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Abstract

We investigate the class of continuous images of non-commutative Valdivia

compact spaces, in particular its subclass of weakly non-commutative Cor-

son countably compact spaces. A key tool is the study of non-commutative

Corson countably compact spaces and their stability. The results are the non-

commutative version of results by O. Kalenda (2003). Moreover, we present a

study of retractional skeletons on Aleksandrov duplicates of ordinal spaces.
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1 Introduction

In order to investigate structural properties of certain topological and Banach spaces,
it is often convenient to de�ne special families of retractions on them. For example
Amir and Lindenstrauss used projectional resolution of identity (PRI) to charac-
terize Eberlein compact spaces [1]. This line of research continued for a long time
exploring relations between some classes of compact spaces and non-separable Ba-
nach spaces, for example Corson and Valdivia compact spaces, Weakly Lindelöf de-
termined spaces (WLD) and Plichko spaces. This kind of spaces have been widely
studied, we refer to [8] for a survey in these topics.
A compact space K is called Corson if it is homeomorphic to a subset of

Σ(Γ) = {x ∈ RΓ : supp(x) is countable}

for a set Γ. A compact space K is called Valdivia if it is homeomorphic to some
K
′ ⊂ RΓ with K

′ ∩ Σ(Γ) dense in K
′
.

In this work we will use retractional skeletons that yield a generalization of Valdivia
and Corson compact spaces. In [11] the authors introduced the de�nition of retrac-
tional skeleton and they proved that a compact space is Valdivia if and only if it

∗Research was supported in part by the Università degli Studi of Milano (Italy) and in part by
the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA)
of the Istituto Nazionale di Alta Matematica (INdAM) of Italy.
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has a commutative retractional skeleton. In [2] it is proved that a compact space is
Corson if and only if it has a full retractional skeleton. There is a dual formulation
of retractional skeleton in Banach space, called projectional skeleton [10]. This de�-
nition is strictly related with Plichko spaces and weakly Lindelöf determined spaces
(WLD), mentioned above. The paper is organized as follows.
In the remaining part of the introductory section notations and basic notions con-
cerning topology and Banach space theory addressed in this paper are given.
In Section 2 the classes of non-commutative Corson countably compact spaces and
weakly non-commutative Corson countably compact spaces are introduced. These
notions are the non-commutative counterparts of similar notions introduced in [7].
Moreover several stability properties are studied.
In Section 3 the class of weakly non-commutative Valdivia compact spaces is intro-
duced. Also in this case several stability properties are studied.
In Section 4 the de�nition of [0, η)-sum is recalled. Relations between [0, η)-sum and
countably compact spaces are investigated. Results about ordinal spaces are given.
In Section 5 the de�nition of Aleksandrov duplicates is recalled. Some relations
between Aleksandrov duplicates and retractional skeletons are given.
In Section 6 consequences of previous sections are studied in Banach space theory
setting.
We denote with ω0 the set of natural numbers (including 0) with the usual order.
Given a set X we denote by [X]≤ω0 the family of all countable subsets of X and by
|X| the cardinality of the set X. As usual we denote with ℵ0 the smallest in�nite
cardinal.
All the topological spaces are assumed to be Hausdor� and completely regular.
Given a topological space T we denote by A the closure of A ⊂ T . We say that
A ⊂ T is countably closed if C ⊂ A for every C ∈ [A]≤ω0 . A topological space
T is a Fréchet-Urysohn space if for every A ⊂ T and x ∈ A there is a sequence
{xn}n∈ω0 ⊂ A such that xn → x. βT denotes the �ech-Stone compacti�cation of
T . We use S1 to indicate the complex numbers with absolute value equal to one.
As in [2], we will use non-commutative Valdivia compacta to indicate the class of
compact spaces with retractional skeleton.
Given a topological compact space K we use C(K) to indicate the space of all
real-valued continuous function on K or the space of all complex-valued continuous
function on K with the usual norm. Additionally we will use C(K,R) and C(K,C)
where we want to di�erentiate. By the Riesz representation theorem the elements of
C(K)∗ are considered as measures. P (K) stands for the space of probability mea-
sures with the weak∗-topology. If µ ∈ C(K)∗, we denote by |µ| its total variation.
If µ is a non-negative measure, we denote by suppµ the support of the measure µ,
i.e. the set of those points x ∈ K such that each neighborhood of x has positive
µ-measure. The support of a measure µ ∈ C(K)∗ coincides with the support of its
total variation |µ|.
We shall consider Banach spaces over the �eld of real or complex numbers (most
proofs work simultaneously for both cases, when necessary we will point out ex-
plicitly the di�erences). Given a Banach space X and a subset A ⊂ X we denote
by span(A) and conv(A) the linear hull and the convex hull respectively. BX is
the norm-closed unit ball of X (i.e. the set {x ∈ X : ‖x‖ ≤ 1}). As usual
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X∗ stands for the (topological) dual space of X. Given A ⊂ X we denote by
A⊥ = {x∗ ∈ X∗ : x∗(x) = 0, ∀x ∈ A}. A set D ⊂ X∗ is said r-norming if

‖x‖ ≤ r sup{|x∗(x)| : x∗ ∈ D ∩BX∗}

for every x ∈ X. We say that a set D ⊂ X∗ is norming if it is r-norming for some
r ≥ 1.

2 Non-commutative Corson countably compact spaces

In this paper we will use retractional skeletons also in countably compact setting.
We recall the following de�nition.

De�nition 2.1. A retractional skeleton in a countably compact space X is a family
of continuous retractions {rs}s∈Γ, indexed by an up-directed partially ordered set Γ,
such that

(i) rs[X] is a metrizable compact space for each s ∈ Γ,

(ii) if s, t ∈ Γ, s ≤ t then rs = rt ◦ rs = rs ◦ rt,

(iii) given s0 ≤ s1 ≤ ... in Γ, t = supn∈ω0
sn exists and rt(x) = limn→∞ rsn(x) for

every x ∈ X,

(iv) for every x ∈ X, x = lims∈Γ rs(x).

We say that D =
⋃
s∈Γ rs[X] is the set induced by the retractional skeleton {rs}s∈Γ

in X.
If D = X we will say that {rs}s∈Γ is a full retractional skeleton and X is a non-
commmutative Corson countably compact space.

We recall some useful and well-known results about retractional skeletons.

Theorem 2.2. [10, Theorem 32] Assume D is induced by a retractional skeleton in
a compact space K. Then:

(i) D is dense in K and for every countable set A ⊂ D, A is metrizable and
contained in D.

(ii) D is a Fréchet-Urysohn space.

(iii) D is a normal space and K = βD.

In particular we observe that given a retractional skeleton, in a compact space
X, its induced space D is countably compact.

Proposition 2.3. [3, Proposition 4.5] Let X be a countably compact space. Then X
has a full retractional skeleton if and only if it is induced by a retractional skeleton
in βX.
Moreover, if {rs}s∈Γ is a full retractional skeleton in X, then there is a retractional
skeleton {Rs}s∈Γ in βX inducing X such that Rs �X= rs for every s ∈ Γ.
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We observe that non-commutative Corson countably compact spaces are a gener-
alization of Corson countably compact spaces given in [7]. Moreover, let X be a
countably compact space, it is a Corson countably compact space if and only if X
has a commutative full retractional skeleton. In fact:
(⇒) Let h : X → [0, 1]Γ be a continuous injection of X into Σ(Γ), for some set Γ,
then h(X) is a Valdivia compact space, hence by [11, Theorem 6.1] it has a commu-
tative retractional skeleton such that its induced subspace is h(X). Hence X has a
commutative full retractional skeleton.
(⇐) Suppose that X has a commutative full retractional skeleton. Then by Propo-
sition 2.3, X is induced by a commutative retractional skeleton on βX. Hence by
[11, Theorem 6.1], X is a dense Σ-subspace of βX, hence it is a Corson countably
compact space.

Lemma 2.4. [2, Lemma 3.5] Let K be a compact space, F ⊂ K closed subset and
let D ⊂ K be such that D is induced by a retractional skeleton in K. If D ∩ F is
dense in F , then D ∩ F is induced by a retractional skeleton in F .

Proposition 2.5. [10, Proposition 31] The class of non-commutative Valdivia com-
pacta is closed under arbitrary products. Moreover if {Kn}n∈ω0 is a countable family
of non-commutative Valdivia compact spaces and Dn ⊂ Kn is an induced subspace
for every n ∈ ω0, then D =

∏
n∈ω0

Dn is an induced space of K =
∏
n∈ω0

Kn.

Now we give the de�nition of weakly non-commutative Corson countably com-
pact space, which is a generalization of weakly Corson countably compact space
introduced in [7].

De�nition 2.6. Let X be a countably compact space, we say that it is a weakly
non-commutative Corson countably compact space if there exists a continuous onto
mapping f : Y → X such that Y is a non-commutative Corson countably compact
space.

We now give the de�nition of the countably compact version of the one-point
compacti�cation.

De�nition 2.7. Let {Xα}α∈A be a family of countably compact spaces, we say that
X = (

⊕
α∈A

Xα) ∪ {∞} is an one-point countably compact modi�cation of topological

sum if X is countably compact and each Xα is a clopen subset of X.

We observe that the previous de�nition is di�erent from the de�nition of one-
point modi�cation given in [7]. Using that de�nition, Lemma 2.1 of [7] is not correct.
In fact, let A = {1, 2}, X1 = X2 = [0, ω1) with usual topology and X be the one-
point compati�cation of X1 ⊕ X2, moreover we observe that by [8, Example 1.10]
the space X is not Valdivia. Let Γi = [0, ω1) and

fi :Xi → Σ(Γi)

α 7→ χ[0,α),
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for i = 1, 2. As in [7, Lemma 2.1] we de�ne Γ = {(i, γ) : i ∈ A, γ ∈ Γα} ∪ {(i, A) :
i ∈ A} and f : X → RΓ

f(x)(i, γ) =


fi(x)(γ) x ∈ Xi, γ ∈ Γi

1, x ∈ Xi, γ = A

0, otherwise.

Claim: f is not continuous. In fact, let {α}α<ω1 ⊂ X1, it is a converging net to∞ in
X. Using the de�nition of f , {f(α)}α<ω1 does not converge to f(∞) in RΓ. Hence
it cannot be continuous.
Finally, we observe that using De�nition 2.7, Lemma 2.1 of [7] is correct.

Lemma 2.8. The class of non-commutative Corson countably compact spaces is
closed under

(1) countably closed subspaces,

(2) countable products,

(3) �nite topological sums,

(4) one-point countably compact modi�cations of topological sums,

(5) quotient images.

Proof. (1) Let Y be a countably closed subspace of a non-commutative Corson
countably compact space X, then it is a countably compact space. We notice
that Y is a closed subspace of X. In fact let x ∈ Y : by Theorem 2.2 X
is a Fréchet-Urysohn space, then there exists a sequence {xn}n∈ω0 ⊂ Y that
converges to x ∈ X and, since Y is countably closed, it follows that x ∈ Y . By
Proposition 2.3 βX has a retractional skeleton with X as induced space. Since
Y is closed in X we have Y

βX ∩X = Y . Hence by Lemma 2.4 it follows that Y
is a non-commutative Corson countably compact space.

(2) Let {Xn}n∈ω0 be a countable family of non-commutative Corson countably com-
pact spaces. For every n ∈ ω0, by Proposition 2.3, Xn is an induced sub-
space of the non-commutative Valdivia compact space βXn. By Proposition 2.5∏

n∈ω0
βXn is non-commutative Valdivia and

∏
n∈ω0

Xn is an induced subspace.
Hence

∏
n∈ω0

Xn is a non-commutative Corson countably compact space.

(3) Let X1, ..., Xn be a �nite collection of non-commutative Corson countably com-

pact spaces and de�ne the topological sum X =
n⊕
k=1

Xk. Using the countably

compactness of every Xk it is easy to prove that X is countably compact.
It remains to prove that X has full retractional skeleton. For every k = 1, ..., n
Xk has a full retractional skeleton, then let (Γk,≤k) be an up-directed partially
ordered set and {rks}s∈Γk be a full retractional skeleton on Xk. Now we de�ne a
family of retractions on X, let

Γ = {γ = (γ1, ..., γn) ∈ Γ1 × ...× Γn}
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equipped with the following order: given γ, δ ∈ Γ we will say that γ ≤ δ if and
only if γk ≤k δk for every k = 1, ..., n.
For every γ ∈ Γ we de�ne rγ : X → X as follows: given x ∈ X we have x ∈ Xk

for some k, then we put
rγ(x) = rkγk(x).

Since rγ is continuous on every Xk, it is continuous on X. Moreover, since
{rks}s∈Γk is a full retractional skeleton on Xk for every k = 1, ..., n, it is easy to
check that {rγ}γ∈Γ is a full retractional skeleton on X.

(4) Let {Xα}α∈A be a family of non-commutative Corson countably compact spaces
and X = (

⊕
α∈A

Xα) ∪ {∞} be a one-point countably compact modi�cation of

topological sum of them.
For every α ∈ A there exist an up-directed partially ordered set (Γα,�α) and a
full retractional skeleton {rαs }s∈Γα on Xα.
We de�ne Γ

′
α = Γα∪{0} and a relation ≤α such that if we restrict ≤α to Γα×Γα

we have the same order of (Γα,�α) and 0 ≤α s, for every s ∈ Γα. This way
(Γ
′
α,≤α) is an up-directed partially ordered set, for every α ∈ A.

Let
Γ = {γ ∈

∏
α∈A

Γ
′

α : |S(γ)| ≤ ℵ0}

where S(γ) = {α ∈ A : γ(α) 6= 0}. Given γ1, γ2 ∈ Γ we will say that γ1 ≤ γ2

if and only if γ1(α) ≤α γ2(α) for every α ∈ A. For every γ ∈ Γ we de�ne the
retraction rγ : X → X as follows:

• if x =∞, rγ(x) =∞,

• if x 6=∞ there exists an α ∈ A such that x ∈ Xα then

rγ(x) =

{
rαγ(α)(x) if γ(α) 6= 0,

∞ if γ(α) = 0,

Claim: for every γ ∈ Γ the retraction rγ is a continuous mapping.
Let γ ∈ Γ we study the continuity of rγ at each point:

• if x = ∞, let U be an open neighborhood of x then X \ U is a countably
compact space. Moreover, since each Xα is open and X \U is a countably
compact space, we have that the cardinality of F = {α ∈ A : (X\U)∩Xα 6=
∅} is �nite. Let V = X \

⋃
α∈F Xα, it is a neighborhood of x and V ⊂ U .

By de�nition of rγ we have rγ(V ) ⊂ V ; hence we have the continuity in x.

• if x 6= ∞, since each Xα is clopen and the restriction of rγ on each Xα is
continuous, we conclude that rγ is continuous in x.

It proves the claim.
It remains to prove that {rγ}γ∈Γ is a full retractional skeleton on X.

(i) Since rγ[X] = (
⊕

α∈S(γ)

rαγ(α)[Xα]) ∪ {∞} is countably compact, regular and

has a countable network we have that it is metrizable and compact.
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(ii) Let γ1, γ2 ∈ Γ such that γ1 ≤ γ2. If x = ∞ it is trivial that rγ1(x) =
rγ1 ◦ rγ2(x) = rγ2 ◦ rγ1(x). Then, suppose x ∈ Xα for some α ∈ A, three
cases are possible:

• γ1(α) = 0 and γ2(α) = 0 we have

rγ1(x) = rγ1 ◦ rγ2(x) = rγ2 ◦ rγ1(x) =∞.

• γ1(α) = 0 and γ2(α) 6= 0 we have

rγ1(rγ2(x)) = rγ1(r
α
γ2(α)(x)) =∞ = rγ1(x)

and
rγ2(rγ1(x)) = rγ2(∞) =∞ = rγ1(x)

• γ1(α) 6= 0 and γ2(α) 6= 0 we have:

rγ1(rγ2(x)) = rαγ1(α)(r
α
γ2(α)(x)) = rαγ1(α)(x) = rγ1(x)

and
rγ2(rγ1(x)) = rαγ2(α)(r

α
γ1(α)(x)) = rαγ1(α)(x) = rγ1(x).

(iii) Let γ1 ≤ γ2 ≤ ... and γ = supn∈ω0
γn, then for every α ∈ A we have

γ(α) = supn∈ω0
γn(α). Let x ∈ X, two cases are possible

• x =∞: we have rγn(x) =∞ for every n ∈ ω0 then lim
n∈ω0

rγn(x) = x.

• x 6= ∞: there exists α ∈ A such that x ∈ Xα. If α /∈ S(γ) then α /∈
S(γn) for each n ∈ ω0; hence rγ(x) = rγn(x) = ∞. If α ∈ S(γ), then
there exists n0 ∈ ω0 such that for every n ≥ n0 we have α ∈ S(γn);
hence using the fact that the family {rαs }s∈Γα is a full retractional skele-
ton onXα we have that rγ(x) = rαγ(α)(x) = lim

n∈ω0

rαγn(α)(x) = lim
n∈ω0

rγn(x).

(iv) For every α ∈ A and x ∈ Xα there exists s ∈ Γα such that rαs (x) = x
then for every γ ∈ Γ such that s ≤α γ(α) we have rγ(x) = x. Therefore
limγ∈Γ rγ(x) = x. The case x =∞ is trivial.

Finally it is trivial that X =
⋃
γ∈Γ rγ[X].

(5) It follows immediately combining [3, Theorem 1.1] and [13, Theorem 3.6].
This completes the proof.

Using the same argument as in [7, Lemma 2.2] it is possible to prove the follow-
ing result about stability properties of weakly non-commutative Corson countably
compact spaces.

Lemma 2.9. The class of weakly non-commutative Corson countably compact is
closed under

(1) countably closed subspaces,

(2) countable products,

(3) continuous images,
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(4) �nite unions,

(5) �nite topological sums,

(6) one-point countably compact modi�cations of topological sums.

3 Weakly non-commutative Valdivia compact spaces

Now we give the de�nition of weakly non-commutative Valdivia compact space which
is a generalization of the commutative one introduced in [7].

De�nition 3.1. A compact space K is said weakly non-commutative Valdivia com-
pact if it has a dense countably compact subspace which is weakly non-commutative
Corson.

Next two results are the non-commutative version of [7, Proposition 3.1] and
[8, Lemma 1.17].

Proposition 3.2. A compact space K is weakly non-commutative Valdivia if and
only if it is a continuous image of a non-commutative Valdivia compact.

Proof. We start by proving the �if part�. Let L be a non-commutative Valdivia
compact space and f : L→ K be a continuous onto mapping.
Let D be an induced subspace of L, hence by Theorem 2.2 it is a dense non-
commutative Corson countably compact space. Since f is a continuous mapping
we have that f(D) ⊂ K is a dense weakly non-commutative Corson countably com-
pact space. Hence K is a weakly non-commutative Valdivia compact space.
Conversely let D be a dense weakly non-commutative Corson countably compact
subspace of K. Then there exist a non-commutative Corson countably compact
space A and a continuous surjection f : A → D. By Proposition 2.3 we have that
βA is a non-commutative Valdivia compact space. Let βf : βA→ K be the contin-
uous extension of f .
Since D is dense in K, D ⊂ βf(βA) and βf(βA) is closed we have that βf is a sur-
jection. Thus K is a continuous onto image of a non-commutative Valdivia compact
space.

We prefer to omit the proof of the following result because it is completely
analogous to [8, Lemma 1.17].

Proposition 3.3. Let K be a compact space with a countable dense set of Gδ points.
If K is a continuous image of a non-commutative Valdivia compact space then K is
metrizable.

Corollary 3.4. Let K be a compact space with a countable dense set of Gδ points.
If K is a continuous image of a non-commutative Corson countably compact space
then K is metrizable.

Using Proposition 3.3, Corollary 3.4 and [8, Example 1.18] we have some ex-
amples of compact spaces which are neither weakly non-commutative Corson nor
weakly non-commutative Valdivia.
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Proposition 3.5. Let {Kα}α∈A be a family of non-commutative Valdivia compact
spaces. Then the one-point compacti�cation of K =

⊕
α∈A

Kα is a non-commutative

Valdivia compact space.

We will not provide the full proof because we use the same idea of Lemma 2.8,
point (4).

Proof. We will use the same notations of point (4) Lemma 2.8. We de�ne the
up-directed partially ordered set Γ and the family of retractions {rγ}γ∈Γ as well.
Moreover, we observe that each Kα is clopen in the one-point compacti�cation of
K, hence the continuity of every rγ follows in the same way of point (4) Lemma 2.8.
It remains to prove that {rγ}γ∈Γ is a retractional skeleton. Points (i), (ii) and (iii)
follow as in point (4) Lemma 2.8.
(iv) If x = ∞, rγ(x) = ∞ for every γ ∈ Γ, hence it is clear that lim

γ∈Γ
rγ(x) = x.

Suppose otherwise x ∈ Kα for some α ∈ A, by de�nition of (Γ,≤) there exists
γ0 ∈ Γ such that γ(α) 6= 0 for every γ ≥ γ0, hence we have rγ(x) = rαγ(α)(x) for
such γ. Since {rαs }s∈Γα is a retractional skeleton on Kα, we deduce that lim

γ∈Γ
rγ(x) =

lim
s∈Γα

rαs (x) = x.

Proposition 3.6. The class of weakly non-commutative Valdivia compact spaces is
closed under

(1) arbitrary products,

(2) one point compacti�cations of arbitrary topological sums,

(3) continuous images,

(4) �nite unions.

Moreover if K is weakly non-commutative Valdivia compact and L is a subset of K
which can be written as the closure of the union of an arbitrary family of Gδ subsets
of K, then L is weakly non-commutative Valdivia as well.

Proof. (1) Let {Kα}α∈A be a family of weakly non-commutative Valdivia compact
spaces. Then there exists a continuous onto mapping fα : Lα → Kα, where Lα
is a non-commutative Valdivia compact space for every α ∈ A.
We de�ne K =

∏
α∈A

Kα and L =
∏
α∈A

Lα. By Proposition 2.5 L is a non-

commutative Valdivia compact space. Finally let f : L → K de�ned by
f(y)(α) = fα(y(α)), it is clearly onto and moreover, since it is coordinatewise
continuous, it is continuous.

(2) It follows, using Proposition 3.5, by the same argument of the previous point.

Points (3)-(4) are trivial. Finally let K be a weakly non-commutative Valdivia
compact and L ⊆ K such that L =

⋃
β∈B Zβ, where B is a set and Zβ is a Gδ subset

of K, for every β ∈ B. Let D ⊂ K be a dense weakly non-commutative Corson
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countably compact subspace. Now we want to prove that L ∩ D is dense in L. In
fact

L ∩D =
⋃
β∈B

Zβ ∩D ⊃ (
⋃
β∈B

Zβ) ∩D =
⋃
β∈B

(Zβ ∩D).

Taking the closure

L ∩D ⊃
⋃
β∈B

(Zβ ∩D) ⊃
⋃
β∈B

(Zβ ∩D) ⊃
⋃
β∈B

Zβ.

In the last part we have used [2, Lemma 3.3]. Therefore we have L ⊃ L ∩D ⊃ L.
Moreover L ∩ D is a closed subspace of D, hence it is weakly non-commutative
Corson, therefore L is weakly non-commutative Valdivia.

Now we want to use the previous results to prove the equivalent of [7, Theorem
3.6] in the non-commutative case.

Theorem 3.7. Let K be a compact space. Consider the following assertions.

(1) K is weakly non-commutative Valdivia.

(2) (BC(K,C)∗ , w
∗) is weakly non-commutative Valdivia.

(3) (BC(K,R)∗ , w
∗) is weakly non-commutative Valdivia.

(4) P (K) is weakly non-commutative Valdivia.

Then 1 ⇒ 2 ⇔ 3 ⇔ 4. If K has a dense set of Gδ points, then all three assertions
are equivalent.

Proof. (1) ⇒ (2) Let K be a weakly non-commutative Valdivia compact space,
then it is a continuous image of a non-commutative Valdivia compact L. Using [10,
Proposition 28] C(L,C) has 1-projectional skeleton then it is clear that (BC(L,C)∗ , w

∗)
is non-commutative Valdivia. Hence, since (BC(K,C)∗ , w

∗) is a continuous image of
(BC(L,C)∗ , w

∗), it is a weakly non-commutative Valdivia compact space.
(2) ⇒ (3) Suppose that (BC(K,C)∗ , w

∗) is a weakly non-commutative Valdivia com-
pact space.
We want to show that (BC(K,R)∗ , w

∗) is a continuous images of (BC(K,C)∗ , w
∗). To do

that, consider the following map:

ϕ : (BC(K,C)∗ , w
∗)→ (BC(K,R)∗ , w

∗)

µ 7→ Re(µ).

It is clear that it is a surjection. To prove that ϕ is a continuous mapping, it is
su�cient to observe that for every f ∈ C(K,R) we have Re(µ)(f) =Reµ(f).
(3) ⇒ (4) Since P (K) = {µ ∈ C(K)∗ : ‖µ‖ ≤ 1 & µ(1K) = 1}, P (K) is a weak∗

closed weak∗ Gδ subset of (BC(K)∗ , w
∗). Hence, Proposition 4.3 gives the assertion.

(4) ⇒ (2) Suppose P (K) is weakly non-commutative Valdivia. By Proposition 3.6
the space P (K) × S1 is weakly non-commutative Valdivia, �nally by (1) ⇒ (4)
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P (P (K) × S1) is weakly non-commutative Valdivia. By [12, Proposition 2.38] the
barycenter mapping

r : P (BC(K,C)∗)→ (BC(K,C)∗ , w
∗)

is surjective and continuous. Moreover, since P (K) × S1 contains all the extreme
points of (BC(K,C)∗ , w

∗), using [12, Theorem 2.31] we obtain that the restriction of
r to P (P (K) × S1) is surjective as well. Hence, since P (P (K) × S1) is weakly
non-commutative Valdivia, we have that (BC(K,C)∗ , w

∗) is weakly non-commutative
Valdivia, too.
(4)⇒ (1) IfK has a dense set of Gδ points, it follows in the same way as [7, Theorem
3.6].

Now we give the non-commutative version of [7, Theorem 3.7], we recall the
de�nition of property (M).

De�nition 3.8. A compact space K is said to have the property (M) if every Radon
probability measure on K has separable support.

Theorem 3.9. Let K be a weakly non-commutative Corson compact space with
property (M), then (BC(K)∗ , w

∗) is weakly non-commutative Corson as well.

Proof. The proof of the real case follows as in the commutative case [7, Theorem
3.7], using Proposition 3.10 below instead of [8, Proposition 5.1].
Suppose that K is a weakly non-commutative Corson compact space with property
(M), then using the real case and Lemma 2.9, (BC(K,R)∗ , w

∗) × (BC(K,R)∗ , w
∗) is

weakly non-commutative Corson as well. Now consider

ψ : (BC(K,R)∗ , w
∗)× (BC(K,R)∗ , w

∗)→ (C(K,C)∗, w∗),

de�ned by ψ(µ, ν) = µ + iν. ψ is clearly continuous, hence ψ((BC(K,R)∗ , w
∗) ×

(BC(K,R)∗ , w
∗)) is weakly non-commutative Corson. Finally, since (BC(K,C)∗ , w

∗) is a
weak∗ compact space and (BC(K,C)∗ , w

∗) ⊂ ψ((BC(K,R)∗ , w
∗)× (BC(K,R)∗ , w

∗)), it is a
weak∗ closed subspace of ψ((BC(K,R)∗ , w

∗) × (BC(K,R)∗ , w
∗)). Therefore, by Lemma

2.9, (BC(K,C)∗ , w
∗) is a weakly non-commutative Corson compact space.

Now we give the non-commutative version of [8, Proposition 5.1]. For sake of
completeness we will give the full proof although the last part is the same of the
commutative one.

Proposition 3.10. Let K be a non-commutative Valdivia compact and D ⊂ K be
an induced subspace. Then the set

S = {µ ∈ C(K)∗ : supp(µ) is a separable subset of D}

is 1-norming and induced by a 1-projectional skeleton in C(K).

Proof. The real case follows by combining the �rst part of the complex case below
and the second part of [8, Proposition 5.1].
Let {rs}s∈Γ be a retractional skeleton on K such that D =

⋃
s∈Γ rs[K]. It is standard

to de�ne a 1-projectional skeleton {Ps}s∈Γ in C(K,C) as follow

Ps(f) = f ◦ rs.
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Let S =
⋃
s∈Γ P

∗
s (C(K,C)∗) be the induced subspace. It is well known that it

is 1-norming (hence weak∗-dense in C(K,C)∗) linear and weak∗-countably closed.
Moreover, (BC(K,C)∗ , w

∗) has retractional skeleton and S ∩ (BC(K,C)∗ , w
∗) is an in-

duced subspace.
Now we want to prove that

S = {µ ∈ C(K,C)∗ : suppµ is a separable subset of D}.

We will prove the double inclusion.

• �⊇� Let µ be a real measure in the set on the right-hand side, then using the
same argument of [8, Proposition 5.1] we obtain µ ∈ S.
Now, let µ be a complex measure in the set on the right-hand side, then,
by the previous sentence, its total variation |µ| belongs to S . Hence there
exists s0 ∈ Γ such that P ∗s |µ| = |µ| for every s ≥ s0, in particular, by Riesz
representation theorem, for every f ∈ C(K,C) we have∫

K

fd|µ| =
∫
K

f ◦ rsd|µ|. (1)

Moreover, by the Radon-Nikodým theorem there exists a measurable function
h such that dµ = h d|µ| and |h(x)| = 1 for every x ∈ K.
Claim: There exists a t ∈ Γ such that for every continuous function f the
equality ∫

K

f · h d|µ| =
∫
K

(f ◦ rt) · h d|µ|.

holds.
Indeed, let t ∈ Γ such that t ≥ s0 and suppµ ⊂ rt[K]: such t exists by the
σ-completeness of Γ and the separability of suppµ. Finally, let f ∈ C(K,C)
and ε > 0 then by the density of continuous function in L1(|µ|) there exists
g ∈ C(K,C) such that

∫
K
|f · h− g| d|µ| < ε; then using (1) and the fact that

suppµ ⊂ rt[K], we obtain∣∣∣∣∫
K

f · h− (f ◦ rt) · h d|µ|
∣∣∣∣ ≤ ∫

K

|f · h− g| d|µ|+
∫
K

|(f ◦ rt) · h− g ◦ rt| d|µ|

< ε+

∫
rt[K]

|(f ◦ rt) · h− g ◦ rt| d|µ|

= ε+

∫
rt[K]

|f · h− g| d|µ| < 2ε.

It proves the claim. Therefore P ∗t µ = µ, hence µ ∈ S.

• �⊆� Let S
′

= span{δx : x ∈ D}, since S is linear and δx ∈ S for every
x ∈ D we have S

′ ⊂ S. Moreover since D is dense in K we have that S
′

is 1-norming. Then S
′ ∩ BC(K,C)∗ is weak∗ dense in BC(K,C)∗ . In particular,

every µ ∈ S ∩ BC(K,C)∗ belongs to the weak∗ closure of S
′ ∩ BC(K,C)∗ . Hence,

since S ∩ BC(K,C)∗ is a weak∗ Fréchet-Urysohn space, there exists a sequence
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{µn}n∈ω0 ⊂ S
′ ∩BC(K,C)∗ such that µn

w∗→ µ.
Let

C = {x ∈ K : ∃n ∈ ω0 µn({x}) 6= 0},

clearly |C| ≤ ℵ0. Moreover µ is supported by C. Therefore, since C ⊂ D
is separable, it is metrizable. Since suppµ ⊂ C and C is metrizable and
separable, we have that suppµ is separable as well.

4 [0, η)-sums

We recall the de�nition of [0, η)-sum, introduced in [7]. Given an ordinal η we will
denote with I(η) the subset of all isolated ordinals less than η. Let {Xα}α∈I(η) be a
family of topological spaces, the [0, η)-sum is the set

X = {(α, x) : x ∈ Xα, α < η isolated} ∪ {(α, α) : α < η limit}

equipped with the following topology. Whenever α is isolated, the set {α} ×Xα is
canonically homeomorphic to Xα and clopen in X. A neighborhoods basis for (α, α)
if α is limit is formed by sets

Bγ((α, α)) = {(β, x) ∈ X : γ < β < α}.

Since in our setting Xα is Hausdor� and completely regular, X is Hausdor� and
completely regular too.
Let η be an uncountable co�nality ordinal and Xα be a countably compact space,
for every α ∈ I(η). Let Y be the [0, η)-sum of {Xα}α∈I(η) and X be the topological
subspace of Y de�ned by

X ={(α, x) : x ∈ Xα, α < η isolated}∪
{(α, α) : α < η limit with countable co�nality}.

We will say that X is the countably [0, η)-sum of {Xα}α∈I(η). We observe that the
countably [0, η)-sum is a countably closed subset of the [0, η)-sum. Then, since, by
[7, Lemma 2.3], the [0, η)-sum is countably compact, we conclude that the countably
[0, η)-sum is countably compact as well.

Lemma 4.1. Let η be an uncountable co�nality ordinal and {Xα}α∈I(η) be a family
of non-commutative Corson countably compact spaces. Let X be the countably [0, η)-
sum of {Xα}α∈I(η). Then X is a non-commutative Corson countably compact space.

Proof. For every isolated α < η there exist an up-directed partially ordered set
(Γα,�α) and a full retractional skeleton {rαs }s∈Γα on Xα.
We de�ne Γ

′
α = Γα ∪ {0} and a relation ≤α such that if we restrict ≤α to Γα × Γα

we have the same order of (Γα,�α) and 0 ≤α s, for every s ∈ Γα. This way (Γ
′
α,≤α)

is an up-directed partially ordered set.
For every γ ∈

∏
α∈I(η) Γ

′
α let us de�ne S(γ) = {α ∈ I(η) : γ(α) 6= 0}. Now we are
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going to de�ne the partially ordered set and the family of retractions on X. In order
to do this, let

Γ ={γ ∈
∏

α∈I(η)

Γ
′

α : |S(γ)| ≤ ℵ0, 0 ∈ S(γ), and if α ∈ S(γ)

then β ∈ S(γ) whenever α < β < α + ω0}.

Given γ1, γ2 ∈ Γ we will say that γ1 ≤ γ2 if and only if γ1(α) ≤α γ2(α) for every
α ∈ I(η). We observe that, if γ1 ≤ γ2 then S(γ1) ⊂ S(γ2). By the de�nition of
(Γ
′
α,≤α) it is clear that (Γ,≤) is an up-directed partially ordered set.

For every γ ∈ Γ we de�ne rγ : X → X as follows: let (α, x) ∈ X and βα =
sup([0, α] ∩ S(γ))

rγ(α, x) =

{
(α, rαγ(α)(x)) if α is isolated and γ(α) 6= 0;

(βα, βα) if α is isolated and γ(α) = 0 or α is limit.

Claim: for every γ ∈ Γ the retraction rγ is a continuous mapping.
Let γ ∈ Γ and let {(αλ, xλ)}λ∈Λ be a net converging to (α, x). If α is isolated then
{αλ}λ∈Λ is eventually constant and equal to α;

• if α ∈ S(γ), by continuity of rαγ(α), we have limλ∈Λ rγ(αλ, xλ) = rγ(α, x);

• if α /∈ S(γ) we have that rγ(αλ, xλ) is eventually constant, hence it is clear
that limλ∈Λ rγ(αλ, xλ) = rγ(α, x).

In the case of α limit we can suppose without loss of generality that αλ ≤ α for
every λ ∈ Λ. Two cases are possible:

• if sup([0, α] ∩ S(γ)) = α, since α has countably co�nality, by de�nition of
supremum there exists a sequence {ξn}n∈ω0 ∈ [0, α] ∩ S(γ) such that ξn is
increasing and convergent to α. For every n ∈ ω0, by de�nition of convergence
of {αλ}λ∈Λ there exists λn such that αλ ∈ [ξn, α] for every λ ≥ λn. Therefore
limλ∈Λ rγ(αλ, xλ) = (α, α) = rγ(α, x).

• if β = sup([0, α]∩S(γ)) < α then for a su�ciently large λ we have β < αλ ≤ α;
hence by de�nition of rγ we have lim

λ∈Λ
rγ(αλ, xλ) = rγ(α, x) = (β, β).

Therefore rγ is continuous for every γ ∈ Γ.

It remains to prove that {rγ}γ∈Γ is a full retractional skeleton.

(i) for every γ ∈ Γ the subspace rγ[X] is a closed subset of X, hence it is count-
ably compact. Moreover, since it has a countable network, it is compact and
metrizable.

(ii) Let γ1, γ2 ∈ Γ such that γ1 ≤ γ2, then S(γ1) ⊂ S(γ2). Let (α, x) ∈ X
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• if α is limit let βα = sup([0, α] ∩ S(γ1)) = sup([0, α] ∩ S(γ1) ∩ S(γ2)) and
β
′
α = sup([0, α] ∩ S(γ2)). We observe that βα ≤ β

′
α ≤ α and that the

intersection of the interval (βα, β
′
α) and S(γ1) is empty. Hence:

rγ1 ◦ rγ2(α, α) = rγ1(β
′

α, β
′

α) = (βα, βα) = rγ1(α, α),

rγ2 ◦ rγ1(α, α) = rγ2(βα, βα) = (βα, βα) = rγ1(α, α).

• if α is isolated three cases are possible:
(1) if γ1(α) = 0 and γ2(α) = 0, let βα = sup([0, α] ∩ S(γ1)) and β

′
α =

sup([0, α] ∩ S(γ2)), thus using the same observation of the previous
point we have:

rγ2(rγ1(α, x)) = rγ2(βα, βα) = (βα, βα) = rγ(α, x),

rγ1(rγ2(α, x)) = rγ2(β
′

α, β
′

α) = (βα, βα) = rγ(α, x);

(2) if γ1(α) = 0 and γ2(α) 6= 0, let βα = sup([0, α] ∩ S(γ1)). Thus we
have

rγ1(α, x) = (βα, βα),

since S(γ1) ⊂ S(γ2)

rγ2(rγ1(α, x)) = rγ2(βα, βα) = (βα, βα)

and at the end we have

rγ1(rγ2(α, x)) = rγ1(α, r
α
γ2(α)(x)) = (βα, βα);

(3) if γ1(α) 6= 0 and γ2(α) 6= 0, since for every α ∈ I(η) the family
{rαs }s∈Γα is a retractional skeleton on Xα, we have

rγ1 ◦ rγ2(α, x) = (α, rαγ1 ◦ r
α
γ2

(x)) = (α, rαγ1(x)) = rγ1(α, x),

rγ2 ◦ rγ1(α, x) = (α, rαγ2 ◦ r
α
γ1

(x)) = (α, rαγ1(x)) = rγ1(α, x).

(iii) Let γ1 ≤ γ2 ≤ ... ≤ γn ≤ ... and de�ne γ(α) = supn<ω0
γn(α), for every

α ∈ I(η). Since S(γn) ⊂ S(γn+1) for every n < ω0 we have that
⋃
n∈ω0

S(γn) =
S(γ) is countable, 0 ∈ S(γ) and if α ∈ S(γ) there exists n ∈ ω0 such that
α ∈ S(γn), hence [α, α + ω0) ⊂ S(γn) ⊂ S(γ), thus γ ∈ Γ. Moreover, let
(α, x) ∈ X then

• if α ∈ S(γn0) for some n0 < ω0 then α ∈ S(γn) for every n > n0. Thus
we have

lim
n∈ω0

rγn(α, x) = lim
n>n0

rγn(α, x) = lim
n>n0

(α, rαγn(α)(x))

= (α, rαγ(α)(x)) = rγ(α, x).

• if α /∈ S(γ), then

lim
n∈ω0

rγn(α, x) = lim
n∈ω0

(sup([0, α] ∩ S(γn)), sup([0, α] ∩ S(γn)))

= sup
n<ω0

(sup([0, α] ∩ S(γn)), sup([0, α] ∩ S(γn)))

= (sup([0, α] ∩ (
⋃
n∈ω0

S(γn))), sup([0, α] ∩ (
⋃
n∈ω0

S(γn))))

= rγ(α, x).
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(iv) For every (α, x) ∈ X there exists a γ ∈ Γ such that rγ(α, x) = (α, x). In fact

• if α is isolated, since {rαs }s∈Γα is a full retractional skeleton on Xα there
exists s ∈ Γα such that rαs (x) = x. Hence there exists γ ∈ Γ with γ(α) ≥ s
such that rγ(α, x) = (α, x);

• if α is limit, there exists a sequence {αn}n∈ω0 of isolated points such that
αn ↗ α, moreover there exists a γ ∈ Γ such that {αn}n∈ω0 ⊂ S(γ).
Hence, we have rγ(α, α) = (α, α).

Hence lim
γ∈Γ

rγ(α, x) = (α, x). Therefore (iv) is proved.

Finally it is clear that X =
⋃
γ∈Γ

rγ[X].

Lemma 4.2. Let η be an uncountable co�nality ordinal and Xα be a weakly non-
commutative Corson countably compact space for every isolated α < η. Let X be the
[0, η+1)-sum of {Xα}α∈I(η). Then X is a weakly non-commutative Corson countably
compact space.

Proof. For every α ∈ I(η) there are a non-commutative Corson countably compact
space Yα and a continuous surjection fα : Yα → Xα.
Now, we are going to de�ne a suitable family of countably compact spaces indexed
on I(η). Let α ∈ I(η), put Zα = Yα if α < ω0, Zα = {α} if α = β + 1 and β is limit
�nally put Zα = Yβ if α = β + 1 > ω0 and β is not limit.
Let X be the [0, η + 1)-sum of {Xα}α∈I(η) and Y = Z ⊕ {(η + 1, η + 1)} where Z
is the countably [0, η)-sum of {Zα}α∈I(η). By Lemma 4.1 and Lemma 2.8 Y is a
non-commutative Corson countably compact space.
Finally, we de�ne a mappings f : Y → X as follows:

f(α, x) =


(α, α) if α is limit;
(β, β) if α = β + 1 and β is limit;
(β, fβ(x)) if α = β + 1, β > ω0 and β is not limit;
(α, fα(x)) if α < ω0.

Since every limit ordinal is covered by its successor and every fα is surjective, we
have that f is surjective.
Claim: f is continuous.
Let {(αλ, xλ)}λ∈Λ be a converging net to (α, x) ∈ Y . Two cases are possible:

(1) α is not limit, then, since Zα is clopen there exists a λ0 ∈ Λ such that xλ ∈ Zα
for every λ ≥ λ0. Let α = β + 1, we split in other three cases:

• β is limit, by de�nition of the function f , we have f(αλ, xλ) = (β, β) for
every λ ≥ λ0. Hence we have limλ∈Λ f(αλ, xλ) = (β, β) = f(α, x);

• β is not limit and β > ω0, by de�nition f(αλ, xλ) = (β, fβ(xλ)) for every
λ ≥ λ0. Hence, by continuity of fβ we have limλ∈Λ f(αλ, xλ) = (β, fβ(x)) =
f(α, x);
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• α < ω0 by de�nition f(αλ, xλ) = (α, fα(xλ)) for every λ ≥ λ0. Hence, by
continuity of fα we have limλ∈Λ f(αλ, xλ) = (α, fα(x)) = f(α, x).

(2) If α is limit, the using de�nition of the function f and the topology on X we
have limλ∈Λ f(αλ, xλ) = (α, α) = f(α, α).

Therefore X is a weakly non-commutative Corson countably compact space.

The following Lemma is an analogue of [7, Lemma 2.4]. It gives a characteri-
zation of non-commutative Corson countably compact spaces in the class of weakly
non-commutative countably compact.

Lemma 4.3. Let X be a weakly non-commutative Corson countably compact space.
The following assertions are equivalent:

1. X is non-commutative Corson.

2. X is Fréchet-Urysohn.

3. X has countable tightness.

Proof. (1 ⇒ 2) By Proposition 2.3 X is induced by a retractional skeleton in βX,
hence by Theorem 2.2, it is a Fréchet-Urysohn space.
(2⇒ 3) is trivial.
(3 ⇒ 1) Since X is a weakly non-commutative Corson countably compact space,
there are a non-commutative Corson countably compact space and a continuous onto
mapping f : Y → X. Let F ⊂ Y be a closed subspace. We claim that f(F ) is closed
in X. Let x ∈ f(F ), by countably tightness of X there exists a countable subset
C ⊂ f(F ) such that x ∈ C. Since f is a onto mapping, there exists a countable set
D ⊂ F such that f(D) = C. Then D ⊂ F and, by Theorem 2.2 D is a metrizable
countably compact space, hence it is compact. Thus f(D) is compact and contains
x. Since x ∈ f(D) ⊂ f(F ), we deduce that f(F ) is closed. Therefore, since f is
a continuous closed onto mapping, it is a quotient mapping. Hence, the assertion
follows by Lemma 2.8.

Theorem 4.4. (1) The ordinal space [0, η] is non-commutative Corson if and only
if it is Corson if and only if η < ω1.
The ordinal space [0, η] is a weakly non-commutative Corson for every ordinal
η.

(2) Let X be a countably compact set of ordinals. Then X is a weakly non-commutative
Corson countably compact space.

(3) Let X be a countably compact set of ordinals. Then X is a non-commutative
Corson countably compact if and only if every ordinal of uncountable co�nality
is isolated in X.

Proof. (1) The �rst part is trivial. If η has uncountable co�nality, the assertion
follows by Lemma 4.2. Isolated and countable co�nality cases follow by the
uncountable co�nality case and Lemma 2.9.
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(2) Let X be a countably compact set of ordinals. Let θ = sup(X), and let Y be
the closure of X in [0, θ].
Since Y is a well-ordered compact space it is homeomorphic to [0, η] for some
ordinal η. By previous point Y is weakly non-commutative Corson. By Lemma
2.9X is a countably closed subspace of Y , henceX is a weakly non-commutative
Corson countably compact space.

(3) It follows by previous point and Lemma 4.3.

Using the previous result and Lemma 2.9 we observe that [2, Example 3.8] is
an example of weakly non-commutative Corson countably compact space that is
not a non-commutative Valdivia compact. We observe that, for every set Γ, the
space [0, 1]Γ is a Valdivia compact space, therefore it is a non-commutative Val-
divia compact space. Moreover, there exists Γ such that [0, 1]Γ contains a subspace
homeomorphic to a compact space that is not weakly non-commutative Corson. Fi-
nally, recalling that the class of weakly non-commutative Corson countably compact
spaces is closed under countably closed subspaces (Lemma 2.9), we have an example
of non-commutative Valdivia compact space that is not weakly non-commutative
Corson compact space. Thus, the two classes are independent.
Now, we give the (weakly) non-commutative Valdivia version of Lemma 4.1. The
proof follows straightforwardly by de�ning the same family of retractions of Lemma
4.1.

Proposition 4.5. Let η be an uncountable co�nality ordinal. Any [0, η + 1)-sum
of (weakly) non-commutative Valdivia compact is again a (weakly) non-commutative
Valdivia compact.

Next result gives a characterization of compact ordinal segments in the non-
commutative setting.

Theorem 4.6. Let η be an ordinal. Then the following hold

(i) [0, η] is non-commutative Valdivia.

(ii) [0, η] is weakly non-commutative Valdivia.

(iii) [0, η] is weakly non-commutative Corson.

Proof. It trivially follows by Theorem 4.4 and Proposition 4.5.

5 Aleksandrov duplicates

We recall the de�nition of Aleksandrov duplicate AD(X) of the space X. It is the
space X × {0, 1} with the topology in which all points of X × {1} are isolated,
and neighborhoods of (x, 0) are (U × {0, 1}) \ {(x, 1)}, for every U neighborhood of
x ∈ X. We denote by π the projection from AD(X) onto X.
It is well known and easy to check that if X is compact (countably compact) then
AD(X) is compact (countably compact).
Now we give the main result of this section about the relations between retractional
skeletons and Alexandrov duplicates of topological spaces.
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Theorem 5.1. (1) Let X be a (weakly) non-commutative Corson countably com-
pact space, then AD(X) is a (weakly) non-commutative Corson countably com-
pact space as well.

(2) Let K be a non-comutative Valdivia compact space and D be an induced subspace
such that |K \ D| < ℵ0, then AD(K) is a non-commutative Valdivia compact
space.

(3) Let K be a compact space, if AD(K) is a non-commutative Valdivia compact
space then so is K.

(4) Let η be an ordinal, then AD([0, η]) is a non-commutative Valdivia compact
space.

Proof. (1) Let X be a non-commutative Corson countably compact space, then the
assertion follows easily by [4, Theorem 3.1].
Let X be a weakly non-commutative Corson countably compact space, then
there exists a continuous onto mapping f : Y → X, where Y is a non-commutative
Corson countably compact space. Let AD(X) and AD(Y ) be the Aleksandrov
duplicates of X and Y respectively. Hence, by the previous point, AD(Y ) is
non-commutative Corson countably compact. Let g : AD(Y ) → AD(X) be
a map de�ned by g(x, i) = (f(x), i), it is clearly onto. The continuity follows
by the continuity of f and the de�nition of the topology of Aleksandrov dupli-
cate. Therefore AD(X) is a weakly non-commutative Corson countably compact
space.

(2) LetK be a non-commutative Valdivia compact space. By hypothesis there exists
a retractional skeleton {rs}s∈Γ such that |K \D| < ℵ0 and D =

⋃
s∈Γ rs[K]. We

observe that the restriction {rs �D}s∈Γ is a full retractional skeleton on the
countably compact space D. Hence using [4, Proposition 2.7] there exists a full
retractional skeleton on D, {rA : A ∈ [D]≤ω0} such that for every A ∈ [D]≤ω0 we
have rA(x) = x for every x ∈ A. Now, using Theorem 2.2 and Proposition 2.3,
we extend every rA ∈ {rA : A ∈ [D]≤ω0} to K as {RA : A ∈ [D]≤ω0} such that
RA �D= rA. For every A ∈ [D×{0, 1}]≤ω0 we de�ne R̂A : AD(K)→ AD(K) as
follows

R̂A(x, i) =


(Rπ(A)(x), i) if x ∈ π(A);

(x, 1) if x ∈ K \D and i = 1;

(Rπ(A)(x), 0) otherwise.

Using the same argument of [4, Theorem 3.1] it is possible to prove that the
family of retractions {R̂A}A∈[D×{0,1}]≤ω0 is a retractional skeleton on AD(K).

(3) We use the same idea as in [6, Theorem 2.13]. Let D be an induced subspace of
AD(K), we will prove that D∩K×{0} is dense in K×{0}; then using Lemma
2.4 we have that K is a non-commutative Valdivia compact space.
Let U be a non-empty open subset of K. Since K is completely regular there
exists a non-empty open subspace V ⊂ K, such that V ⊂ U . Two cases are
possible:
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(a) V is �nite. Every point of V is a Gδ point of AD(K), hence V × {0} ⊂ D.
Hence U ∩D 6= ∅.

(b) V is in�nite. V × {1} ⊂ D is in�nite and has a cluster point (x, i) ∈ D, by
Theorem 2.2. By de�nition of Aleksandrov duplicate topology, i must be
equal to 0 and (x, 0) ∈ V × {0}. Hence U ∩D 6= ∅.

By above observation K is a non-commutative Valdivia compact space.

(4) Let η be an ordinal. Let A be the family of all closed countable subsets A of
[0, η] such that 0 ∈ A and any isolated point of A is isolated in [0, η]. Let A be
ordered by inclusion. The family of mappings {rA}A∈A, where rA : [0, η]→ [0, η]
and rA(α) = max([0, α] ∩ A), is a retractional skeleton on [0, η], see [9] or [11].
Let AD(K) be the Aleksandrov duplicate of K = [0, η]. Let us de�ne

Γ = {(A,B) ∈ A× [K]≤ω0 : ∀β( 6= η) ∈ B, β + 1 ∈ A}.

De�ne the following order on Γ: (A1, B1) ≤ (A2, B2) if and only if A1 ⊂ A2 and
B1 ⊂ B2. This way (Γ,≤) is an up-directed partially ordered set.
For every γ = (A,B) ∈ Γ we de�ne rγ : AD(K)→ AD(K) as follows

rγ(x, i) =

{
(rA(x), 0) if (x, i) ∈ K × {0} ∪ (K × {1} \B × {1})
(x, i) if (x, i) ∈ B × {1}

Claim: For every γ ∈ Γ, rγ is continuous. Let γ = (A,B) ∈ Γ and let
{(xλ, iλ)}λ∈Λ be a net converging to (x, i) ∈ AD(K). We can suppose with-
out loss of generality that xλ ≤ x for every λ ∈ Λ. Now we study all possible
cases

• if i = 1 then {(xλ, iλ)}λ∈Λ is eventually constant. Hence it follows that
lim
λ∈Λ

rγ(xλ, i) = rγ(x, i).

• if i = 0 then xλ → x in K, two cases are possible:

(a) suppose that (xλ, iλ) /∈ B × {1} for su�ciently large λ. Then we
conclude by continuity of rA;

(b) suppose that (xλ, iλ) ∈ B×{1} for a co�nal set Λ1 ⊂ Λ. Since xλ ↗ x
for λ ∈ Λ1, we have xλ + 1 ↗ x as well. Hence we have x ∈ A, then
by de�nition rγ(x, 0) = (x, 0) = (rA(x), 0). Finally, since rγ(xλ, iλ) is
equal to (xλ, 1) for λ ∈ Λ1 and equal to (rA(xλ), 0) otherwise, we have
that lim

λ∈Λ
rγ(xλ, iλ) = (x, 0) = (rA(x), 0), then we are done.

This proves the claim. It remains to show that {rγ}γ∈Γ is a retractional skeleton.

(i) Since rγ[AD(K)] is compact and countable, it is metrizable.

(ii) Let γ1 = (A1, B1), γ2 = (A2, B2) ∈ Γ such that γ1 ≤ γ2. Let (x, i) ∈
AD(K). Then, if i = 0 we have rγ1(x, 0) = (rA1(x), 0) = (rA1 ◦rA2(x), 0) =
rγ1 ◦rγ2(x, 0) and rγ2 ◦rγ1(x, 0) = (rA2 ◦rA1(x), 0) = (rA1(x), 0) = rγ1(x, 0).
If i = 1 three cases are possible
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(a) x ∈ B1 then x ∈ B2 as well and the equality is trivial.
(b) x /∈ B1 and x ∈ B2 then we have rγ2 ◦ rγ1(x, 1) = (rA2 ◦ rA1(x), 0) =

(rA1(x), 0) = rγ1(x, 1) and rγ1 ◦ rγ2(x, 1) = rγ1(x, 1).
(c) x /∈ B2, then rγ1(x, 1) = (rA1(x), 0) = (rA1 ◦ rA2(x), 0) = rγ1 ◦ rγ2(x, 1)

and rγ2 ◦ rγ1(x, 1) = (rA2 ◦ rA1(x), 0) = (rA1(x), 0) = rγ1(x, 1).

(iii) Let γ1 ≤ γ2 ≤ ... with γn = (An, Bn) for every n < ω0 and γ =
supn<ω0

(An, Bn) = (
⋃
n<ω0

An,
⋃
n<ω0

Bn).
We observe that

• |
⋃
n<ω0

An| ≤ ℵ0,

• 0 ∈
⋃
n<ω0

An

• every isolated point of
⋃
n<ω0

An belongs to some Ak, hence it is iso-
lated also in K.

Moreover |
⋃
n<ω0

Bn| ≤ ℵ0 and for every β ∈ B there exists k ∈ ω0 such
that β ∈ Bk, hence β + 1 ∈ Ak ⊂

⋃
n<ω0

An. Therefore γ ∈ Γ.
Let (x, i) ∈ AD(K), if i = 0 or i = 1 and x /∈ Bn for every n ∈ ω0 we have

lim
n∈ω0

rγn(x, i) = lim
n∈ω0

(rAnx, 0) = rγ(x, i).

If i = 1 and x ∈ Bn0 for some n0 < ω0 then

lim
n∈ω0

rγn(x, 1) = (x, 1) = rγ(x, 1).

(iv) Let (x, i) ∈ AD(K), if i = 0 then

lim
γ∈Γ

rγ(x, 0) = lim
A∈A

(rA(x), 0) = (x, 0).

If i = 1 set γ0 = ({0, x+1}, {x}) if x < η and γ0 = (0, {η}) if x = η. Then
for γ ≥ γ0 we have rγ(x, 1) = (x, 1). Therefore lim

γ∈Γ
rγ(x, 1) = (x, 1) and

(iv) is proved.

Hence {rγ}γ∈Γ is a retractional skeleton on AD(K).
This completes the proof.

6 Associated Banach spaces

In this section we generalize Section 4 of [7] to the non-commutative case. Though
the ideas, of following proofs, are the same of [7] we prefer to give every result
because they are interesting in the non-separable Banach space theory setting.

Proposition 6.1. Let X be a Banach space, then the following assertions are equiv-
alent.

(i) X is linearly isometric to a subspace of a Banach space Y , that has a 1-
projectional skeleton.
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(ii) (BX∗ , w
∗) contains a dense convex symmetric weakly non-commutative Corson

countably compact space.

(iii) (BX∗ , w
∗) is a weakly non-commutative Valdivia space.

Proof. (i)⇒ (ii) Let i be the isometric injection of X into Y and i∗ be the adjoint
surjection of Y ∗ onto X∗.
By [2, Proposition 3.14] there exists a convex symmetric set R induced by a retrac-
tional skeleton in (BY ∗ , w

∗). Hence by Theorem 2.2 R is a dense non-commutative
Corson countably compact space.
Since i∗ is a linear w∗-w∗-continuous mapping and i∗(BY ∗) = BX∗ , we have that
i∗(R) is a convex symmetric dense weakly non-commutative Corson countably com-
pact space.
(ii) ⇒ (iii) Easily follows by de�nition of weakly non-commutative Valdivia com-
pact space.
(iii)⇒ (i) Suppose (BX∗ , w

∗) is weakly non-commutative Valdivia. Then there ex-
ist a non-commutative Valdivia compact space K and a continuous onto mapping
T : K → (BX∗ , w

∗). By [2, Proposition 3.15] C(K) has a 1-projectional skeleton.
Moreover, using the adjoint map of T we have that C(BX∗ , w

∗) is an isometric
subspace of C(K). Observing that, by Hahn-Banach extension theorem, we have
X ↪→ C(BX∗ , w

∗), X ↪→ C(K) isometrically.

De�nition 6.2. Let X be a Banach space, we will call it non-commutative weakly
WLD if and only if (BX∗ , w

∗) is a weakly non-commutative Corson compact.

Proposition 6.3. The class of non-commutative weakly WLD Banach spaces is
closed under isomorphisms, subspaces and quotients.

Proof. Let X be a non-commutative weakly WLD Banach space and the map T :
Y → X be an isomorphism. Using Lemma 2.9 and observing that (T ∗)−1(BY ∗) is
a weak∗-closed subspace of λBX∗ , for some λ ∈ R+, we have that BY ∗ is a weakly
non-commutative Corson compact space. Therefore Y is a non-commutative weakly
WLD Banach space.
Let X be a non-commutative weakly WLD Banach space and Y be a closed subspace
ofX. Let i : Y → X be the canonical embedding then i∗(BX∗) = BY ∗ . Using Lemma
2.9 we have that BY ∗ is a weakly non-commutative Corson compact. Therefore Y
is a non-commutative weakly WLD Banach space.
LetX be a non-commutative weakly WLD Banach space and Y be a closed subspace.
Since (X/Y )∗ is canonically isometric and weak∗ homeomorphic to Y ⊥ and Y ⊥ is
a weak∗-closed subspace of X∗, we have by Lemma 2.9 that B(X/Y )∗ is weakly non-
commutative Corson. Therefore X/Y is a non-commutative weakly WLD Banach
space.

Proposition 6.4. Let X be a Banach space such that X∗ contains a convex weak∗

-compact subset that is not weakly non-commutative Valdivia. Then there is an
equivalent norm on X ×R such that it cannot be linearly isometric to any subspace
of Y , where Y is any Banach space with 1-projectional skeleton.
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Proof. Let K ⊂ X∗ be a convex weak∗ compact that is not weakly non-commutative
Valdivia. Put

B = conv((
1

2
BX∗ × [−1

2
,
1

2
]) ∪ (K × {1}) ∪ (−K × {1})).

Since (1
2
BX∗ × [−1

2
, 1

2
]) ⊂ B ⊂ (BX∗ × [−1, 1]), we have that B is a dual unit

ball of X × R. Furthermore, since K × {1} =
⋂
n∈ω0

K × (1 − 1
n
, 1], it is a weak∗

closed weak∗ Gδ subset of B. Suppose by contradiction that B is weakly non-
commutative Valdivia. By Proposition 3.6 K must be a weakly non-commutative
Valdivia compact space, which is a contradiction. Then the statement follows by
Proposition 6.1.

We observe that it is possible to prove the previous result in the complex setting,
we de�ne

B = conv(
1

2
BX∗ ×D(0, 1/2) ∪ conv

⋃
|α|=1

{αK × {α}}
w∗

),

where D(0, 1/2) is the complex disk with centre in the origin and radius equal to
1/2. Then the proof follows using the same construction as in [5, Theorem 4].

Corollary 6.5. Let K be a compact space such that there exists a closed sub-
set L ⊂ K with a dense set of (relatively) Gδ points which is not weakly non-
commutative Valdivia. Then there exists an equivalent norm on C(K) such that it
cannot be linearly isometric to any subspace of Y , where Y is any Banach space with
1-projectional skeleton.

Proof. By Theorem 3.7 P (L) is not weakly non-commutative Valdivia. Since P (L)
can be identi�ed with a convex weak∗ compact subset of P (K), the statement follows
by Proposition 6.4.

Proposition 6.6. Let X, Y be Banach spaces. Suppose that Y has a 1-projectional
skeleton, the norm on X is Gâteaux smooth and X is isometric to some subspace of
Y . Then X is non-commutative weakly WLD.

Proof. Let D be a dense weakly non-commutative Corson countably compact sub-
space of BX∗ . Let x∗ ∈ SX∗ be a functional that attains its norm at some point
x0 ∈ SX . Since the hyperplane {y∗ ∈ X∗ : y∗(x0) = 1} is weak∗ Gδ and the norm
on X is Gâteaux di�erentiable at x0, then

{x∗} = {y∗ ∈ X∗ : y∗(x0) = 1} ∩BX∗ .

Therefore x∗ is a weak∗ Gδ point of BX∗ . Hence it belongs to D. By the Bishop-
Phelps theorem the subset of norm-attaining functionals is norm dense in SX∗ . Since
D is closed with respect to limits of sequences we have that SX∗ ⊂ D. Using the
corollary of Josefson-Nissenzweig theorem we have that BX∗ ⊂ D. Hence we are
done.

Proposition 6.7. Let K be a weakly non-commutative Corson compact space with
property (M). If L is a compact space such that C(L) is isomorphic to C(K), then
L is weakly non-commutative Corson.

23



Proof. Since K is a weakly non-commutative Corson compact space with property
(M), using Theorem 3.9 we have that C(K,C) is non-commutative weakly WLD.
Since the class of non-commutative weakly WLD spaces is closed under isomor-
phisms we have that C(L,C) is non-commutative weakly WLD. Therefore by def-
inition of non-commutative weakly WLD we have that (BC(L,C)∗ , w

∗) is a weakly
non-commutative Corson compact space. Finally, since L is a closed subset of
(BC(L,C)∗ , w

∗), using Lemma 2.9, we have that L is weakly non-commutative Corson
compact as well. The proof holds for the real case as well.

Observing that for every ordinal number η the topological space [0, η] has the
property (M) we have the following result.

Corollary 6.8. Let L be a compact space. Suppose that C(L) is isomorphic to
C([0, η]), for some ordinal number η. Then L is a weakly non-commutative Corson
compact space.
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