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Abstract

In the first part of this paper we will prove the Voevodsky’s nilpo-
tence conjecture for smooth cubic fourfolds and ordinary generic Gushel-
Mukai fourfolds. Then, making use of noncommutative motives, we
will prove the Voevodsky’s nilpotence conjecture for generic Gushel-
Mukai fourfolds containing a τ -plane Gr(2, 3) and for ordinary Gushel-
Mukai fourfolds containing a quintic del Pezzo surface.

Introduction and statement of the results

In 1995 Voevodsky conjectured the following statement for the algebraic
cycles of a smooth projective k-scheme X:

Conjecture (V). ([26], Conjecture 4.2) Z∗⊗nil
(X)F coincides with Z∗⊗num(X)F .

Here, Z∗(X)F denotes the group of algebraic cycles of X, ⊗nil denotes
the smash-nilpotence equivalence relation on Z∗(X)F , introduced in [26],
and ⊗num denotes the classical numerical equivalence relation on Z∗(X)F
(see §1).
Voevodsky’s nilpotence conjecture was classically known for curves, sur-
faces, abelian threefolds and uniruled threefolds (see [1], [10], [19], [21], [26]
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and [27]).

In 2014, motivated by the above conjecture, Bernardara, Marcolli and
Tabuada stated the following conjecture for a smooth and proper dg cate-
gory A:

Conjecture (Vnc). ([4], Introduction) K0(A)/∼⊗nil is equal to K0(A)/∼⊗num .

Here, K0(A) denotes the Grothendieck group of the full subcategory
Dc(A) of compact objects of the derived category of A, ∼ ⊗nil and ∼
⊗num denote two equivalence relations on the Grothendieck group K0(A),
as explained in §3.

They also reformulate Voevodsky’s conjecture in the following way:

Theorem (BMT). ([4], Theorem 1.1) Let X be a smooth projective k-
scheme. The conjecture V(X) is equivalent to the conjecture Vnc(perfdg(X)).

Here, perfdg(X) denotes the unique enhancement of the derived cate-
gory of perfect complexes on X. Making use of noncommutative motives,
Voevodsky’s conjecture was proven for quadric fibrations, intersection of
quadrics, linear sections of Grassmannians, linear sections of determinantal
varieties, homological projective duals and a particular Moishenzon mani-
fold (see [4] and [5] for details).

The main result of this paper is the proof of Voevodsky’s conjecture for
cubic fourfolds and ordinary generic Gushel-Mukai fourfolds. We recall that
a cubic fourfold is a smooth complex hypersurface of degree 3 in P5, while a
Gushel-Mukai fourfold is a smooth and transverse intersection of the form
Cone(Gr(2, V5))∩Q, where Q is a quadric hypersurface in P8 ⊂ P(

∧2 V5⊕C).

Theorem (A). Let X be a cubic fourfold or an ordinary generic Gushel-
Mukai fourfold; then the conjecture V(X) holds.

In order to prove this conjecture, we use the decomposition in rational
Chow motives of a flat morphism, computed by Vial in [25], Corollary 4.4.
Indeed, we recall that a cubic fourfold X admits a flat conic fibration ob-
tained by blowing up a line inside X and, then, projecting on a P3 which
does not intersect the line (Lemma 2.1). On the other hand, in Proposition
2.3, we construct a flat conic fibration over a P3 by blowing up a smooth
del Pezzo surface of degree four in an ordinary generic Gushel-Mukai four-
fold. By Vial’s result, we deduce a decomposition of the Chow motive of
a cubic fourfold and of an ordinary generic Gushel-Mukai fourfold, whose
summands correspond to varieties of smaller dimension and for which the
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Voevodsky’s conjecture is known.

As a direct consequence of Theorem (A), we prove the noncommuta-
tive version of Voevodsky’s nilpotence conjecture for the Kuznetsov cat-
egory of a cubic fourfold and the GM category of an ordinary generic
Gushel-Mukai fourfold. Indeed, we recall from [13] that the derived cat-
egory of a cubic fourfold X has a semiorthogonal decomposition of the
form perf(X) = 〈AX ,OX ,OX(H),OX(2H)〉. Here, the line bundles OX ,
OX(H) and OX(2H) are exceptional objects and AX is a noncommutative
K3 surface in the sense of Kontsevich. Analogously, in [15], Proposition
2.3, they proved that the derived category of a Gushel-Mukai fourfold X
admits a semiorthogonal decomposition with four exceptional objects and
a non-trivial part AX ; again, the subcategory AX is a noncommutative K3
surface in the sense of Kontsevich (see §4).

Let X be a cubic fourfold or a Gushel-Mukai fourfold; we denote by
Adg
X the dg enhancement of the category AX induced from perfdg(X). By

Theorem (A), it is immediate to deduce the proof of conjecture Vnc for Adg
X

as explained below.

Theorem (B). Let X be a cubic fourfold or an ordinary generic Gushel-
Mukai fourfold; then Vnc(Adg

X) holds.

An application of the part of Theorem (A) concerning cubic fourfolds
is the following result, which states the Voevodsky’s conjecture for generic
Gushel-Mukai fourfolds containing a τ -plane.

Theorem (C). Let X be a generic Gushel-Mukai fourfold containing a
plane P of type Gr(2, 3); then V(X) holds.

We point out that the proof of Theorem (C) is based on the fact that the
semiorthogonal decomposition of perf(X) contains the Kuznetsov category
associated to a cubic fourfold, as showed in [15], Theorem 1.3.

To the best of the authors knowledge, Theorem (A) and Theorem (C)
prove Voevodsky’s nilpotence conjecture in new cases.
We believe that Theorem (B) provides a new tool for the proof of Voevod-
sky’s conjecture of a smooth projective k-scheme whose derived category of
perfect complexes contains the noncommutative K3 surface AX .

The plan of the paper is the following. In Section 1 we briefly survey
some constructions and basic properties of pure motives. In Section 2.1 we
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recall the construction of a conic fibration associated to a cubic fourfold, ob-
tained by blowing up a line and then projecting on a disjoint P3. The main
result of Section 2.2 is the construction of a conic fibration associated to
an ordinary generic Gushel-Mukai fourfold (Proposition 2.3). Section 2.3 is
devoted to prove Theorem (A). In Section 3 we recall the formulation of the
noncommutative Voevodsky’s conjecture and its connection with the clas-
sical version. In Section 4 we give a brief review of the notion of Kuznetsov
category (resp. GM category) associated to a cubic fourfold (resp. a Gushel-
Mukai variety). Then, we prove Theorem (B). In Section 5 we show some
consequences of the results proved in the previous sections. In particular,
we prove the Voevodsky’s conjecture for Gushel-Mukai fourfolds containing
some particular surfaces (Theorem (C) and Theorem (D)).
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prove this short article.
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Notations and conventions: The letter k will stand for a field. The
letter F will denote a commutative ring. Throughout the article we will
assume that all cubic fourfolds and Gushel-Mukai varieties are smooth. We
will denote by perf(X) the derived category of perfect complexes of OX -
modules and by perfdg(X) the corresponding (unique) dg enhancement. We
point out that if X is a smooth and projective scheme, then perf(X) coin-
cides with the derived category Db(X) of bounded complexes of coherent
sheaves on X. Moreover, if there exists a semiorthogonal decomposition of
the form perf(X) = 〈T1, ..., Tl〉, then T dg

i is the dg enhancement induced
from perfdg(X).

4



1 Background in pure motives

In this first section we give some information about the theory of pure
motives. In particular, we define the group of algebraic cycles and some
adequate equivalence relations on it. Then, we give an idea of the con-
struction of the category of Chow motives. Our refence is [1], Chapitre 3
and Chapitre 4. Finally, we recall some basic properties of rational motivic
decomposition we will use in the next.

Let k be a field.

Definition 1.1 (Group of algebraic cycles). Let X be a smooth projective
k-scheme. We define the group of algebraic cycles Z∗(X) to be the direct
sum

⊕
d∈NZd(X), where Zd(X) denotes the group

Zd(X) :=
{
V =

∑
i

niVi,
s.t. ni ∈ Z and Vi is an irreducible reduced
closed subscheme with codimX(Vi) = d

}
.

Remark 1. If F is a commutative ring, we set Z∗(X)F = Z∗(X)⊗ F .
For any pair α, β ∈ Z∗(X)F , we denote by α · β their intersection

product. In order to define a ring structure on the group of algebraic cycles
induced by the intersection product, it is necessary to quotient the group
by an adequate equivalence relation. We give some examples of adequate
relations.

Example 1.1 (Rational equivalence). We say that two algebraic cycles
α and β in Zd(X)F are rationally equivalent (α ∼rat β) if there exists an
algebraic cycle γ ∈ Zd(X×P1)F , flat over P1, such that i−10 γ−i−1∞ γ = α−β.
The maps i0 : X × {0} → X × P1 and i∞ : X × {∞} → X × P1 are
the respective inclusions. In the case of divisors, the condition above is
equivalent to say that there exists a rational function f on X such that
α − β = Z(f). We call Chow ring the ring Z∗(X)F /∼rat and we denote it
by Chow(X). In the sequel, we will also use the notation CHi(X) to denote
the Chow group of i-dimensional cycles modulo rational equivalence.

Example 1.2 (Smash-nilpotence equivalence). We say that an algebraic
cycle α ∈ Z∗(X)F is smash-nilpotent equivalent to zero if there exists a
positive integer n such that α⊗n is equal to 0 in Chow(Xn). Two algebraic
cycles α, β ∈ Z∗(X)F are smash-nilpotent equivalent (α ∼⊗nil β) if the
algebraic cycle α− β is smash-nilpotent equivalent to zero.

Example 1.3 (Numerical equivalence). Let n be the dimension of X. We
say that an algebraic cycle α ∈ Zd(X)F is numerically trivial if for all
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γ ∈ Zn−d(X)F , we have γ · α ∼⊗rat 0. Two cycles α and β are numerically
equivalent (α ∼num β) if the algebraic cycle α− β is numerically trivial.

Roughly speaking, we can define the category of Chow motives whose
objects are triples (X, p, r), where X is a smooth projective k-scheme, p is
an idempotent endomorphism and r is an integer, and whose morphisms
are obtained by the algebraic cycles. We denote by Chow(k) the category
of Chow motives. For further details about the construction of Chow(k)
and Chow(k)F consult [1], Chapitre 4.
We have a contravariant symmetric monoidal functor

h : SmProj(k)→ Chow(k)
X 7→ h(X),

where SmProj(k) denotes the category of smooth and projective k-schemes.
It is well known that Chow(k) is an additive, idempotent complete and rigid
symmetric monoidal category. We list some properties of the functor h.

1.1 Projective space

Let us denote by 1 the ⊗-unit of the category Chow(k); we recall that
h(P1) = 1⊕ L, where L denotes the Lefschetz motive.
In more general terms, for every positive integer n, we have the decompo-
sition h(Pn) =

⊕n
i=0 1(−i), where 1(1) denotes the Tate motive (i.e. the

inverse of L, formally 1(−1) = L) and −(i) denotes −⊗ 1(1)⊗i.

1.2 Blowups

The functor h is "well behaved" with respect to blowups. In detail, let X
be a smooth projective variety over a field k and let j : Y ↪→ X be a smooth
closed subvariety of codimension r. Then the blowup πY : BlY (X)→ X of
X in Y induces an isomorphism of Chow motives h(X)⊕

⊕r−1
i=1 h(Y )(i)→

h(BlY (X)) (see [18], Section 7). As a consequence, if dimY ≤ 2, then
V(BlY (X)) holds if and only if V(X) holds.

1.3 Flat morphisms

Consider a flat morphism f : X → B in SmProj(k), with X and B of
dimension dX and dB, respectively. We denote by Xb the fiber of f over
a point b in B and let Ω be a universal domain containing k. Assume
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that CHl(Xb) = Q, for all 0 ≤ l < dX−dB
2 and for all points b ∈ B(Ω).

Then we have a direct sum decomposition of the Chow motive of X as
h(X) '

⊕dX−dB
i=0 h(B)(i) ⊕ (Z, r, bdX−dB+1

2 c), where Z is a smooth and
projective variety of dimension

dZ =

{
dB − 1, if dX − dB is odd,
dB, if dX − dB is even.

For a complete proof of this result, we refer to [25], Theorem 4.2, Corollary
4.4.

Remark 2. We point out that the same results hold for the category Chow(k)F
for any field F .

2 Cubic fourfolds and Gushel-Mukai varieties

The aim of this section is to prove Theorem (A). To this end, we discuss
the construction of quadric fibrations over the projective space P3, obtained
form the blow-up of a cubic fourfold (resp. a GM fourfold) over a line (resp.
a surface). Then, we show how to use this geometric construction to prove
Voevodsky’s nilpotence conjecture for cubic fourfolds and ordinary generic
GM fourfolds. From now on, the field k is the complex field C.

2.1 Cubic fourfolds

Definition 2.1 (Cubic fourfold). A cubic fourfold is a smooth complex
hypersurface of degree 3 in P5.

We observe that a cubic fourfold X contains (at least) a line l. Actually,
by [3], the Fano variety parametrizing lines on X is an irreducible holomor-
phic symplectic fourfold, deformation equivalent to the Hilbert scheme of
points of length two on a K3 surface.

We denote by l a line in X and let Bll(X) be the blow-up of X in l. The
aim of this paragraph is to prove that the projection from the line l induces
a flat quadric fibration from Bll(X).

Lemma 2.1. Let X be a smooth cubic fourfold and let l be a line in X.
Then the linear projection from the line l induces a flat quadric fibration
from the blow-up Bll(X) to P3.

Proof. Let V6 be a six-dimensional vector space such that X ⊂ P(V6) ∼= P5.
Let V2 be a two-dimensional subvector space of V6 such that l = P(V2) ∼= P1

and we set V4 := V6/V2. We denote by Bll(P(V6)) the blow-up of P(V6) in l.
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Then the projection from the line l defines a regular map π : Bll(P(V6))→
P(V4) ∼= P3, which is a P2-bundle over P3. Let πl : Bll(X) → X be the
blow-up of X along l. Then the restriction of π to Bll(X) induces a smooth
flat conic fibration f : Bll(X) → P(V4) ∼= P3. In other words, we have the
following commutative diagram

Bll(X)

πl
��

� � //

f
''

Bll(P(V6))

π

��

X ⊂ P(V6) P(V4)

where f is the map claimed in the statement.

2.2 Gushel-Mukai varieties

Let V5 be a k-vector space of dimension 5; considering the Plücker embed-
ding, we have that Cone(Gr(2, V5)) ⊂ P(k ⊕ ∧2V5). We denote by W a
linear subspace of dimension n+ 5 of ∧2V5 ⊕ k (with 2 ≤ n ≤ 6).

Definition 2.2 (Gushel-Mukai n-fold). We define a Gushel-Mukai n-fold
X to be a smooth and transverse intersection of the form

X = Cone(Gr(2, V5)) ∩Q,

where Q is a quadric hypersurface in P(W ).
We say that X is:

• Ordinary if X is isomorphic to a linear section of Gr(2, V5) ⊂ P9,

• Special if X is isomorphic to a double cover of a linear section of
Gr(2, V5) branched along a quadric section.

From now on, we will write GM instead of Gushel-Mukai.

Let X be a GM variety. Notice that X does not contain the vertex of
the cone over Gr(2, V5), because X is smooth. Thus, we have a regular map
defined by the projection from the vertex:

γX : X → Gr(2,V5).

Definition 2.3 (Gushel bundle). Let U be the tautological bundle of rank 2
over Gr(2, V5). We define theGushel bundle to be the pullback UX := γ∗XU .
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We denote by π : PX(UX)→ X the projectivization of the bundle UX .
We can consider the map

ρ : PX(UX)→ P(V5)

induced by the embedding UX ↪→ V5 ⊗ OX . By [8], Proposition 4.5, we
have that ρ is a fibration in quadrics.

Now, let us suppose that X is an ordinary GM fourfold. By [8], Remark
3.15 and Remark B.4, the fibers of ρ are all conics in P2 except for the fiber
over a point v0 in P(V5), which is a 2-dimensional quadric in P3. Let us fix
a four-dimensional subvector space V4 of V5 such that the point v0 is not
contained in P(V4). We set

X̃ := PX(UX)×P(V5) P(V4)

and we denote by ρ̃ the restriction of ρ to X̃. Thus, we have the following
commutative diagram

X̃

σ

}}

ρ̃

��

// PX(UX)

ρ

��

π

		

X P(V4)oo // P(V5)ii

(1)

By the previous observations, we have that the restriction ρ̃ defines a flat
conic fibration over P(V4) ∼= P3. In the rest of this section, we prove that
X̃ is smooth when X is generic.

Notice that for every x inX, the fiber of σ over x is equal to P(UX,x∩V4).
In particular, we have that σ−1(x) is a point (resp. a line) if the dimension
of UX,x ∩ V4 is equal to 1 (resp. if UX,x ⊂ V4). It follows that the locus of
non trivial fibers of σ is the intersection

E := Gr(2, V4) ∩X = Gr(2, V4) ∩ P(W ) ∩Q ⊂ P(
2∧
V5) ∼= P9 . (2)

Since the Grassmannian Gr(2, V4) has degree 2, we have that the degree of
E is at most 4. Moreover, the expected dimension of E is 2. On the other
hand, by Lefschetz Theorem the fourfold X cannot contain a divisor with
degree less than 10, because its class has to be cohomologous to the class
of a hyperplane in X. Thus, we conclude that dim(E) ≤ 2. In the next
lemma, we show that E is smooth under generality assumptions on P(W )
and Q; in this case, E is a del Pezzo surface of degree 4.

9



Lemma 2.2. If W is a generic vector space of dimension 9 in
∧2 V5 and

Q is a generic quadric hypersurface in the linear system |OP(W )(2)|, then E
defined in (2) is a smooth and irreducible surface.

Proof. We consider the intersection Y := P(W ) ∩ Gr(2, V4) ⊂ P(
∧2 V5) ∼=

P9. By Bertini’s Theorem on hyperplane sections (see [9], Chapter 1), we
have that Y is smooth and irreducible, because P(W ) is a generic hyperplane
in P9.

Let i : Y ↪→ P8 be the embedding of Y in P(W ) ∼= P8. Notice that if
Y is contained in the quadric Q, then Y = E would be a smooth divisor in
X with degree less than 10, in contradiction with the previous observation.
Hence, we have that the quadric Q does not contain Y . Again by Bertini’s
Theorem, the intersection Y ∩ Q = E is smooth and irreducible. Indeed,
we can consider the embedding of P8 in P(H0(P8,O(2))) ∼= PN defined
by O(2). The quadric hypersurfaces in P8 correspond to hyperplanes in PN
via this embedding. Thus, by Bertini’s Theorem for hyperplane sections, we
conclude that the intersection of the image of Y with the generic hyperplane
in PN , corresponding to the generic quadric Q, is smooth and irreducible.
Hence, we conclude that E is smooth and irreducible of dimension 2, as we
wanted.

As a consequence, we obtain the smoothness of the restriction to a
hyperplane of the conic fibration ρ.

Proposition 2.3. Let X be an ordinary generic GM fourfold. Then X̃ is
the blow-up of X in E (so it is smooth) and the map ρ̃ : X̃ → P(V4) defined
in (1) is a flat conic fibration.

Proof. We observe that the quadric Q which defines X is generic in the
linear system |OP(W )(2)|, because X is a generic quadric section of the in-
tersection P(W ) ∩ Gr(2, V5). On the other hand, we recall that, by [8],
Lemma 2.7, there exists a functor between the groupoid of polarized GM
varieties to the groupoid of GM data, which is an equivalence by [8], The-
orem 2.9. In particular, a generic X corresponds to a generic GM data
(W,V6, V5, L, µ,q, ε). Thus, the vector spaces and the linear maps which
define this GM data are generic and, then, W is a generic subvector space
in

∧2 V5. By Lemma 2.2, we have that the locus E defined by (2) is smooth
and irreducible.

Notice that σ−1(E) is by definition the projective bundle PE(UX)→ E.
On the other hand, the exceptional divisor of the blow-up of X in E is
isomorphic to the projectivized conormal bundle PE(N ∗E|X). Since E can
be represented as the zero locus of a regular section of U ∗

X , the conormal
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bundle of E in X is isomorphic to UX . Hence, we deduce that X̃ is the
blow-up of X in E. It follows that X̃ is smooth and ρ̃ : X̃ → P(V4) is a flat
conic fibration, as we claimed.

2.3 Proof of Voevodsky’s nilpotence conjecture for cubic
fourfolds and generic GM fourfolds

In [26] Voevodsky conjectured the following statement for the algebraic
cycles:

Conjecture (V). Let X be a smooth projective k-scheme; let Z∗⊗nil
(X)F

and Z∗⊗num(X)F be the ring of algebraic cycles modulo the relation of Ex-
ample 1.2 and of Example 1.3, respectively. Then Z∗⊗nil

(X)F coincides with
Z∗⊗num(X)F .

State of art. Conjecture V was proven for curves, surfaces, abelian three-
folds, uniruled threefolds (see [1], [10], [19], [21], [26], [27]), and, making use
of noncommutative motives, for quadric fibrations, intersection of quadrics,
linear sections of Grassmannians, linear sections of determinantal varieties
and some homological projective duals (see [4]).

Theorem (A). Let X be a cubic fourfold or an ordinary generic GM four-
fold. Then the conjecture V(X) holds.

Proof. Let X be a cubic fourfold and we consider the blow-up of X along a
line l. By Subsection 1.3 and Lemma 2.1, the Chow motive of the blow-up
decomposes as

h(Bll(X)) '
1⊕

k=0

h(P3)(k)⊕ (Z, r, 1) '
1⊕

k=0

(

3⊕
i=0

1(−i))(k)⊕ (Z, r, 1),

where r ∈ End(h(Z)) and dim Z = dim P3 − 1 = 2. It means that conjec-
ture V holds for Bll(X): by Subsection 1.2 we conclude that conjecture V
holds for X, as we wanted.

If X is an ordinary generic GM fourfold, the same strategy applied to
the conic fibration of Proposition 2.3 gives the required statement.

3 The noncommutative setting

The aim of this section is to recall the formulation of noncommutative Vo-
evodsky’s conjecture and its relation with the classical version. Our main
references are [4] and [22].
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3.1 Dg categories

Let C(k) be the category of differential graded k-modules. A differential
graded category (shortly a dg-category) is a category enriched over C(k)
(i.e. morphism sets are complexes), whose compositions fulfill the Leibniz
rule:

d(f ◦ g) = d(f) ◦ g + (−1)deg(f)f ◦ d(g).

A dg functor is a functor between dg categories enriched over C(k). We
denote by dgcat(k) the category whose objects are small dg categories and
whose morphisms are dg functors. Consult [11] for a complete survey.
Let A be a dg category. A right dg A-module is a dg functor M : Aop →
Cdg(k), where Cdg(k) is the dg category of dg k-modules and Aop is the
opposite category. We denote by Mod-A the category of dg A-modules.
The derived category of A, denoted by D(A), is the localization of Mod-A
with respect to the class of objectwise quasi-isomorphisms.
A dg functor F : A → B is a Morita equivalence if the induced functor
LF! : D(A)→ D(B) on derived categories is an equivalence of triangulated
categories.
We note that the tensor product of k-algebras gives rise to a symmetric
monoidal structure -⊗ - on dgcat. The ⊗-unit is the dg category with one
object k.
Moreover we say that a dg category A is smooth if it is perfect as a bimodule
over itself. We say that A is proper if for every couple of objects x, y ∈ A
the complex of k-modules A(x, y) is perfect. The definitions of smooth and
proper dg category are due to Kontsevich (see also [22], Definition 1.14).

3.2 Dg enhancements

Let X be a smooth projective k-scheme. We know that the category of
perfect complexes perf(X) has a unique dg enhancement perfdg(X) (cf. [16],
Theorem 7.9, or [6], Proposition 6.10), which is smooth and proper as a dg
category.
Moreover, suppose that the derived category of perfect complexes on X has
a semiorthogonal decomposition of the form perf(X) = 〈A1, ...,An〉. Then,
by [4], Lemma 2.1, we have that every dg category Adg

i is smooth and proper
(where Adg

i denotes the dg enhancement of the subcategory Ai induced from
perfdg(X)).
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3.3 Voevodsky conjecture in the noncommutative case

Let A be a smooth and proper dg category. We denote by K0(A) the
Grothendieck group K0(Dc(A)), where Dc(A) denotes the subcategory of
compact objects in D(A). In analogy to algebraic cycles, we can define
some equivalence relations on K0(A). We discuss the two examples we deal
with. Our reference is [4], Sections 2.3 and 2.4.

Example 3.1 (⊗-nilpotence equivalence relation). We say that an element
[M ] in K0(A) is ⊗-nilpotent if there exists a positive integer n such that
[M × n] = 0 in the Grothendieck group K0(A⊗n). Given [M ] and [N ]
in K0(A), we say that [M ] and [N ] are ⊗-nilpotent equivalent (shortly
[M ]∼⊗nil [N ]) if [M ]-[N ] is ⊗-nilpotent.

We have a bilinear form χ(−,−) on K0(A) defined as

(M,N)→
∑
i

(−1)idim HomDc(A)(M,N [i]).

The left and right kernels of χ(−,−) are the same.

Example 3.2 (Numerical equivalence relation). We say that an element
[M ] in K0(A) is numerically trivial if χ([M ], [N ]) = 0 for all [N ] ∈ K0(A).
We say that [M ] and [N ] are numerically trivial equivalent (shortly
[M ]∼⊗num [N ]) if [M ]-[N ] is numerically trivial.

Remark 3. The equivalence relations defined above give rise to well defined
equivalence relations on K0(A)F .

In [4] Bernardara, Marcolli and Tabuada conjectured the following state-
ment:

Conjecture (Vnc). LetA be a smooth proper dg category. Then K0(A)/∼⊗nil

is equal to K0(A)/∼⊗num .

Moreover, we have the following result which relates the Voevodsky’s
nilpotence conjecture and its noncommutative version:

Theorem (BMT). ([4], Theorem 1.1) Let X be a smooth projective k-
scheme. The conjecture V(X) holds if and only if Vnc(perfdg(X)) holds.

3.4 Noncommutative Chow motives

We denote by Hmo(k) the localization of dgcat(k) with respect to the class
of Morita equivalences. We observe that the tensor product of dg categories
gives rise to a symmetric monoidal structure on Hmo(k).
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Definition 3.1 ([22], Definition 4.1). The category NChow(k) of noncom-
mutative Chow motives is the pseudoabelian envelope of the full subcategory
of smooth and proper dg categories in Hmo(k).

We recall that the symmetric monoidal functor

U : dgcat→ Hmo(k)

extends to NChow(k) (see [22], Section 1.6 and Theorem 2.9).
Remark 4. Let X be an object in SmProj(k). If perf(X) = 〈T1, ..., Tl〉, then
U(perfdg(X)) = U(T dg

1 ) ⊕ ... ⊕ U(T dg
l ), where T dg

i is the dg enhancement
induced from perfdg(X) (see [5], Proposition 3.1).

4 Kuznetsov category and GM category

In this section we recall some facts about the decomposition of the derived
category of a cubic fourfold X (resp. of a GM variety). In particular, we
remark some properties about the Kuznetsov category (resp. the GM cate-
gory) AX associated to X. Then we prove Voevodsky’s nilpotence conjec-
ture for the Kuznetsov category of a cubic fourfold and for the GM category
of an ordinary generic GM fourfold.

4.1 Kuznetsov category

Let X be a cubic fourfold. The derived category of perfect complexes
perf(X) admits a semiorthogonal decomposition given by

perf(X) = 〈AX ,OX ,OX(H),OX(2H)〉, (?)

where H is a hyperplane section and AX is defined as:

AX = 〈OX ,OX(H),OX(2H)〉⊥

= {E ∈ perf(X) s.t. RHomperf(X)(OX(i), E) = 0 for i = 0, 1, 2}

We call AX the Kuznetsov category.
We recall that the triangulated subcategoryAX is a Calabi-Yau category

of dimension 2; indeed, the Serre functor is equal to the shift -[2], i.e. for
every pair of objects F,E we have

RHomAX
(E,F )∗ ' RHomAX

(F,E)[2].

Moreover, AX has the same sized Hochschild (co)homology of the derived
category of a K3 surface. Thus, the Kuznetsov category is a noncommutative
K3 surface in the sense of Kontsevich (see [13], [12], Corollary 4.3 and [14],
Proposition 4.1).

14



Remark 5. We recall that if X is a cubic fourfold containing a plane, we can
prove V-conjecture via noncommutative motives. In fact, if X contains a
plane, we have that AX is equivalent to Db(S,B), where S is a K3 surface,
B is a sheaf of Azumaya algebras on S and Db(S,B) is the derived category
of coherent B-modules on S (see [13], Theorem 4.3). Then by [23], Theorem
2.1 and Remark 4, we have the following decomposition in NChow(k):

U(perfdg(X)) ' U(perfdg(S))⊕ U(C)⊕ U(C)⊕ U(C).

Using Theorem (BMT), since V(S) holds, we conclude that also V(X) holds,
as we claimed.

4.2 GM category

Let X be a GM n-fold; in [15], Proposition 4.2, they proved that its derived
category of perfect complexes has a semiorthogonal decomposition of the
form

perf(X) = 〈AX ,OX ,U ∗
X ,OX(H),U ∗

X(H), ...,OX((n−3)H),U ∗
X((n−3)H)〉,

(∗)
where U ∗

X is the dual of the Gushel bundle previously defined and AX is
defined as:

AX = 〈OX ,U ∗
X ,OX(H),U ∗

X(H), ...,OX((n− 3)H),U ∗
X((n− 3)H)〉⊥.

We call AX the GM category of X.
Assume that X is a GM fourfold. Then, the Serre functor on AX is the

shift by two and the Hochschild cohomology of AX is isomorphic to that
of a K3 surface. In other words, the GM category of a GM fourfold is a
noncommutative K3 surface in the sense of Kontsevich (see [15], Proposition
5.18).

4.3 Proof of conjecture Vnc for the Kuznetsov category and
the GM category of a generic GM fourfold

Using the deep results in [4], [13] and [15] recalled in the previous sections,
it is now clear that Theorem (B) follows easily from Theorem (A).

Theorem (B). Let X be a cubic fourfold or an ordinary generic GM four-
fold. Then Vnc(U(Adg

X)) holds, where Adg
X is the dg enhancement of AX

induced from perfdg(X).
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Proof. Let X be a cubic fourfold. Using the decomposition (?), we have
that the dg enhancement of the triangulated category perf(X) admits the
following decomposition in NChow(k):

U(perfdg(X)) = U(Adg
X)⊕ U(C)⊕ U(C)⊕ U(C).

Hence, the result is a straightforward consequence of Theorem (A).
The proof in the case of an ordinary generic GM fourfold X is analogous,

applying the decomposition (∗) and Theorem (A).

5 Voevodsky’s nilpotence conjecture for GM four-
folds containing surfaces

In this section we will prove Voevodsky’s nilpotence conjecture for generic
GM fourfolds containing a τ -plane and for ordinary GM fourfolds containing
a quintic del Pezzo surface. Let X be a GM fourfold containing a τ -plane P ,
i.e. a plane P of the form Gr(2, V3) for some 3-dimensional subvector space
V3 of V5. In [15], Lemma 7.8, they proved that there exists a cubic fourfold
X ′ containing a smooth cubic surface scroll T such that the blow-up of X
in P is identified to the blow-up of X ′ in T . More precisely, if p : X̃ → X
is the blow-up of X along P and q is the regular map induced by the linear
projection from P , then the diagram

X̃
p

��

q

  

X X ′

(3)

commutes and q is identified with the blow-up of X ′ along T . Moreover,
they showed that if the GM fourfold X does not contain a plane of the form
P(V1 ∧ V4) for some subvectorspaces satisfying V1 ⊂ V3 ⊂ V4 ⊂ V5, then
the cubic fourfold X ′ is smooth. We point out that this construction had
already been described in [7], Section 7.2.

They also observed that a generic GM fourfold containing a τ -plane does
not contain a plane of the form P(V1 ∧ V4) as above; hence, the associated
cubic fourfold X ′ obtained with this geometric construction is smooth. In
this case, they proved that there exists an equivalence of Fourier-Mukai type

φ : AX ' AX′ (4)

between the GM category of X and the Kuznetsov category of X ′ (see [15],
Theorem 1.3).
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Using this construction and Theorem (A) we can prove the Voevodsky’s
nilpotence conjecture for this class of GM fourfolds.

Theorem (C). Let X be a generic GM fourfold containing a plane P of
type Gr(2, 3). Then V(X) holds.

Proof. The derived category of perfect complexes of X has the following
decomposition:

perf(X) = 〈AX ,OX ,U ∗
X ,OX(H),U ∗

X(H)〉.

Since the functor φ defined in (4) is of Fourier-Mukai type, we know that φ
has a dg lift, thanks to the works of [17], Theorem 1.1 and [24], Theorem
8.9. Then the proof is a consequence of Theorem (B) for cubic fourfolds
and Theorem (BMT).

Alternatively, we can prove Theorem (C) by observing that the isomor-
phism of triangulated categories AX ' AX′ is induced by diagram (3).
Then, conjecture V(X) follows from Subsection 1.2 and Theorem (A).

In a similar fashion, we can prove conjecture V for the category of perfect
complexes of ordinary GM fourfolds containing a quintic del Pezzo surface.

Theorem (D). Let X be an ordinary GM fourfold containing a quintic del
Pezzo surface. Then V(X) holds.

Proof. By [15], Theorem 1.2 we have that there exist a K3 surface Y and an
equivalence ψ : AX ' Db(Y ) of Fourier-Mukai type. Since ψ has a dg lift
and conjecture V holds for Y , the proof follows from Theorem (BMT).

References

[1] Y. André, Une introduction aux motifs (motifs purs, motifs mixtes,
periodes), Panoramas et Synthèses 17 (2014), xii+261.

[2] Y. André, Y. and B. Kahn, Nilpotence, radicaux et structures
monoidales, Rend. Sem. Mat. Univ. Padova with an appendix by P.
O’Sullivan 108 (2002), 107-291.

[3] A. Beauville and R. Donagi, La variété des droites d’une hypersurface
cubique de dimension 4, C. R. Acad. Sci. Paris Sér. I Math. (14) 301
(1985), 703-706.

17



[4] M. Bernardara, M. Marcolli and G. Tabuada, Some remarks con-
cerning Voevodsky’s nilpotence conjecture, to appear in Journal für
die reine und angewandte Mathematik (Crelles Journal) (2015),
arXiv:1403.0876v3.

[5] M. Bernardara and G. Tabuada, Chow groups of intersections of
quadrics via homological projective duality and (Jacobians of) non-
commutative motives, Izv. Math. (3) 80 (2016), 463-480.

[6] A. Canonaco and P. Stellari, Uniqueness of dg enhancements for the
derived category of a Grothendieck category, to appear in: J. Eur. Math.
Soc., arXiv:1507.05509.

[7] O. Debarre, A. Iliev and L. Manivel, Special prime Fano fourfolds of
degree 10 and index 2, Recent advances in algebraic geometry, London
Math. Soc. Lecture Note Ser. Cambridge Univ. Press 417 (2015), 123-
155.

[8] O. Debarre and A. Kuznetsov, Gushel-Mukai varieties: classification
and birationalities, arXiv:1510.05448. (2016).

[9] P. Griffiths, and J. Harris, Principles of Algebraic Geometry, Wiley
Classics Library Edition (1978).

[10] B. Kahn and R. Sebastian, Smash-nilpotent cycles on abelian 3-folds,
Math. Res. Lett. (6) 16 (2009), 1007-1010.

[11] B. Keller, On differential graded categories, International congress of
mathematicians II, 151-190.

[12] A. Kuznetsov, Derived categories of cubic and V14 threefolds, Proc.
Steklov Inst. Math. 3 246 (2004), 171-194.

[13] A. Kuznetsov, Derived Categories of Cubic Fourfolds, Cohomological
and geometric approaches to rationality problems, 219-243, Progr.
Math. 282, Birk. Boston, Inc., Boston, MA.

[14] A. Kuznetsov, Derived categories view on rationality problems, Lecture
notes for the CIME-CIRM summer school, Levico Terme, June 22-27
(2015), 26 pages.

[15] A. Kuznetsov, and A. Perry, Derived Categories of Gushel-Mukai va-
rieties, arXiv:1605.06568.

18



[16] V. Lunts, and D. Orlov, Uniqueness of enhancement for triangulated
categories, J. Amer. Math. Soc. 23, 853-908.

[17] V. Lunts, and O.M. Schnürer, New enhancements of derived categories
of coherent sheaves and applications, arXiv:1406.7559.

[18] Yu. I. Manin, Correspondences, motifs and monoidal transformations,
Mat. Sb. (N.S.) 77 (119) 475-507.

[19] T. Matsusaka, The criteria for algebraic equivalence and the torsion
group, Amer. J. Math. 79, 53-66.

[20] O.M. Schnürer, Six operations on dg enhancements of derived categories
of sheaves, arXiv:1507.08697.

[21] R. Sebastian, Smash nilpotence on uniruled 3-folds, arxiv:1404.5853.

[22] G. Tabuada, Noncommutative motives, University Lecture Series 63.
Providence, RI: American Mathematical Society, 2015.

[23] G. Tabuada, and M. Van den Bergh, Noncommutative motives of Azu-
maya algebras, J. Inst. Math. Jussieu 14, no. 2, 379-403.

[24] B. Töen, The homotopy theory of dg-categories and derived Morita
theory, Invent. Math. 167, 615-667.

[25] C. Vial, Algebraic cycles and fibrations, Doc. Math. 18, 1521-1553.

[26] V. Voevodsky, A nilpotence theorem for cycles algebraically equivalent
to zero, Internat. Math. Res. Notices, no. 4, 187-198.

[27] C. Voisin, Remarks on zero cycles of self products of varieties, Moduli
of vector bundles (Sanda, 1994; Kyoto, 1994), 265-285, Lecture Notes
in Pure and Appl. Math. 179, Dekker, New York, 1996.

M.Ornaghi, Dipartimento di Matematica "F. Enriques", Università degli
Studi di Milano, Via Cesare Saldini 50, Milano 20133, Italy.

E-mail address: mattia.ornaghi@unimi.it
URL: https://sites.google.com/view/mattiaornaghi/home

L.Pertusi, Dipartimento di Matematica "F. Enriques", Università degli
Studi di Milano, Via Cesare Saldini 50, Milano 20133, Italy.

E-mail address: laura.pertusi@unimi.it

URL: http://www.mat.unimi.it/users/pertusi/

19


	Background in pure motives
	Projective space
	Blowups
	Flat morphisms

	Cubic fourfolds and Gushel-Mukai varieties
	Cubic fourfolds
	Gushel-Mukai varieties
	Proof of Voevodsky's nilpotence conjecture for cubic fourfolds and generic GM fourfolds

	The noncommutative setting
	Dg categories
	Dg enhancements
	Voevodsky conjecture in the noncommutative case
	Noncommutative Chow motives

	Kuznetsov category and GM category
	Kuznetsov category
	GM category
	Proof of conjecture Vnc for the Kuznetsov category and the GM category of a generic GM fourfold

	Voevodsky's nilpotence conjecture for GM fourfolds containing surfaces

