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1 Introduction

Estimates at infinity for the heat kernel on the Heisenberg group or, more generally, H-type
groups have attracted a lot of interest in the last decades (see, e.g., [2, 7, 10, 12, 16, 17]). In the
context of H-type groups, in particular, some results were recently obtained by Eldredge [7] and
Li [17] independently. In [7], Eldredge provides precise upper and lower bounds for the heat kernel
ps and its horizontal gradient ∇Hps. In [17], Li provides asymptotic estimates for the heat kernel
ps, as well as upper bounds for all its derivatives. Nevertheless, to the best of our knowledge,
sharp asymptotic estimates at infinity for the derivatives of ps are still missing. In this paper we
address this problem by providing asymptotic expansions at infinity of the heat kernel and of all
its derivatives.

Let G be an H-type group identified with R2n × Rm via the exponential map, and denote by
(x, t) its generic element, where x ∈ R2n and t ∈ Rm. It is well known that the heat kernel ps is
a function of R := |x|2/4 and |t|. Outside the region {(x, t) ∈ G : t = 0}, any derivative of ps(x, t)
can thus be written as a finite linear combination with smooth coefficients of the functions

ps,k1,k2
(x, t) =

∂k1

∂Rk1

∂k2

∂|t|k2
ps(x, t),

for suitable k1, k2 ∈ N. We call these functions radial partial derivatives of ps. Thus, everything
can be reduced to finding asymptotic estimates at infinity of ps,k1,k2

for every k1, k2 ∈ N; these
will yield asymptotic estimates of every desired derivative of ps.

We divide the paper in five sections. In the next section we fix the notation and recall some
preliminary facts on H-type groups and the method of stationary phase. In the central Sections 3
and 4 the functions ps,k1,k2

are studied. In Section 3 we provide asymptotic estimates for ps,k1,k2

in the case m = 1, namely when G is a Heisenberg group; in Section 4 we extend the results of
Section 3 to the more general class of H-type groups. This is done via a reduction to the case
m = 1 when m is odd; a descent method is then applied in order to cover the case m even. The
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preliminary study of the case m = 1 is necessary except in a single case, for which the general
case could be treated directly; nevertheless, we include both proofs for the sake of clarity. As the
reader may see, our Theorem 4.2 and Corollary 4.15 cover the cases of [17, Theorems 1.4 and 1.5]
and [7, Theorem 4.2] as particular instances, and imply [17, Theorems 1.1 and 1.2] and [7, Theorem
4.4] as easy corollaries, by means of formula (5.1). In Section 5 we show an interesting application
of our estimates, providing a different proof of a theorem due to Inglis [14] which concerns the
discreteness of the spectrum of some Ornstein-Uhlenbeck operators on G.

We emphasize that our methods are strongly related to those employed by Gaveau [10] and
then Hueber and Müller [12] in the case of the Heisenberg group H1; some ideas are also taken
from the work of Eldredge [7]. In particular, we borrow from [10] and [12] the use of the method
of stationary phase, though in a stronger form provided by Hörmander [11].

2 Preliminaries

2.1 H-type Groups

An H-type group G is a 2-step stratified group whose Lie algebra g is endowed with an inner
product ( · , · ) such that

1. if z is the centre of g and h = z⊥, then [h, h] = z;
2. for every Z ∈ z, the map JZ : h→ h,

(JZX,Y ) = (Z, [X,Y ]) ∀X,Y ∈ h,

is an isometry whenever (Z,Z) = 1.

In particular, g stratifies as h⊕ z. It is very convenient, however, to realize an H-type group G as
R2n × Rm, for some n,m ∈ N, via the exponential map. More precisely, we shall denote by (x, t)
the elements of G, where x ∈ R2n and t ∈ Rm. We denote by (e1, . . . , e2n) and (u1, . . . , um) the
standard bases of R2n and Rm respectively. Under this identification, the Haar measure dy is the
Lebesgue measure. The maps {JZ : Z ∈ z} are identified with 2n × 2n skew symmetric matrices
{Jt : t ∈ Rm} which are orthogonal whenever |t| = 1. This identification endows R2n × Rm with
the group law

(x, t) · (x′, t′) =

(
x+ x′, t+ t′ +

1

2

m∑
k=1

(Jukx, x
′)uk

)
.

A basis of left-invariant vector fields for g is

Xj = ∂xj +
1

2

m∑
k=1

(Jukx, ej)∂tk , j = 1, . . . , 2n; Tk = ∂tk , k = 1, . . . ,m.

In particular, (Xj)1≤j≤2n is a basis for the first layer h ∼= R2n. If f is a sufficiently smooth function
on G, its horizontal gradient will be the vector field ∇Hf :=

∑2n
j=1(Xjf)Xj , and its sub-Laplacian

Lf := −
∑2n
j=1X

2
j f . We refer the reader to [3] for further details.

2.2 The Heat Kernel

On an H-type group G ' R2n × Rm the heat kernel (ps)s>0 has the form

ps(x, t) =
1

(4π)n(2π)msn+m

∫
Rm

e
i
s
(λ,t)− |x|

2

4s
|λ| coth(|λ|)

(
|λ|

sinh |λ|

)n
dλ, (2.1)

for every s > 0 and every (x, t) ∈ G (see [10] or [13] for the Heisenberg groups, [20] or [24] for
H-type groups). For the sake of clarity, we shall sometimes stress the dependence of ps on the
dimension m of the centre of G by writing p(m)

s instead of ps.
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We begin by writing the heat kernel (2.1) in a more convenient form. Let R be an isometry such
that Rt = |t|u1, where u1 is the first element of the canonical basis1 of the centre of G, namely
Rm. Then make the change of variables λ 7→ R−1λ in (2.1), which gives

ps(x, t) =
1

(4π)n(2π)msn+m

∫
Rm

e
i
s
(λ,u1)|t|− |x|

2

4s
|λ| coth(|λ|)

(
|λ|

sinh |λ|

)n
dλ. (2.2)

It is now more evident that ps depends only on |x| and |t|. This leads us to the following definition.

Definition 2.1 Let R = |x|2
4 . For all s > 0 and for all k1, k2 ∈ N, define

ps,k1,k2
(x, t) :=

∂k1

∂Rk1

∂k2

∂|t|k2
ps(x, t) =

(−1)k1ik2

(4π)n(2π)msn+m+k1+k2
×

×
∫
Rm

e
i
s
|t|(λ,u1)− |x|

2

4s
|λ| coth |λ| |λ|n+k1 cosh(|λ|)k1

sinh(|λ|)n+k1
(λ, u1)

k2 dλ.

(2.3)

Notice that ps is a smooth function of R and |t| by formula (2.2), so that the definition of
ps,k1,k2

is meaningful on the whole of G. Moreover, consider a differential operator on G of the
form

Xγ =
∂|γ|

∂xγ1∂tγ2

for some γ = (γ1, γ2) ∈ N2n×Nm. By means of Faà di Bruno’s formula, the function Xγps can be
written on {t 6= 0} as a finite linear combination with smooth coefficients of the functions ps,k1,k2

,
for suitable k1 and k2. Since Xγps is uniformly continuous, the value of Xγps(x, 0) can then be
recovered by continuity uniformly in x ∈ R2n. Therefore, one can obtain asymptotic estimates for
Xγps by combining appropriately some given estimates of ps,k1,k2

(see also Remark 4.16). We shall
see an application of this in Section 5.

Observe that it will be sufficient to study p1,k1,k2
, since

ps,k1,k2
(x, t) =

1

sn+m+k1+k2
p1,k1,k2

(
x√
s
,
t

s

)
for every s > 0, k1, k2 ∈ N and (x, t) ∈ G. Hence, we shall focus only on p1,k1,k2

. Moreover, from
now on we shall fix the integers k1, k2 ≥ 0. Of course, the choice k1 = k2 = 0 gives the heat
kernel ps.

Remark 2.2 It is well known (see [6] or [3, Remark 3.6.7]) that there exist n and m for which
R2n × Rm cannot represent any H-type group. Nevertheless, (2.1) and hence (2.3) make sense for
every positive n,m ∈ N, and for such n and m we shall then study ps,k1,k2

.

Definition 2.3 (cf. [12]) For every (x, t) ∈ G, define2

ω :=
|t|
R
, δ :=

√
R

π|t| , κ := 2
√
π|t|R.

We shall split the asymptotic condition (x, t) → ∞ into four cases, some of which depend on an
arbitrary constant C > 1. In particular, the first one covers the case |t|/|x|2 bounded, while the
other three are a suitable splitting of the case |t|/|x|2 →∞.

I. (x, t)→∞ while ω = 4|t|/|x|2 ≤ C;

II. δ → 0+ and κ→ +∞ ;

III. δ → 0+ and κ ∈ [1/C,C];

IV. κ→ 0+ and |t| → +∞. IV

III

II

I

|x|

|t|

1 The choice of u1 is actually irrelevant.
2 Actually, ω is defined for x 6= 0 and δ for t 6= 0, but we shall not recall it again in the following.
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We shall describe the asymptotic behaviour of p1,k1,k2
in each of these four cases. The first two

will both need the method of stationary phase (Theorem 2.7 below), while the other two can be
treated through Taylor expansions.

In order to simplify the notation, we give some definitions.

Definition 2.4 Define the function θ : (−π, π)→ R by

θ(λ) :=

{
2λ−sin(2λ)
2 sin2(λ)

, if λ 6= 0,
0, if λ = 0.

Lemma 2.5 [10, § 3, Lemma 3] θ is an odd, strictly increasing analytic diffeomorphism between
(−π, π) and R.

Definition 2.6 For every ω ∈ R, set yω := θ−1(ω). For every (x, t) ∈ G define

d(x, t) :=


|x| yω

sin(yω)
if x 6= 0 and t 6= 0,

|x| if t = 0,√
4π|t| if x = 0.

It is worth observing that d(x, t) is the Carnot-Carathéodory distance between (x, t) and the
origin with respect to the horizontal distribution generated by the vector fieldsX1, . . . , X2n. See [15]
but also [2, 7, 21] for a proof and further details.

2.3 The Method of Stationary Phase

The main tool that we shall use is an easy corollary of Hörmander’s theorem of stationary
phase [11, Theorem 7.7.5], stated in a form convenient for our needs. We include a proof for the
sake of clarity. Given an open set V ⊆ Rm, we write E(V ) for the space of C∞ complex-valued
functions on V , endowed with the topology of locally uniform convergence of all the derivatives. If
f is a twice differentiable function on an open neighbourhood of 0, we write P2,0f for the Taylor
polynomial of order 2 about 0 of f .

Theorem 2.7 Let V be an open neighbourhood of 0 in Rm, and let F , G be bounded subsets of
E(V ) such that

1. Imf(λ) ≥ 0 for every λ ∈ V and every f ∈ F . Moreover, there exist η > 0 and c1 > 0 such
that B(0, 2η) ⊆ V and Imf(λ) ≥ c1|λ| whenever |λ| ≥ η and f ∈ F ;

2. Imf(0) = f ′(0) = 0 and det f ′′(0) 6= 0 for all f ∈ F ;
3. there exists c2 > 0 such that |f ′(λ)| ≥ c2|λ| for all |λ| ≤ 2η and for all f ∈ F ;
4. there exists c3 > 0 such that |g(λ)| ≤ c3ec3|λ| whenever λ ∈ V , for every g ∈ G .

Then, for every k ∈ N,∫
V

eiRf(λ)g(λ) dλ = eiRf(0)

√
(2πi)m

Rm det f ′′(0)

k∑
j=0

Lj,fg

Rj
+O

(
1

R
m
2
+k+1

)
(2.4)

as R→ +∞, uniformly as f ∈ F and g ∈ G , where

Lj,fg = i−j
2j∑
µ=0

(f ′′(0)−1∂, ∂)µ+j [(f − P2,0f)
µg](0)

2µ+jµ!(µ+ j)!
.

In particular, L0,fg = g(0).

Proof Take some τ ∈ C∞c (Rm) such that χB(0,η) ≤ τ ≤ χB(0,2η). Then split the integral as∫
V

eiRf(λ)g(λ) dλ =

∫
V

eiRf(λ)g(λ)τ(λ) dλ+

∫
V

eiRf(λ)g(λ)(1− τ(λ)) dλ

and apply [11, Theorem 7.7.5] to the first term, thanks to the first assumption in 1 and the
assumptions 2 and 3: this represents the main contribution to the integral, and gives the right
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hand side of (2.4). The second term is instead negligible, since by the second assumption in 1 and
by 4 we get, if R is large enough,∣∣∣∣∫

V

eiRf(λ)g(λ)(1− τ(λ)) dλ
∣∣∣∣ . ∫

|λ|≥η
e−R Imf(λ)+c3|λ| dλ .

∫ ∞
η

e−Rc1ρ+c3ρρm−1 dρ

=

∫ ∞
η

e−(c1Rρ−(1+c3)ρ)−ρρm−1 dρ

. e−(c1R−(1+c3))η

∫ ∞
0

e−ρρm−1 dρ,

which is O
(
e−Rc1η

)
. The proof is complete. ut

Remark 2.8 Theorem 2.7 covers more cases than only oscillatory integrals. Indeed, assume we have
an integral of the form ∫

V

e−Rf(λ)g(λ) dλ

where f is real. Under suitable assumptions, such integrals are usually treated via Laplace’s method
(see, e.g., [8] and [25]). In this case, one can use directly Theorem 2.7, by substituting Imf by f
in the assumptions 1-4, thus getting∫

V

e−Rf(λ)g(λ) dλ =

√
(2π)m

Rm det f ′′(0)

k∑
j=0

Lj,fg

Rj
+O

(
1

R
m
2
+k+1

)
, (2.5)

with the obvious modifications on Lj,fg. Coherently, in such cases Theorem 2.7 will be referred to
as Laplace’s method.

3 The Heisenberg Group

In this section we deal with the case m = 1, namely when G = Hn is the Heisenberg group.
The function p1,k1,k2

of Definition 2.1 here reads

p1,k1,k2
(x, t) =

2(−1)k1ik2

(4π)n+1

∫
R
eiλ|t|−

|x|2
4
λ coth(λ)λ

n+k1+k2 cosh(λ)k1

sinh(λ)n+k1
dλ.

Indeed, the absolute values of λ in the integral (2.3) can be removed by parity reasons. We begin
by introducing some functions which greatly simplify the notation.
Definition 3.1 Define

hk1,k2
(R, t) := (−1)k1ik2

∫
R
eiλ|t|−Rλ coth(λ)λ

n+k1+k2 cosh(λ)k1

sinh(λ)n+k1
dλ =

∫
R
eiRϕω(λ)ak1,k2

(λ) dλ,

where

ak1,k2
(λ) =

{
(−1)k1ik2 λ

n+k1+k2 cosh(λ)k1

sinh(λ)n+k1
if λ 6∈ πiZ,

(−1)k1ik2δk2,0 if λ = 0,

ϕω(λ) =

{
ωλ+ iλ coth(λ) if λ 6∈ πiZ,
i if λ = 0.

(3.1)

Notice that
p1,k1,k2

(x, t) =
2

(4π)n+1
hk1,k2

(R, t)

for all (x, t) ∈ Hn; hence we can reduce matters to studying hk1,k2
(R, t). Observe moreover that

yω = θ−1(ω) ∈ [0, π), since ω ≥ 0.
It will be convenient to reverse the dependence relation between (R,ω) and (x, t): hence, we

shall no longer consider R and ω as functions of (x, t), but rather as “independent variables”. In
this order of ideas, the formula |t| = Rω should sound as a definition.

Our intent will be to apply Theorem 2.7 to a function closely related to hk1,k2
; hence we shall

find some stationary points of the phase of hk1,k2
, namely ϕω. The lemma below is of fundamental

importance.

Lemma 3.2 [10, § 3, Lemma 6] ϕ′ω(λ) = ω + θ̃(iλ) for all λ 6∈ πiZ∗, where θ̃ is the analytic
continuation of θ to Dom(ϕω). In particular, iyω is a stationary point of ϕω.
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3.1 I. Estimates for (x, t)→∞ while 4|t|/|x|2 ≤ C.

Theorem 3.3 Fix C > 0. If (x, t)→∞ while 0 ≤ ω ≤ C, then

p1,k1,k2
(x, t) =

1

|x|e
− 1

4
d(x,t)2Ψ(ω)

[
(−1)k1+k2

yn+k1+k2
ω cos(yω)

k1

sin(yω)n+k1
+O

(
1

|x|2

)]
(3.2)

where

Ψ(ω) =

 1
4nπn+1

√
π sin(yω)3

sin(yω)−yω cos(yω)
, if ω 6= 0,

(3π)1/2

4nπn+1 , if ω = 0.

It is worthwhile to stress that the above estimates may not be sharp when ω → 0 and k2 > 0, as
well as when ω → π

2 and k1 > 0. In these cases indeed yω → 0 and yω → π
2 , respectively, and

the first term of the asymptotic expansion (3.2) may be smaller than the remainder. Since the
sharp asymptotic behaviour of p1,k1,k2

when ω remains bounded is rather involved, we avoid to
outline the complete picture for the moment. The statement above is just a simplified version of
Theorem 4.2 of Section 4.1, where the general case of H-type groups is completely described.

In this section we then limit ourselves to consider Theorem 3.3 in the stated form. Its proof
mostly consists in a straightforward generalization of [10, Theorem 2 of § 3], but it can also be seen
as Proposition 4.4 of Section 4.1 in the current setting of Heisenberg groups. Nevertheless, for the
sake of completeness we give a brief sketch of the proof.

The main idea is to change the contour of integration in the integral defining hk1,k2
in order

to meet a stationary point of ϕω. Since Imϕω(λ) = ω Imλ + Re [λ coth(λ)] for every λ 6∈ πiZ, to
make this change we need to deepen our knowledge of Re [λ coth(λ)] and |ak1,k2

|; this is done in
the following lemma, which we state without proof.

Lemma 3.4 For all λ, y ∈ R such that |λ| > |y|,

Re[(λ+ iy) coth(λ+ iy)] =
λ sinh(2λ) + y sin(2y)

2(sinh(λ)2 + sin(y)2)
> 0.

Moreover, for all λ, y ∈ R such that either y 6∈ πZ or λ 6= 0,

|ak1,k2
(λ+ iy)| = |λ+ iy|n+k1+k2(sinh(λ)2 + cos(y)2)

k1
2

(sinh(λ)2 + sin(y)2)
n+k1

2

.

In the following lemma we perform the change of the contour of integration in the definition of
hk1,k2

. Its proof is a simple adaptation of that of [12, Lemma 1.4].

Lemma 3.5 For all y ∈ [0,+∞) \ πN∗

hk1,k2
(R, t) =

∫
R
eiRϕω(λ+iy)ak1,k2

(λ+ iy) dλ+ 2πi
∑
k∈N∗

kπ∈[0,y]

Res
(
eiRϕωak1,k2

, kπi
)
.

Proof of Theorem 3.3 Define
ψω = ϕω( · + iyω)− ϕω(iyω)

and observe that

ϕω(iyω) = iω yω + iyω cot(yω) = i
y2ω

sin(yω)2
,

since ω = θ(yω). Therefore, by Lemma 3.5 (recall that 0 ≤ yω < π, so that there are no residues)

hk1,k2
(R, t) = e−

1
4
d(x,t)2

∫
R
eiRψω(λ)ak1,k2

(λ+ iyω) dλ.

Our intent is to apply Theorem 2.7 to the bounded subsets F = {ψω : ω ∈ [0, C]} and G =
{ak1,k2

(· + iyω) : ω ∈ [0, C]} of E(R). Therefore we first verify that the four conditions of its
statement hold.
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2. Lemmata 3.2 and 2.5 imply that iϕ′′ω (iyω) = −θ′(−yω) < 0 for all ω ∈ R+. From the definition
of ψω we then get

ψω(0) = ψ′ω(0) = 0, iψ′′ω(0) < 0. (3.3)

3. Consider the mapping ψ : R × (−π, π) 3 (λ, y) 7→ ψθ(y)(λ). By (3.3), ∂1ψ(0, y) = 0 and
i∂21ψ(0, y) < 0 for all y ∈ [0, π); moreover, ψ is analytic thanks to Lemma 2.5. Therefore,
by Taylor’s formula we may find two constants η > 0 and C′ > 0 such that |∂1ψ(λ, y)| ≥ C′|λ|
for all λ ∈ [−2η, 2η] and for all y ∈ [0, θ−1(C)].

1. Lemma 3.4 implies that

Imψ(λ, y) =
λ cosh(λ) sinh(λ)− y cot(y) sinh(λ)2

sinh(λ)2 + sin(y)2

for all λ ∈ R and for all y ∈ (−π, π), y 6= 0; moreover, the mapping (0, π) 3 y 7→ y cot(y) is
strictly decreasing and tends to 1 as y → 0+. Therefore, if λ 6= 0 and y ∈ [0, π), then

Imψ(λ, y) ≥ λ coth(λ)− 1

1 + 1
sinh(λ)2

> 0

since λ coth(λ) − 1 > 0. Observe finally that, since λ coth(λ)−1

1+ 1
sinh(λ)2

∼ |λ| for λ → ∞, the second

condition is also satisfied.
4. Just observe that G is bounded in L∞(R).

By Theorem 2.7, we then get∫
R
eiRψω(λ)ak1,k2

(λ+ iyω) dλ =
(2π)(4π)n

|x| Ψ(ω)ak1,k2
(iyω) +O

(
1

|x|3

)
for R→ +∞, uniformly as ω runs through [0, C]. ut

From now on, we shall consider the case ω → +∞. The method of stationary phase cannot be
applied directly in this case, since yω → π, and iπ is a pole of the phase (as well as of the amplitude).
Although it seems possible to adapt the techniques developed by Li [17] to this situation, our proof
follows the idea presented by Hueber and Müller [12, Theorem 1.3 (i)] for the Heisenberg group
H1. We shall take advantage of this singularity to get the correct behaviour of hk1,k2

, by means of
the residues obtained by Lemma 3.5.

3.2 II. Estimates for δ → 0+ and κ→ +∞.

We state below the main result of this section.

Theorem 3.6 For δ → 0+ and κ→ +∞

p1,k1,k2
(x, t) =

(−1)k2πk1+k2

4n(πδ)n+k1−1
√
2πκ

e−
1
4
d(x,t)2

[
1 +O

(
1

κ
+ δ

)]
.

The proof of Theorem 3.6 will be prepared by several lemmata. The first step will be to invoke
Lemma 3.5, of which we keep the notation, to move the contour of integration beyond the singularity
at πi; since at 2πi there is another one, it seems convenient to stop at 3πi

2 . We first notice that the
integral on R + 3πi

2 may be neglected in some circumstances, as the following lemma shows. It is
essentially [12, Lemma 1.4], so we omit the proof.

Lemma 3.7 There exists a constant C′ > 0 such that∣∣∣∣∫
R
eiRϕω(λ+

3πi
2 )ak1,k2

(
λ+

3πi

2

)
dλ

∣∣∣∣ ≤ C′e− 3π|t|
2 .
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Hence, matters are reduced to the computation of the residue. First of all, define

r(λ) =

{
1 + 1

λ − π(1 + λ) cot(πλ), if λ 6∈ Z,
0, if λ = 0,

and observe that r is holomorphic on its domain. It will be useful to define also

ϕ̃k1,k2
(R, ξ) :=

{
eRr(−ξ) (πξ)

n+k1 cos(πξ)k1 (1−ξ)n+k1+k2

sin(πξ)n+k1
, if ξ 6∈ Z,

1, if ξ = 0,

and
ϕδ,k1,k2

(s) := e−i(n+k1−1)sϕ̃k1,k2
(0, δeis) (3.4)

whenever δeis 6∈ Z∗. The following lemma may be proved again on the lines of [12, Lemma 1.4].

Lemma 3.8 For every δ < 1

2πiRes
(
eiRϕωak1,k2

, πi
)
=

(−1)k2πk2+1

δn+k1−1
e−R−π|t|

∫ π

−π
eκ cos(s)+Rr(−δeis)ϕδ,k1,k2

(s) ds. (3.5)

Therefore, it remains only to estimate the integral in (3.5), namely

Hk1,k2
(R, t) :=

∫ π

−π
eκ cos(s)+Rr(−δeis)ϕδ,k1,k2

(s) ds =

∫ π

−π
eκqδ(−is)ϕδ,k1,k2

(s) ds, (3.6)

where
q(δ, ζ) = qδ(ζ) := cosh(ζ) +

δ

2
r(−δe−ζ). (3.7)

Notice that we may apply Theorem 2.7 only when κ→ +∞, and this is why we confined ourselves
to the case where δ → 0+ (and we shall assume 0 < δ < 1) and κ→ +∞.

Again for technical convenience, we shall reverse the dependence relation between (δ, κ) and
(R, |t|), thus assuming that δ and κ are “independent variables”. Indeed, δ and κ completely describe
our problem, since

|t| = κ

2πδ
, R =

κδ

2
,

and |t|+R→ +∞ if δ → 0+ and κ→ +∞. We shall sometimes let δ assume complex values. The
following lemma is essentially [12, Lemma 1.2]. We present a slightly shorter proof.

Lemma 3.9 q is holomorphic on the set {(δ, ζ) ∈ C × C| δe−ζ 6∈ Z∗}. Moreover there exist two
constants δ1 ∈ (0, 1) and η1 > 0 such that for all δ ∈ BC(0, δ1) there is a unique σδ ∈ BC(0, η1)
such that q′δ(σδ) = 0. Then the mapping BC(0, δ1) 3 δ 7→ σδ is holomorphic and real on (−δ1, δ1).
Finally, σδ = O(δ2) and qδ(σδ) = 1 +O(δ2) for δ → 0.

Proof q is holomorphic since r is. Furthermore, ∂2q(0, 0) = 0 and ∂22q(0, 0) = 1. Therefore, the
implicit function theorem (cf. [5, Proposition 6.1 of IV.5.6]) implies the existence of some δ1 and
η1 as in the statement, the holomorphy of the mapping δ 7→ σδ, and that d

dδσδ|δ=0 = 0. Notice
also that σ0 = 0, so that σδ = O(δ2) for δ → 0 by Taylor’s formula.

Since qδ is real on real numbers, q′δ(σδ) = q′δ(σδ) = 0; thus σδ = σδ for the uniqueness of σδ,
and hence σδ ∈ R for all δ ∈ (−δ1, δ1).

The last assertion follows from Taylor’s formula, since q0(σ0) = q0(0) = 1 and d
dδ qδ(σδ)|δ=0 =

∂1q(0, 0) + ∂2q(0, 0)
d
dδσδ|δ=0 = 0. ut

The contour of integration can now be changed in order to apply the method of stationary phase.
For the remainder of this section, we keep δ1 and η1 of Lemma 3.9 fixed.

Lemma 3.10 Let τ ∈ C∞c (R) such that χ[− π
2
, π
2
] ≤ τ ≤ χ[π,π]. Define, for all δ ∈ (−δ1, δ1), the

path γδ(s) := s+ iσδ τ(s), and

Fδ(s) := −iqδ(−iγδ(s)) + iqδ(σδ) and ψδ,k1,k2
:= (ϕδ,k1,k2

◦ γδ) γ′δ.

Then
Hk1,k2

(R, t) = eκ qδ(σδ)
∫ π

−π
eiκFδ(s)ψδ,k1,k2

(s) ds.
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Proof of Theorem 3.6 We shall apply Theorem 2.7 to the bounded subsets F = {Fδ : δ ∈ (0, δ2)}
and G = {ψδ,k1,k2

: δ ∈ (0, δ2)} of E((−π, π)), depending on some δ2 to be fixed later. Hence we
check that the four conditions of the statement are satisfied.

1. The mapping F : (−δ1, δ1)×R 3 (δ, s) 7→ Fδ(s) is of class C∞, and ∂22F (0, 0) = i; thus we may
find δ2 ∈ (0, δ1), η2 ∈

(
0, π2

)
and C′′ > 0 such that Im ∂22F (δ, s) ≥ 2C′′ for all δ ∈ [−δ2, δ2] and

for all s ∈ [−2η2, 2η2]. From Taylor’s formula then

ImF (δ, s) =

∫ s

0

∂22 ImF (δ, τ)(s− τ) dτ ≥ C′′s2

for all s ∈ [−2η2, 2η2] and for all δ ∈ [−δ2, δ2]. Since ImF (0, s) = 1− cos(s) for all s ∈ [−π, π],
by reducing δ2 and C′′ if necessary one may assume that ImF (δ, s) ≥ C′′π2 ≥ C′′s2 for all
s ∈ R such that 2η2 ≤ |s| ≤ π and for all δ ∈ [−δ2, δ2].

2. It is immediately seen that Fδ(0) = F ′δ(0) = 0 by definition.
3. For every δ ∈ [−δ2, δ2] and s ∈ [−2η2, 2η2]

|∂2F (δ, s)| ≥ |∂2 ImF (δ, s)| =
∣∣∣∣∫ s

0

∂22 ImF (δ, τ) dτ

∣∣∣∣ ≥ 2C′′|s|.

4. Just observe that G is bounded in L∞((−π, π)).

By Theorem 2.7, then,

∫ π

−π
eiκFδ(s)τ2(s)ψδ,k1,k2

(s) ds =

√
2πi

κF ′′δ (0)
ψδ,k1,k2

(0) +O

(
1

κ3/2

)
.

It is then easily seen that F ′′δ (0) = iq′′δ (σδ) = i(1+O(δ)) and ψδ,k1,k2
(0) = ϕδ,k1,k2

(iσδ) = 1+O(δ)
for δ → 0+.

Now, by construction,

−R− π|t|+ κqδ(s) = iRϕω(πi(1− δe−s))

for s in a neighbourhood of σδ. Take δ3 ∈ (0, δ2] so that (1 − δe−σδ ) ∈ (−1, 1) for all δ ∈ [0, δ3],
and fix δ ∈ (0, δ3) and t 6= 0. We shall prove that

yω = π(1− δe−σδ ).

Indeed, yω is the unique element of (−π, π) such that ϕ′ω(iyω) = 0; furthermore, π(1 − δe−σδ ) ∈
(−π, π) for the choice of δ3, and −Rπ δ e−σδϕ′ω(πi(1 − δe−σδ )) = κ q′δ(σδ) = 0. Therefore, yω =
π(1−δe−σδ ). Finally, equality holds by analyticity whenever both sides are defined. It then follows
that

−R− π|t|+ κqδ(σδ) = iRϕω(iyω) = −
1

4
d(x, t)2. (3.8)

Finally observe that, by definition of κ and δ, and by Lemma 3.9,

−3π|t|
2

+R+ π|t| − κqδ(σδ)+ log κ ≤ − κ

2πδ

[
π

2
− πδ2 + 2πδ

(
1 +O

(
δ2
))
−2πδ log κ

κ

]
,

which tends to −∞ as δ → 0+ and κ→ +∞. This means that

e−
3π|t|

2 = o

(
e−R−π|t|+κqδ(σδ)

κ

)

for κ → +∞, uniformly as δ runs through (0, δ2]. Our assertion is then a consequence of Lem-
mata 3.5 and 3.7. ut
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3.3 III and IV. Estimates for δ → 0+ and κ bounded.

Strictly speaking, cases III and IV have already been considered together by Hueber and
Müller [12, Theorem 1.3 (ii)] on the Heisenberg group H1, i.e. when n = 1. Since their method
does not apply when n > 1, we shall follow a different approach similar to that of Li [16].

We first recall that, for all ν ∈ Z and ζ ∈ C, the modified Bessel function Iν of order ν is
defined as

Iν(ζ) =
∑
k∈N

ζ2k+ν

22k+νk!Γ (k + ν + 1)
.

If s > 0, then also

Iν(s) =
1

2π

∫ π

−π
es cos(ξ)−iνξ dξ,

as one can verify from [9, 7.3.1 (2)] by applying the change of variables ψ = π
2 − ϕ and by taking

into account the relationship [9, 7.2.2 (12)] between Iν = I−ν and Jν , and also the periodicity of
the integrand. Notice that for s > 0 and ν ∈ Z, Iν(s) is strictly positive unless s = 0 and ν 6= 0.
The main result of this section is the following.

Theorem 3.11 Fix C > 1. If δ → 0+ while 1/C ≤ κ ≤ C, then

p1,k1,k2
(x, t) =

(−1)k2πk1+k2

4n(πδ)n+k1−1
e−

1
4
d(x,t)2e−κIn+k1−1(κ) [1 +O(δ)] . (3.9)

When κ→ 0+ and |t| → +∞

p1,k1,k2
(x, t) =

(−1)k2πk1+k2

4n(n+ k1 − 1)!
|t|n+k1−1e−

1
4
d(x,t)2

[
1 +O

(
1

|t| + κ

)]
. (3.10)

Lemma 3.12 For every N ∈ N

Hk1,k2
(R, t) = 2π

∑
|α|≤N

In+k1−1−α2
(κ)

∂αϕ̃k1,k2
(0, 0)κα1

2α1α!
δ|α| +O

(
δN+1

)
for δ → 0+, uniformly as κ runs through [0, C].

Proof By substituting (3.4) in (3.5) and by Taylor’s formula applied to ϕ̃k1,k2
,

Hk1,k2
(R, t) =

∫ π

−π
eκ cos(s)e−i(n+k1−1)sϕ̃k1,k2

(R, δeis) ds

=
∑
|α|≤N

∂αϕ̃k1,k2
(0, 0)

α!
Rα1δα2

∫ π

−π
eκ cos(s)e−i(n+k1−1−α2)s ds+ RN+1(δ, κ)

= 2π
∑
|α|≤N

In+k1−1−α2
(κ)

∂αϕ̃k1,k2
(0, 0)κα1

2α1α!
δ|α| + RN+1(δ, κ),

where the last equality holds since R = δκ
2 . Moreover, RN+1(δ, κ) is easily seen to be O

(
δN+1

)
for

δ → 0+ uniformly as κ runs through [0, C]. This completes the proof. ut

Proof of Theorem 3.11 Lemmata 3.7 and 3.8 imply that

p1,k1,k2
(x, t)=

(−1)k22πk2−n

4n+1δn+k1−1
e−R−π|t|Hk1,k2

(R, t) +O
(
e−

3π|t|
2

)
.

Moreover, recall that δ|t| = κ
2π and R = κδ

2 ; therefore, for every N ∈ N,

e−
3π|t|

2 = o
(
δN+2−n−k1e−R−π|t|

)
(3.11)

as δ → 0+, uniformly as κ runs through [1/C,C]. By (3.8) and Lemma 3.9, the first assertion
follows from Lemma 3.12 for N = 0.
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As for (3.10), observe first that κ → 0+ and |t| → +∞ is equivalent to saying δ, κ → 0+ and
δ = o(κ). Then Lemma 3.12 with N = n+ k1 − 1 and an easy development of the Bessel function
in a neighbourhood of 0 imply that

p1,k1,k2
(x, t) =

πk1+k2(−1)k2

4n(πδ)n+k1−1
e−π|t|−R

[
κn+k1−1 I

(n+k1−1)
n+k1−1 (0)

(n+ k1 − 1)!
+O(κn+k1)

+
∑

1≤|α|≤n+k1−1

O
(
In+k1−1−α2

(κ)κα1δ|α|
)
+O(δn+k1)

]
+O

(
e−

3π|t|
2

)
.

Since δ = o(κ), one has δα2+α1−1 = O(κα2+α1−1) for every α 6= 0. Therefore,

∑
1≤|α|≤n+k1−1

O
(
In+k1−1−α2

(κ)κα1δ|α|
)
=

∑
1≤|α|≤n+k1−1

O
(
κn+k1−2+2α1δ

)
= O

(
κn+k1−2δ

)
.

Since κ
2πδ = |t| and I(n+k1−1)

n+k1−1 (0) = 1
2n+k1−1 , we get

p1,k1,k2
(x, t) =

πk1+k2(−1)k2

4n(n+ k1 − 1)!
e−π|t|−R|t|n+k1−1

[
1 +O

(
1

|t| + κ+ δ

)]
+O

(
e−

3π|t|
2

)
.

Finally, δ = o
(

1
|t|

)
since δ|t| = κ

2π ; moreover

e−
3π|t|

2 = o
(
e−π|t|−R|t|n+k1−2

)
since R→ 0+ and |t| → +∞. The assertion follows. ut

The estimates in cases II, III, and IV can be put together. This is done in the following corollary,
which will turn out to be fundamental later on. Define first, for ζ ∈ C and ν ∈ Z,

Ĩν(ζ) :=
∑
k≥0

ζ2k

22k+νk!Γ (k + ν + 1)
.

From now on we shall use the following abbreviation. We keep the notation of Lemma 3.9.

Definition 3.13 For δ ∈ BC(0, δ1), define ρ(δ) := qδ(σδ).

By Lemma 3.9, ρ is a holomorphic function such that ρ(0) = 1 and ρ′(0) = 0, so that ρ(δ) =
1 +O(δ2) as δ → 0.

Corollary 3.14 When (x, t)→∞ and δ → 0+

p1,k1,k2
(x, t) =

(−1)k2πk1+k2

2n−k1+1
|t|n+k1−1e−

1
4
d(x,t)2e−κρ(δ)Ĩn+k1−1 (κρ(δ)) [1 + g(|x|, |t|)] ,

where

g(|x|, |t|) =


O
(
δ + 1

κ

)
if δ → 0+ and κ→ +∞,

O(δ) if δ → 0+ and κ ∈ [1/C,C],

O
(

1
|t| + κ

)
if δ → 0+ and κ→ 0+

(3.12)

for every C > 1.
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Proof 1. Assume first that κ → +∞. Since Iν(s) = es√
2πs

[
1 +O

(
1
s

)]
for s → +∞, ν ∈ Z (cf. [9,

7.13.1 (5)]),

Ĩν(s) =
es

sν
√
2πs

[
1 +O

(
1

s

)]
for s→ +∞. (3.13)

Therefore, Theorem 3.6 implies that

p1,k1,k2
(x, t) =

(−1)k2πk1+k2

4n(πδ)n+k1−1
√
2πκ

e−
1
4
d(x,t)2

[
1 +O

(
1

κ
+ δ

)]
=

(−1)k2πk1+k2 Ĩn+k1−1 (κρ(δ))

2n−k1+1
|t|n+k1−1e−

1
4
d(x,t)2e−κρ(δ)

×
[
1 +O

(
1

κρ(δ)

)][
1 +O

(
1

κ
+ δ

)]
=

(−1)k2πk1+k2 Ĩn+k1−1 (κρ(δ))

2n−k1+1
|t|n+k1−1e−

1
4
d(x,t)2e−κρ(δ)

[
1 +O

(
1

κ
+ δ

)]
,

since ρ(δ) = 1 +O(δ2) and 2|t|
κ = 1

πδ .
2. Assume now that κ ∈ [1/C,C] for some C > 1. Then, by Theorem 3.11,

p1,k1,k2
(x, t) =

(−1)k2πk1+k2

4n(πδ)n+k1−1
e−

1
4
d(x,t)2e−κIn+k1−1(κ) [1 +O (δ)]

=
(−1)k2πk1+k2

2n−k1+1
|t|n+k1−1e−

1
4
d(x,t)2e−κρ(δ)Ĩn+k1−1(κρ(δ))

[
1 +O

(
δ2
)]

[1 +O (δ)]

=
(−1)k2πk1+k2

2n−k1+1
|t|n+k1−1e−

1
4
d(x,t)2e−κρ(δ)Ĩn+k1−1(κρ(δ)) [1 +O (δ)] ,

where the second equality holds since In+k1−1(κρ(δ)) − In+k1−1(κ) = O(κ(ρ(δ) − 1)) = O(δ2)
uniformly as κ runs through [1/C,C] by Taylor’s formula.

3. Finally, if κ→ 0+ then

Ĩn+k1−1(κ) = Ĩn+k1−1(0) +O(κ) =
1

2n+k1−1(n+ k1 − 1)!
+O(κ)

by the definition of Ĩn+k1−1. Combining this estimate with Theorem 3.11 yields the assertion. ut

4 H-type Groups

In this section we deal with the general case m ≥ 1. In particular, we prove a refined version
of Theorem 3.3, and extend Theorems 3.6 and 3.11: this is done through Theorems 4.2, 4.13 and
4.14 respectively. Theorem 4.2 treats the case I and is still inspired by [10, Theorem 2 of § 3]. The
asymptotic estimates in the other three cases are first obtained in the case m odd, “reducing” to
the case m = 1; the case m even is then achieved through a descent method.

The first step in order to apply the method of stationary phase is to extend the integrand to a
meromorphic function on Cm. If m > 1, such extension is no longer automatic as when m = 1. A
natural way consists in taking advantage of the parity of the functions that appear, as in [7]. Indeed,
any continuous branch of λ 7→

√
λ2 is a holomorphic function which coincides with λ 7→ ±|λ| on

Rm; therefore, whenever g is an even holomorphic function defined on a symmetric open subset of
C, the function λ 7→ g(

√
λ2) is well-defined, holomorphic, and coincides with λ 7→ g(|λ|) on Rm.

Hence, we are led to the following definition, which is the analogue of Definition 3.1. We shall use
the same notation as before, without stressing the (new) dependence on m.

Definition 4.1 Define

hk1,k2
(R, t) =

∫
Rm

eiRϕω(λ)ak1,k2
(λ) dλ
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where

ak1,k2
(λ) =

(−1)k1ik2

√
λ2n+k1 cosh(

√
λ2)k1

sinh(
√
λ2)n+k1

(λ, u1)
k2 if

√
λ2 6∈ iπZ∗,

(−1)k1ik2δk2,0 if λ = 0,

ϕω(λ) =

{
ω (λ, u1) + i

√
λ2 coth(

√
λ2) if

√
λ2 6∈ iπZ∗,

i if λ = 0.

(4.1)

Define also
ak1,k2,ω(λ) := ak1,k2

(λ+ iyωu1). (4.2)

Observe again that

p1,k1,k2
(x, t) =

1

(4π)n(2π)m
hk1,k2

(R, t)

for all (x, t) ∈ R2n × Rm, and that yω = θ−1(ω) ∈ [0, π), since ω ≥ 0.

4.1 I. Estimates for (x, t)→∞ while 4|t|/|x|2 ≤ C.

The main result of this section is Theorem 4.2 below. As already said, the main ingredient
of its proof is the method of stationary phase (cf. Proposition 4.4), which is already employed
in [10, Theorem 2 of § 3] to treat the case n = m = 1 and k1 = k2 = 0.

The novelty of considering all the derivatives of the heat kernel p1 (in other words, all the
cases k1 ≥ 0 and k2 ≥ 0) introduces additional complexity to the developments, since the choice
k = 0 in (2.4) may not give the sharp asymptotic behaviour of p1,k1,k2

at infinity, while ω remains
bounded. In particular, this happens in the cases ω → 0 and k2 > 0, or ω → π

2 and k1 > 0. If ω
remains bounded and away from 0 and π

2 , the first term is instead enough.

Theorem 4.2 Fix ε, C > 0. If (x, t)→∞ while 0 ≤ ω ≤ C, then

p1,k1,k2
(x, t) =

1

|x|m e
− 1

4
d(x,t)2Ψ(ω)Υ (x, t)

where

Ψ(ω) =

 1
4nπn+m

√
(2π)mym−1

ω sin(yω)3

2ωm−1(sin(yω)−yω cos(yω))
, if ω 6= 0,

(3π)m/2

4nπn+m , if ω = 0,
(4.3)

and

1. if ε ≤ ω ≤ π
2 − ε or π

2 + ε ≤ ω ≤ C,

Υ (x, t) = (−1)k1+k2
yn+k1+k2
ω cos(yω)

k1

sin(yω)n+k1
+O

(
1

|x|2

)
; (4.4)

2. if ω → 0 and k2 is even,

Υ (x, t) =

k2/2∑
j=0

ck1,k2,j
ωk2−2j

|x|2j +O

k2/2∑
j=0

ωk2−2j+1

|x|2j +
1

|x|k2+2

 ; (4.5)

3. if ω → 0, k2 is odd and |t| → ∞,

Υ (x, t) =

(k2−1)/2∑
j=0

ck1,k2,j
ωk2−2j

|x|2j +O

(k2+1)/2∑
j=0

ωk2−2j+1

|x|2j

 ; (4.6)

4. if ω → 0, k2 is odd and 0 ≤ |t| ≤ C

Υ (x, t) = ck1,k2+1,(k2+1)/2
|t|

|x|k2+1
+O

(
|t|

|x|k2+3

)
; (4.7)
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5. if ω → π
2 and k1 is even,

Υ (x, t) =

k1/2∑
j=0

bk1,k2,j

(
ω − π

2

)k1−2j

|x|2j +O

k1/2∑
j=0

(
ω − π

2

)k1−2j+1

|x|2j +
1

|x|k1+2

 ; (4.8)

6. if ω → π
2 and k1 is odd,

Υ (x, t) =

(k1−1)/2∑
j=0

bk1,k2,j

(
ω − π

2

)k1−2j

|x|2j +
bk1,k2,(k1+1)/2

|x|k1+1

+O

(k1−1)/2∑
j=0

(
ω − π

2

)k1−2j+1

|x|2j +
ω − π

2

|x|k1+1
+

1

|x|k1+3

 . (4.9)

The coefficients ck1,k2,j and bk1,k2,j are explicitly given by (4.15), (4.17) and (4.18).

The remainder of this section is devoted to the proof of Theorem 4.2. Since it is quite involved, we
split this section into two parts: in the first one we apply the method of stationary phase, while
in the second one we find the asymptotics of the development given by Theorem 2.7 which are
required to get the sharp developments (4.5)–(4.9). These proofs go through several lemmata.

Remark 4.3 Notice that any pair of terms in the sums appearing in the developments (4.5), (4.6),
(4.8), and (4.9) are not comparable with each other under the stated asymptotic condition. There-
fore, these developments cannot be simplified. Observe moreover that for k1 and k2 fixed the
coefficients bk1,k2,j (resp. ck1,k2,j) have the same sign; thus, no cancellation can occur, and our
developments are indeed sharp. A more detailed description will be given in Section 4.1.2.

Finally, notice that it is possible to obtain even more precise expansions if one does not develop
the terms Lj,ψωak1,k2,ω which appear in Proposition 4.4 below. In particular, in the cases when ω →
0+ and k2 = 0, or ω → π

2 and k1 = 0, the explicit computation of L0,ψωak1,k2,ω = ak1,k2
(iyωu1)

leads to better remainders than those in (4.5) and (4.8) respectively.

4.1.1 Application of the Method of Stationary Phase

As already said, Proposition 4.4 below is essentially an easy generalization of Theorem 3.3.

Proposition 4.4 Fix C > 0 and let k ∈ N. Then, if (x, t)→∞ while 0 ≤ ω ≤ C,

p1,k1,k2
(x, t) =

1

|x|m e
− 1

4
d(x,t)2Ψ(ω)

 k∑
j=0

4jLj,ψωak1,k2,ω

|x|2j +O

(
1

|x|2k+2

) (4.10)

where Ψ is defined by (4.3).

In the same way as in Section 3.1, we begin by finding some stationary points of the phase of
hk1,k2

, namely ϕω.

Lemma 4.5 [7, Formula (5.7)] For all λ such that
√
λ2 6∈ iπZ∗,

ϕ′ω(λ) = ωu1 + λ
θ̃(i
√
λ2)√
λ2

where θ̃ is the analytic continuation of θ to Dom(ϕω). In particular, iyωu1 is a stationary point of
ϕω.

We then change the contour of integration in the integral defining hk1,k2
in order to meet a

stationary point of ϕω. This is done in the following lemma, which is the analogue of Lemma 3.5.

Lemma 4.6 For every y ∈ [0, π)

hk1,k2
(R, t) =

∫
Rm

eiRϕω(λ+iyu1)ak1,k2
(λ+ iyu1) dλ.
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Proof The theorem is proved in a similar fashion to [7, Lemma 5.4]. It may be useful to observe
that for every λ ∈ Cm such that either Im

√
λ2 /∈ πZ or Re

√
λ2 6= 0, we have

|ak1,k2
(λ)| =

|λ|n+k1

(
sinh

(
Re
√
λ2
)2

+ cos
(
Im
√
λ2
)2)k1/2

(
sinh

(
Re
√
λ2
)2

+ sin
(
Im
√
λ2
)2)(n+k1)/2

|(λ, u1)|k2 ,

by Lemma 3.4, since |
√
λ2| = |λ|. Moreover, ak1,k2

is bounded on the set {λ + iyu1 : λ ∈ Rm, y ∈
[0, C′]} for every C′ ∈ (0, π). ut

Proof of Proposition 4.4 Define

ψω = ϕω( · + iyωu1)− ϕω(iyωu1)

and observe that, since
√

(iyωu1)2 = ±iyω and ω = θ(yω), ϕω(iyωu1) = i
y2
ω

sin(yω)2
. Therefore, by

Lemma 4.6
hk1,k2

(R, t) = e−
1
4
d(x,t)2

∫
R
eiRψω(λ)ak1,k2

(λ+ iyωu1) dλ.

We shall apply Theorem 2.7 to the bounded subsets F = {ψω : ω ∈ [0, C]} and G = {ak1,k2,ω : ω ∈
[0, C]} of E(Rm).

2. Elementary computations show that

− iψ′′ω(0) = θ′(yω)u1 ⊗ u1 +
ω

yω

m∑
j=2

uj ⊗ uj , (4.11)

so that det(−iψ′′ω(0)) = θ′(yω)
(
θ(yw)
yw

)m−1
> 0. The conditions ψω(0) = ψ′ω(0) = 0 hold by

construction.
3. Consider the mapping ψ : Rm×(−π, π) 3 (λ, y) 7→ ψθ(y)(λ). Then, by the preceding arguments,

there is c > 0 such that ∂1ψ(0, y) = 0 and −i∂21ψ(0, y) ≥ c( · , · ) for all y ∈ [0, π); moreover, ψ
is analytic by Lemma 2.5. Therefore, by Taylor’s formula we may find two constants η > 0 and
C′ > 0 such that |∂1ψ(λ, y)| ≥ C′|λ| for all λ ∈ BRm(0, 2η) and for all y ∈ [0, θ−1(C)].

1. Combining [7, Lemmata 5.3 and 5.7], we infer that there is a constant C′′ > 0 such that

Imψ(λ, y) = yθ(y) + Re
[√

(λ+ iyu1)2 coth
√
(λ+ iyu1)2

]
− y2

sin2 y
≥ C′′|λ|

whenever |λ| ≥ η and 0 ≤ y ≤ θ−1(C).
4. Just observe that G is bounded in L∞(Rm).

By Theorem 2.7, then,

∫
Rm

eiRψω(λ)ak1,k2
(λ+ iyωu1) dλ =

(2π)m(4π)n

|x|m Ψ(ω)
k∑
j=0

4jLj,ψωak1,k2,ω

|x|2j
+O

(
1

|x|m+2k+2

)

for R→ +∞, uniformly as ω runs through [0, C]. ut

4.1.2 Further Developments and Completion of the Proof of Theorem 4.2

We begin by recalling that, for every j ∈ N,

Lj,ψωak1,k2,ω = i−j
2j∑
µ=0

(ψ′′ω(0)
−1∂, ∂)µ+j [(ψω − P2,0ψω)

µak1,k2,ω](0)

2µ+jµ!(µ+ j)!
. (4.12)

Thus, the point 1 of Theorem 4.2 follows immediately by taking k = 0 in Proposition 4.4, since

L0,ψωak1,k2,ω = ak1,k2,ω(0) = ak1,k2
(iyωu1).
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As for the other developments, observe that by (4.11)

(ψ′′ω(0)
−1∂, ∂)µ+j [(ψω − P2,0ψω)

µak1,k2,ω](0)

=
∑

|α|=µ+j

(µ+ j)!

α!

1

(iθ′(yω))α1

(yω
iω

)|α|−α1

∂2α[(ψω − P2,0ψω)
µak1,k2,ω](0). (4.13)

where

∂2α[(ψω − P2,0ψω)
µak1,k2,ω](0) =

∑
β≤2α,
|β|≥3µ

(2α)!

β! (2α− β)!∂
β [(ψω − P2,0ψω)

µ](0) ∂2α−βak1,k2
(iyωu1).

(4.14)

The sum above is restricted to |β| ≥ 3µ since ψω(λ) − P2,0ψω(λ) is infinitesimal of order at least
3 for λ → 0. Observe moreover that, since |2α − β| = 2|α| − |β| ≤ 2j − µ, we have |2α − β| ≤ 2j
and |2α− β| = 2j if and only if µ = 0 and β = 0. We first consider the case ω → 0.

Lemma 4.7 For every j ∈ N such that 2j ≤ k2, define

ck1,k2,j := (−1)k1+k2
3k2−jk2!

2k2−2j(k2 − 2j)!j!
. (4.15)

Then
4jLj,ψωak1,k2,ω = ck1,k2,jω

k2−2j +O
(
ωk2−2j+1

)
for ω → 0.

Proof Recall that ak1,k2
is an analytic function on its domain, and observe that3

ak1,k2
(λ) = (−1)k1ik2λk2

1 +O
(
|λ|k2+2

)
for λ→ 0. Therefore, for every h = 0, . . . , k2 we have

a
(h)
k1,k2

(λ) = (−1)k1ik2
k2!

(k2 − h)!
λk2−h
1 u⊗h1 +O

(
|λ|k2−h+2

)
(4.16)

as λ→ 0.
We now consider (4.14). If |2α− β| < 2j, then by (4.16)

∂β [(ψω − P2,0ψω)
µ](0)∂2α−βak1,k2

(iyωu1) = O
(
yk2−|2α−β|
ω

)
= O

(
yk2−2j+1
ω

)
for ω → 0. Otherwise, let |2α− β| = 2j, so that µ = 0 and β = 0. If α 6= ju1, then (4.16) implies
that

∂2αak1,k2
(iyωu1) = O

(
yk2−2j+2
ω

)
= O

(
yk2−2j+1
ω

)
,

while, if α = ju1,

∂2j1 ak1,k2
(iyωu1) = (−1)k1+k2i−2j k2!

(k2 − 2j)!
yk2−2j
ω .

From this and the fact that
θ′(0) = lim

ω→0

ω

yω
=

2

3

we get the asserted estimate. ut

Lemma 4.7 above gives the expansions 2 and 3 of Theorem 4.2. Indeed, it allows us to choose k in
Proposition 4.4 as

2. k = k2/2 if k2 is even, since in this case the last term of the sum in (4.10) is

ck1,k2,k2/2

|x|k2
+O

(
ω

|x|k2

)
which is bigger than the remainder.

3 Here and in the following, λ1 stands for (λ, u1).
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3. k = (k2 − 1)/2 if k2 is odd and |t| → ∞, since in this case the last term of the sum in (4.10) is

ck1,k2,(k2−1)/2
ω

|x|k2−1
+O

(
ω2

|x|k2−1

)
= ck1,k2,(k2−1)/2

|t|
|x|k2+1

+O

(
|t|2

|x|k2+3

)
which is bigger than the remainder, since |t| → ∞.

The case 4 of Theorem 4.2, that is the case when k2 is odd, ω → 0 and |t| is bounded, has to
be treated in a different way, since ω/|x|k2−1 may be comparable with the remainder 1/|x|k2+1 or
even smaller. Thus, the development given above may not be sharp in this case. To overcome this
difficulty, we make use of the following lemma. For the reader’s convenience, we also consider k2
even and a stronger statement than that we need (see Remark 4.16).

Lemma 4.8 Let N ∈ N. Then, when ω → 0,

p1,k1,k2
(x, t) =

N∑
h=0

1

(2h+ 1)!
|t|2h+1p1,k1,k2+2h+1(x, 0) +O

(
|t|2N+3p1,k1,k2+2N+3(x, 0)

)
if k2 odd; if k2 is even

p1,k1,k2
(x, t) =

N∑
h=0

1

(2h)!
|t|2hp1,k1,k2+2h(x, 0) +O

(
|t|2N+2p1,k1,k2+2N+2(x, 0)

)
.

Proof Assume that k2 is odd. Then

(4π)n(2π)m

∣∣∣∣∣p1,k1,k2
(x, t)−

N∑
h=0

1

(2h+ 1)!
|t|2h+1p1,k1,k2+2h+1(x, 0)

∣∣∣∣∣
=

∣∣∣∣∣
∫
Rm

e−
|x|2
4
|λ| coth |λ| |λ|n+k1 cosh(|λ|)k1

sinh(|λ|)n+k1
(λ, u1)

k2

{
ei|t|(λ,u1) −

N∑
h=0

[i|t|(λ, u1)]2h+1

(2h+ 1)!

}
dλ

∣∣∣∣∣
≤ |t|2N+3

(2N + 3)!

∫
Rm

e−
|x|2
4
|λ| coth |λ| |λ|n+k1 cosh(|λ|)k1

sinh(|λ|)n+k1
(λ, u1)

k2+2N+3 dλ

=
(4π)n(2π)m

(2N + 3)!
|t|2N+3|p1,k1,k2+2N+3(x, 0)|.

The first assertion is then proved. The proof in the case k2 even is analogous. ut

Thus, the case ω → 0 while |t| remains bounded when k2 is odd can be related to the same
case when k2 is even, which is completely described by Lemma 4.7. Observe that the expansion
appearing in Theorem 4.2, 4, is obtained with the choice N = 0 in Lemma 4.8.

We finally consider the case ω → π
2 , which as above provides the expansions 5 and 6 of

Theorem 4.2.

Lemma 4.9 Define, for j ∈ N such that 2j ≤ k1,

bk1,k2,j := (−1)k2
k1!

2k1−2j(k1 − 2j)!j!

(π
2

)n+k1+k2

, (4.17)

and, when k1 is odd,

bk1,k2,(k1+1)/2 := (−1)k2
(k1 + 1)!

[(k1 + 1)/2]!

(π
2

)n+k1+k2−1
(
n+ k1 + k2 +

π2

24
(k1 + 2) +

3

2
(m− 1)

)
.

(4.18)
Then, for ω → π

2 , if 2j ≤ k1

4jLj,ψωak1,k2,ω = bk1,k2,j

(
ω − π

2

)k1−2j
+O

((
ω − π

2

)k1−2j+1
)

while if k1 is odd, then

2k1+1L(k1+1)/2,ψωak1,k2,ω = bk1,k2,(k1+1)/2 +O
(
ω − π

2

)
.
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Proof By elementary computations,

ak1,k2,π/2 (λ) = (−1)k1ik2−n
(
i
π

2

)n+k1+k2

λk1
1

+ (−1)k1ik2−n
(
i
π

2

)n+k1+k2−1
(
(n+ k1 + k2)λ

k1+1
1 +

k1
2
λk1−1
1 (λ2 − λ21)

)
+O

(
|λ|k1+2

)
.

(4.19)

Therefore, since ak1,k2,π/2 is analytic on its domain, we infer that, for every h = 0, . . . , k1 we have

a
(h)
k1,k2,π/2

(λ) = (−1)k1ik2−n
(
i
π

2

)n+k1+k2 k1!

(k1 − h)!
λk1−h
1 u⊗h1 +O

(
|λ|k1−h+1

)
(4.20)

as λ→ 0.
Consider first j such that 2j ≤ k1. Then, arguing as in the proof of Lemma 4.7 and taking into

account (4.20) and the fact that

yω −
π

2
=

1

2

(
ω − π

2

)
+O

[(
ω − π

2

)2]
when ω → π/2, the first assertion follows.

Let now k1 be odd, so that (k1 + 1)/2 is an integer. We shall prove that

2k1+1L(k1+1)/2,ψπ/2ak1,k2,π/2 = bk1,k2,(k1+1)/2.

The estimate in the statement is then a consequence of this by Taylor expansion.
Since (ψ′′π/2(0)

−1∂, ∂)µ+(k1+1)/2 is a differential operator of degree 2µ + k1 + 1 while [(ψω −
P2,0ψω)

µak1,k2,ω] is infinitesimal of degree 3µ + k1 at 0, the only terms in the sum (4.12) (with
j = (k1 + 1)/2) which are not zero are clearly those for which

2µ+ k1 + 1 ≥ 3µ+ k1,

namely µ ≤ 1. Consider first µ = 0. Then, since θ′(yπ/2) = 2, by (4.13)

(ψ′′π/2(0)
−1∂, ∂)(k1+1)/2ak1,k2,π/2(0) = i−(k1+1)/2

∑
|α|=(k1+1)/2

[(k1 + 1)/2]!

2α1α!
∂2αak1,k2,π/2(0).

Observe that, by (4.19), ∂2αak1,k2,π/2(0) 6= 0 only if α = ((k1−1)/2)u1+uh for some h = 1, . . . ,m.
For the choice h = 1,

∂k1+1
1 ak1,k2,π/2(0) = (−1)k1ik2−n

(
i
π

2

)n+k1+k2−1
(k1 + 1)!(n+ k1 + k2)

while, for h = 2, . . . ,m,

∂k1−1
1 ∂2hak1,k2,π/2(0) = (−1)k1ik2−n

(
i
π

2

)n+k1+k2−1
k1!

so that

(ψ′′π/2(0)
−1∂, ∂)(k1+1)/2ak1,k2,π/2(0)

= (−1)k1
ik2−n−

k1+1

2

2
k1+1

2

(
i
π

2

)n+k1+k2−1
(k1 + 1)!(n+ k1 + k2 +m− 1).

Consider now µ = 1. Then by (4.13)

(ψ′′π/2(0)
−1∂, ∂)(k1+3)/2 [(ψπ/2 − P2,0ψπ/2)ak1,k2,π/2

]
(0)

= i−(k1+3)/2
∑

|α|=(k1+3)/2

[(k1 + 3)/2]!

2α1α!
∂2α

[
(ψπ/2 − P2,0ψπ/2)ak1,k2,π/2

]
(0).
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Since

ψ′′′π/2(0) = πu1 ⊗ u1 ⊗ u1 +
2

π

m∑
h=2

(u1 ⊗ uh ⊗ uh + uh ⊗ u1 ⊗ uh + uh ⊗ uh ⊗ u1),

we deduce that the only α for which we get a non-zero term in the above sum are u1(k1+1)/2+uh
for h = 1, . . . ,m. Now,

∂k1+3
1

[
(ψπ/2 − P2,0ψπ/2)ak1,k2,π/2

]
(0) =

(k1 + 3)!

3!
(−1)k1ik2−nπ

(
i
π

2

)n+k1+k2

,

while, for h = 2, . . . ,m,

∂k1+1
1 ∂2h

[
(ψπ/2 − P2,0ψπ/2)ak1,k2,π/2

]
(0) =

2

π
(−1)k1ik2−n

(
i
π

2

)n+k1+k2

(k1 + 1)!.

Therefore,

(ψ′′π/2(0)
−1∂, ∂)(k1+3)/2 [(ψπ/2 − P2,0ψπ/2)ak1,k2,π/2

]
(0)

= (−1)k1ik2−
k1+1

2
(k1 + 1)!

2(k1+3)/2
i−n

(
i
π

2

)n+k1+k2−1
(k1 + 3)

[
π2

12
(k1 + 2) +m− 1

]
from which one gets the asserted estimate. ut

Theorem 4.2 is now completely proved. In the following table we summarize the asymptotic be-
haviour, without remainders, of Υ (x, t).

Asymptotic behaviour of Υ (x, t) in case I: principal part
ε ≤ ω ≤ π/2− ε

or
π/2 + ε ≤ ω ≤ C

(−1)k1+k2
yn+k1+k2
ω cos(yω)

k1

sin(yω)n+k1

ω → 0

k2 even
k2/2∑
j=0

ck1,k2,j
ωk2−2j

|x|2j

k2 odd

|t| → ∞
(k2−1)/2∑
j=0

ck1,k2,j
ωk2−2j

|x|2j

0 ≤ |t| ≤ C ck1,k2+1,(k2+1)/2
|t|

|x|k2+1

ω → π
2

k1 even
k1/2∑
j=0

bk1,k2,j

(
ω − π

2

)k1−2j

|x|2j

k1 odd
(k1−1)/2∑
j=0

bk1,k2,j

(
ω − π

2

)k1−2j

|x|2j +
bk1,k2,(k1+1)/2

|x|k1+1

The Other Cases

We now consider the case ω → +∞. We begin by showing that, when m is odd, matters can
be reduced to the case m = 1.

Lemma 4.10 When m is odd, m ≥ 3,

p
(m)
1,k1,k2

(x, t) =

m−1
2∑

k=1

cm,k(−1)k

(2π)
m−1

2

k2∑
r=0

(
k2
r

)
(−1)r(m− 1− k)r
|t|m−1−k+r p

(1)
1,k1,k2+k−r(x, |t|), (4.21)

where
cm,k =

(m− k − 2)!

2
m−1

2
−k (m−1

2 − k
)
!(k − 1)!

and (m− 1− k)r = (m− 1− k) · · · (m− 1− k + r − 1) is the Pochhammer symbol4.

4 See, e.g., [9].
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Proof Let m be odd, m ≥ 3. We first pass to polar coordinates in (2.3) for k2 = 0, and get

p
(m)
1,k1,0

(x, t) =
(−1)

m−1
2

(2π)m(4π)n

∫ ∞
0

∫
Sm−1

eiρ|t|(σ,u1) dσ e−Rρ coth(ρ)ak1,m−1(ρ) dρ

where dσ is the (m − 1)-dimensional (Hausdorff) measure on Sm−1 and ak1,m−1 is the function
defined in (3.1). Since the Bessel function is an elementary function when m is odd, one can prove
that (see e.g. [7, equation (6.5)] and references therein)5

∫
Sm−1

eiρ|t|(σ,u1) dσ = 2(2π)
m−1

2 Re
eiρ|t|

(ρ|t|)m−1

m−1
2∑

k=1

cm,k(−i|t|ρ)k.

This yields

p
(m)
1,k1,0

(x, t) =

m−1
2∑

k=1

cm,k(−1)k

(2π)
m−1

2

1

|t|m−1−k p
(1)
1,k1,k

(x, |t|)

which gives (4.21), since p(m)
1,k1,k2

(x, t) = ∂k2

∂|t|k2 p
(m)
1,k1,0

(x, t) by definition. ut

Corollary 4.11 Let m be odd. Then, when (x, t)→∞ and δ → 0+

p
(m)
1,k1,k2

(x, t) =
(−1)k2πk1+k2

2n−k1+1+m−1
2

|t|n+k1−1−m−1
2 e−

1
4
d(x,t)2e−κρ(δ)Ĩn+k1−1(κρ(δ)) [1 + g(|x|, |t|)] ,

(4.22)

where g satisfies the estimates (3.12).

Proof If m = 1, the statement reduces to Corollary 3.14. Suppose then m ≥ 3. Since p(1)1,k1,r
�

p
(1)
1,k1,k2

for every 0 ≤ r ≤ k2 by Corollary 3.14, the principal term in (4.21) corresponds to r = 0,
k = m−1

2 . Hence

p
(m)
1,k1,k2

(x, t) =
(−1)

m−1
2

(2π)
m−1

2

|t|−
m−1

2 p
(1)

1,k1,k2+
m−1

2

(x, t)

[
1 +O

(
1

|t|

)]
. (4.23)

Now substitute the estimate given by Corollary 3.14 into (4.23). The remainder g in (4.22) still
satisfies (3.12), since (3.12) is satisfied by 1/|t|. ut

Let now m be even, m ≥ 2. We start by a descent method, in the same spirit of [7]: indeed, observe
that the Fourier inversion formula yields

p
(m)
1,k1,0

(x, t) =

∫
R
p
(m+1)
1,k1,0

(x, (t, tm+1)) dtm+1,

so that, by differentiating under the integral sign,

p
(m)
1,k1,k2

(x, t) =

∫
R

∂k2

∂|t|k2
p
(m+1)
1,k1,0

(x, (t, tm+1)) dtm+1.

Observe now that |(t, tm+1)| = |t|
√
1 +

t2m+1

|t|2 . Therefore, if we define Ik2 := {h ∈ Nk2 :
∑k2

j=1 jhj =

k2}, Faà di Bruno’s formula applied twice6 leads to

5 This is why we had to restrict to the case k2 = 0; otherwise, we would get the additional term (σ, u1)k2 in
the integral on the sphere.

6 Applied once, it yields

∂k2

∂|t|k2
p
(m+1)
1,k1,0

(x, (t, tm+1)) =
∑
h∈Ik2

k2!

h!
p
(m+1)
1,k1,|h|

(x, (t, tm+1))

k2∏
j=1

(
1

j!

∂j

∂|t|j
√
|t|2 + t2m+1

)hj
,

and then
∂j

∂|t|j
√
|t|2 + t2m+1 =

∑
`1+2`2=j

j!

`!
(−1)|`|

(
−
1

2

)
|`|

(|t|2 + t2m+1)
1
2
−|`|(2|t|)`1 .
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p
(m)
1,k1,k2

(x, t) =
∑
h∈Ik2

k2!

h!

∫
R
p
(m+1)
1,k1,|h|(x, (t, tm+1))Fh(t, tm+1) dtm+1

where

Fh(t, tm+1) =

k2∏
j=1

 ∑
`1+2`2=j

2`1

`!
(−1)|`|

(
−1

2

)
|`|
|t|1−j

(
1 +

t2m+1

|t|2

) 1
2
−|`|

hj .
Since F(k2,0,...,0) =

(
1 +

t2m+1

|t|2

)−k2/2

while Fh = O

(
1
|t|

(
1 +

t2m+1

|t|2

)−1/2
)

otherwise, we have

proved the following lemma.

Lemma 4.12 When m is even, m ≥ 2,

p
(m)
1,k1,k2

(x, t) =

∫
R

(
1 +

t2m+1

|t|2

)− k2
2

p
(m+1)
1,k1,k2

(x, (t, tm+1)) dtm+1

+O

[
1

|t| max
0≤r<k2

∫
R

(
1 +

t2m+1

|t|2

)− 1
2

p
(m+1)
1,k1,r

(x, (t, tm+1)) dtm+1

]
.

As a consequence of Lemma 4.12, matters can be reduced to finding the asymptotic expansions of
the integrals ∫

R

(
1 +

t2m+1

|t|2

)α
p
(m+1)
1,k1,r

(x, (t, tm+1)) dtm+1 (4.24)

when α ∈ R and 0 ≤ r ≤ k2. From these, it will also be proved that the remainder in Lemma 4.12
is indeed smaller than the principal part, which a priori is not obvious.

With this aim, we define the function σ : R 3 s 7→
√
1 + s2, and write t′ = (t, tm+1) ∈ Rm+1.

It is straightforward to check that |t′| = |t|σ
(
tm+1

|t|

)
. Thus, define

δ(s) :=
δ√
σ(s)

, κ(s) := κ
√
σ(s) = 2π|t|δ

√
σ(s).

Obviously, δ(0) = δ and κ(0) = κ. If we put a prime on the quantities introduced in Definition 2.3
relative to t′, moreover,

δ′ = δ

(
tm+1

|t|

)
, κ′ = κ

(
tm+1

|t|

)
.

In cases II, III and IV, |t| → ∞ and δ → 0+. By substituting (4.22) into (4.24) and by the change
of variable tm+1

|t| 7→ s in the integral

(4.24) =
(−1)rπr+k1

2n−k1+1+m
2

|t|n+k1−1−m
2
+1e−

1
4
d(x,t)2e−κρ(δ)I2α+n+k1−1−m

2
,

where

Iβ =

∫
R
σ(s)βe−|t|π(σ(s)−1)Ĩn+k1−1 (κ(s)ρ (δ(s))) [1 + g(|x|, |t|σ(s))] ds, (4.25)

and g satisfies the estimates (3.12). Therefore, matters can be reduced to finding some asymptotic
estimates of the integrals Iβ .
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4.2 II. Estimates for δ → 0+ and κ→ +∞.

Theorem 4.13 For δ → 0+ and κ→ +∞

p1,k1,k2
(x, t) =

(−1)k2πk1+k2

4n(πδ)n+k1−m+1
2

√
2πκm

e−
1
4
d(x,t)2

[
1 +O

(
δ +

1

κ

)]
.

Proof When m is odd, the theorem is obtained by combining Theorem 3.6 with (4.23). Therefore,
we only consider m even. By the preceding arguments, it will be sufficient to study Iβ in (4.25).

Since the argument of the modified Bessel function tends to +∞, we use the development
(3.13), which gives

Iβ =
(2π)−n−k1eκρ(δ)

δn+k1− 1
2 |t|n+k1− 1

2

∫
R
e−|t|ϕδ(s)

σ(s)β−
1
4
−n+k1−1

2

ρ (δ(s))n+k1− 1
2

×

[
1 +O

(
1

δ|t|
√
σ(s)

)]
[1 + g(|x|, |t|σ(s))] ds

where

ϕδ(s) = π[σ(s)− 1] + 2πδ
[
ρ(δ)−

√
σ(s)ρ (δ(s))

]
.

We first study the principal part of the integral, to which we apply Laplace’s method (see Remark
2.8) with

F = {ϕδ : δ ∈ [0, δ2]}, G =

{
σ(·)β−

1
4
−n+k1−1

2

ρ (δ(·))n+k1− 1
2

: δ ∈ [0, δ2]

}

for some δ2, smaller than the δ1 of Lemma 3.9, to be determined.

2. It is easily seen that ϕδ(0) = 0. Moreover

ϕ′δ(s) = π
s

σ(s)

[
1− δ(s)ρ (δ(s)) + δ2

σ(s)
3
2

ρ′ (δ(s))

]
, (4.26)

so that ϕ′δ(0) = 0 and ϕ′′δ (0) = π(1− δρ(δ) + δ2ρ′(δ)). Observe that there is δ2 > 0, which we
may choose smaller than δ1, such that

1− δ(s)ρ (δ(s)) + δ2

σ(s)
3
2

ρ′ (δ(s)) ≥ 1

2
(4.27)

for every s and every δ ∈ [0, δ2]. Therefore, ϕ′′δ (0) ≥ π
2 for every δ ∈ [0, δ2].

3. By (4.26) and (4.27), for s ∈ R and δ ∈ (0, δ2),

|ϕ′δ(s)| ≥
π

2σ(s)
|s|. (4.28)

In particular, |ϕ′δ(s)| ≥ π
2σ(2) |s| for every s ∈ [−2, 2].

1. Observe that ϕ′δ(s) = sign(s)|ϕ′δ(s)| by (4.26); then, by (4.28),

ϕδ(s) =

∫ s

0

sign(s)|ϕ′δ(u)| du =

∣∣∣∣∫ s

0

|ϕ′δ(u)|du
∣∣∣∣ ≥ π

2σ(s)

∣∣∣∣∫ s

0

|u| du
∣∣∣∣ ≥ πs2

4σ(s)

for every s ∈ R, since σ is even and increasing on [0,∞).
4. By definition of σ and since ρ is continuous in zero, we get g(s) . |s|β−

1
4
−n+k1−1

2 for s → ∞,
uniformly in g ∈ G .
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By Theorem 2.7, then,∫
R
e−|t|ϕδ(s)

σ(s)β−
1
4
−n+k1−1

2

ρ (δ(s))n+k1− 1
2

ds =

√
2

|t| (1− δρ(δ) + δ2ρ′(δ))

[
1 +O

(
1

|t|

)]

=

√
2

|t|

[
1 +O

(
δ +

1

|t|

)]
.

The remainder can be treated similarly, and with the same arguments as above one gets∫
R
e−|t|ϕδ(s)

σ(s)β−
1
4
−n+k1−1

2

ρ (δ(s))n+k1− 1
2

[
O

(
1

δ|t|
√
σ(s)

)
+O

(
1

κ
+ δ

)]
ds

=

√
2

|t|

[
1 +O

(
δ +

1

|t|

)]
O

(
1

δ|t| +
1

κ
+ δ

)
=

√
2

|t|O
(
1

κ
+ δ

)

since 1
δ|t| =

2π
κ = O

(
1
κ

)
and 1/

√
σ(s) ≤ 1 for every s ∈ R. The proof is complete. ut

4.3 III and IV. Estimates for δ → 0+ and κ bounded.

These two cases can be treated together and the principal part of p(m)
1,k1,k2

is easy to get. The
remainders are more tricky, since when passing from the m-dimensional variable t to the (m+ 1)-
dimensional variable t′ the asymptotic conditions in II, III and IV do not correspond to those in
II’, III’, IV’ (these symbols standing for the cases relative to m + 1); on the contrary, they mix
together according to the values of the additional variable tm+1.

Theorem 4.14 Fix C > 1. If δ → 0+ while 1/C ≤ κ ≤ C, then

p1,k1,k2
(x, t) =

(−1)k2πk1+k2

4n(πδ)n+k1−m+1
2 κ

m−1
2

e−
1
4
d(x,t)2e−κIn+k1−1(κ) [1 +O (δ)] .

When κ→ 0+ and |t| → +∞

p1,k1,k2
(x, t) =

(−1)k2πk1+k2

22n+
m−1

2 (n+ k1 − 1)!
|t|n+k1−1−m−1

2 e−
1
4
d(x,t)2

[
1 +O

(
κ+

1

|t|

)]
.

Proof The theorem holds when m is odd by Theorem 3.11 combined with (4.23). When m is even,
we shall apply Laplace’s method to Iβ . We first deal with the principal part. Define first

ϕ(s) = πσ(s)− π,

so that Theorem 2.7 will be applied to

F = {ϕ}, G = {σ(·)β Ĩn+k1−1 (κ(·)ρ (δ(·))) : δ ∈ [0, δ1), κ ∈ [0, C]}

where δ1 is that of Lemma 3.9.

2. Notice that ϕ(0) = 0, that ϕ′(s) = π s
σ(s) , and that ϕ′′(0) = π.

1. Observe that ϕ(s) = π s2

1+
√
1+s2

≥ π s2

2+|s| , for every s ∈ R.
3. It is easily seen that |ϕ′(s)| ≥ π

σ(1) |s| for every s ∈ [−1, 1].
4. Recall that by (3.13)

Ĩn+k1−1(κ(s)ρ(δ(s))) . eκ(s)ρ(δ(s)) . eκ
√
σ(s)

as s → ∞, uniformly as κ ∈ [0, C] and δ ∈ [0, δ1). Hence, there is a constant c1 > 0 such that
|σ(s)β Ĩn+k1−1 (κ(s)ρ (δ(s)))| ≤ c1ec1|s|.
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Therefore, by Theorem 2.7∫
R
e−|t|ϕ(s)σ(s)β Ĩn+k1−1 (κ(s)ρ (δ(s))) ds =

√
2

|t| Ĩn+k1−1(κρ(δ))

[
1 +O

(
1

|t|

)]
uniformly in κ and δ. Since Ĩn+k1−1(κρ(δ)) − Ĩn+k1−1(κ) = O(κρ(δ) − κ) = O(δ2) uniformly
as κ ∈ [0, C] by Taylor’s formula, we are done with the principal part. We now deal with the
remainders, namely

I ′β =

∫
R
e−|t|ϕ(s)σ(s)β Ĩn+k1−1 (κ(s)ρ (δ(s))) g(|x|, |t|σ(s)) ds

where

g(|x|, |t|σ(s)) =


O
(
δ(s) + 1

κ(s)

)
if δ(s)→ 0+ and κ(s)→ +∞,

O(δ(s)) if δ(s)→ 0+ and κ(s)∈ [1/C′, C′],

O
(

1
|t|σ(s) + κ(s)

)
if δ(s)→ 0+ and κ(s)→ 0+

for every C′ > 1. Since δ(s) ≤ δ for every s ∈ R, we may find some positive constants C′′, δ2 ≤ δ1,
where δ1 is that of Lemma 3.9, and κ2 ≤ κ1 such that

|g(|x|, |t|σ(s))| ≤


C′′
(
δ(s) + 1

κ(s)

)
when δ ≤ δ2, κ(s) ≥ κ1,

C′′δ(s) when δ ≤ δ2, κ2 ≤ κ(s) ≤ κ1,
C′′
(

1
|t|σ(s) + κ(s)

)
when δ ≤ δ2, κ(s) ≤ κ2.

We shall split the integrals accordingly. Notice first that we may assume also that κ2 ≤ 1/(2C) ≤
2C ≤ κ1, and, up to taking a smaller δ2, that

ϕ(s)− 2πδ
√
σ(s)ρ (δ(s)) ≥ 1

2
|s|

whenever |s| ≥ 2 and δ ∈ [0, δ2).
Consider first case III, where κ ∈ [1/C,C]. We split

I ′β =

∫
κ(s)≤κ1

+

∫
κ(s)≥κ1

= I ′β,1 + I ′β,2.

Observe that κ(s) ≥ κ1 if and only if |s| ≥
√
κ4

1

κ4 − 1 =: s1,κ ≥ 2. Since

Ĩn+k1−1(κ(s)ρ(δ(s))e
−|t|ϕ(s) = O

(
e|t|[2πδ

√
σ(s)ρ(δ(s))−ϕ(s)]

)
= O

(
e−

1
2
|t||s|

)
as s→∞, and since δ = O

(
1
κ

)
= O(1) in case III, we get

|I ′β,2| ≤ C′
(
δ +

1

κ

)∫
|s|≥s1,κ

σ(s)β−
1
2 Ĩn+k1−1 (κ(s)ρ (δ(s))) e

−|t|ϕ(s) ds = O
(
e−

s1,κ
4
|t|
)
,

which is negligible relative to 1
|t|3/2 . By Laplace’s method, moreover,

|I ′β,1| ≤ C′δ
∫
|s|≤s1,κ

σ(s)β−
1
2 Ĩn+k1−1 (κ(s)ρ (δ(s))) e

−|t|ϕ(s) ds = O

(
δ

1√
|t|

)
with the same arguments as above. This concludes the study of case III.

Consider now case IV, where κ→ 0+. We split

I ′β =

∫
κ(s)≤κ2

+

∫
κ2≤κ(s)≤κ1

+

∫
κ(s)≥κ1

= I ′β,1 + I ′β,2 + I ′β,3.

Observe that κ(s) ≥ κ2 if and only if s ≥
√
κ4

2

κ4 − 1 =: s2,κ, and s1,κ ≥ s2,κ ≥ 2 if κ is sufficiently
small. Exactly as above, we get

|I ′β,3| ≤ C′
(
δ +

1

κ

)∫
|s|≥s1,κ

σ(s)β−
1
2 Ĩn+k1−1 (κ(s)ρ (δ(s))) e

−|t|ϕ(s) ds = O

(
1

κ
e−

s1,κ
4
|t|
)
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which is negligible relative to 1
|t|3/2 . Then

|I ′β,2| ≤ C′δ
∫
s2,κ≤|s|≤s1,κ

σ(s)β−
1
2 Ĩn+k1−1 (κ(s)ρ (δ(s))) e

−|t|ϕ(s) ds = O
(
δ e−

s2,κ
4
|t|
)
,

which is negligible relative to 1
|t|3/2 in case IV. Finally,

|I ′β,1| ≤ C′
∫
|s|≤s2,κ

σ(s)β Ĩn+k1−1 (κ(s)ρ (δ(s))) e
−|t|ϕ(s)

(√
σ(s)κ+

1

σ(s)|t|

)
ds

= O

[
1√
|t|

(
1

|t| + κ

)]
,

by Laplace’s method as above. The proof is complete. ut

We can finally state the following corollary, which is the natural extension of Corollary 3.14.

Corollary 4.15 For (x, t)→∞ and δ → 0+

p1,k1,k2
(x, t) =

(−1)k2πk1+k2

2n−k1+1+m−1
2

|t|n+k1−m+1
2 e−

1
4
d(x,t)2e−κρ(δ)Ĩn+k1−1(κρ(δ)) [1 + g(|x|, |t|)] ,

where

g(|x|, |t|) =


O
(
δ + 1

κ

)
if δ → 0+ and κ→ +∞,

O(δ) if δ → 0+ and κ ∈ [1/C,C],

O
(

1
|t| + κ

)
if δ → 0+ and κ→ 0+

for every C > 0.

We have not been able to find a single function which displays the asymptotic behaviour of
p1,k1,k2

(x, t) as (x, t) → ∞, though we showed that the exponential decrease is the same in the
four cases. This is also the same decrease found by Eldredge [7, Theorems 4.2 and 4.4], when
k1 = k2 = 0 and for the horizontal gradient, and Li [17, Theorems 1.4 and 1.5], when k1 = k2 = 0.
Notice that in [17, Theorem 1.5 and the following Remark (1)] the remainders for k1 = k2 = 0
seem to be better than the one we put in Corollary 4.15, but they reduce to ours when developing
the estimates in a more convenient form in cases II and IV, as we did in Theorems 4.13 and 4.14.

Remark 4.16 Our sharp estimates for p1,k1,k2
can be used to obtain asymptotic estimates of all

the derivatives of the heat kernel p1. Indeed, Faà di Bruno’s formula leads to

∂|γ|

∂xγ1∂tγ2
p1(x, t) = γ1!γ2!

∑
η,µ,β

|µ|!2|µ1|−|γ1|

η!µ!β!

 |µ|∏
h=1

((
1
2

)
h

h!

)βhxη1sign(t)µ1 |t||β|−|γ2|p1,|η|,|β|(x, t),

(4.29)
where the sum is extended to all η = (η1, η2) ∈ N2n × N2n, µ = (µ1, µ2) ∈ Nm × Nm and β ∈ N|µ|
such that

γ1 = η1 + 2η2, γ2 = µ1 + 2µ2,

|µ|∑
h=1

hβh = |µ|.

However, the sharp asymptotic expansions we explicitly provided in Theorems 4.2, 4.13 and 4.14
may not be enough to get directly sharp asymptotic estimates of any desired derivative of p1: some
cancellations among the principal terms may indeed occur in (4.29). Nevertheless, by inspecting case
by case, the interested reader could consider as many terms of the expansions given by Theorem 2.7
or Lemma 3.12 as necessary. In the case when t→ 0, one may also make use of Lemma 4.8 before
expanding each term: a suitable choice for N gets rid of the negative powers of |t| appearing
in (4.29). Despite this, our estimates for p1,k1,k2

lead to the sharp behaviour at infinity of ∇Hps
and Lps, as we shall see in the next section.
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5 Sub-Riemannian Ornstein Uhlenbeck Operators

For every s > 0 consider the operator on L2(ps) given by

L
ps = L− ∇Hps

ps
· ∇H : C∞c → L2(ps)

which arises from the Dirichlet form ϕ 7→
∫
G
|∇Hϕ(y)|2ps(y) dy. For a fixed time s > 0, Lps can be

considered as a sub-Riemannian version of the classical Ornstein-Uhlenbeck operator (see [1, 18]).
Arguing as Strichartz ([23, Theorem 2.4]) it is not hard to see that Lps with domain C∞c (G) is
essentially self-adjoint on L2(ps), for every s > 0. Let us then consider its closure, which we still
denote by Lps .

Theorem 5.1 Lps has purely discrete spectrum for all s > 0.

Theorem 5.1 is indeed due to Inglis [14], whose proof relies on super Poincaré inequalities.
Instead, we reduce matters to studying a Schrödinger-type operator by conjugating Lps with the
isometry Us : L2(ps) → L2 defined by Usf = f

√
ps (see e.g. [4, 19]). More precisely, we consider

the operator Us Lps U−1
s : L2 → L2. Simple computations then lead to UsLps U−1

s = L+Vs, where
Vs is the multiplication operator7 given by the function

Vs = −
1

4

|∇Hps|2

p2s
− 1

2

Lps
ps

= −1

4

∑2n
j=1(Xjps)

2

p2s
+
1

2

∑2n
j=1X

2
j ps

ps
.

The main ingredient of the proof is due to Simon [22, Theorem 2]. Given a potential V andM > 0,
we define ΩM := {g ∈ G : V (g) ≤ M}. For a subset E of G, we write |E| to denote its measure
with respect to dy.

Theorem 5.2 Let V be a potential bounded from below such that |ΩM | < ∞ for every M > 0.
Then there exists a self-adjoint extension of L+ V with purely discrete spectrum.

In order to apply Proposition 5.2, some estimates of the potential are needed; this is done in the
following proposition.

Proposition 5.3 When (x, t)→∞, Vs(x, t) � s−2d(x, t)2 for every s > 0.

Proof Since Vs(x, t) = 1
sV1

(
x√
s
, ts

)
, it will be sufficient to consider V1 only. For every (x, t) ∈ G

|∇Hp1|2(x, t) = Rp1,1,0(x, t)
2 +Rp1,0,1(x, t)

2, (5.1)

while

Lp1(x, t) = −Rp1,2,0(x, t)− n p1,1,0(x, t)−Rp1,0,2(x, t)+
R

|t| (m− 1)p1,0,1(x, t).

Hence

V1 = −R
4

p21,1,0 + p21,0,1
p21,0,0

+
R

2

p1,2,0 + p1,0,2 +
n
Rp1,1,0 −

m−1
|t| p1,0,1

p1,0,0
.

In order to find the asymptotics for the potential, it turns out that only the principal term of p1,k1,k2

is necessary, and therefore, for the sake of simplicity, we shall avoid an explicit treatment of the
remainders. If one is interested in a more detailed description of the behaviour of the potential,
however, it is enough to use the remainders that we found in the previous sections.

I. If ω runs through [0, C] for some C > 0, then both yω
sin(yω)

and yω
ω are positive and bounded

both from above and from below. Hence,

V1(x, t) ∼ −
R

4

y2ω
sin(yω)2

+
R

2

y2ω
sin(yω)2

=
R

4

y2ω
sin(yω)2

� d(x, t)2

7 With a slight abuse of notation, we do not distinguish between a multiplication operator by a function and
the function itself.
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thanks to Theorem 4.2.
II. Let δ → 0+ and κ → +∞. Then 1

Rδ = o
(

1
δ2
√
κ

)
, and κ + |t|√

κ
= o(|t|). Therefore, by

Theorem 4.13,

V1(x, t) ∼ −
R

4

1

δ2
+
R

2

1

δ2
=
π

4
|t| � d(x, t)2.

III. Let δ → 0+ and κ ∈ [1/C,C] for some C > 1. Then δ � R. Elementary computations yield

I ′ν(ζ) =
Iν−1(ζ) + Iν+1(ζ)

2
,

so that
(2Iν−1Iν+1 − I2ν )′(ζ) = Iν−2(ζ)Iν+1(ζ) + Iν−1(ζ)Iν+2(ζ)

for all ν ∈ Z and for all ζ ∈ C. Thus, 2In−1In+1− I2n is strictly increasing on [0,∞), hence strictly
positive on (0,∞). Therefore, by Theorem 4.14

V1(x, t) ∼ −
R

4

1
δ2 In(κ)

2

In−1(κ)2
+
R

2

1
δ2 In+1(κ) +

n
Rδ In(κ)

In−1(κ)

=
π|t|
4

2n
κ In(κ)In−1(κ) + 2In−1(κ)In+1(κ)− In(κ)2

In−1(κ)2
� d(x, t)2.

IV. Finally, let κ→ 0+ and |t| → +∞. Then |t| = o
(
1
R

)
, so that

V1(x, t) ∼ −
R

4

π2

(n!)2 |t|
2 + π2

[(n−1)!]2

1
[(n−1)!]2

+
R

2

π2

(n+1)! |t|
2 + π2

(n−1)! +
nπ
Rn! |t|+

(m−1)π
(n−1)!|t|

1
(n−1)!

∼ π

2
|t| � d(x, t)2,

thanks to Theorem 4.14 again. ut

Remark 5.4 The estimates provided by Eldredge [7] are not sufficient to prove Proposition 5.3, not
even with some precise estimates of Lp1/p1. Indeed, as the proof above shows, in cases I, II and
III one has Lp1/p1 � |∇Hp1|2/p21, so that no lower control of V1 can be inferred. On the other
hand, the upper bounds of the derivatives of ps explicitly provided by Li [17] are not enough to
describe the behaviour at infinity of Vs.

Proof of Theorem 5.1 Since Vs is continuous and diverges at infinity by Proposition 5.3, the as-
sumptions of Theorem 5.2 are fulfilled and this ensures the existence of a self-adjoint extension
(Ts,Ds) of (L+Vs, C

∞
c ) with purely discrete spectrum. Since the multiplication by the square root

of ps, which we called Us, preserves C∞c , U−1
s Ds ⊇ C∞c ; therefore, (U−1

s TsUs, U
−1
s Ds) is a self-

adjoint extension – with purely discrete spectrum – of (Lps , C∞c ), which is essentially self-adjoint.
The result follows. ut
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