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ABSTRACT. We consider a nonlinear system which consists of the incompressible Navier-Stokes
equations coupled with a convective nonlocal Cahn-Hilliard equation. This is a diffuse interface
model which describes the motion of an incompressible isothermal mixture of two (partially) im-
miscible fluids having the same density. We assume that both the viscosity and mobility functions
depend smoothly on the order parameter. Moreover, we assume that the mobility degenerates at
the pure phases and that the potential is singular (e.g. of logarithmic type). This system is endowed
with a no-slip boundary condition for the (average) velocity and a homogeneous Neumann bound-
ary condition for the chemical potential. Thus the total mass is conserved. In the two-dimensional
case, this problem was already analyzed in some joint papers of the first three authors. However, in
the present general case, only the existence of a global weak solution, the (conditional) weak-strong
uniqueness and the existence of the global attractor were proven. Here we are able to establish
the existence of a (unique) strong solution through an approximation procedure based on time
discretization. As a consequence, we can prove suitable uniform estimates which allow us to show
some smoothness of the global attractor. Finally, we discuss the existence of strong solutions for
the convective nonlocal Cahn-Hilliard equation, with a given velocity field, in the three dimensional
case as well.

1. INTRODUCTION

The so-called model H (see, for instance, [36] and references therein) has been proposed to
describe the motion of a binary mixture of two isothermal, partially immiscible and incompressible
fluids. This model is based on the diffuse interface approach and leads to the formulation of a
Cahn-Hilliard-Navier-Stokes (CHNS) system for the average velocity w and the order parameter ¢
(i.e., the relative concentration of one of the fluid components). In the case of matched constant
densities, a rather general CHNS system is the following:

u; — 2div (v(¢@)Du) + (v - V)u+ Vr = pVe + v, (1.1)
¢+ u- Vo =div(m(e)Vu) (1.2)
p=—Kxp+F(p), (1.3)
div(w) =0, (1.4)

in Q x (0,7), where Q C R?, d = 2,3, is a bounded smooth domain (say, e.g., of class C2), T > 0 is
a prescribed final time, v stands for the fluid viscosity, D denotes the symmetric gradient, that is,
Du := (Vu + VTu) /2 and v is a given external force (the density has been taken equal to one).
The Cahn-Hilliard (CH) equation (1.2) with mobility m is characterized by a nonlocal chemical
potential (1.3) where K : RY — R is a (sufficiently) smooth even interaction kernel (see [33], cf.
also [7, 32, 34] and the discussion in [35]).
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System (1.1)—(1.4) is subject to the no-slip boundary condition for the velocity w and to the
homogeneous Neumann boundary condition for the chemical potential p (which ensures the con-
servation of the total mass), namely,

u=0, m(e)Vp-n =20, (1.5)
on I x (0,T). Initial conditions must also be prescribed,
w0) =uo,  9(0) =gy, in Q. (1.6)

Here, n stands for the outward normal to the boundary 0f2 of €2, while ug and ¢, are given.

Problem (1.1)—(1.6) has been studied so far under various assumptions on v, m and F (see
[14, 20, 21, 22, 23, 24, 25], cf. also [19] for unmatched densities and [26] for inviscid fluids). The
model studied in these papers is based on a more, say, phenomenological free energy functional (see
[8]), which leads to the chemical potential

pu=—-Kx*p+alx)p+ F'(p), (1.7)

where a(z) = [, K(z—y)dy and F is some (possibly singular) double-well potential. However, from
the mathematical viewpoint all the results obtained so far also hold in the present case. Actually,
proofs are simpler and assumptions on K are more general (see the discussion in [35, Introduction],
cf. also Remark 2.6 below).

On the other hand, the physically more relevant case, namely, when the viscosity depends on
v, the mobility m degenerates at pure phases (i.e. ¢ = £1) and F is a singular potential (say,
of logarithmic type) is still substantially open. Concerning m and F', we recall that a physically
relevant choice is

m(s) = mo(1 — s?), (1.8)
F(s) = g((l + s)log(1+ s) + (1 — s)log(1 — s)), (1.9)

where s € (—1,1), mg > 0 and € > 0. In this case, the existence of weak solutions (d = 2,3) was
proved in [24], where, for simplicity, the viscosity v was assumed to be constant (as far as existence
of weak solutions is concerned, the case of a v depending on ¢ can be dealt without difficulties as
well).

It is worth recalling that for CHNS systems, where the CH equation is the standard (local) one
(see, for instance, [1, 2, 12, 13, 27, 28, 29, 37, 44, 47]), the case of degenerate mobility and singular
potential is already difficult in the case of the CH alone (cf. [16]). More precisely, the existence of
a weak solution is essentially the only available result, as far as we know (see [12], and see also [3]
for the unmatched densities case).

Going back to our nonlocal system, in the two-dimensional case, the existence of the global
attractor has also been proved in [24] for constant viscosity. This result can be extended to the
case of v depending on ¢ as well.

Uniqueness of weak solutions is a more delicate issue. Indeed, it has been established in [20]
for the case of constant viscosity only (incidentally, this entails the connectedness of the global
attractor). If the viscosity depends on ¢, then weak-strong uniqueness holds true for constant
mobility and regular potential (i.e., defined on R) with polynomially controlled growth, but in
the more general case (m degenerate and F' singular) only a conditional weak-strong uniqueness
has been proven by assuming the existence of a strong solution (see [20]). Therefore, in the two-
dimensional case an open issue is the existence of a strong solution under the aforementioned
assumptions on v, m and F. This is precisely the goal of the present contribution.

Proving the existence of strong solutions when v depends on ¢ is much more difficult with respect
to the case of a constant v (cf. [20], cf. also Remark 4.4 below). We recall that in the simplest case
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(i.e., v and m are constants and F' is regular), existence of strong solutions in two dimensions was
proven in [23].

The existence of a strong solution to (1.1)—(1.6) paves the road for two further results. The
first is concerned with uniform in time regularization estimates, which, in particular, entails some
smoothness of the global attractor. The second is concerned with the convective nonlocal CH
equation, for which we are able to prove the existence of strong solutions in dimension three under
quite general regularity assumptions on the given velocity field. In particular, this allows us to
deduce, as above, further regularity of the global attractor.

The plan of the paper is as follows: in the next section, besides some notation and definitions, the
known results on existence and uniqueness of weak solutions are reported for the sake of convenience.
Section 3 is devoted to state the main regularity result of the paper whose proof is given in Section
4. Section 5 contains uniform in time estimates and the related regularity of the global attractor.
In the final Section 6, we extend the analysis of the previous sections to the convective nonlocal
CH equation with a given velocity field.

2. WEAK SOLUTIONS: WHAT IS KNOWN

Let us fix some notation first. We set H := L?(Q), V := H*(Q), and, for d = 2,3, we introduce
the function spaces

’ d STond T Lr(@)?
1) = {u € C5°(Q)? : div(u) =0} , 2<r<oo,

and
Vi = {u € Hj(Q)? : div(u) = 0} .

We also define Gg;,, = LgiU(Q)d. Recall that Gy, and Vg, are the classical Hilbert spaces for
the incompressible Navier-Stokes equations with no-slip boundary conditions (see, e.g., [12, 46]).
Denote by || - || and (-,-) the norm and the scalar product, respectively, on both H and Gy, as
well as on L2(Q)% and L%(Q)?*?. The notation (-,-)x and || - ||x will stand for the duality pairing
between a Banach space X and its dual X’, and for the norm of X, respectively. For every f € V',
we set f := |Q|71(f, 1)y. Here, |Q| is the Lebesgue measure of 2. The Hilbert space Vg, is endowed
with the scalar product

(u,v)y,,, = (Vu,Vv) =2(Du, Dv), Vu,v € V.

Let us recall the definition of the Stokes operator S : D(S) N Ggiwy — Gain in the case of the
no-slip boundary condition (1.5)1, i.e., S = —PA with domain D(S) = H?(Q)? N Vj,, where
P : L*(Q)? — G, is the Leray projector (see, for instance, [12, 46]). Notice that we have

(Su,v) = (u,v)y,, = (Vu, Vo), Yu € D(S), Vv € Vy.

It is well known that S™' : G — Gaiv is a self-adjoint compact operator in Gy, and by the
classical spectral theorems there exists a sequence A\; with 0 < Ay < A9 <--- and A\; — oo, and a
family of w; € D(S) which is orthonormal in Gg;,, and such that Sw; = A\ jw;.

We also need to recall Poincaré’s inequality

Ml < [[Valf®,  Yu€ Vi,

and other two inequalities, which are valid in dimension two and will be used repeatedly in the
course of our analysis. More precisely, the particular case of the Gagliardo-Nirenberg inequality
(see, e.g., [10])

0]l 2ay < CollollVe|olly 4, VeeV, 2<g<oo, (2.1)
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as well as Agmon’s inequality (see [5])

V2o Y2, VoveHX(RQ). (2.2)

Il < G ol ol g,

In these inequalities, the positive constant 62 depends on ¢ and on Q C R2, while the positive
constant 63 depends on (2 only.

The trilinear form b appearing in the weak formulation of the Navier-Stokes equations is the
usual one, namely,

b(u,v,w) := / (u-V)v- - wde, Vu,v,w e Vg .
Q

The associated bilinear operator B from Vg, X Vg, into V. is defined by (B(u,v), w) := b(u, v, w),
for all u, v, w € Vy,,. We also set Bu := B(u,u), for every u € Vy,,.

If X is a (real) Banach space, we shall denote by Li’b((), 00; X), 1 < p < oo, the space of functions
fe Ll ([0,00); X) that are translation bounded in L? ([0,00); X), i.e., such that

loc loc

t+1
P = Bds < o0o.
1 gy =50 [ 1) s < oc

We are now ready to recall the result on the existence of weak solutions proven in [24]. For
completeness, we deal with d = 2 and d = 3. The assumptions on the kernel K, on the viscosity v
are the following.

(K): K(- —x) € WH(Q) for almost any x € , and K satisfies K(z) = K(—z) and
a*::sup/]K(:c—y)\dy<oo, b::sup/\VK(x—y)dy<oo.
zeQ JQ zeQJQ
(V): The viscosity v is Lipschitz continuous on [—1, 1] and there exists some v1 > 0 such that
v1 <w(s), Vs e [-1,1].
The mobility m is supposed to be degenerate at +1, and the potential F' is assumed to be singular
(e.g., logarithmic like) and defined in (—1,1). More precisely, we assume the condition
(M): The mobility m is Lipschitz continuous on [—1, 1], and satisfies m > 0, m(s) = 0 if and
only if s = —1 or s = 1. Moreover, there exists some €y > 0 such that m is nonincreasing in
[1 — €g, 1] and nondecreasing in [—1, —1 + €p].
Furthermore, m and F' are supposed to fulfill the condition
(A1): F e C%(—1,1) and A :=mF'" € C[-1,1].
Condition (A1) is typical in the analysis of the CH equation with degenerate mobility (see
[16, 31, 33, 34]). As far as F' is concerned, we assume that it satisfies the following assumptions.

(A2): There exists some €y > 0 such that F'” is nondecreasing in [1 — €, 1) and nonincreasing
in (—1, -1+ 60].
(A3): There exists some ¢y > 0 such that

F"(s)>cp, Vs e (—1,1) .
(A4): There exists some ag > 0 such that
m(s)F"(s) > ag, Vs e [-1,1].

Remark 2.1. It is worth recalling that the assumptions (M), (A1)-(A4) are satisfied, for instance,
by (1.8) and (1.9). Also, we recall that any symmetric kernel K € W (B,), where B, := {z €
Re: |z| < p}, p := diam(Q), satisfies (K).
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As far as the weak formulation is concerned, we point out that if the mobility degenerates then
the gradient of the chemical potential ;1 cannot be controlled in some LP space. For this reason, and
also in order to pass to the limit to prove the existence of a weak solution, a suitable reformulation
of the problem needs to be introduced in such a way that p does not appear explicitly (cf. [16],
see also [24]). The definition of weak solution given in [24] but modified accordingly to our setting
reads as follows.

Definition 2.2. Let ug € Gaiy, o € H with F(py) € LY(Q), v € L*(0,T; V), and 0 < T < 400
be given. A couple [u,p] is called weak solution to (1.1)-(1.6) on [0,T] if
o u, p satisfy

w € L(0,T; Gain) N L0, T; Vi) ,
u, € LY30,T;V),  if d=3,
uy € L*(0,T; V), if d=2,
w e L®0,T; H)NL*(0,T;V),

¢, € L*(0,T; V),

and
v € L¥(Qr), lo(z, )| <1 for a.e. (z,t) € Qr :=Q x (0,T);

o for every w € Vg, every v € V, and for almost any t € (0,T) we have that
(wr, whvy, +2 (v (@) Du, Dw) + b(u, u, w) = ((—K * )V, w) + (v, w),

(on by + /Q () F" () Vep - Vapeli: — /Q MGV - Vide = (up, Vi) ;

e the initial conditions u(0) = ug, p(0) = g, hold true a.e. in .
Observe that the regularity properties of the weak solution imply that
u € Cu([0,T); Gaiv) s v € Cy([0,T]; H) .

Therefore, the initial conditions u(0) = ug, ©(0) = ¢,, make sense.
The results on existence of weak solutions can be found in [24, Theorem 2]. The uniqueness of
a weak solution in the case of constant viscosity is provided in [20, Theorem 4] (cf. Remark 2.6).

Theorem 2.3. Assume that (K), (V), (M), and (A1)-(A3), are satisfied. Let uwg € Gajp
and py € L>®(Q) with F(py) € LY(Q) and M(py) € L' (), where M € C?(—1,1) is defined by
m(s)M"(s) =1 for all s € (—1,1) and M(0) = M'(0) = 0. Let also v € L} ([0,00); V).

(a) Then, for every T > 0, system (1.1)—(1.6) admits a weak solution [u, | on [0,T] such that
B(t) =@y for allt € [0,T]. In addition, if d =2, then the weak solution [u, | satisfies the
energy equation

1d
5 g7 el® +llel®) + 2[[Vv(e) Dull® + /Qm(sO)F”(sO)IVSOIZ’dx

= / m(e)VK * ¢ - Vodr + / (=K xp)u-Veodr + (v,u), (2.3)
Q Q
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for almost any t > 0. In the case d = 3, [u, ] satisfies the following energy inequality
1 t t
(O + 1001 +2 [ IVeaDulP + [ [ mie)r (ol vekds
1 t
< 5wl + ol + [ [ m(@)VE < Viodo

t t
—/ /K*gau-VgodaH—/(v,u), Vt>0. (2.4)
0 Jo 0

(b) Let d =2, and let v be constant. In addition, suppose that (A4) is satisfied. Then the weak
solution to system (1.1)-(1.6) is also unique. Moreover, let [u;, p;] be two weak solutions

corresponding to two initial data [wo;, py;] and external force densities v;, with wo; € G gy,
©oi € L®() such that F(py) € LY Q), M(py) € LY Q) and v; € L? ([0,00); Vi1i,),

loc
1 = 1,2. Then, setting u := ug — Uy, @ = Yy — ; and v = vy — vy, the following
continuous dependence estimate holds true:
2 2 2 2
lal®) 2 + o1 + NalZa0 sy + 12200 (2.5)

< ()1 + 19 (O)) Aolt) + [B(O0) As(t) + [0 rrs 1A2()

for allt € [0, T], where Ay, A1 and Ay are continuous functions which depend on the norms
of the two solutions. The functions A; also depend on F, K,v and Q.

Remark 2.4. By a careful look to the argument in [24, Theorem 2] it is easy to see that, as far
as the only existence of a weak solution is concerned (cf. point (a) in the statement of Theorem
2.3) the Lipschitz continuity of v and m in assumptions (V) and (M) can be weakened into just
v,m € C°[~1,1]). The condition m € C%!([~1,1]) is needed for the uniqueness of the weak
solution and for the continuous dependence estimate (2.5), while the Lipschitz continuity of both
v and m will be used in Theorem 3.6.

Remark 2.5. In [24], the viscosity v was assumed to be constant just to avoid technicalities, but the
results therein also hold for a nonconstant viscosity satisfying (V). Notice that the approximation
argument developed in [24] actually requires an upper bound for v on the whole of R (see [24,
Proof of Theorem 1]). However, the argument therein can be repeated by working with a (globally)
Lipschitz continuous bounded extension v of v outside [—1, 1] (e.g., we could take v(s) = v(+1) for
s 2 +1). Indeed, in the limit, the weak solution satisfies |¢| < 1 a.e in Q x (0,7).

Remark 2.6. As we already observed in the Introduction, in [24] a slightly different model was
considered. All of the results in [24] and, in particular, [24, Theorem 2], can be obviously restated
for system (1.1)—(1.4). We also point out that in [24, Theorem 2] an additional condition was
assumed. In the present situation, this condition more precisely becomes: there exist some k > 4a*
and ¢g > 0 such that

F"(s)>k,  Vse(=1,—-1+e]U[l—¢1). (2.6)

This assumption, which yields the equicoercivity F.(s) > (k/8)s?> — k/, for all s € R (with k' € R
independent of ¢), for the family of e—regularizations F. of F', was helpful to deduce the lower
bound

1.k

1 1 1 «
8.ttt p) = glluclP = 5ee K + [ Filed > gluclP +5 (5 =)l 4"

for the regularized energy associated to the approximate solution [u.,¢,], which, combined with
the approximate energy inequality, leads, in turn, to the basic estimates for [uc,¢.]. However,
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we now show that (2.6) is superfluous. Indeed, it can be removed by employing a variant of the
Elliot-Garcke type of approximation (see [24, Proof of Theorem 2]). More precisely, the following
approximation F; can be considered (see also [19])

Fl—e)+ F(1—e)(s—(1—¢)+iF"(1-¢)(s—(1—¢))
+(s—(1—€))3, s>1—¢,

F.(s) =<} F(s), ls| <1-—¢,

F(=l4e)+ F(~1+e)(s— (=1+&) + 2F"(=1+¢)(s — (-1 +¢))
Hs— (149, s<-1+e.

It is easy to check that F. € 012 O’Cl (R) and that, thanks also to (A3), there exist two constants
k1 > 0 and ko € R, which do not depend on ¢, such that

F.(s) > k|s]> —ky, VseR. (2.7)
Moreover, as a consequence of (A3), we still have that
F'(s) > ¢, VseR, ae x€, (2.8)
and (A2) implies that there exists g > 0 such that
F.(s)<F(s)+ &%, Vse(-1,1), Vee (0,g). (2.9)

Thanks to the bounds (2.7)—(2.9), the argument of [24, Proof of Theorem 2|, to which we refer
for the details, can still be reproduced, and the same basic estimates for the sequence [u., .| of
approximate solutions can be recovered. Moreover, the argument to prove that |¢| < 1 almost
everywhere in Q7 is unchanged. There only remains to show that we can still pass to the limit,
as € = 0, in the term [, m.(¢.)F. (¢ )V, - Vi (for all ¢ € V), which appears in the variational
formulation of the approximate problem, in order to prove that the limit couple [u, ¢] is a weak
solution. To this aim, notice that, due to (A1) and to the convergence ¢, — ¢, pointwise almost
everywhere in Q7, it is easy to see that we still have

me(p)F () = m(@)F"(¢),  ae. inQr. (2.10)
Moreover, there holds

Ime(s)E (s)] <Aoo +6m(1 =€) (s — (1 = €)) X{1-c,400)(5)
+6m(=1+¢e)|s — (=1 + &)X (—oo,—14] (), (2.11)

where Ay := [[Al|Loo(—1,1), and xp denotes the characteristic function of a set £ C R. Since ¢, is
bounded in L"(Qr), where r = 10/3 if d = 3, and r = 4 if d = 2, then, by Lebesgue’s theorem,
(2.10) and (2.11) entail that

me(e ) F' (o) = m(p)F"(p),  strongly in L' (Qr).

This strong convergence, together with the weak convergence ¢, — ¢ in L2(0,T;V), allows us to
pass to the limit in the term above.

Remark 2.7. It is worth pointing out that, to prove the existence of a weak solution (in the sense
of Definition 2.2), we do not need that the potential F' has some singular behavior at the endpoints
s = +1 (cf. (A1)-(A3)). Instead, the key role is played by the degenerate mobility, i.e., by
condition (M), with F being also C?(—1,1). This is enough to ensure the crucial bound |p| < 1
almost everywhere in Q7. However, concerning uniqueness and regularity results (see the following
sections), assumption (A4) is crucial, but it implies that F' must have some singular behavior at
the endpoints, in the sense that, at least, F'”(s) — oo, as s — +1.
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Remark 2.8. By combining (A1) with the definition of the function M, we can see that F' and M
are not independent. Actually, in the statement of Theorem 2.3, F(y,) € L*(f) is a consequence
of M(p,) € L*(£2). Moreover, if (A4) holds then the two conditions are equivalent (see [24]).

3. STRONG SOLUTIONS IN TWO DIMENSIONS

Here we state and prove our main result: the existence of strong solutions to (1.1)—(1.6). Let us
introduce some preliminaries that we shall need in the proof. First of all, we observe that equations
(1.2)-(1.3) can formally be rewritten in the form

o +u-Vo=AB(p) — div(m(gp)(VK * (p)) , (3.1)

where we have set
B(s) = /0 Mo)do,  As)=m(s)F"(s),  Vse[-1,1]. (3.2)

Notice that we have VB(yp) = A(¢)Ve. Hence, the boundary condition m(¢)Vu - n = 0 can be
rewritten as

[VB(g) ~m(p)(VE *¢)] n=0. (33)

Thus, the equivalent weak formulation of equations (1.2)—(1.3) is

(o0 By + /Q VB(p) Vi dr /Q m(@) (VK ) - Vi dz = (up, Vep)

for every ¢ € V and for almost any ¢t € (0,7).
On account of this formulation, we can give our definition of strong solution if d = 2.

Definition 3.1. Let ug € Vg, @o € VN CP(Q) for some B € (0,1), v € L*(0,T;Gyp), and
0 <T < 400 be given. A weak solution [u, ] to (1.1)-(1.6) on [0,T] corresponding to [ug, pg] is
called strong solution if

we L®(0,T; Vi) N L2(0,T; H2 (R)%),  w € L2(0,T; Gapn) (3.4)
© € L0, T; V)N L*0,T; H*(Q)), ¢, € L*(0,T; H),
u; — 2div(v(p)Du) + (u - V)u + Vi = —(K x p)Vp + v,
¢r+u- Vo =AB(p) — div(m(p) (VK ) ,
div(u) =0,
almost everywhere in Q x (0,T) with
u=0, [VB(p)-m(@)(VKx*p)] -n=0,
almost everywhere on 0Q x (0,T), and for some 7@ := 7 — F(p) € L*(0,T;V).

Remark 3.2. It is worth noting that, for a strong solution, the nonlocal Cahn-Hilliard equation
can also be written in the form

@r +u- Vo =div (m(p)F"(p)Ve —m(e) (VK * ¢)),

almost everywhere in €2 x (0,7), while the boundary condition becomes

[m(p)F"(©)Ve —m(e)(VK * ¢)] -n=0,

almost everywhere on 02 x (0,7).

Then, we shall use the following lemma to handle the boundary condition (3.3).
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Lemma 3.3. Let ¢, € HY/2(0Q) N L>®(0Q). Then @b € HY/?(0Q) N L>®(09Q) and
le ¥l 1200y < el @) [Vl g12@0) + 1¥l e @o)llell g2 60 - (3.6)

Proof. The proof is an immediate consequence of the definition of the space H/2 (092) with semi-

norm given by
)I
o0 J I x

where dI'(+) is the surface measure on 0f (see, e.g., [15 Chapter IX, Section 18]). O

To establish the regularity of solutions, we shall also need the kernel K to be more regular than
VVZ o - A possible assumption is that K € Wfo’j (R?). However, this assumption excludes physically
relevant classes of kernels like, e.g., Newtonian and Bessel potential kernels. This class can be
included by assuming that K is admissible, according to the following definition.

Definition 3.4. (see [9, Definition 1]) A kernel K € VV;;CI(RCZ) is admissible if the following con-
ditions are satisfied:

(K1): K € C3(R4\{0}); i i
(K2): K is radially symmetric, K(z) = K(|z|) and K is non-increasing;
(K3): K"(r) and K'(r)/r are monotone on (0,1q) for some ro > 0;
(K4): |D3K ()| < Cylz|~91 for some Cyx > 0.
The advantage of working with admissible kernels is due to the following lemma.

Lemma 3.5. (¢f. [9, Lemma 2]|) Let K be admissible. Then, for every p € (1,00), there exists
Cp > 0 such that
VOl o (@paxa < Cpll¥llLe), Vo € LP(Q),
where v = VK x 1. Here, Cp, = Cyp for p € [2,00) and Cp, = Cyp/ (p—1) for p € (1,2), for some
constant Cy > 0 independent of p.
Before stating our result, we need to replace (A1) with the following slightly stronger assumption.
(A1b): F € C3(—1,1) and A := mF'' € C1[-1,1].

Our main theorem is as follows.

Theorem 3.6. Let the assumptions (K), (V), (M), (A1b), (A4) hold true, and assume that
K € W2 (R?) or that K is admissible (d = 2). Let ug € Gy, 9o € VNL®(Q) with F(p,) € LY(Q)

loc

and M (py) € LY(Q), where M is defined as in Theorem 2.3. Let also v € L*(0,T; Ggi,). Then, for
every T' > 0, problem (1.2)—(1.6) admits a weak solution [u, | on [0,T] such that

w € L™ (0,T; Gain) N L* (0, T Vi), we € L*(0,T5V,) (3.8)
o € L0, T; V)N L*0,T; H*(Q)), ¢, € L*(0,T; H). (3.9)

Assume in addition that wy € Vg, and that ¢, € V.1 CP(Q) for some B € (0,1). Then problem
(1.2)«(1.6) admits a (unique) strong solution satisfying (3.9) and

we L™®(0,T; V) N L0, T; H* (Q)?), wy € L2 (0,T; Gain) - (3.10)
Finally, suppose that @, € H*(Q) and that the following compatibility condition is fulfilled:
VB(py) - n=m(py) (VK xpy) -n, ae ondfd. (3.11)

Then the strong solution also satisfies
p e L®0,T; H*(Q)), @, € L®(0,T; H)NL*(0,T;V). (3.12)
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Remark 3.7. We observe that uniqueness was already proved in [20, Theorem 7]. Actually, a
conditional weak-strong uniqueness was established by assuming the existence of a strong solution.
That result is no longer a conditional one.

4. PROOF OF THEOREM 3.6
The proof is divided into three main steps. A brief description follows.

Step 1 Assuming that [u, ] is a weak solution in the sense of Definition 2.2, we aim to show that
the second component belongs to the regularity class (3.5) provided that ¢, € V N L>® (Q).
We first introduce a regularized problem P, which is constructed by replacing the singular
potential I’ by a regular one F,, and the degenerate mobility m by a smooth nondegenerate
function me > 0. Then we deduce sufficiently strong a priori estimates for ¢, that are uniform
with respect to € > 0. A time discretization scheme applied to the nonlocal Cahn-Hilliard
equation with a nondegenerate mobility m. and regular potential F; shall be exploited in
order to develop a proof-rigorous strategy and all the necessary estimates independent of e.

Step 2 With the improved regularity of ¢ from Step 1, we can then proceed to deduce higher-order
estimates for the velocity assuming that ug € Vy;,,. This will be achieved by means of some
crucial arguments that were also exploited in [20] for a similar problem. In this step, the
Holder continuity of ¢ is the main ingredient.

Step 3 We deduce bounds for ¢ in the regularity class (3.12), provided that ¢, € H? (Q) satisfies
some compatibility conditions. This will be carried out by means of the same time dis-
cretization scheme as in Step 1, making use of the smoothness of the velocity obtained in
Step 2 (see also (3.10)).

Step 1. We first establish the L°°(0,7;V) N L?(0,T; H?(2)) regularity for ¢. For this pur-
pose, we need to carefully deduce higher-order estimates on the nonlocal Cahn-Hilliard equa-
tion in such a way that the only regularity which is exploited for w is the weak one, i.e., u €
L>®(0,T; Gain) N L%(0,T; Vgip). Indeed, if the viscosity is nonconstant, we cannot directly apply
the classical regularity result [46, Theorem 3.10] for the incompressible Navier-Stokes system in
dimension two (which also requires a regularity assumption on the initial velocity ug € Vg;,) and
extend the arguments contained in [23].

The (formal) idea is to test (3.1) by B(¢); = A(¢)¢;. In order to make the argument rigorous,
let us develop a suitable approximation scheme. We first approximate problem (3.1) and (3.3) with
the following one:

@i+ u- Vo =AB(p) —div(me(p) (VK * Q(¢))) , (4.1)
[VBc(¢) = me(¢) (VK xQ(¢))] -m =0,

where we have set
B.(s) = / Ac(0)do Ae(8) = me(s)E/ (s), Vs eR.
0

Here, the singular potential F' is replaced by the regular potential F¢, e € (0,1), such that
F'(1-¢), s>1—c¢,

Fs)={ F'(s),  lsl<1-c, (13)
F'(-1+¢), s< —1+e,
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with Fe(k) (0) = F®)(0) for k = 0,1. Moreover, the degenerate mobility m is replaced by

m(l —e), s>1—c¢,
mes) =4 m(s), sl <1—c, (4.4
m(—1+¢€), s<—1+e.

In the last term of (4.1), @ : R — R is the truncation function defined as
Q(s) = max{—1,min{1, s}}, Vs e R.

Notice that, thanks to condition (A1), we have the bound |m.(s)F/(s)] < Ax, for all s € R and
for all € € (0,1), where Moo := [[A[|Loo(—1,1). Also on account of condition (A4), there holds

0 < ap < A(s) =me(s)F'(s) < Ao s Vs eR. (4.5)
Moreover, observe that m, has the following properties:

0<me <me(s) <me, VseR, (4.6)

Ime(s2) — me(s1)| < ml|se — s1|, Vs1,s2 € R,

for some e-dependent positive constant me, which, for £ small enough, is given by (cf. (M))

me = min{m(_l + €>7m(1 - E)} )

and for some e-independent constants moo, mZ, which, for all e, are given by mec 1= ||[m|| 00 (_1 1y
mb, := ||m/||geo(~1,1)- Finally, due to (Alb), we have that

|)\E(82) — /\6(81)| < )‘c/xa ‘82 — 81’ s VSl, So € R, (4.8)
where A, := [[A[|Leo(_1,1) is independent of e.

We now prove that, for every fixed € > 0, problem (4.1), (4.2) admits a solution
p =, € L®(0,T; V)N L*0,T; H(Q)), ¢, € L*(0,T; H) .

In order to prove this regularity, the choice of the approximation argument is crucial. Indeed, we
point out that the use of the Faedo-Galerkin method is problematic. The reason is that testing
the projected (4.1) by 9;B(¢y,,) (here ¢, denotes a Faedo-Galerkin approximate solution) is not
allowed, since B(y,,) does not belong, in general, to the subspace spanned by the first n elements
of the Faedo-Galerkin basis. The problem is the nonconstant mobility. On the other hand, testing
by O:p,, also leads to technical difficulties.

We shall therefore employ a different approximation approach. In particular, the proof will be
carried out by means of a time-discretization argument. For simplicity of notation, for the moment
we drop the indication of the approximation parameter e. We fix N € N and set 7 = T/N. We
first introduce the following incremental-step problem: for £ = 0,..., N — 1, given ¢, € V, find
Yra1 € V that solves

— TAB(g11) + 1 = ¢ — Uk - Vo — 7div(m(ep) (VK = Q(gy))) (4.9)
VB(pri1) - n=m(ep) (VK xQ(p)) -1, a.e. on 0f). (4.10)

Each Uy is given by
1 (k+1)7
Uk::/ u(s)ds, k=0,...,N—1.
T Jkr
We now claim that (4.9)-(4.10) admits for every ¢, € V a solution (1, ...,¢y) € H*(Q)V. First,
we introduce, for every k = 0,..., N — 1, the nonlinear operator Ay : V — V' defined by

(App, V) == T1(VB(9), V) + (0,9) = T(Urp, Vi), Vo, V. (4.11)
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Then let g, € V' also be given by

It follows that problem (4.9)-(4.10) can be written as

Apprsr =gk, n V' (4.12)

We now observe that Ay, is pseudomonotone and coercive on V. Indeed, writing the first term on the
right-hand side of (4.11) as 7(A(¢)V, V), it is straightforward to check that Ay satisfy all the as-
sumptions of the general results given by [42, Lemma 2.31 and Lemma 2.32] (for pseudomonotonic-
ity) and by [42, Lemma 2.35] (for coercivity). This can be seen by taking a(x,r, s) := 7A\(r)s—7Uyr,
b(xz,r) :=0, and ¢(x,r,s) :=r in [42, Lemma 2.31, Lemma 2.32 and Lemma 2.35]. Therefore, (4.12)
admits a solution ¢, € V (see [42, Theorem 2.6]; cf. also [11]).

Using a bootstrap argument, we find that ¢, € H*(2), for k = 0,..., N — 1. Indeed, owing
0 (4.6)-(4.7), from (4.9) and (4.10) we deduce that AB(¢;, 1) € L*77(Q), for all 0 < v < 1, and
VB(pp1) - m € HY2(9Q). By elliptic regularity theory, we then infer that B(yp, ;) € W2277(Q).
Hence, we have VB(yp;, ) € WH*77(Q)?, for all 0 < v < 1. This fact, together with VB (¢}, ,) =
A (Pr41) Vori1, implies that Vi, € L*(Q)2. Therefore, the right-hand side of (4.9) belongs to
L%(2) and, by applying elliptic regularity theory once again, we deduce that B(py,,) € H*().
Hence, VB(¢y,1) € H'(2)? and, therefore thanks to (4.5) and (4.8), it is easy to check that we
also have V() € L*(Q)?. Then, again using the fact that VB (¢441) = A (¢ps1) Vors1, we
deduce that Vi, ., € H'(Q)?, whence ¢, € H*(Q2). Moreover, the following identity, which will
be useful later, holds true:

o
AQ(‘PkH)

Let us now begin to establish the basic discrete estimates. We first test (4.9) by ¢, and sum
over k from k =0 to k = n, where n < N. By using the following elementary identity

1
aizj@kﬂ = )\78%3(901«+1) - aiA(SOk+1)3jB(<Pk+1)~ (4.13)
(‘Pkﬂ)

n n
1 1 1

Z(SOIH-I Cr> Phi1) = 5 Z lori1 — S%HQ + §|\90n+1”2 - §||<P0H2a (4.14)

k=0 k=0

\)

and the fact that VB (90k+1) =A (apkH) Vpy1, we get

1 — 1 i
= lopr1 — SOkHQ + *||<Pn+1||2 +7 ()\(Spk+1)v<ﬁk+1a v‘Pk+1)
2 2
k=0 k=0
stoOH + TZ m(pp) (VE * Q(¢1)), Veor1) - (4.15)
Observe that
\Z @) (VK + Q). V)| < 78S [Vl + Coma T (4.16)

k=0

Henceforth, we shall denote by C', C¢ some positive constants that may depend on the global data
and on the quantities here denoted by £. The value of C, C¢ may change from line to line or even
within the same line. Moreover, Q> 0 will stand for a generic monotone nondecreasing continuous
function of all its arguments.
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Inserting estimate (4.16) into (4.15), using the lower bound in (4.5), and choosing 6 > 0 small
enough (i.e., § < a/2), we obtain the discrete inequality

n

n
D lerss = @ill® + lensall® + 70 Y IVerall* < llol® + Crnx T (4.17)
k=0 k=0

forn=0,..., N —1. The next step now consists in testing (4.9) by B(¢y1) — B(y). We employ

the discrete relation (4.14) with VB(y},) in place of ¢, the following discrete integration by parts
formula

TZ m(pp) (VE * Q(¢r)), V(B(pri1) — Blgr))
= T( M(@ni1) (VE * Q(¢n11)), VB(#541))
- TZ M (1) (VE * Q(op41)) — m(w) (VE % Q(¢1)), VB(pp11))

( ( 0)(VK*Q(900))7VB(<P0)),

and the lower bound in (4.5), to get the estimate

ZH%H will” + *IIVB Pnrn)lI” + ZIIV (¢ry1) = Blep)II? (4.18)
k=0

= 1IIVB(%)H2 + (M) (VK % Q(¢n41)), VB(¢ni1))

- Z M(@pr1) (VE * Q(0p41)) — m(9p) (VE % Q(¢1)), VB(9r11))

n

- (m(goo)(VK * Q) VB(SOO)) - Z (Uk: Vo1 Boggr) — B(‘Pk)) .
k=0

Let us now estimate individually the terms on the right-hand side of (4.18). We begin with the
easier ones. We have

| (m(2n41) (VE % Q(p11)), VB(9511))| < moo 012V VB(py,11)|

VB + Cnsca (4.19)

(m(er 1) (VE * Q(or11)) — mlep) (VK + Q(¢y)), VB (94 11)) |

P_ﬂs |/\

k=0
n
< (LI + o) b Y ks — eilIVB (@)
k=0
n n
oo
< 3 ks — ekl + Ccran T Y IV B (0. (4:20)

k=0 k=0
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The estimate for the last term on the right-hand side of (4.18) is more delicate. We first observe
that, by means of a direct computation, the following bounds can be deduced:

n
U < Jullimoran . ™I NVURE < lulbooriy, . n=0....N—1. (421)
k=0

Then we observe that

n Oé() n
|3 Uk Vi1, Blors) - Blgr)| < EZ lers — xll?
k=0

A r &

+ 723Uk Vol (4.22)
k=0

On the other hand, we have that

P Mo & 1 2
2" N -V 2 _ Joo HU-7VB H
LI Vol =22 Uk 5o B

)\2 -
3 Z\|Uk||L4(Q)2\|VB(801<;+1)||L4
0 k=0
<O Y _UNVURNY B(er ) B#rr)ll 20
k=0
<o) _IB(prs) 72 +C67'Z||Uk” VULV B(epq1)1I” - (4.23)
k=0 k=0

We proceed to estimate the term in the H?-norm of B(p, ;). By means of a classical elliptic
regularity estimate and by (4.9), we find that

57’2 HB(90k+1)H12L12(Q)

k=0
- 2 2 2
< 0or Y (IABo ) I + 1B} + || VBowss) m)| o)
k=0
Cs .
< TZ lPr41 — erll” + 0572 Uk Ve l?
k=0 k=0
+Cor 3. Idivm(eg) (VK * Qeg))) [P + C6r S [1Bloes ) I
k=0 k=0
" 2
+Cory. HVB(%H) . nHH1/2(8m. (4.24)

k=0
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As far as the boundary term in (4.24) is concerned, on account of (4.10), we have that

2

cor i HVB(%“) ' nHHl/Q(SQ)
k=0

= C(STZ [m(op) (VK x Q(py)) - "H?ql/z(ag)
k=0

< 0573 (Im(e) 3 om IVE * Q(or) - 220
k=0

1m0 Bz ey | (VK * Q1)) - 1l o0

n

= 2
< oY mA | K * Qo)) + C (2 K) 07 Y (mLl0nl 31290y + m2l0001)
k=0 k=0

< COST +Cor > _ |leklly
k=0

< Cro(L+llwoly)- (4.25)

We break down the main points needed in the series of estimates for (4.25) as follows:

e We have employed Lemma 3.3, the classical trace theorem, and the definition of the space
H'Y2(09), to estimate the term (cf. (3.7))

||m(80k)”12ql/2(ag) = ||m(80k)||%2(59) + [m(SOk)]?{l/?(aQ) )

thanks to (4.7). Moreover, |0€2|; denotes the one-dimensional measure of 9f2.

e Lemma 3.5 is used to estimate the term in the H?-norm if K is admissible; otherwise, if
K e VVZ%)C1 (Rd), one employs the Young convolution theorem and the fact that @) is bounded
(namely, |@ (s)| <1 for all s € R) together with the uniform bound (4.17). Clearly, owing
to (4.6), m. is uniformly bounded in L* (9€2)-norm.

e The most crucial part of the estimate is the uniform control of the L>(9$)-norm® of 9; K *
Q(py), for each i = 1,2. We rely on the embedding W'? (Q) — C (Q), where p > d = 2
is fixed, and observe that, owing to Lemma 3.5 (or the Young convolution theorem if K €
w! (]R2)), we have, for each i = 1,2,

loc

[0 K * Q(‘Pk)HLoo(aQ) CrallOiK Q(@k)HWLp(Q) (4.26)

<
< Cpax 1Qeu)llLe )
< Cp,Q,K )

since |Q (¢;)] < 1 almost everywhere in €.

ISince 89 is smooth, the normal vector n = n (z) is C* (892) .
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The third and fourth terms on the right-hand side of (4.24) can be estimated as follows:

n

C&EZMN (r) (VE = Q(o))|? < Cor > (2mZ | K + Qi) 132 + 2ml 0 Vi ]1?)

k=0
< Cro(1+[lgolli), (4.27)
0572 IB(gr)lly <C6 Z/\OOHS%HHV
k=0
<Cr 5(1 + lleoll®) (4.28)

where we have used again Lemma 3.5, (4.6)—(4.7), the basic discrete bound (4.17), and the fact

that VB (¢r11) = A (0r41) Verar-
We now insert (4.25)—(4.28) into (4.24), and then we insert the resulting inequality into (4.23).

By fixing 6 > 0 small enough, we obtain the estimate

)xoo 0 —
ZHUk Vol < TZHS%H — oil?
k=0 k=0
+CT Y NURIPIVULIPIVB(ers) I? + Co(1+ [[@oll7) - (4.29)
k=0

By employing (4.29), (4.19)—(4.20) and (4.22), from (4.18) we get

1 n n
o Z ler41 — SDk:H2 + HVB(SDn+1)H2 + Z ”V(B(SOkH) - B(@kz)) ||2
k=0 k=0

< Or(L+lleol}) +C Y (7 + rUIPIVU LI IV B(prs)I
0

k=
< Or(1+ [lpolli) + C( + 1wl 2o (0 7G4y TIVU R I I VB4 I
n—1

+CY (T +T|UPIVULIP) IV B (4.30)
k=0

Observe now that

(n+1)7
VUL < [ V)| ds.
nTt
Hence, for every n > 0, there exists some 7, > 0, which only depends on 7 (and on u), such that
7||VU,||?> < n for all 0 < 7 < 7, and for all n < N. By using this fact, we can take 7 small enough
in such a way that the third term on the right-hand side of the foregoing inequality (4.30) can be
absorbed into the term |[VB(g,,1)||* on the left-hand side. Therefore, on account of (4.21), by
applying the discrete Gronwall’s Lemma to the ensuing discrete inequality, we obtain from (4.30)

that

1 n n
— Dok = eul® + IVB(en)IP + DIV (Blerin) — Blew) I
k=0 k=0

< Qleollvs 1wl Loo 0,7:G )N L2 0,73V ) n=0,...,N—1. (4.31)
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We can now proceed to prove the L2(0, T; H? (Q2))-regularity for ¢. Let us first notice that (4.24),
combined with (4.25)—(4.29), (4.21) and (4.31), implies that

Ty 1B(ers) 720y < QUIwollvs [ulloeo,ricamnc201vin)) s 7 =0, N =1, (4.32)
=0

This estimate yields, in particular, a control on the gradient of B(yy ) in L” (), for 2 < p < oc.
Indeed, from (4.32) we have

n

7Y _IVBler)l < Qlieollv, el zoo.m:6um)n207:v0)) -
k=0

This bound, together with (2.1) and (4.31), implies that

2 2
TZ IVB(op41)ll 1 p/ p )< Qlleollv, 1]l oo (0,76 a1)N 20, 7:Viasn)) - (4.33)
k=0

Clearly, thanks to VB(¢y11) = A (¢g41) Very1 and to the bound
HV)\(S%H)HLP(QP < /\c,>o||V90k+1HLP(Q)2 )

we can also conclude from (4.33) that
2 2) 2 2)
TZ Vs e + TZ IV )2 (4.34)

S Q(H%HVH ||uHLoo(o,T;de)mLQ(o,T;vdw)) :

Thus, using (4.33), (4.34) (written for p = 4), and (4.32), we can infer from (4.13) the desired
bound

n

TZ HQDkJrIH%IZ(Q) < Qleollvs 1wl Lo (0,7:G00)A L2 (0, Vain) ) n=0,...,N—1. (4.35)
k=0

We now need to introduce the functions @y, P, and @, which interpolate the values ¢,, piecewise
linearly, backward, and forward constantly, respectively, on the partition. Namely, we set

Pen(t) = 7O)en + (1= 7)) Pns1s  Yalt) =n+1-(t/7),

@N(t) = Pl

@N (t) =P
fornt <t < (n+1)7,n=0,...,N —1. As a consequence of the estimates (4.17), (4.31) and
(4.35), we find the estimate

1881 20,711 + 1P T e 0.7) + 18N I F 0 0,759y + 1@ T 075 + 18N I F2 0 msm2())  (4:36)
o PN — ¢N||%2(0,T;H) T len — @N”%%O,T;H)
< Q(lleollv l1ull oo 0.7:G ) L2 0.7:Vis0)) -
Moreover, (4.17), (4.31) and (4.32) also yield that
IB(@n) Lo 0.0:v) + 1 B@3) | 220712 00)) < QUIeollv, 1wl oo (0,7:6.05 )0 L2(0.7: Vi) ) - (4.37)
Problem (4.9)—(4.10) can be rewritten in terms of the interpolating functions @, Py, @ as follows:
¢x = AB(®y) +un - Vo — div(m(@y) (VK * Q(Py))) . (4.38)
VB(@y) n=m(pyN) (VK «Q(py)) - n a.e. on JS). (4.39)
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Here, each uy is defined by un(t) := Uy, for nt <t < (n+1)7,n=0,...,N — 1. The variational
formulation for (4.38)—(4.39) then reads, for all ¢ € V,

(@n: )y + (VB(@y), Vi) = —(un®y, Vo) + (m(Pn) (VK * Q(@y)), Vi) . (4.40)

Owing to (4.36), and employing classical compactness results, we deduce that there exists ¢ €
L0, T;V)NL*(0,T; H*(Q)) with ¢, € L?(0,T; H), such that, at least for a subsequence, we have

O = P, weakly* in L*°(0,T;V), (4.41)
Pr — 0y, weakly in L?(0,T; H), (4.42)
oN — @, strongly in C°([0,T]; LY(Q)), 2<¢< oo, (4.43)
DN — @, weakly* in L>(0,T;V), weakly in L?(0,T; H*(Q)), (4.44)
ON — ¥, weakly* in L>°(0,T;V), (4.45)
DN = P, strongly in L?(0,T; H), (4.46)
ON — @, strongly in L?(0,T; H), (4.47)
B(@y) = B(y),  weakly* in L°(0,T;V), weakly in L?(0,T; H*(Q)). (4.48)

Since py — ¢ pointwise almost everywhere in € x (0,7), by virtue of the boundedness of the
functions m, @, and by Lebesgue’s theorem, we also have that

m(ey) = mlp), Qen) = Qp), strongly in LI(Q), 2<q<oo. (4.49)
Moreover,
uy — u, strongly in L2(0,T; V) - (4.50)
Indeed, it easy to check that uy = Pyu, where Py is the projector in L?(Vy;,) onto the subspace
Sy = {U S LQ(O,T; de) : ’v|(m.7(n+1)7.) = vy, Uy € Vgio,n =0,..., N — 1}. Since UN215N is
dense in L?(Vy;,), then (4.50) follows.

By means of the weak and strong convergences (4.41)—(4.50), we can now pass to the limit in
(4.40) in a standard fashion, and recover the weak formulation of problem (4.1)-(4.2). Notice that
we can also pass to the limit directly in (4.38)-(4.39) and prove that (4.1)-(4.2) are satisfied also
strongly almost everywhere in  x (0,7) and on 92 x (0,7, respectively.

We thus have shown that, for every € > 0, problem (4.1)-(4.2) admits a solution

¢, € HY(0,T; H)N L>®(0,T;V) N L*(0,T; H*(Q)) .

We can also see, by passing to the liminf in (4.36), that the sequence of ¢, is uniformly bounded
with respect to e in these spaces (just recall that all constants in (4.5)-(4.8) are independent of €).
Therefore, there exists a limit function, which we still denote by

o€ HY0,T; H)N L*>®(0,T;V) N L*(0,T; H*(Q)),

such that, at least for a subsequence, the same convergences as (4.41)-(4.49) hold for the sequence of
©, to ¢. These convergences allow us to pass to the limit in the variational formulation of problem
(4.1)-(4.2) and to recover the variational formulation of the following problem:

1 +u- Vo = AB(p) — div(m(p) (VK * Q(p))) , (4.51)
[VB(¢) —m(0)(VK % Q(p))] -m =0, on 00 x (0,T). (4.52)

We now show that ¢ satisfies the bound |p| < 1, almost everywhere in Q x (0,7"). This allows us
to remove the function @ in problem (4.51)-(4.52) and to conclude that indeed the limit solution
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¢ solves problem (3.1) and (3.3). To this end, we recall that we have just established that ¢ = ¢,
also satisfies the weak formulation (cf. Definition 2.2) associated with the problem

¢y +u- Vo =div(me(p)Vp), (4.53)
p=—Kx*Qp)+ F/(p), (4.54)
me(p)Vu-n=0, onddx(0,T). (4.55)

We can therefore argue as in [24, Proof of Theorem 2]. More precisely, we introduce the C? function
M, defined by m.(s)M!'(s) =1, for all s € R, M,(0) = M/(0) = 0, and we test (4.53) by M/(p,).
This gives the estimate

d Co
% | Med+ 290 < Qleolly el o 76ammnromvi)

where ¢y = ap/Mmeo. Thus, on account of the fact that for e small enough we have M(s) < M(s)
for all s € (—1,1) (cf. (M)), and recalling that M () € L*(f2), we deduce the bound

[Mc(@e) |l Lo 0,012 < QUIollv, 16l oo (0,756 45 )0L2(0.75Viss0)) -

We can now follow the same lines of [24, Proof of Theorem 2], which rely on an argument devised
in [16, Proof of Theorem 1] (see also [12, Proof of Theorem 2.3]), to deduce the desired claim. This
concludes the proof of the first part of the theorem. Namely, there exists a weak solution such that
¢ is a bit smoother in the regularity class of (3.9). This concludes Step 1.

Step 2. We now establish the L>(0,T; Vi, ) N L2(0,T; H?(2)?)-regularity for u, assuming that
ug € Vygip and ¢ € V N CP(Q) for some B € (0,1). The argument, which (formally) consists in
testing the Navier-Stokes equations (1.1) by uy, follows exactly the lines of [20, Proof of Theorem 5,
Step 2]. The key tool is a regularity result for the inhomogeneous Stokes system in non-divergence
form, namely,

—w(@)Au+Vr=f(z), inQ,
div (u) =0, in Q, (4.56)
u=20, on 0f),
taken from [45]. We report this result here, for the reader’s convenience (see also [4] as an alternative
route to the H2—regularity in the case of a variable viscosity in the Stokes equations).

Proposition 4.1. [45, Proposition 2.1] Let f € L2(Q)? and w € €0 (Q), for some § € (0,1), such
that 0 < Ag < w (z) < A\ < 0o for all z € Q. Then any solution [u, 7] € H2(Q)* x H* (Q) of (4.56)
satisfies the estimate

lell 22 + Il oy < € (1l 2qqpe + 17l 2y )
for some constant C' = C(Ao, A1, ©2, HWHcé(ﬁ)) > 0.

This result is applied to the Navier-Stokes system (1.1) after writing it in the form
—v(p)Au+ V1 = f, (4.57)
where
F=(Kxo)Vo+v—(u-V)u—u+2v'(p)DuVep, Ti=m—F(p). (4.58)

This procedure effectively allows to bound the H2-norm of u as a function of the L?-norm of u;. The
only remaining ingredient is the Holder regularity for ¢ (this, in turn, implies Holder regularity
for v(p), which is required in order to apply Proposition 4.1). We therefore need to suitably
extend the argument of [20, Lemma 2|, where the Holder regularity for a bounded weak solution to



20 S. FRIGERI, C.G. GAL, M. GRASSELLI, AND J. SPREKELS

the convective nonlocal Cahn-Hilliard equation with constant mobility and regular potential was
proved. This can be done thanks to assumptions (A1) and (A4). More precisely, we can prove
the following result.

Lemma 4.2. Let d = 2, and assume (A1) and (A4). Let u € L°°(T',T;Gain) N LA(T', T; Vair,),
for some T >T' >0 and let ¢ be a bounded weak solution to (1.2), (1.3), (1.5)2. Then there exist
constants C > 0 and o € (0,1) depending on ”SDHLOO(QT/,T) and on Hu||L4(QT,7T), respectively, such
that

(1) — 9y, )| < Cllx —y|” + [t — 5[*/2),
for every (z,t), (y,s) € Q. :=Q x [T, T).

Proof. Following the lines of [20, Proof of Lemma 2] (cf. also [40]), let k € R and n = n(z,t) €
[0,1] be a continuous piecewise-smooth function which is supported on the space-time cylinders
Q1o to++ (1) := By (x0) X (to,to + 7), where B, (x¢) denotes the (open) ball centered at zg of radius
r > 0. As usual for the interior Holder regularity, one takes zg € 2, while 2y € 02 for the
corresponding boundary estimate, and then exploits a standard compactness argument, in which
Q may be covered by a finite number of such balls. We thus multiply (1.2), (1.3), which can be
written as
prtu-Vo=div(A@)Ve+ k),  k(z,t) = —m(p) (VK x ),

by 1724,0;, where goz = max {0, — k}, integrate the resulting identity over Q,: = Q X (%o, 1),
where T" <ty <t <tg+7 <T, to deduce that

/ %U%pzdxdt + / A(@)Vgpg -V (7]29(%) dxdt
QtO’t Qto,t

= / up -V (0P dudt + / K (z,t) -V (n?¢)) dadt . (4.59)

Qg Qtg.t

Since we have V‘PZ -V (7]2@2) = |V (ngo;:) ‘2 — |V7]|2 (@Z)Z, we obtain from (4.59) and the assump-
tion (A4) that

1
5 sup / (7790}?)2 (s)dx + ao/ ‘V (neid) !2 dzdt
s€(to,t) J/Q Qrg,t

1
< 2/§2(nw2)2(to)dx+/ (o)? |nm, | daedt

Qtg,t

+Aoo/ (SOZ:)QVU\le'dtJr/ wp -V (P} ) dadt
to,t

0> Qto,t

+ / K(z,t)-V (7]2@;:) dzdt . (4.60)
Qo t

The fourth term on the right-hand side of (4.60) can still be estimated in the same fashion as in
[45, Proof of Lemma 3.2], using the fact that w € L* (QT/7T) is divergence free. Arguing by the
elementary Hoélder’s and Young’s inequalities, we find that

/ up -V (77290;:) dxdt
Qtot

1 1
<7 Hmszi‘X’(to,t;H) 10 IV (nef)) Hi?(@to,t) +Co an(p;HiZ(Qto,t) ; (4.61)
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where Cy > 0 depends on ag and the L* (QT/’T) —norm of w only. For the final term on the
right-hand side of (4.60), we employ Hélder’s and Young’s inequalities again to deduce that

/ K(x,t)-V (772@2_) dxdt
Qto,t

/Q (K (z,t) - o nVn +nk (2,t) - V (ney))) dadt
to.t

1
< 01/ n)? dadt + / (go,j)Q |Vn|? dadt
Qto,t 2 t

0-t

+ % |V (77(,0;) ‘2 dxdt , (4.62)
Qtg,t

where C1 > 0 depends only on ag and the L*®° (QT@T)-norm of k. Inserting the estimates (4.61) and
(4.62) into the right-hand side of (4.60), we infer the existence of a constant Cy = Cs (Cp, C1, Aso) >
0 such that

1
— sup / (77(,0']:)2 (s)dx + ao/ |V (77802_) ‘2 dzdt < / (ngo,':)Q (to) dz
2 s€(to,t) /O Qtg,t Q

+ Oy / (goz)z |nm, | dzdt + / (gozr)2 |V77|2 dxdt + / |7]|2 dxdt | . (4.63)
Qto,t Qio,t Qto,i

Arguing in a similar fashion, inequality (4.63) also holds with ¢ replaced by —¢. In particular,
these inequalities imply that ¢ is an element of the class Bs (QT/,T, 1,v,4,1, 1) in the sense of
[40, Chapter II, Section 7 |, for some v = « (Cy), cf. inequality (7.5) of [40, Chapter II, Section
7, Remark 7.2]. Therefore, on account of [40, Chapter II, Section 7, Theorem 7.1], the Holder
continuity of ¢ follows. This ends the proof. O

The approximation argument that can be employed to show that
w € L®(0,T; Va,) N L*(0,T; H*(2)?)

is the same as the one of [20, Proof of Theorem 5, Step 3|, to which we refer for the details. We
briefly recall the main points:

(a) ¢ is suitably mollified in the viscosity term of the Navier-Stokes equation only, namely, the
following problem is considered:

up — 2div (v(ps)Du) + (u - V)u+ Vo = (=K xp)Vep + v, (4.64)
div(us) =0, (4.65)

with initial condition us(0) = ug and no-slip boundary condition. Notice that, owing to the
bound |p| < 1, the approximation ¢s of [20, Proof of Theorem 5, Step 3] satisfies |¢ps] < 1;

(b) The result of [1, Theorem 8] is then applied to get a strong local in time solution us to
(4.64)-(4.65), such that

us € H'(0,Ty; Gain) N L*(0, T; H*(22)%) N L°(0, Th; Vi) »

for some T5 < T,

(c) Thanks to Lemma 4.2, we have v(ps) € C7/2(Q x [0,T]), for some 0 < v < min{a, 8},
and this allows us to apply Proposition 4.1 to (4.57)-(4.58) (written with us and @5 in place
of u and ¢, respectively). Arguing as in [20, Proof of Theorem 5, Step 2], we test the
Navier-Stokes equations (4.64) by dyus. It is then easy to deduce a differential inequality of
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the form

d 1

% | s Dust + Glosl? < € (1slP + 1ol + 1951

+ sl Vusll? + [ Vsl £ + 19w 1) [ Dus 1, (4.66)
where

ls = —(K*p5)Ves +v.

We recall here below the main arguments of [20, Proof of Theorem 5, Step 2].

e One can exploit (4.66), assumption (V) and the improved regularity for ¢ obtained
in Step 1, as well as the fact that we have ¢ € L*(0,T; W4(Q2)). These regular-
ity properties yield that d;ps is bounded in L?(0,T; H) and that ¢z is bounded in
LA0,T; WH4(Q)) uniformly with respect to 6.

e We can exploit the uniform with respect to 6 bound of us in the space L>(0,T; Gg;) N
L?(0,T; Vy,), which stems from the energy identity obtained by testing (4.64) by ws
in Gy, and the fact that ug € V.

e Using Gronwall’s lemma and Proposition 4.1, we can prove that wugs is bounded in
L>(0, Ts; Vi) N HY(0, Ts; Ggi) uniformly with respect to §, and, by comparison in
(4.64), that ws is uniformly bounded in L?(0,Ts; H?(£2)?). These estimates entail, in
particular, that us can be extended to any time interval (0,7), for all T' > 0;

(d) The passage to the limit in (4.64)-(4.65), as 6 — 0, is performed, by employing compactness
arguments and the strong convergence p;(t) — ¢ in V| for almost any ¢ € (0, 7). This gives
a strong solution u to the same problem solved by the weak solution w. Finally, the limit
velocity field satisfies © = u, on account of the uniqueness for the Navier-Stokes equation
with a given (nonconstant) viscosity. Therefore, the existence of a strong solution satisfying
(3.9) and (3.10) is proved. The uniqueness of this strong solution follows from [20, Theorem
7]. This concludes the proof of the second part of Theorem 3.6.

Step 3. In order to prove the last regularity part in (3.12), the idea is to differentiate (3.1)
with respect to time and to test the resulting equation by ¢,. To make the argument rigorous, we
employ the same time-discretization scheme of Step 1, taking the improved regularity for w (cf.
Step 2) into account. Therefore, for k = 1,...,N — 1, we consider problem (4.9)-(4.10) (where,
in (4.9), the discrete time derivative (¢, 1 — ¢;)/7 is made explicit) at step k and at step k£ — 1.
Taking the difference between the two equations (4.9) written for these steps, testing the resulting
identity by (g1 — ¢)/7, and summing over k = 1,...,n, with n < N — 1, we obtain the identity

z”: (@kﬂ — Pk Pk Pho1 Phel— s%)

T T T
k=1

_ f: (V(B(«pkH) — B(gy)), V(M))
k=1

n
¥ — ¢
-3 (Uk Veopir = Up_1 - Voy | %)
k=1
n

+ 3 (mle) (VK + Q(er)) = mlgpin) (VE * Qey) , V(FEH—FE) ) (4.67)
k=1

T

where, again, for simplicity of notation, the explicit indication of the parameter € is omitted.
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Let us now estimate the terms on the right-hand side of (4.67). As far as the first term is
concerned, we obtain that

n

>~ (V(Blorin) = Bley), V(FH—TE)) (4.68)
k=1
_TZ( Opst) (‘Pk+1_@k>7v<@k+1_¢k>>

n

~|—Z< (Prr1) — Al k))v%v(w))
S

<Pk+1 ©r) H2
\Y% .
20[(] Z H Pk

On the other hand, in light of (4.8), (4.31) and the fact that VB (¢) = A (¢) Vi, we have that

H A(@m)T— Aler) V%HQ

<\ 2H<Pk+1 S%’

IVerlZa e

L4(Q)

(e

o (B2 ST o (1.69)
< Qv (B2 (1.70)

Cr+1 — Pr||? Ort1 — Pk ||?
+ OB gy | |4 ]| P

Therefore, we conclude the estimate

NE

(V(B(sok+1) — B(ep)). V (M»

-
k=1
> 975 v (2
- 4
k=1

- p ¢
— Or S 1B | 222

k=1

B CTZn: HSOkJrl Pk H (4.71)
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Regarding the second term on the right-hand side of (4.67), we have

n

k=1

"\ U —Ug Pr+1 — Pk
D

Z (Uk ’ v@k—&-l - Uk’—l . vSpk , M)

EHU’“ e T ey

Ur—Ug_4 Pr+1 — Pk
<rey | Il H
— T < T

N H cp;mT— Oy, H1/2Hv((ﬂk+17__ wk> HW) IB(y )H1/2
< iHV(W)HZWaT iHU’“ZU’“H

LA(Q)2

¥ 14 ¥ ¥
+ o3 1Bl ey | 2525 4 TzHM\
k=1

: (4.72)

where 6 > 0 will be fixed later. Finally, the last term on the right-hand side of (4.67) is estimated
as follows:

n

>~ (M) (VK «QUer) = mlop1) (VK Qo)) V(=5
k=1

< (Moo +ml)br an: [#== v (=)

" _ 2 n — 2
L e
T T
k=1 k=1

(4.73)

By applying (4.14) (with (¢, — ¢i_1)/7 in place of ¢;,) to the left-hand side of (4.67), inserting

estimates (4.71)—(4.73) into the right-hand side, choosing ¢ small enough, and taking (4.31) into
account, we obtain that

1Hs0n+1 — Pn|?

L On [ Prgl — Pk Pr— Pt ||
1 +1 = Pe Pk Pkt
52| |

- (4.74)

1 ! Orr1 — Pr\||?
seor > [V (P )|
+ 80‘07162:“ T

L |1¢1 — o Pr+1 — Pk
<3220 +CT;HB L e |

" U —Up_q 2
+072H7k k 1H .
k=1 T
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Observe now that we have (cf. (4.24)—(4.29) and (4.31))

C
7B 320y < ?HS% — el +Cr,

where here the constant C' depends on the norm of w in L*(0,T’; G 4;,) N L?(0, T; Vi,,). Therefore,
we can infer from (4.74) that

1 H (pn—l—l — ¥
2 T

2 1~ || Pral — Pk Pk — Prt||?
N S CREREE

1 . Crt1 — Pk |2
+
+gaor |V (FE) |
=1

1e1 —wo)? —1 2 || Prr1 — Pr ||?
35“77 H +CkZ_OT’<Pk+2—<Pk+1H HiT H

C & ) " WUp —Up_1 2
+ 22 e -l +0r Y| = o (4.75)

k=1 k=1

The delicate point is now the control of the L?>-norm of the quotient (¢, — ¢y)/7 on the right-
hand side. To this goal, let us first point out a remarkable consequence we have from the improved
regularity of the velocity field obtained in Step 2, which concerns the solvability of the incremental-
step problem (4.9)-(4.10). Indeed, for a given ¢, € V, k = 0,..., N — 1, let us introduce the
nonlinear operator By : D(By) C H — H, defined by

Brp := —AB(p) + Uy - Voo + div(m(p,) (VK * Q(¢4))) ,

D(By) = {ga € HX(Q) : VB(p) -1 =m(py) (VK Q) -1, ae. on aﬂ} .

We prove that there exists some 79 = 7¢(w) > 0 such that

ap
1Pz = 1) + (B = Brp)ll 2 51— llwa —¢ull, V1,0 € D(Br), 0<7=70.  (4.76)

This estimate, in particular, implies that the solution to each incremental-step problem (4.9)-(4.10),
for k=0,...,N —1, is unique.
In order to show (4.76), we first observe that, for all ¢, p, € D(By), we have

(92 — 1 + T(Bry — Brr), B(wg) — B(1)) > aollpy — o117
+ 7]V (B(pg) — B(e)) 1P = (U - (92 — 1), V(B(pa) — B(ipy)))- (4.77)

Thanks to the improved regularity (3.10), it holds that

1
U kNVarw < el noe0,m3v0) 5 Ukl 2(0)2 < FHUHLQ(O,T;HZ(QV)- (4.78)
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Hence, by means of (4.78)2 and by Agmon’s inequality (2.2), the last term on the right-hand side
of (4.77) can be estimated as follows:

[ (Uk - (9 — 1), V(B(gy) — B(ey)))|
< TNU k| Loz le2 — 1lllIV (Blpg) — Blgy))ll
T T A
< §||V(B(802) — B(e1) I + 5 CUINU k20202 — @

T T A
< LIV (B(en) ~ Blon) I + YT G Jullimrcamllulzormamles - el (479)

Therefore, taking 0 < 7 < 7¢ with 79 given by

ag

TO -

= 3 9
Callull e 02, 1812 0,72 0002

the right-hand side of (4.77) can be bounded from below by

(7)) T

5 llee = @1ll* + IV (B(pz) = Blen)[I*- (4.80)
On the other hand, due to (4.5), we have that

(9 — @1 + T(Brpa — Brpr), B(py) — B(1))

< Aol = 01 + T(Brpg — Bro)|llea — @1l
2

(7)) A
< ZH% — ol + OTO(?”S% — @1 + 7(Brpy — Bepy)|I* (4.81)

Hence, from (4.77), (4.80), and (4.81), we get the estimate

Ago (&%) T
192 = P14 7(Brepn — Bro)l* = ez — e1l* + IV (B(g2) = Blen) -

This proves the desired claim (4.76). Therefore, for 0 < 7 < 7 and for every k = 0,...,N — 1,
the resolvent operator Ji , := (I + 7B;) ! is single-valued and Lipschitz continuous from H to H.

Indeed, it holds

250
‘|Jk,7—¢2 - Jk,rqzz)lH < 70||¢2 - QZJIH ) v¢1a¢2 € Hv 0<7< 7o - (4'82)

Notice that, if the first term ¢, on the right-hand side of (4.9) is assumed in H, then the solvability
of problem (4.9)-(4.10) still holds true, arguing as at the beginning of Step 1. Indeed, the nonlinear
operator Aj is the same and we still have g, € V',

Let us now go back to the problem of controlling the L?-norm of the quotient (¢, — ¢q)/7.
By employing (4.82) for k = 0, using the assumption on ¢, which yields that ¢, € D(Bp), and
assuming that 0 < 7 < 7¢, we find that

H% ~ %o H _ H Jorpo — Jor (I 4+ 7Bo)pg H
T T

(4.83)

< B
= o 1Boo |

< C([[AB(eo) || + lull oo (0,751, [0l 200 + llollv + 1),
where we have also used the first of (4.78).
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Finally, there remains to bound the last summand on the right-hand side of (4.74). To this end,
we can first observe that the following estimate holds true:

(k+1)7
)
/ e(s)|? ds.

Jukr) Ul < 7
kT

This estimate and a simple computation yield that

1 n
= 1Tk = Uil < el (4.84)
k=1

where the constant ¢ > 0 can be given by ¢ = 10/3.
We can now apply the discrete Gronwall’s Lemma to (4.74), taking (4.31), (4.83) and (4.84) into
account, to obtain the estimate

H (pn—l-l — ¥n
T

ey v (Be)f (4.85)
k=1

< @(||900||H2(Q)7 ”uHLOO(O,T;Vdiv)ﬂHl(O,T;de)) .

From this discrete estimate, we get a new bound for the approximate solutions @, @ introduced
in Step 1. Namely, we have

1B oo (0.20) + HSAO/VH%%O,T;V) < Q(lleollm2(), 1wl Lo 0,75V nHL0,T:G)) -
Therefore, in addition to (4.41)-(4.48), we also have, at least for a subsequence, that
PN — weakly-star in L*°(0,T; H) , weakly in L2(0,T;V).
This proves the second part of (3.12). Moreover, since we have (cf. (4.24)-(4.29) and (4.31))

Pn — ¥Yn 2
1Bl < Of 2=+,

then, thanks to (4.85), we also get the bound

HB(@N)HLOO(O,T;H%Q)) < Q(H%HH?(Q), HuHLoo(O,T;de)ﬁHl(O,T;Gdiv)) .
This obviously implies that

I8Nl Lo o, wre ) + 1B@N) e 0, mm10(0)) + IA@N) | oo 0,7:710(2)) (4.86)
< Q(lleoll (), 1wl oo 0,7V HL(0.7:Gas)) -
Hence, recalling (4.13) (written in terms of the approximate solutions @), and using (4.86), we
infer that
@l oo 0,120 < QUIol rr20)s 1wl Loo 0,75 )0 H (073G i) - (4.87)
Therefore, at least for a subsequence, we have that

oN — @, weakly-star in LOO<O, T Hz(Q)) ’

whence we get the first part of (3.12). The argument to pass to the limit in (4.38)-(4.39), and also
to prove the pointwise bound |p| < 1, is the same as in Step 1 (indeed, here we can even rely on
stronger convergence results). The proof of Theorem 3.6 is finished.

Remark 4.3. It is not known whether a strong solution according to Definition 3.1 also satisfies
equations (1.2)-(1.3) and the related boundary condition in a strong sense. This occurs if we can
guarantee the validity of a strict separation property, namely, the fact that ¢ stays uniformly away
from the pure phases (see, e.g., [38, 39] for a slightly different version of a nonlocal Cahn-Hilliard
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equation). An intermediate situation holds if F'/(¢,) € H (see [24, Theorem 3]). In this case, the
weak formulation where p € L%(0,T; V') appears explicitly can be recovered (cf. [24, Definition 1]).

Remark 4.4. If v is constant, then the argument to get the existence of strong solutions to (1.1)-
(1.5) can be simplified. Indeed, one may exploit the classical regularity result of [46, Theorem
3.10] for the two-dimensional Navier-Stokes system. This was the strategy followed in [23, Proof of
Theorem 2]. Notice first that (1.1) can be rewritten in the form

u —vAu+ (u-V)u+ Vi =(ap — K xp)Vo+v, (4.88)

where the modified pressure & := m— F'(¢) has been introduced. Thanks to the regularity properties
of the weak solution (cf., in particular, the bound |p| < 1) and to the assumption on v, we see
that the right-hand side of (4.88) belongs to L?(0,T; L?(£2)?). Hence, under the assumption that
ug € Vyip, the regularity (3.8) for the velocity field w immediately follows from applying [46,
Theorem 3.10] to (4.88). Once (3.8) is available, we can devise an easier argument in Step 1, by
using (4.22) and the second part of (4.78), to estimate the last term on the right-hand side of (4.18)
as follows:

n o n
’ > Uk Vi, B, op1) — Bl op))| < e D s — el
k=0 k=0

+ O ullF2 0 a2 ayzy D IVekll? (4.89)
k=0

This estimate, together with (4.19) and (4.20), still yields a discrete Gronwall’s inequality from
(4.18) (cf. (4.30)) and thus allows to obtain the regularity ¢ € L°°(0,T;V), ¢, € L?(0,T; H).
Notice that the assumption that K € T/Vlicl or that K is admissible is not required in this argument
(only (K) is enough). This regularity assumption on the kernel is needed only in Step 3, in order
to prove that o € L?(0,T; H?(Q2)) and, provided ¢, € H?(f2) satisfies (3.11), that (3.12) holds.

Remark 4.5. Assume that ug € Vg, and that ¢, € H?((Q2) satisfies (3.11). By integrating (4.66) in
time, and by passing to the liminf in (4.36), (4.87), we can also prove that there exists a continuous
and nondecreasing function Q : [0, 00) — [0, +00) which only depends on the data F, m, K, v, §,
T, ug and ¢q, such that

[l oo (0,77 Vs )N L2 (0,75 52(2)2) + el 20, 77:G0s0) T 121 oo (0,17 H2(0) (4.90)
+ 104l Loo (o, )N L2 0,751
<Q (H'UHLQ(O,T;Gdiv)) .

Remark 4.6. We point out that the estimates in the proof of Theorem 3.6 rely essentially on:

(a) the boundedness and Lipschitz continuity properties of the nonlinear functions A, m, given
by (4.5)-(4.8);

(b) the fact that ¢ is bounded (cf. the control of the boundary term in (4.25)).
Therefore, the whole strategy developed in the proof of Theorem 3.6 also applies for other classes of
mobilities and double-well potentials, provided that the previous two points are valid. An example
is given by a nondegenerate mobility and a regular potential defined instead on R, satisfying the
assumptions of [23, Theorem 2]. The boundedness of ¢ follows from a strategy based on a Moser
iteration argument (see [8, Theorem 2.1]). More precisely, in this case the uniform L*°(Q2)-bound
of @1 (cf. Step I of the proof of Theorem 3.6) will be given below (cf. the proof of Theorem
6.1). Incidentally, we point out that the present strategy is an example of how the argument used
in the proof [23, Theorem 5] can be made rigorous.
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5. UNIFORM ESTIMATES

In this section, we establish some uniform in time regularization estimates. To this aim, we shall
first formally deduce the same kind of higher-order bounds which were derived rigorously in the
context of the time-discretization scheme in the proof of Theorem 3.6. These will be the basis for
constructing uniform in time estimates. As a consequence, we establish a regularity property for
the global attractor of the dynamical system generated by (1.1)—(1.6), the existence of which was
proven in [24]. We point out that the argument of Proposition 5.1 below can be made rigorous
by means of time discretization combined with a discrete variant of the uniform Gronwall’s lemma
(see [43, Lemma 3]). Thus, we proceed formally, just for the sake of brevity.

Proposition 5.1. Suppose that assumptions (K), (V), (M), (A1b), (A4) are satisfied, and
suppose that K € VVfOCl(RQ) or that K is admissible (d = 2). Let uy € Ggip, pg € V N L*(Q)
with F(py) € LY(Q) and M(py) € L'(Q), where M is defined as in Theorem 2.3. Let also v €
L2 (0,00; Ggip). Then there exists a weak solution [u, ] to system (1.2)~(1.6) such that
u € L= (0,00; Ggip) N Lfb (0, 005 Viginy) u; € Lfb (O, 00; Vd;U) , (5.1)
@ € L®(0,00; V) N L{(0,00 HA(Q)), ¢, € L(0,00; H). (5.2)
If, in addition, ug € Vg, and o, € VNCB(Q) for some B € (0,1), then the (unique) strong solution
given by Theorem 3.6 satisfies (5.2) and
u € L™ (0,00; Vyin) N L (0,00, H2(Q)?), g € L, (0,005 Gs) - (5.3)

Finally, suppose that p, € H*(Q) satisfies (3.11). Then the strong solution also enjoys the following
properties:

@ € L*(0,00; HX(2)), @, € L(0,00; H) N L%(0,T;V) . (5.4)
Moreover, there exists a constant I' = T'(k), depending on k € [0,1], on ||,U||Lfb(0,oo;de) (and on
F, m, K, v, Q), such that, for every initial data [ug, o] € Vg x H?(Q), with o, satisfying
(3.11), F(pg), M(py) € LY(Q) (hence |¢p| < 1 almost everywhere in §2), and [p,| < &, there exists
a time t1 = t(E(uo, ) > 0, where E(uo,,) is given by (5.9), such that the strong solution
corresponding to [uo, y] satisfies the dissipative estimate

t+1
lu(),,, + / () 32z ds + () 3y <T(R),  Ve>t1. (5.5)

Proof. First we observe that, by arguing as in [24, Proof of Proposition 2], from (2.3) we can deduce
the differential inequality

d A 1

2 (ll® + 1l 1) + o [Vl + v [[Vul* < € + H||U||2- (5.6)
Moreover, again by arguing as in [24, Proof of Proposition 2] (see also [14, Proof of Corollary 2]),
we infer from (5.6) the dissipative estimate

lu@®I* + e @)1 < (lwoll® + llwol?)e* + L, ¥t >0, (5.7)
where the positive constant L depends on @, and on ||v|| L2, (0;00:Ggs,)-  LhiS, in particular, entails

that w € L*°(0,00; Ggip). Let us now integrate (5.6) between t and ¢ + 1. We get

t+1 t+1
e+ DI + ot +1) |2 + ao / V()| + 1 / |Vu(s)|ds

. 1 t+1
< O + o) 2+ O+ o [ futs)Pas, w0, 59
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Hence, (5.7) and (5.8) yield that

ap t+1

t+1
D[ IveIPds+ 2 [ IVu(s)ds < Blwo go)e 4Ty, ¥ 0,
t t

where we have set

(ol + lleol®) , (5.9)

[0, 1] such that [py| < k. In particular, this gives

E(“Oa 900) =

Mm DN~

and where I'yg = Q(k, HUHL,?,,(U,OO;de))’ with

w e Ly(Ry; Vi), 9 € Lp(R; V).

Moreover, there exists a time ty = to(E(uo, ¢g)) > 0, which can be given by to = } log E(uo, @),

such that
b ap [t ) vy [t )
> t IVe(s)||°ds + 2/t IVu(s)||“ds <To+1, Yt > to. (5.10)

Let us now begin with the higher-order estimates. We test (3.1) by B(y); = A(¢)¢;. On account
of (3.3), we obtain the identity

%%HVBW)HZ + /Q M)t + (u- Vo, Me)er)
= (m(9)(VK % ¢), VB(¢);) - (5.11)
Observe that
VB(p)t = M)V, + XN (p) Ve o, . (5.12)

The term on the right-hand side of (5.11) can be written as follows:
(m(@) (VK * ), VB(p):)

a (m(e) (VK * ©), Me)Ve) — (m/(9)e, (VK * ), \(©) V)

T odt
— (m(e)(VE *¢,), N(0) V). (5.13)
Therefore, plugging (5.13) in the differential identity (5.11), we get
1dd
s+ [ MO+ (TN (514)
2 dt Q

= — (M (0)¢i (VK * 9), M) V) — (m(p) (VK *¢,), A9)Vep)
where we have set
® = [VB()|* = 2(m() (VK * ¢), N(0) V) .
On account of assumptions (A1), (A4), which ensure that ag < A(s) < A\, for all s € [-1,1], it
is immediate to see that the right-hand side of (5.14) can be bounded from above by
Lol + Conp il Vel + Crn i

As far as the advective term on the left-hand side of (5.14) is concerned, since VB (¢) = A (¢) Vi,
we have that
[(w- Vo, \@)e)| = |(u- VB(9), ¢,
< ullzs@2 VB (9) [ a2l

1/2
< Cllull2[Vul 2V B () V2B () | aqy el (5.15)
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Let us now control the H%norm of B(p) in terms of the L?-norm of ¢,. To this end, we first
employ elliptic regularity, namely

1B@) 2@ < C (IAB@) + IB@)Iv + IVB)  nll 1720, ) (5.16)

Then we estimate the boundary term on the right-hand side by taking (3.3) into account. Arguing
in a similar way as in the time discrete version (4.25), we find that

IVB(9) - nll g1/290) = Im(@) (VK * @) - 0l 17290

< Im(@)llz= @) (VK * ©) - 1l g1/290) + (VK * ¢) - 0l Lo o0 Im(o) | 1250
<meeCa || K ¢ ”H2(Q) +Ck0 mgoHQD||H1/2(6Q)+CK,QmOO|6QH/2

< Cnra(VB@)I+1), (5.17)

thanks to the fact that || < 1 almost everywhere in Q7. Therefore, on account of (3.1) and (5.17),
from (5.16) we obtain that

1B@)la2@) < CUIAB(R)I + [VB(p)|| +1)
< C (el + llw- Vel + [|div (m(e)(VE « o)) || + [[VB (#) | +1)

< (o + |u 3986 + 195G +1)

< C (llpell + 2 IV Bz oye + IVB(2) ] +1)

< C (Il + [l 2 [Vl VB () 2B (0) oy + IVB () +1) . (5.18)

Thanks to Young’s inequality, (5.18) entails the desired estimate
1B m2@) < C (leell + ull [Vul [VB@) + VB[l +1) - (5.19)

Estimating the term in the H?-norm of B in (5.15) by means of (5.19), we get
Qg
[(w- Vo, X)) | < Ll + C (lulPIVulPIVBIP+HIVB)* +1) - (5.20)
Therefore, estimating the advective term in (5.14) through (5.20), the other terms as done above,
we are led to the differential inequality
dd

-+ aollenl? < G (L [l Vul?) (14 |VlP) (5.21)

On the other hand, it is easy to see that there are two constants K1, Ko > 0, depending on m, A
and K, such that

K1 ([Ve®)]? = 1) < @) < K2 ([Ve@®)|* +1) . (5.22)
Therefore, on account of (5.10) and the fact that w € L*°(0,00; Ggir), by applying the uniform
Gronwall’s Lemma, from (5.21) and (5.22), we can find a time t; = t¢ + 1 such that

le@I <Ti(s),  VE>tr. (5.23)
Moreover, by integrating (5.21) between ¢ and ¢t 4 1, for all ¢ > t1, we also get that

t+1
w [ les)Pds <Tal), vz (5.24)
t

In summary, we have shown that

pe L°Ry;V), ¢ € Li(Ry; H). (5.25)
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We now prove that ¢ € L2 (Ry; H?(2)). First, from (5.10), (5.24), (5.23), and (5.19), we infer that

t+1
| I By ds < Tl V200, (5.26)
t

whence B(p) € L% (Ry; H?(2)). This bound, together with the Gagliardo-Nirenberg inequality
(2.1) and (5.23), implies that (cf. (4.33))

t+1 t+1 t+1
2 2 2 2 2 2
| 1veelig s [ IvBee)EG s+ [ 19,
S F4(K‘)7 (527)
for all t > t; and 2 < p < co. Thus, we have
o, B(y), Ay) € L7 (R Whe(q)).

Notice that we have used the identity VA(p) = X (p) V. As far as the second spatial derivatives
0? 7 are concerned, recall that we have the identity (cf. (4.13))

1
81-2]-@:@8%3(@) )\2( )8 iX(©)0; B(p). (5.28)

Combining this with (5.26) and (5.27) (when p = 4), we obtain that

t+1
[ 1o eds <Tst), iz,
t

so that ¢ € L% (Ry; H2(2)). This concludes the proof of the first part of the theorem.

Let us now assume that ug € Vg, and that ¢, € V N C?(Q). On account of (5.10), assumption
(V), (5.24) and (5.27) (when p = 4), the application of the uniform Gronwall’s Lemma to (4.66)
gives

lu@llvy, <Te(k), — Vt>t1, (5.29)
namely, u € L>°(Ry; Vy,). By integrating (4.66) between ¢ and ¢ + 1, and using Proposition 4.1,
(4.57)-(4.58), it is not difficult to conclude that

t+1 t+1
/t |ut(s)]2ds+/t lu(s)|}apeds <Tr(r),  VE>1. (5.30)

Thus, we infer that
up € L (Ry; Gaip) and uw € LE(Ry; H2(Q)?).

In order to prove (5.4), we take the time derivative of (3.1) and test the resulting equation by ¢;,.
By using the boundary condition (3.3), we obtain the following identity:

; Sl + (VB(e)n Vi)
—(ue - Vi, ) + (m'(9)e, (VE  ¢), Vi) + (m() (VE ;) , Vipy) . (5.31)

Owing to the fact that VB (p) = A (¢) V, and recalling (4.5), we find that

(VB(©)i, Vi) = aol| Ve, |2 + (X (9) Ve pr, Vi)
7 2

Qo 2 )‘oo 2
> — — . 5.32
> VI - 32l el (5:32
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As far as the last term in (5.32) is concerned, we have
eVl < leulaay IVl 0y
_ 2
< (e + Il Vel XV B 21 e

< C (ledlP? + eIV IVB@)INB(@) 2o
<61Vl + Coll LB + Clloll?,
for all 6 > 0, where the first of (5.25) has been taken into account, as well as the fact that

B(y) € L*(0,00; V). Hence, combining this estimate with (5.32) and choosing > 0 small enough,
we obtain the bound

Q
(VB(@)r, Vo) = Vel = ClledPIB() 32 — Clleall® (5.33)

The H2-norm of B(p) can be expressed in terms of the L?mnorm of ¢, by arguing as above (cf.
(5.16)—(5.18)), i.e., by first using elliptic regularity theory and then by estimating the boundary
term, to get (5.19). From (5.19), on account of the improved regularity of the first of (5.25) and
(5.29), we get that

1B 2(0) < C (lleell +1) - (5.34)

Let us now estimate the terms on the right-hand side of (5.31). For the first term, on account of
the first regularity of (5.25) and (5.34), we have

‘_ (u’t ' V907 Sot)‘

< Cllug|llleell oo VB(p)

1
Ap) L4(Q)?
< Clludll (el + e 1912 IV B 1B 2 0
< Cllatll (lleell + lleel 190l12) (leall 2 +1)
< 36]Veul® + Cs (lpel* + llwell + 1) - (5.35)

As far as the remaining terms on the right-hand side of (5.31) are concerned, they can simply be
controlled by

S+ Csllen]” (5.36)
Therefore, collecting (5.33)-(5.36) into (5.31), we deduce the differential inequality
Lol + 220 < C (el + llal + el +1) (537
Then, using (5.24), (5.30) and the uniform Gronwall’s Lemma, we obtain that
e, (DI <Ts(k),  VE>t, (5.38)
whence we have ¢, € L*(R,; H). By integrating (5.37) between ¢ and t + 1, for ¢t > t1, we also get

t+1
[ Ve <o, vz,
t

so that ¢, € L% (Ry; V). Finally, we prove that ¢ € L>°(Ry; H%(2)). First, notice that (5.34) and
(5.38) entail that ||B(¢(t))[ g2y < To(k), for all £ > ¢1. Then we have

le®llwre@) + 1BleE)lwre@) + IMe(E)llwrr@) < Tuls), vt =i, (5.39)
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for any p € (2,00), whence
¢, B(p), Mp) € L™ (Ry; WP (9Q)) .
Therefore, recalling (5.28) and employing (5.39), we deduce that
e 2y < Tia(k), V>,

which is the final desired claim. The proof is complete. O

Remark 5.2. Assume that ug € Vg, ¢o € H?(2), and that the compatibility condition (3.11) is
satisfied. Moreover, assume also that
(M1b): The mobility satisfies (M) and also m € C?[—1,1].
(Alt): F € C*(—1,1) and X\ := mF" € C?[-1,1].
Then the following time continuity properties for the strong solution of Theorem 3.6 hold true:
we CU[0, T Vi), € C([0,T); H*(Q)) nCH([0,T); H). (5.40)

Let us sketch the argument for proving (5.40), omitting some details. The time continuity of the
velocity field (see the first of (5.40)) is a consequence of the fact that w € Cy([0,T]; Viiy) and of
the differential identity

LI Tul? — (1), Su) 22150 D, Su) + (B, Su)
= ((—K *¢)Vep,Su) + (v, Su),

which is deduced by testing (4.57) and (4.58) by Swu (recall that S := —PA is the Stokes operator,
cf. Section 2). In order to show the second of (5.40), we first observe that from (5.31), and from
the regularity properties (3.10), (3.9), it is not difficult to see that ||¢,(-)||*> € C°[0,T]. More-
over, (3.12) implies that ¢ € C°([0,7]; V). From this, we infer that B(y) € C°([0,7]; V). Since
¢, B(p) € L>(0,T; H*(2)), we then have o, B(p) € Cy([0,T]; H*(£2)). Also, recalling that u €
CY([0,T]; L*(2)) and Vi € Cyp([0,T]; L)), we have that w - Vo € Cy([0,T]; H). It is also easy
to see that div(m(p)(VK * ¢)) € C°([0,T]; H). Hence, (3.1) yields ¢, € Cy,([0,T]; H). This weak
in time continuity, together with the L?-norm continuity for ¢,, implies that ¢, € C°([0,T]; H). On
the other hand, we also have p € C°([0,T]; H*()), for 1 < s < 2, whence Vo € CY([0, T]; L*(2)).
Therefore, u- Vo € C°([0,T]; H), and, from (3.1) once again, we infer that AB(p) € C°([0,T]; H).
We now employ the estimate

102 = @1llm2) + 1B(#2) = Ble1)llr2(a) (5.41)
< CA(B(g2) = Ble)ll + Clier — wallv

which requires slightly stronger assumptions than (M) and (A1), that is, (M1b) and (A1t) above.
By means of (5.41), we eventually get that o, B(p) € C°([0,T]; H*(Q2)).

Let us now assume that the forcing function v is time independent, i.e., v € Gy;,. Following [24,
Section 5], for k € [0, 1] fixed, we introduce the metric space X, defined by

Xy = Gaiv X Vr,
with ), given by
Y, = {go €L®Q): |l <1 ae. inQ, F(p),M(p) € LI(Q), lp| < H}. (5.42)
The metric on X is

dx, (22, 21) = [[ug — wil| + [lgo — @],
for every z1 := [u1, @] and z2 := [ug, 5] in Xj.
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Suppose that (K), (V), (M), (A1)-(A4) are satisfied. Then we know that the set G, of all weak
solutions to (1.1)—(1.6) from [0, 00) to X (cf. Definition 2.2 and Theorem 2.3), corresponding to all
initial data zg = [ug, @y] € Xi, is a generalized semiflow on X}, (in the sense of [6]), which possesses
a (unique) global attractor A, (see [24, Section 5]). Notice that in [24, Section 5] the viscosity v
was assumed to be constant, for simplicity. However, the arguments therein can easily be adapted
also to the case of nonconstant viscosity satisfying (V). We also remark that uniqueness of weak
solutions is not known, in general. However, if v is constant, then, thanks to the uniqueness result
of [20, Theorem 4] (cf. (2.5)), the generalized semiflow becomes a semigroup of closed operators on
X, and the global attractor is connected.

Assume now that the assumptions of Proposition 5.1 are satisfied. Take zy € X, and consider
a weak solution z := [u, ] € C°(]0,00); &) corresponding to zg. By integrating (5.6) in time
between 0 and 7 > 0, we can deduce that, for every 7 > 0, there exists some ¢, € (0, 7] such that
z(t;) € Vg, x V. We now consider (5.21) in [t,,00). By integrating this differential inequality
between ¢, and ¢ > t,, we can see that there exists some s, € (¢, t] such that ¢,(s;) € H. This,
assuming also that u(s;) € Vg, and ¢(s;) € V, owing to (5.19) and (5.28), implies that ¢(s;) €
H?2(£)). Moreover, since the boundary condition (3.3) holds almost everywhere on 992 x (0,7, we
can suppose that (3.11) holds in s, (i.e., with ¢, replaced by ¢(s;)). Therefore, we can apply the
last statement of Theorem 3.6 with initial time s;. Let us then consider the metric space

Wi = Vigiv X 2},
where

Z = {@ € H*(Q) : VB(¢) -n=m(p)(VK *¢)-n, ae. on dQ,

Pl <1 ae inQ, F(y), M(¢) € L'(9), 7] < &}, (5.43)
endowed with the metric

dw, (22, 21) = |luz — willvy, + le2 — e1llaz), 21,22 € Wi

Then, for every 7 > 0, there exists s, € (0,7] such that z(s;) € W, and starting from the time
s-, the weak solution corresponding to zo becomes a (unique) strong solution z € C%([s,, c0); W)
(cf. Remark 5.2). Furthermore, from s, on, this solution satisfies the dissipative estimate (5.5),
namely, there exists a time t; = t;(E(2q)) > s, such that z satisfies (5.5) for all ¢ > ;.

Let us now consider a subset B C Xj, bounded in the metric of X}. We can choose 7 = 1 for
every zo € B, and then infer that every weak solution starting from zy becomes (at some time
s1 € (0,1], which depends on zp and on the weak solution considered from z() a strong solution
satisfying (5.5) for all ¢ > ¢}, with ¢} = ¢t](R) > 1, where R > 0 is such that dx, (w,0) < R, for all
w € B. Therefore, we deduce that there exists a time ¢;(B) > 1 such that

Z(t) € BW}; (A(k)) s Vit > tT )
where A(k) := I''/2(k), and where Byy, (A(k)) is the closed ball in W, given by
Bw, (A(k)) == {w € W, : dw, (w,0) < A(k)}.

Thanks to the full invariance property of the global attractor A, we immediately deduce that
A, C By, (A(k)). In conclusion, we have proven the following regularity result for the global
attractor.

Theorem 5.3. Let (K), (V), (M), (A1b), (A4) be satisfied, assume that K € VVlicl(Rz) or that
K is admissible (d =2), and that v € Gy, is independent of time. Then the global attractor Ay of
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the generalized semiflow Gy associated with the nonlocal two-phase fluid system (1.1)-(1.6) is such
that
.AH C BV\},€ (A(k)) .

Remark 5.4 (Corrigendum for [23]). Similarly to (3.11) of Theorem 3.6, also in [23, Theorem 2
and Proposition 1] a compatibility condition, associated with the assumption ¢, € H?(£2), must be
required. More precisely, setting p, 1= apy — J * @y + F'(¢p) (in [23], J stands for the convolution
kernel), the missing condition is Vg - n = 0 almost everywhere on 0€2. Consequently, the metric
space Y} for m > 0 fixed, introduced before the result on existence of the global attractor (see
[23, Theorem 3]) must be defined as follows:

Yy ={p€eH*(Q) : Vu-n=0ae ondQ, p=p—Jxp+F'(¢), [(p,1)| <m}.
This observation also applies to [20, Theorem 5], to the definition of the space K, in [20, Theorem
10]), and to [25, Theorem 2.3].

6. THE CONVECTIVE NONLOCAL CH EQUATION

The results of the previous sections can essentially be established for the nonlocal Cahn-Hilliard
equation with degenerate mobility and with a prescribed (divergent-free) velocity field w. We shall
consider both the cases d = 2,3. However, when it comes to the regularity properties for ¢ in
dimension d = 3, the results are not as strong as in the case d = 2 (cf. Remark 6.3).

Theorem 6.1. Suppose that assumptions (K), (M), (A1b), (A4) are satisfied, and suppose
that K € VVZQO(}(RQ) or that K is admissible. Let ¢, € V N L®(Q) with F(p,) € LY (Q) and
M(py) € LY(Q), where M is defined as in Theorem 2.3. Assume also that w is given and

we L0131y, (), d<r <. (6.1)

Then, for every T > 0, problem (1.2), (1.3), (1.5)2, (1.6)2 admits a strong solution ¢ on [0,T] such
that

0 € L0, T;V)n H*(0,T; H), (6.2)
© e L*0,T; H*(Q)). (6.3)

This solution is also unique provided that r = co when d = 3. If d = 2 and u satisfies the additional
reqularity

we L(0,T; L®(Q)*) NL®(0,T5 L7 ()%, s,0>2,  w € L*0,T;Ggn),  (64)
and py € H*(Q) satisfies (3.11), then the (unique) strong solution also satisfies
e L™(0,T;H* (), ¢, € L®(0,T;H)NL*0,T;V). (6.5)

Proof. Part (a). Since the argument follows the same lines of the time-discretization scheme of
Step 1 and Step 3 in the proof of Theorem 3.6, we only briefly highlight the main points. The
approximate problem (4.1)-(4.2) is considered, and, by applying time-discretization, we are led to
formulate the incremental-step problem (4.9)-(4.10).

In view of (6.1), the bootstrap argument to prove that, for ¢, € V, the solution to this problem
satisfies (¢q,...,¢y) € H*(Q)V, is now a bit more delicate. Let us sketch this argument only for
the case d = 3. By comparison in (4.9)-(4.10), we first see that we have AB (¢, 1) € LP1 (), where
p1 = 2r/(r +2), and VB(p,41) - n € HY/2(9Q). By elliptic regularity theory, we then infer that
B(pj41) € W2P1(Q). Hence, on account of the fact that VB(¢y11) = A (¢g41) Vry1, we further
infer that VB(pg1) € WHPL(Q) and V., € WHPL(Q). Thus, by Sobolev embedding, we get
an improved regularity for the convective term Uy - V., 1, which, by means of elliptic regularity
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again, implies that B(py,41) € WP2(Q), with 1/ps = 1/p1 —1/3+1/r. By repeating this argument
n times, we get B(pg.1) € W2Pr(Q), where 1/pp41 = 1/p, — 1/3 4+ 1/r. This recursive relation
can be made explicit by giving

P1 1 1

pn:l—(n—l)apl’ A

Therefore, after n steps, with n big enough, we have p, > 2. The bootstrap argument then leads to
B(pr41) € H*(2) such that by (4.13), we also have ¢, € H?(Q2) (actually, one could also push
the regularity for ¢, further; however the H 2_regularity is enough for our purpose).

Let us now consider the discrete estimates that can be derived from the incremental-step problem
(4.9)-(4.10). The basic estimate (4.17) still holds. As far as the estimates (4.18)-(4.20) and (4.22)
are concerned, these can be repeated. However, the contribution coming from the convective term
Uy -V, in (4.22), instead of being estimated as in (4.23), is now controlled as follows (let us
consider just the case d = 3, and estimate only the main part of this contribution, recalling (4.5)):

TZ Uk - VB(S%H)HQ < TZ HUkHQLT(Q)3HVB(()DIH-I)Hi27'/(7'*2)(ﬂ)3
k=0 k=0

- 2 2-§ i
<7y, Ukl 7 (s IVB(r )17 7 IVB(er )y
k=0
n n 2r
< 572 HB((pk-l—l)H%ﬁ(Q) + CJTZ HUkHE(BQ):sHVB(%H)HZa (6.6)
k=0 k=0

where § > 0 is to be fixed later. Here, the Gagliardo-Nirenberg inequality has been used. It is easy
to see that

2r 2r

TkZO Il < Tl 2 ) (6.7)

Therefore, taking (4.24)-(4.28) into account, from the discrete Gronwall’s Lemma and from (6.1),
(6.7), we can recover estimate (4.31) (the constant Q now depends on the norm of w on the right-
hand side of (6.7)). This allows us to deduce (6.2).

Next, as far as the regularity (6.3) is concerned, let us consider the two cases d = 2, 3 separately.
In the case d = 2, we can argue exactly as in Step 1 in the proof of Theorem 3.6, by using estimate
(4.32), which can now be written in the form

Ty 1B(ers )20y < QUIw0llvs [ull pors -y 0,110 (6.8)
k=0

and which is derived from (4.24), combined with (4.25)-(4.28), (4.31), (6.1), (6.6) and (6.7). If d = 3,
the argument requires some further care. The first step is to prove a bound in L*(0,7T; L*(2)3) for
the sequence of VB(py ), namely,

TZ HVB(%H)HAB(Q)B < Q(H%HV: HUHL%/(T—&(o,T;LT(Q)3)) ) n=0,...,N—-1. (6.9)
k=0

This bound is a consequence of (6.8) and of the following Gagliardo-Nirenberg inequality (which
holds for every dimension d, see, e.g., [17, 18, 41])

IVB(ors)llay < CIB@r)I2 o) 1B ers) g (6.10)
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provided that we prove a uniform bound in L*(2) for the time discrete solutions ¢, ,; to the
incremental-step problem (4.9)-(4.10), namely,

S ekl < Cllleolle(@),  n=0,...,N—1. (6.11)

Once we have (6.11), we also find a bound for V@, and for V(@) in L*(0,T; L4(22)3). Moreover,
since we know that ¢, € H?(€), then (4.13) holds. From this identity, we deduce the bound for
@y in L2(0,T; H?(S2)), which yields (6.3).

Part (b). Let us prove (6.11). This is achieved through a Moser-Alikakos iteration argument
performed on (4.9)-(4.10). Let us begin with an elementary identity that can be obtained from
2(a — b)a = a? — b + (a — b)?, by multiplying it by a?, then by multiplying the resulting identity
by a4, and iterating this procedure j > 1 times. We obtain that
271 27 27
(a—0b)a =59 - gb + Aj(a,b), (6.12)
where Aj(a,b) > 0 is some polynomial function of order 2/ which we do not write explicitly, since

it is not essential. We now set p; := 2/, multiply (4.9) by gozi_ll, integrate over ) (taking the
boundary condition (4.10) and the incompressibility condition for Uy into account), and sum the
resulting identity over k, for £k = 0,...,n, with 0 <n < N — 1. By means of (6.12), we easily get
the estimate

1 j i/2
p/SDZ'H TZ/ IV ( §+/1 (6.13)
7 JQ J
1 _
< p/g) de—i—TZ m(er) (VK * Q(py)), V(Spﬁ—ll))
j

where pj( is the conjugate exponent to p;. Let us estimate the term on the right-hand side of (6.13).
We have

i—1
]Z J(VE = Qer)), Vi, >]
2 /2 2
e | ” pj Z/ §J+/1|2dx+f). (6.14)
Jp] =0 pj

By means of this estimate, and setting LZJ(j = 90% /2 (6.13) yields that

/¢n+1| da:+7'2/ (Vo) Pdz (6.15)
J

/W(J | d:B—f—ijTZ/ |¢k+1 2dzx + Cpy,

where C' > 0 shall henceforth denote some positive constant which may depend on the mobility
m, and on K, g, 2 and T, but are independent of the index j and of N. Using the following 3D
Gagliardo-Nirenberg inequality,

| . |
212 < CUEL I IFREL 1 + 198, 31 ) (6.16)
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and Young’s inequality in (6.15), we obtain that

[ i e+ 25 Zjﬁwﬂﬁd</www#@%§N%M@®
k=0

The last inequality implies that

/S;Soij;Fldl'
n 2
S/gogjdx—FCp?TZ(/ \gokﬂ\pf*lda:)
Q i e

2
< / +C’pJTor£1]?x / ‘(pk+1|pj71dx

< Pj-1 .
—CPJ oHAX /‘Wk+1| ” dﬂc ) : (6.17)

where we have used the fact that |¢gl/z~() < 1, and where the constant C' > 0 depends on
ol Loo(0)- Setting

E; = {1, pa‘d}, Vi >0,
j A /Qsokm x j =

we obtain from (6.17) the recursive relation

E; <CpiEf,,  j=1,
so that
j—1
E; < Czl 2! 5zl E
1=0
Consequently,
557
X lerr1llprio) < C27 == o Ey (6.18)
< C0<1];n<a]3]<_1{1,/9|¢k+1|d$}

< C(llpollpe(ey) »

where (4.17) has been taken into account in the last estimate. Letting j — oo, and using the fact
that the constant C' depends neither on the index j nor on N, we conclude (6.11) from (6.18).

Part (c). We now prove uniqueness of the strong solution satisfying (6.2)-(6.3). Let us start with
the case d = 2. We take the difference of (3.1) and (3.3), written for two solutions, and multiply
the resulting identity by ¢ := ¢y — ¢, in H. We then get

5 el + (V(Blea) ~ Blgr)), Vo) (6.19)

= ((mlpa) = m(1))(VE * ¢3), Vo) + (m(1)(VE * ¢), Vi) .
Thanks to (A4), we can deduce that

(V(B(¢a) — B(¢1)), Vo) > aolVel* + ((Apg) — A1) Vs, Vo), (6.20)
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and, due to the regularity estimate (6.2) for 5, we have that
[ (M2) = A1) Vepa, Vo)
< C(llell + el 1Vl ) Vool sl ragy I Vel
< ZUVelP + A+ lesllzr)liel?

The estimates of the two terms on the right-hand side of (6.19) being straightforward, we are led
to

d
—lel® + e Vel* < O+ lleallipzo)llel*

Uniqueness, and also a continuous dependence estimate, then follow from applying Gronwall’s
lemma, owing once again to (6.3) for ps.

For d = 3, the test by ¢ does not work for uniqueness (the difficulty lies in the estimate of
the term ((A(p2) — A(¢1)) Vs, V). The test by (—Ax)~t¢ works (—An being the Laplace
operator with homogeneous Neumann boundary condition), provided that w € L?(0,T; L>°()3).
Uniqueness then follows by arguing as in [24, Proposition 4].

Part (d). Let us now prove the last part of the theorem. If d = 2 then we can argue as in Step 3
of the proof of Theorem 3.6. Identity (4.67) and estimates (4.68)-(4.73) can be rewritten in such a
way that the discrete inequality (4.75) holds, where the constant C' now depends on the norm of u
on the right-hand side of (6.7). Also the argument for the control of (¢, — ¢,)/7 in L? still works,
with only one difference. More precisely, instead of (4.78), we now have, as a consequence of the
first of (6.4),

1
Uk Lo ()2 < m”uHLs(O,T;LC’O(Q)?) :

Hence, instead of using Agmon’s inequality in (4.79), we deduce that

T[(Uk - (93 — 1), V(B(gy) — B(y1)))|

< 7|Ukl =@y llea = 01V (B(p2) = Bley)) |
T 1 , 2
< §”V(B(%02) - 3(801)) I” + ) (A HUH%S(O,T;LW(QP) s — 1l

Since s > 2, we can choose 0 < 7 < 71, with 71 small enough (and depending on the norm of w on
the right-hand side of (6.7)), and still obtain (4.82), yielding the desired control for the quotient
(p1 — ¢p)/T. Owing to this control and to the second property of (6.4) and (4.84), we still get
(4.85) from (4.75) , which allows to obtain the second part of (6.5).

Finally, in order to deduce the first part of (6.5), we can argue as in Step 1 of the proof of
Theorem 3.6, first estimating the H?-norm of B(;,) by elliptic regularity and then using (4.9) (cf.
(4.24)). The L?-norm of the advective term, which essentially amounts to control Uy - VB(¢y, 1),
on account of the first of (6.4), can now be estimated as follows:

1Uk - VB(@py )l < Ukl o @2 [l VB(@h 1)l 20702 ()2
—92/0 2/o0
< Cllull g o.:2e @) IV B )l HB(%H)H;{z(Q)

< S1B(ers ) a2 @) + Qs ([l@ollv, llull s 0,150 @)2)s Wl por/e-2 0,707 (0)2)) -

Therefore, choosing § > 0 small enough, we get

HB(CDN)HH%Q) < Q(”SOOHV? HuHLOO(O,T;LU(Q)2)QL27‘/(T*2)(O,T;LT(Q)2)) (H@&H + 1) :
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Owing now to the uniform bound for $, € L°°(0,T; H), the foregoing estimate yields a bound for
B(py) in L*(0,T; H?(£2)); henceforth, we also have

VB(oy), Von, VA@y) € L®(0,T; LP(Q)?), for all p < co.

Thus, on account of (4.13), we find the desired bound for @, in L>(0,T; H%(Q2)). Hence, the first
part of (6.5) is proven and the proof of the theorem is finished. O

Remark 6.2. The bound (6.11) obviously also holds for d = 2. Therefore, the argument relying on
(6.10) can be employed, both in Theorem 3.6 and in Theorem 6.1, to deduce the L%(0,T; H?(12))
regularity for ¢ in two dimensions as well. However, we point out that, in the case d = 2, this
regularity can be established without using (6.11).

Remark 6.3. If d = 3 the regularity (6.5) is open unless we assume A := mF” constant (in
this case (6.4) is still required). It is worth observing that these assumptions are basically the
ones considered in [31]) whose regularity was discussed in [39]. Moreover, if A is constant then
uniqueness of the strong solution satisfying (6.2)-(6.3) holds for d = 3, also under the more general
condition (6.1) (without the need to assume r = oc0). Indeed, the second term on the right-hand
side of (6.20) vanishes.

Analogous to Proposition 5.1, we may employ the uniform Gronwall’s lemma (or, more precisely,
its discrete variant, see [43, Lemma 3]), to establish uniform in time regularity estimates for the
convective nonlocal Cahn-Hilliard equation with a prescribed (divergent-free) velocity. We can
therefore deduce from Theorem 6.1 another result obtained by working with translation bounded
functions and providing also a dissipative estimate for ¢ (cf. (5.5)). We omit the statement of this
theorem and its proof, since they can be deduced in a straightforward way. Moreover (cf. Remark
6.3), if d = 3 and

mF" =Xy (Ao is a positive constant), (6.21)

then it follows that ¢ € L>(Ry; H*(Q)) and ¢, € L*(Ry; H) N L% (R4; V), provided ¢, € H*()
satisfies (3.11) and w satisfies (6.4) in the corresponding translation bounded spaces.

As far as the time continuity property of (5.40) is concerned, assume that all the conditions
of Theorem 6.1 and, in addition, suppose that (M1b), (Alb) are fulfilled. By arguing as in
the second part of Remark 5.2, we can easily see that the second of (5.40) still holds, under the
further regularity w € C°([0,T]; L°()%), for some ¢ > d, and, if d = 3, provided that (6.21)
holds. Suppose now that assumptions (K), (M), (A1)-(A4) are satisfied and that u € L>(Q)? is
independent of time. Then we know from [24, Section 6] that (1.2), (1.3), (1.5)2 and (1.6)2 generates
a semigroup of closed operators {Sy(t)}+>0, with s € [0, 1] fixed, on the phase space ), defined as
in (5.42) and endowed with the metric induced by the L?-norm. Namely, ¢ € C°([0,00), V.) given
by ©(t) = Sk(t)pg, for all ¢ > 0, is the (unique) weak solution to (1.2), (1.3), (1.5)2 and (1.6)2
corresponding to ¢, € V. According to [24, Theorem 5], this semigroup possesses a connected
global attractor j,{.

Assume now, in addition, that the (M1b) and (A1t) are fulfilled, and, for d = 3, that (6.21)
holds. It is then easy to check that the argument devised at the end of Section 5 to prove the
regularity of the global attractor for (1.2)-(1.6), can be adapted to the present situation. This
yields the following result.

Theorem 6.4. Suppose that assumptions (K), (M1b), (A1t), (A4) are satisfied, that K €
I/Vli’cl (RY) or that K is admissible, and that w € L®(Q)?, d = 2,3, is independent of time. More-
over, if d = 3, assume that (6.21) holds. Then the global attractor Ay of the dynamical system
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(D, {Sk(t)}e>0) generated by (1.2), (1.3), (1.5)2, (1.6)2 is such that

A, C Bz, (A(K)),

where Bz, (A(k)) is the closed ball in the metric space Zi, (cf. (5.43)), endowed with the metric
induced by the H?-norm, having radius A(k), for some A(k) > 0.
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