and the separability of suppu. Finally, let f € C(K,C)
and £ > 0 then by the density of continuous function in L'(|u|) there exists
g € C(K,C) such that [, |f-h—g|d|u| <e; then using and the fact that
suppp C r¢[K], we obtain

/f-h—(fon)-hd\u\‘s/ \f-h—gld\uH/ (for) h—gor|dll
K K K
<e+/ (for)-h—gord
Tt[K]
=6—|—/ |f-h—gldp| < 2e.
r¢[K]

It proves the claim. Therefore Py = p, hence € S.

e “C” Let S = span{d, : * € D}, since S is linear and 6, € S for every
z € D we have S° € S. Moreover since D is dense in K we have that S’
is 1-norming. Then S’ N Be(k o) is weak™ dense in Beo(g o)« In particular,
every i € S N Bek,c)- belongs to the weak™ closure of SN Bek,c)+- Hence,
since S N Be(k,c)+ is a weak™ Fréchet-Urysohn space, there exists a sequence
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{1t }news C S" N Bek.cy- such that g, N [
Let
C={reK: 3Inecwpu,({z}) # 0},

clearly |C| < Ny. Moreover p is supported by C. Therefore, since C C D
is separable, it is metrizable. Since suppuy C C and C' is metrizable and
separable, we have that suppy is separable as well.

]

4 [0,7n)-sums

We recall the definition of [0, 7)-sum, introduced in [7]. Given an ordinal n we will
denote with /(n) the subset of all isolated ordinals less than 7. Let {X,}acr(y be a
family of topological spaces, the [0,7)-sum is the set

X ={(a,z): 2z € X,,a <nisolated} U {(a, ) : @ < i limit}

equipped with the following topology. Whenever « is isolated, the set {a} x X, is
canonically homeomorphic to X, and clopen in X. A neighborhoods basis for (o, )
if « is limit is formed by sets

B,((a,) = {(B,x) € X 17 < 8 < a}.

Since in our setting X, is Hausdorff and completely regular, X is Hausdorff and
completely regular too.

Let n be an uncountable cofinality ordinal and X, be a countably compact space,
for every av € I(n). Let Y be the [0,n)-sum of {X,}acr@;) and X be the topological
subspace of Y defined by

X ={(o,2) : x € X,, a < n isolated }U
{(a, @) : @ < i limit with countable cofinality}.

We will say that X is the countably [0,n)-sum of {Xa}acio). We observe that the
countably [0,7)-sum is a countably closed subset of the [0,7)-sum. Then, since, by
[7, Lemma 2.3], the [0, n)-sum is countably compact, we conclude that the countably
[0,7)-sum is countably compact as well.

Lemma 4.1. Let n be an uncountable cofinality ordinal and {X,}aci) be a family
of non-commutative Corson countably compact spaces. Let X be the countably [0,7)-
sum of {Xa}acit). Then X is a non-commutative Corson countably compact space.

Proof. For every isolated o < 7 there exist an up-directed partially ordered set
(T's, o) and a full retractional skeleton {r%}scr, on X,.

We define T, = I', U {0} and a relation <, such that if we restrict <, to I'y x I,
we have the same order of (I'y, <) and 0 <, s, for every s € I'y. This way (I',, <)
is an up-directed partially ordered set.

For every v € [[,c10p I, let us define S(v) = {a € I(n) : v(a) # 0}. Now we are
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going to define the partially ordered set and the family of retractions on X. In order
to do this, let

I'={y e H I [S(y)] < N, 0 € S(7), and if o € S(7)
agl(n)
then 8 € S(y) whenever a < 8 < a + wo}.

Given 71,7, € T' we will say that 73 < 79 if and only if 73(a) <, 7(«a) for every
a € I(n). We observe that, if 74 < 7 then S(y1) C S(72). By the definition of
(T, <,) it is clear that (I', <) is an up-directed partially ordered set.

For every v € I'" we define r, : X — X as follows: let (a,z) € X and f, =

sup((0, ] N 5(7))

»y(a)

TW(Oé?x) = . .. o . . .
(Ba, Ba) if av is isolated and y(«) = 0 or « is limit.

{(a ré . (x)) if a is isolated and vy(a) # 0;

Claim: for every v € I' the retraction r, is a continuous mapping.
Let v € I and let {(ax,xx)}rea be a net converging to («, z). If « is isolated then
{aa}aea is eventually constant and equal to «;

e if & € S(v), by continuity of 75(a)» We have limyen ry(on, ) = 1y (0, 2);

o if & ¢ S(v) we have that r,(ay,z)) is eventually constant, hence it is clear
that limyea 7 (ay, 7)) = 7 (a, ).

In the case of « limit we can suppose without loss of generality that a), < « for
every A € A. Two cases are possible:

e if sup([0,a] N S(y)) = «, since a has countably cofinality, by definition of
supremum there exists a sequence {&,}new, € [0,a] N S(7) such that &, is
increasing and convergent to o. For every n € wy, by definition of convergence
of {ax}aea there exists A, such that «) € [§,, a] for every A > \,,. Therefore

limyep 7y (ar, 2)) = (o, @) = 1y (e, ).

e if 5 =sup([0,a|NS(y)) < a then for a sufficiently large A we have 8 < a) < «;
hence by definition of ., we have }\m/{ ry(an, zy) = ry(o, ) = (B, B).
S

Therefore 7., is continuous for every v € I

It remains to prove that {r,}.cr is a full retractional skeleton.

(¢) for every v € I' the subspace r,[X] is a closed subset of X, hence it is count-
ably compact. Moreover, since it has a countable network, it is compact and
metrizable.

(i1) Let 1,72 € T such that 1 < 79, then S(v1) C S(792). Let (a,z) € X
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e if o is limit let 5, = sup([0, ] NS(71)) = sup([0, o] N S(y1) N S(y2)) and
B, = sup([0,a] N S(72)). We observe that 3, < 3, < « and that the
intersection of the interval (3, 8,) and S(v;) is empty. Hence:

Ty O Ty (Oé, a) =Ty (5;7 6;) = (5&: 6&) =Ty (Oé, a)?
T’Yz © T'Yl (Oé, Oé) = T72 (6047 604) = (5047 Ba) = T'Yl (Oé, CY).

e if o is isolated three cases are possible:

(1) if 71(a) = 0 and v,(a) = 0, let B, = sup([0,a] N S(71)) and B, =
sup([0, ] N S(72)), thus using the same observation of the previous
point we have:

Tyo (T% (av z Ty (60&7 ﬂo&) = (/8&7 ﬂa) = T’y<au w)a

) =
Py (7o (@, ) = 75 (B Ba) = (B Ba) = 1, 2);
(2) Lfyl(oz) = 0 and y(«a) # 0, let B, = sup([0,a] N S(y1)). Thus we
T"/1(O‘7$) = (ﬁmﬁa)a
since S(y1) C S(72)

T2 (7“71(04, x)) =Ty, (50” ﬁa) = (5(17 Ba)

and at the end we have

Ty (T72<&7$)) =Ty (a, Tfoyég(a)<x>> = (Ba, Ba);

(3) if 11(a) # 0 and 72(c) # 0, since for every a € I(n) the family
{r%}ser, is a retractional skeleton on X, we have

Py 0 Pl 2) = (0,12, 012, (2)) = (0,78, (2)) = 1, (a1 2),

Ty © T%(a?‘r) = (Q,T% © 7"31 (x)) = (04"”31 ((B)) =Tn (oz,$).

(4ii) Let v < 72 < ... < 7, < ... and define y(a) = sup, ., Tn(a), for every
a € I(n). Since S(7,) C S(Ynt1) for every n < wo we have that (¢, S() =
S() is countable, 0 € S(v) and if o € S(7) there exists n € wy such that
a € S(yn), hence [a,a 4+ wp) C S(yn) C S(7), thus v € I'. Moreover, let
(o, x) € X then

o if @ € S(7y,) for some ny < wy then a € S(v,) for every n > ny. Thus
we have

T}lelur.)lo T'Yn (Oé, I) = 71-1>I£lo T’Yn (O[, m) = T};I}llo(a’ T:fn(&) (',”C))

= (CY?Tg(a)(I)) = T’Y(O‘?x)'
o if a ¢ S(v), then

lim 7., (o, ) = lim (sup([0, o] N S(7»)), sup([0, a] NS (7))

newo newo

= sup (sup([0, a] N S (7)), sup([0, a] N S(7n)))

n<wo

= (sup([0, o] N ({J S(va))).sup((0,a] N (| S(7))))

newo newo

=7, (a, x).
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(iv) For every (o, x) € X there exists a v € I" such that r, (o, ) = (a, z). In fact

e if o is isolated, since {r%}scr, is a full retractional skeleton on X, there
exists s € I, such that r¢(z) = x. Hence there exists v € I with v(«a) > s
such that 7, (o, ) = (o, x);

e if o is limit, there exists a sequence {a;, }new, Of isolated points such that
a, / «a, moreover there exists a v € I' such that {a,}new, € S(7).
Hence, we have r,(a, ) = (o, a).

Hence lirrrl ry (e, x) = (e, x). Therefore (iv) is proved.
Ye

Finally it is clear that X = |J r,[X]. O

vyel

Lemma 4.2. Let n be an uncountable cofinality ordinal and X, be a weakly non-
commutative Corson countably compact space for every isolated o« < n. Let X be the
[0,n4+1)-sum of {Xa}aci(y). Then X is a weakly non-commutative Corson countably
compact space.

Proof. For every o € 1(n) there are a non-commutative Corson countably compact
space Y, and a continuous surjection f, : Y, — X,.

Now, we are going to define a suitable family of countably compact spaces indexed
on I(n). Let a € I(n), put Z, =Y, if @« < wp, Z, ={a} if a =+ 1 and S is limit
finally put Z, =Yg if a = 5+ 1 > wy and [ is not limit.

Let X be the [0,7 + 1)-sum of {Xo}acioy and Y = Z @ {(n + 1,1 + 1)} where Z
is the countably [0,7)-sum of {Z,}acr(;). By Lemma and Lemma Y is a
non-commutative Corson countably compact space.

Finally, we define a mappings f : Y — X as follows:

a, o) if o is limit;

B, B) if a =+ 1 and g is limit;

B, fs(x)) fa=p+1, 5>wyand § is not limit;
a, fo(z)) if a < wp.

Since every limit ordinal is covered by its successor and every f, is surjective, we
have that f is surjective.

Claim: f is continuous.

Let {(ay,zx)}ren be a converging net to (o, x) € Y. Two cases are possible:

(1) « is not limit, then, since Z, is clopen there exists a A\g € A such that z) € Z,
for every A > A\g. Let a = 4 1, we split in other three cases:

e [ is limit, by definition of the function f, we have f(ay,z\) = (5, 5) for
every A > \g. Hence we have limyep f(an, zy) = (8, 8) = f(a, z);

e (3 is not limit and 8 > wy, by definition f(ay,zy) = (B, fa(zy)) for every
A > Ao. Hence, by continuity of fg we have limyep f(an, zx) = (5, fa(z)) =
flo,);
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e a < wp by definition f(ay,z)) = («, fo(z))) for every A > A\g. Hence, by
continuity of f, we have limycp f(an, z)) = (@, fo(2)) = f(a, z).

(2) If « is limit, the using definition of the function f and the topology on X we
have limyep f(an, 22) = (o, ) = f(a, a).

Therefore X is a weakly non-commutative Corson countably compact space. O

The following Lemma is an analogue of |7, Lemma 2.4]. Tt gives a characteri-
zation of non-commutative Corson countably compact spaces in the class of weakly
non-commutative countably compact.

Lemma 4.3. Let X be a weakly non-commutative Corson countably compact space.
The following assertions are equivalent:

1. X 1is non-commutative Corson.
2. X 1s Fréchet-Urysohn.
3. X has countable tightness.

Proof. (1 = 2) By Proposition X is induced by a retractional skeleton in 5.X,
hence by Theorem [2.2] it is a Fréchet-Urysohn space.

(2 = 3) is trivial.

(3 = 1) Since X is a weakly non-commutative Corson countably compact space,
there are a non-commutative Corson countably compact space and a continuous onto
mapping f : Y — X. Let ' C Y be a closed subspace. We claim that f(F') is closed
in X. Let x € m, by countably tightness of X there exists a countable subset
C C f(F) such that z € C. Since f is a onto mapping, there exists a countable set
D C F such that f(D) = C. Then D C F and, by Theorem E is a metrizable
countably compact space, hence it is compact. Thus f(D) is compact and contains
x. Since z € f(D) C f(F), we deduce that f(F) is closed. Therefore, since f is
a continuous closed onto mapping, it is a quotient mapping. Hence, the assertion
follows by Lemma [2.8] O

Theorem 4.4. (1) The ordinal space [0,1] is non-commautative Corson if and only
if it is Corson if and only if n < w;.
The ordinal space [0,1n] is a weakly non-commutative Corson for every ordinal
7.

(2) Let X be a countably compact set of ordinals. Then X is a weakly non-commutative

Corson countably compact space.

(8) Let X be a countably compact set of ordinals. Then X is a non-commutative
Corson countably compact if and only if every ordinal of uncountable cofinality
18 isolated in X.

Proof. (1) The first part is trivial. If n has uncountable cofinality, the assertion
follows by Lemma Isolated and countable cofinality cases follow by the
uncountable cofinality case and Lemma [2.9]
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(2) Let X be a countably compact set of ordinals. Let § = sup(X), and let Y be
the closure of X in [0, 0].
Since Y is a well-ordered compact space it is homeomorphic to [0, 7] for some
ordinal n. By previous point Y is weakly non-commutative Corson. By Lemma
[2.9 X is a countably closed subspace of Y, hence X is a weakly non-commutative
Corson countably compact space.

(3) Tt follows by previous point and Lemma
O

Using the previous result and Lemma we observe that [2) Example 3.8] is
an example of weakly non-commutative Corson countably compact space that is
not a non-commutative Valdivia compact. We observe that, for every set I', the
space [0,1]' is a Valdivia compact space, therefore it is a non-commutative Val-
divia compact space. Moreover, there exists I such that [0, 1)U contains a subspace
homeomorphic to a compact space that is not weakly non-commutative Corson. Fi-
nally, recalling that the class of weakly non-commutative Corson countably compact
spaces is closed under countably closed subspaces (Lemma, we have an example
of non-commutative Valdivia compact space that is not weakly non-commutative
Corson compact space. Thus, the two classes are independent.

Now, we give the (weakly) non-commutative Valdivia version of Lemma The
proof follows straightforwardly by defining the same family of retractions of Lemma

4.1l

Proposition 4.5. Let n be an uncountable cofinality ordinal. Any [0,17 + 1)-sum
of (weakly) non-commutative Valdivia compact is again a (weakly) non-commutative
Valdivia compact.

Next result gives a characterization of compact ordinal segments in the non-
commutative setting.

Theorem 4.6. Let n be an ordinal. Then the following hold

(¢) [0,n] is non-commutative Valdivia.
(17) [0,n] is weakly non-commutative Valdivia.

(i73) [0,n] is weakly non-commutative Corson.

Proof. It trivially follows by Theorem [{.4] and Proposition 4.5 O

5 Aleksandrov duplicates

We recall the definition of Aleksandrov duplicate AD(X) of the space X. It is the
space X x {0,1} with the topology in which all points of X x {1} are isolated,
and neighborhoods of (x,0) are (U x {0,1}) \ {(z, 1)}, for every U neighborhood of
x € X. We denote by 7 the projection from AD(X) onto X.

It is well known and easy to check that if X is compact (countably compact) then
AD(X) is compact (countably compact).

Now we give the main result of this section about the relations between retractional
skeletons and Alexandrov duplicates of topological spaces.
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Theorem 5.1. (1) Let X be a (weakly) non-commutative Corson countably com-
pact space, then AD(X) is a (weakly) non-commautative Corson countably com-
pact space as well.

(2) Let K be a non-comutative Valdivia compact space and D be an induced subspace
such that |K \ D| < Ny, then AD(K) is a non-commutative Valdivia compact
space.

(3) Let K be a compact space, if AD(K) is a non-commutative Valdivia compact
space then so is K.

(4) Let n be an ordinal, then AD([0,n]) is a non-commutative Valdivia compact
space.

Proof. (1) Let X be a non-commutative Corson countably compact space, then the
assertion follows easily by [4, Theorem 3.1].
Let X be a weakly non-commutative Corson countably compact space, then
there exists a continuous onto mapping f : ¥ — X, where Y is a non-commutative
Corson countably compact space. Let AD(X) and AD(Y) be the Aleksandrov
duplicates of X and Y respectively. Hence, by the previous point, AD(Y) is
non-commutative Corson countably compact. Let g : AD(Y) — AD(X) be
a map defined by g(z,i) = (f(x),1), it is clearly onto. The continuity follows
by the continuity of f and the definition of the topology of Aleksandrov dupli-
cate. Therefore AD(X) is a weakly non-commutative Corson countably compact
space.

(2) Let K be a non-commutative Valdivia compact space. By hypothesis there exists
a retractional skeleton {r,}er such that |K'\ D| <Ny and D = {J,p75[K]. We
observe that the restriction {rs [p}ser is a full retractional skeleton on the
countably compact space D. Hence using [4, Proposition 2.7| there exists a full
retractional skeleton on D, {r, : A € [D]=*°} such that for every A € [D]=%° we
have r4(z) = x for every x € A. Now, using Theorem [2.2| and Proposition
we extend every rq € {ry : A€ [D|=*°} to K as {R4 : A € [D|=*°} such that
R [p=r4. For every A € [D x {0,1}]5%¢ we define R4 : AD(K) — AD(K) as
follows

(RW(A)(I'),Z') if x € W(A);
Ra(z,i) =< (z,1) ifre K\'Dandi=1;
(Rray(x),0) otherwise.

Using the same argument of [4, Theorem 3.1] it is possible to prove that the
family of retractions {Ra} scpx{o,1)<=0 1S a retractional skeleton on AD(K).

(3) We use the same idea as in [0, Theorem 2.13]. Let D be an induced subspace of
AD(K), we will prove that DN K x {0} is dense in K x {0}; then using Lemma
[2.4 we have that K is a non-commutative Valdivia compact space.

Let U be a non-empty open subset of K. Since K is completely regular there
exists a non-empty open subspace V C K, such that V C U. Two cases are
possible:
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(a) V is finite. Every point of V' is a G4 point of AD(K), hence V x {0} C D.
Hence U N D # 0.

(b) V is infinite. V' x {1} C D is infinite and has a cluster point (z,i) € D, by
Theorem By definition of Aleksandrov duplicate topology, ¢ must be
equal to 0 and (z,0) € V x {0}. Hence U N D # 0.

By above observation K is a non-commutative Valdivia compact space.

Let 1 be an ordinal. Let A be the family of all closed countable subsets A of
[0, 7] such that 0 € A and any isolated point of A is isolated in [0,7]. Let A be
ordered by inclusion. The family of mappings {ra}aca, where r4 : [0,7] — [0, 7]
and 74 () = max([0, ] N A), is a retractional skeleton on [0, 7], see [9] or [11].
Let AD(K) be the Aleksandrov duplicate of K = [0,7]. Let us define

I'={(A,B)c Ax K] :VB(#n)€ B, B+1¢€ A}.

Define the following order on I': (A, By) < (As, By) if and only if A; C A, and
B; C Bsy. This way (I', <) is an up-directed partially ordered set.
For every v = (A, B) € I' we define r, : AD(K) — AD(K) as follows
(2, ) (ra(x),0) if (x,i) € K x {0} U (K x {1} \ B x {1})

T '1'7 1) = . . .

K (x,1) if (z,i) € B x {1}
Claim: For every v € I, r, is continuous. Let v = (A,B) € I' and let
{(zx,ix)}rea be a net converging to (z,i) € AD(K). We can suppose with-

out loss of generality that x) < z for every A € A. Now we study all possible
cases

o if i+ = 1 then {(x\,i))}aren is eventually constant. Hence it follows that
girﬁrw(x,\,i) =1, (z,1).
€

e if 1 =0 then xy — x in K, two cases are possible:

(a) suppose that (xy,i)) ¢ B x {1} for sufficiently large X\. Then we
conclude by continuity of r4;

(b) suppose that (zy,i)) € B x {1} for a cofinal set A; C A. Since z, Mz
for A € Ay, we have x) +1 7 x as well. Hence we have x € A, then
by definition r.,(x,0) = (x,0) = (ra(z),0). Finally, since r,(xy,1,) is
equal to (z),1) for A € Ay and equal to (ra(xy),0) otherwise, we have
that }\1;1/% r(a,ix) = (2,0) = (ra(z),0), then we are done.

This proves the claim. It remains to show that {r, }.er is a retractional skeleton.

() Since r,[AD(K)] is compact and countable, it is metrizable.

(ZZ) Let Y1 = (Al,Bl), Yo = (AQ,BQ) € I such that 71 S Y2. Let (.T,Z) c
AD(K). Then, if i = 0 we have r., (x,0) = (r4,(2),0) = (ra,0ra,(z),0) =
T4, 07, (2,0) and 7., 01y, (2,0) = (ra,074,(2),0) = (r4,(2),0) =7, (2,0).
If i = 1 three cases are possible
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(iid)

(a) x € By then z € By as well and the equality is trivial.

(b) = ¢ By and & € By then we have r., o, (z,1) = (ra, ora,(2),0) =
(ra,(z),0) =1y, (z,1) and r,, 07y, (z,1) =14, (2, 1).

(c) x ¢ By, then 1y, (z,1) = (ra,(x),0) = (14, 07r4,(2),0) =14, 074, (2,1)
and 7., o7y, (2,1) = (ra, ora,(z),0) = (r4,(x),0) =7y (z,1).

Let 71 < v < .. with v, = (A, B,) for every n < wy and v =

Supn<w0 (An’ Bn) = (Un<w0 An’ Un<w0 Bn)
We observe that

° |Un<w0 nl <N,

e0cl,_ A,

e every isolated point of  J
lated also in K.

Moreover |Un<w0 B,| < Ng and for every 5 € B there exists k € wy such

that 3 € By, hence 3 +1¢€ A, C U, ., An. Therefore v € I'.
Let (z,i) € AD(K),ifi=0o0ri=1and z ¢ B, for every n € wy we have

n<wo n

n<wn A,, belongs to some Ay, hence it is iso-

lim r,, (z,i) = im (ra,x,0) = r,(x,1).
newo newo

Ifi=1and z € B,, for some ng < wy then

lim r., (z,1) = (z,1) = ry(z, 1).

newo
Let (z,i) € AD(K), if i = 0 then

limr,(z,0) = hni(m( x),0) = (z,0).

yel’
Ifi = 1set v = ({0,2+1},{z}) if x < pand vy = (0,{n}) if z =n. Then
for v > v we have r,(z,1) = (x,1). Therefore linrrnu,(x, 1) = (z,1) and
e

(1v) is proved.

Hence {7, },er is a retractional skeleton on AD(K).
This completes the proof. O

Associated Banach spaces

In this section we generalize Section 4 of [7] to the non-commutative case. Though
the ideas, of following proofs, are the same of [7] we prefer to give every result
because they are interesting in the non-separable Banach space theory setting.

Proposition 6.1. Let X be a Banach space, then the following assertions are equiv-
alent.

(i) X is linearly isometric to a subspace of a Banach space Y, that has a 1-

projectional skeleton.
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(it) (Bx+,w*) contains a dense convex symmetric weakly non-commutative Corson
countably compact space.

(iii) (Bx«,w*) is a weakly non-commutative Valdivia space.

Proof. (i) = (ii) Let ¢ be the isometric injection of X into Y and ¢* be the adjoint
surjection of Y* onto X*.

By [2, Proposition 3.14] there exists a convex symmetric set R induced by a retrac-
tional skeleton in (By~,w*). Hence by Theorem R is a dense non-commutative
Corson countably compact space.

Since * is a linear w*-w*-continuous mapping and i*(By:) = Bx-, we have that
i*(R) is a convex symmetric dense weakly non-commutative Corson countably com-
pact space.

(11) = (i17) Easily follows by definition of weakly non-commutative Valdivia com-
pact space.

(17i) = (i) Suppose (Bx~«,w*) is weakly non-commutative Valdivia. Then there ex-
ist a non-commutative Valdivia compact space K and a continuous onto mapping
T : K — (Bx+,w"). By [2| Proposition 3.15] C'(K) has a 1-projectional skeleton.
Moreover, using the adjoint map of 7" we have that C(Bx«,w*) is an isometric
subspace of C'(K). Observing that, by Hahn-Banach extension theorem, we have
X — C(Bx+,w*), X — C(K) isometrically. O

Definition 6.2. Let X be a Banach space, we will call it non-commutative weakly
WLD if and only if (Bx«,w*) is a weakly non-commutative Corson compact.

Proposition 6.3. The class of non-commutative weakly WLD Banach spaces 1is
closed under isomorphisms, subspaces and quotients.

Proof. Let X be a non-commutative weakly WLD Banach space and the map 7T :
Y — X be an isomorphism. Using Lemma [2.9) and observing that (7*)~*(By~) is
a weak*-closed subspace of ABx-, for some A € R™, we have that By~ is a weakly
non-commutative Corson compact space. Therefore Y is a non-commutative weakly
WLD Banach space.

Let X be a non-commutative weakly WLD Banach space and Y be a closed subspace
of X. Let i : Y — X be the canonical embedding then i*(Bx«) = By«. Using Lemma
2.9] we have that By is a weakly non-commutative Corson compact. Therefore YV
is a non-commutative weakly WLD Banach space.

Let X be a non-commutative weakly WLD Banach space and Y be a closed subspace.
Since (X/Y)* is canonically isometric and weak* homeomorphic to Y+ and Y+ is
a weak*-closed subspace of X*, we have by Lemma that B(x,y)- is weakly non-
commutative Corson. Therefore X/Y is a non-commutative weakly WLD Banach
space. ]

Proposition 6.4. Let X be a Banach space such that X* contains a convex weak*
-compact subset that is not weakly non-commutative Valdivia. Then there is an
equivalent norm on X X R such that it cannot be linearly isometric to any subspace
of Y, where Y is any Banach space with 1-projectional skeleton.
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Proof. Let K C X* be a convex weak® compact that is not weakly non-commutative
Valdivia. Put

1 11
B = COHV((§BX* X [—5, 5]) U (K x{1}) U (=K x {1})).
Since (3Bx+ x [—3,3]) € B C (Bx+ x [—1,1]), we have that B is a dual unit
ball of X x R. Furthermore, since K x {1} = (., K x (1 — % 1], it is a weak*
closed weak® Gs subset of B. Suppose by contradiction that B is weakly non-
commutative Valdivia. By Proposition K must be a weakly non-commutative

Valdivia compact space, which is a contradiction. Then the statement follows by
Proposition O

We observe that it is possible to prove the previous result in the complex setting,
we define

*

B = conv(%BX* x D(0,1/2) U conv U {aK x {a}}w ),

lal=1

where D(0,1/2) is the complex disk with centre in the origin and radius equal to
1/2. Then the proof follows using the same construction as in [5, Theorem 4].

Corollary 6.5. Let K be a compact space such that there exists a closed sub-
set L C K with a dense set of (relatively) Gs points which is not weakly non-
commutative Valdivia. Then there exists an equivalent norm on C(K) such that it
cannot be linearly isometric to any subspace of Y, where Y is any Banach space with
1-projectional skeleton.

Proof. By Theorem [3.7] P(L) is not weakly non-commutative Valdivia. Since P(L)
can be identified with a convex weak* compact subset of P(K), the statement follows
by Proposition 6.4} O

Proposition 6.6. Let X,Y be Banach spaces. Suppose that' Y has a 1-projectional
skeleton, the norm on X s Gateauxr smooth and X s isometric to some subspace of
Y. Then X s non-commutative weakly WLD.

Proof. Let D be a dense weakly non-commutative Corson countably compact sub-
space of Bx«. Let z* € Sx+ be a functional that attains its norm at some point
xo € Sx. Since the hyperplane {y* € X*: y*(z9) = 1} is weak* G5 and the norm
on X is Gateaux differentiable at z(, then

{z*}y ={y" € X" : y"(x9) =1} N Bx~.

Therefore z* is a weak* Gy point of By«. Hence it belongs to D. By the Bishop-
Phelps theorem the subset of norm-attaining functionals is norm dense in Sy+. Since
D is closed with respect to limits of sequences we have that Sy« C D. Using the
corollary of Josefson-Nissenzweig theorem we have that Bx« C D. Hence we are
done. O

Proposition 6.7. Let K be a weakly non-commutative Corson compact space with
property (M). If L is a compact space such that C(L) is isomorphic to C(K), then
L is weakly non-commutative Corson.
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Proof. Since K is a weakly non-commutative Corson compact space with property
(M), using Theorem we have that C(K,C) is non-commutative weakly WLD.
Since the class of non-commutative weakly WLD spaces is closed under isomor-
phisms we have that C(L,C) is non-commutative weakly WLD. Therefore by def-
inition of non-commutative weakly WLD we have that (Beo(c)-,w*) is a weakly
non-commutative Corson compact space. Finally, since L is a closed subset of
(Be(rcys w*), using Lemma , we have that L is weakly non-commutative Corson

compact as well. The proof holds for the real case as well.
m

Observing that for every ordinal number 1 the topological space [0, 7] has the
property (M) we have the following result.

Corollary 6.8. Let L be a compact space. Suppose that C(L) is isomorphic to
C([0,m]), for some ordinal number n. Then L is a weakly non-commutative Corson
compact space.
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