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Abstract 

The photoreforming of glucose has been studied over TiO2 photocatalyst with different 

photoreactors, focusing on the effect of the reaction conditions: temperature, pressure, 

catalyst and substrate concentration. The effect of pressure was particularly significant, 

decreasing hydrogen evolution rate, but improving the conversion of the substrate. 

Furthermore, pressure moderately higher than ambient allowed to operate at high 

temperature (80°C), boosting hydrogen productivity. Most experiments were carried out on 

glucose photoreforming, but, for the first time, the photoconversion of levulinic acid was 

investigated, as an interesting product of biomass hydrolysis under harsh conditions. 

Levulinic acid led to the production of ethane and ethylene in gas phase, interpreted 

according to a preliminary hypothesis of the photoconversion mechanism. High hydrogen 

productivity was achieved, in most cases higher than the literature benchmark. 
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1 - Introduction 

Photocatalytic processes for hydrogen production gained considerable attention in the last 

two decades, as a virtuous way to exploit solar energy for the production of a clean energy 

vector [1–4]. Despite this growing interest, however, solar driven water splitting is still far 

from application due to very low productivity. Indeed, the energy to be supplied due to 

thermodynamic reasons, summed to overpotentials, render very hard the exploitation of a 

true solar driven device. A target productivity of 2-3 mol/min kgcat has been set to attract 

industrial interest [5]. 

The mechanism of the photocatalytic reaction prescribes two half reactions, promoted by a 

semiconductor. The latter absorbs photons with energy higher than its band gap, promoting 

an electron from the valence to the conduction band. This electron is responsible of the 

hydrogen evolution reaction, i.e. H+ + e-  0.5 H2. In order to close the circuit, the electron 

vacancy (hole, h+) remaining in the valence band should be reduced thanks to an electron 

donor present in the reaction environment. In direct water photosplitting, the electron donor 

is water itself, leading to oxygen evolution. However, this step is the rate limiting one, since 

it is very slow due to the simultaneous need of a 4-electrons transfer and thus it requires 

high potential. Furthermore, the co-presence of H2 and O2 as products in the same 

environment should be avoided by designing separate reaction cells, with a separation 

membrane that adds further losses [6].  

In order to improve the feasibility of the process the research was focused on alternative 

electron donors, also called hole scavengers, which are more easily oxidised than water. 



The first experiments were carried out on very simple organic molecules, such as methanol 

or formic acid [4,7–11], confirming a significant increase of the hydrogen production rate. 

Later, renewable biomass derived compounds were investigated, such as ethanol and 

glycerol [1,3,10,12–14], or, more recently, glucose and other mono- or oligo-saccharides 

[15–26]. Few examples of direct photoreforming of cellulose or raw biomass have been also 

attempted, but with much lower hydrogen productivity with respect to simpler molecules [27–

29].  

Kuehnel and Reisner [30] reviewed recent advances in the photoreforming of biomass 

derived compounds, which is much more energy favourable since the oxidation reaction is 

less demanding than oxygen formation from the thermodynamic point of view, besides the 

already mentioned kinetic aspects.   

 

C6H12O6 + 6 H2O  12 H2 + 6 CO2    (E° = + 0.001 V) 

H2O  H2 + 0.5 O2    (E° = -1.23 V) 

 

Therefore, the energy adsorbed is just needed to overcome the activation barriers, ideally 

making the process feasible also under visible light irradiation. Various examples of 

monosaccharides are reported, which induce variable results based on their ability to adsorb 

on the catalyst surface and intrinsic reactivity. 

G. Balducci [31] carried out a theoretical study on the modes of glucose adsorption on the 

surface of titania, showing that the molecular adsorption mode is favoured with respect to 

the bridged one. The reaction rate would follow a Langmuir type mechanism, depending on 

the concentration of adsorbed glucose rather than on its amount in solution [19,31]. 

Furthermore, by considering the density of states, there are different surface adsorption 

modes through which the glucose molecule can act as hole scavenger for TiO2.  



Furthermore, di-saccharides are reviewed [30] which suffer of kinetic limitations with respect 

to monomers. Examples of cellulose PR are also reported [19,30], with even higher 

limitations due to the compact ternary structure of the substrate. Lignin and raw biomass 

have limited application potential and yield due to scarce solubility, light scattering and 

absorption from coloured substances. Aquatic plants gave higher hydrogen yields with 

respect to terrestrial ones due to their lower lignin content [30]. Swine sewage has been also 

tested [32] under different irradiation sources, but, again, with limited hydrogen productivity. 

Iervolino et al. [15] tested real waste solutions, such as cherries washing one, obtaining 

interesting results, but with a different approach based on the photo-Fenton reaction.  

Regarding the mechanism of PR, the hydrogen evolution reaction is faster, independent of 

the substrate and is believed to occur through the hydrogen ions coming from water rather 

than from the biomass. The biomass oxidation reaction instead involves the direct hole 

transfer to the molecule adsorbed rather than the oxidation mediated by the OH radicals 

possibly forming in solution. The molecule degradation occurs by elimination of C1 

fragments, mainly as formic acid [25,26,30,33,34]. In some cases, intermediate steps of 

glucose isomerisation to fructose (linear and cyclic) are reported [35]. Other researchers 

observed hydrogen formation only in presence of Pt under anaerobic conditions [26] and in 

presence of alpha hydrogen in the substrate. They also support the progressive elimination 

of formic acid moieties.  

The need of hydrogen in alpha position to allow the alpha-scission and formic acid formation 

is supported also by Chong et al. [33]. The same mechanism is reported for polyalcohols, 

for which the primary step is the terminal oxidation. A metal co-catalyst is needed, but it 

does not influence selectivity. Interestingly, the reaction is also studied with H2 production 

together with intermediates of oxidation with higher added value, to improve the economic 

sustainability of the reaction [33], such as gluconic acid, xylitol and arabinose [36].  



To the best of our knowledge, no investigation was carried out on different possible biomass 

hydrolysis solutions, e.g. levulinic acid and formic acid, which are co-produced when 

performing the hydrolysis under harsher conditions, leading to lower humines concentration 

(more stable hydrolysed solution) and an easily separable product. 

According to these examples, some considerations appear evident. If on one hand the 

photoreforming of glucose seems promising, in all the examined cases the reactors were 

very small (mostly smaller than 100 ml), often with very high irradiation power, with no strict 

control in power distribution in the reactor. If this is reasonable in such small devices, it 

prevents any attempt to scale up. Furthermore, very diluted glucose solutions (usually 

maximum 1 g/L) are used. This is incompatible with current technologies for the hydrolysis 

of biomass, which usually allow much more concentrated products (15 to 30 times), which 

ideally should be reformed without dilution for a better volumetric efficiency of the plant. 

Moreover, very scarce attention is paid to the optimisation of reaction conditions. Most 

reports check the effect of catalyst concentration, but only a few investigate the effect of 

temperature, which turns out to be very important. Indeed, increasing hydrogen productivity 

is reported up to 50-70°C [25,28], attributed to a speed up of the “dark” reaction steps 

(adsorption/desorption, diffusion, etc.).  

No attention at all is instead paid to pressure. In the recent past we have developed a unique 

photoreactor for the photoreduction of CO2 able to operate up to 20 bar [37–42]. Even if an 

increase of pressure is not expected to favour directly the photoreforming, since it is a gas 

evolution reaction, occurring through an increase of the number of moles, this reactor allows 

the exploration of unconventional reaction conditions, e.g. by increasing the reaction 

temperature above the limits imposed by ambient pressure operation.  

Therefore, in this work, we have investigated the photoreforming of glucose trying to 

optimise the operating conditions (pressure, temperature, catalyst and glucose 

concentration) in two types of photoreactors, both with an immersion lamp with a strict 



control of light distribution, and characterised by different volume (ca. 300 mL and 1.3 L). 

The photoreforming of levulinic acid and of a 1:1 mixture of levulinic and formic acid was 

also reported here for the first time. 

 

2 – Experimental 

 

Catalyst preparation and characterisation 

Pure TiO2 sample has been used as a commercial benchmark supplied by Evonik, P25 

sample.  

Different metals were added by wet impregnation from the following precursors with a fixed 

metal loading of 0.1 mol%, followed by reduction at the specified temperature for 1 h. Pt 

from Pt(II) acetylacetonate (Sigma Aldrich, purity 97%), reduced at 700°C; Au from Au(III) 

chloride (Sigma Aldrich, purity 99%), reduced at 700°C; Pd from Pd(II) nitrate dihydrate 

(Sigma Aldrich, 40% Pd content), reduced at 300°C; Ag from Ag(I) nitrate (Sigma Aldrich, 

purity 99%), reduced at 150°C. 

The specific surface area of the sample was determined by N2 adsorption/desorption at 77K 

with a Micromeritics (ASAP2020) apparatus. The data were elaborated through the BET 

algorithm to get the specific surface are and according to the BJH one for the porosity 

contribution. The portion of micropores was assessed through the t-plot method.  

The crystal phases were determined by X-ray diffraction (Philips 3020) at room temperature 

by using the CuK radiation (λ = 1.5406 Å). Intensities were collected over a 21° – 90° 2θ 

range with 0.03° step size and 4 s step time. The apparatus was provided with graphite 

monochromator. The voltage and current intensity of the generator were set at 40 kV and 

30 mA respectively. The raw data were compared with JCPDS files.  



Diffuse Reflectance (DR) UV-Vis spectra of samples were measured on a Cary 5000 UV-

Vis-NIR spectrophotometer (Varian instruments) in the range of 200–800 nm. 

 

Photocatalytic testing 

The innovative high pressure photoreactor used for activity testing has been described in 

detail elsewhere [39,41,42]. It is made of AISI 316 stainless steel with an axial UVA lamp 

(medium-pressure Hg vapour lamp with a range of emission wavelengths from 254 nm to 

364 nm, nominal power 125 W) and a magnetic stirrer ensures proper liquid mixing. The 

internal capacity is ca. 1.3 L, filled with ca. 1.2 L solution. The temperature is kept constant 

through a double-walled thermostatic system.  

The emitted power was periodically measured by means of a photo-radiometer (Delta OHM 

HD2102,2) at 315-400 nm. The harmful overheating of the lamp bulb was avoided thanks to 

an air circulation system, which in turn determined the power of the source. A compromise 

between the high irradiation power and high lamp lifetime was chosen and corresponded to 

0-1,000 L h-1 cooling air flow, with periodic systematic mapping of the irradiance every 3-4 

tests. Details on the radiation modelling through the reactor can be found elsewhere [43]. 

The catalyst (variable amounts) has been suspended in 1.2 L of demineralized and 

outgassed water and added with glucose, levulinic acid, formic acid or a mixture of them in 

proper concentration. Testing was carried out typically for 5 h. Variable pressure (2-6 bar) 

and temperature (20-80°C) were tested. The temperature was controlled thanks to a 

thermosetting bath with circulating fluid and showed approximately the same under dark 

conditions. 

A second photoreactor was tested, with the same configuration and approximately the same 

length to diameter ratio (geometric factor) and an axial immersion lamp (UVA, 75 W). The 

total volume was however ca. 1 order of magnitude smaller to check the effect of the 

distance from the source on activity and of the overall irradiance.  



A sketch of the photoreactors used is reported in Fig. 1 [44]. 

 

Figure 1. Sketch of the High Pressure Photoreactor. 1: Pressure Reducer, 2: Sample Valve 

for Gas Phase, 3: Lamp, 4: Double-walled Thermostatic System, 5: Sample Valve for Liquid 

Phase, 6: Magnetic Stirrer. PI: Pressure Indicator; TI: Temperature Indicator. Reproduced 

from [38] by kind permission of Elsevier. 

 

For both reactors, after the reaction, the liquid mixture has been analysed by means of Total 

Organic Carbon (TOC) analysis, carried out by chemical titration by potassium dichromate, 

according to the ISO 14235:1998 method. The gas phase was sampled every hour from the 

headspace of the photoreactor and analysed by a gas chromatograph (Agilent 7890) 

equipped with HP Plot Q and MS columns and a TCD detector. The set up was proper for 

the quantification of H2, CO, CO2, CH4 and polar/non polar light gases. The maximum 

experimental error on H2 productivity (based on 5 reproducibility tests) was  7.3%, while on 

TOC analysis was 10.2%. The latter was attained at the highest conversion, where the 

compounds to be determined were much more heterogeneous leading to higher error. 



 

3 - Results and discussion 

 

3.1 - Catalyst properties 

We have selected the simplest photocatalyst formulation, a well established benchmark, to 

make a comparative screening of the operating conditions and of the photoreactor size. 

Therefore, TiO2 P25 was used as a cheap, commercial, abundant and photo-resistant 

material. This sample was characterised by a mixture of two polymorphs of TiO2, anatase 

(ca. 78%) and rutile (ca. 22%). The co-presence of the two phases has been described as 

an important feature to achieve efficient charge separation, thus inhibiting the electron-hole 

recombination, with respect to pure phases. The surface area of the sample was 45 m2/g, 

with total pore volume 0.12 cm3/g and ca. 15% contribution of micropores, the remaining 

being mesopores [45]. The sample band gap was measured by DR-UV-Vis spectroscopy 

and was 3.36 eV. 

After selection of the best operating conditions we also explore the effect of metals addition 

to titania. Metals with appropriate workfunction can act as electron sinks, thus preventing 

their recombination with the holes. Furthermore, some metals can improve visible light 

harvesting through plasmon resonance effects. In this work, we have compared some noble 

metals added by impregnation and reduced.  

The XRD patterns of the metal-promoted samples are reported in Figure 2 and reveal a 

substantially unmodified structure with respect to bare P25. Indeed, it both anatase and rutile 

phases are present, as referred to the standard JCPDS database (anatase: file 84-1286; 

rutile: file 88-1175). Thus, the addition of 0.1 mol% metal did not affect the crystalline 

structure of titania, except a slight increase of the anatase/rutile ratio. The crystal size was 

determined through the Scherrer equation and was ranging between 15 and 21 nm, 



increasing for the metal-loaded samples with respect to bare P25 due to the thermal 

treatment for the reduction of the metal precursor. 

The N2 adsorption/desorption isotherms are reported in Figure 3, which reveals a 

substantially not porous material. The specific surface area of the different samples is 

reported in Table 1.  

The UV-Vis absorption spectra (Figure 4) have been recorded to estimate the band gap 

energy from the plot of (hνα)1/2 versus photon energy (hν). The intercept of the tangent to 

the plot will give a good approximation of the indirect band gap energy for TiO2 and its 

relative metals-added samples [46]. The calculated band gap is reported in Table 1. 

 

 

Figure 2: XRD patterns of metal-promoted catalysts. 

 



 

Figure 3: N2 adsorption/desorption isotherms of the catalysts. 

 

Figure 4: DR-UV-Vis spectra of the photocatalysts. 

 

 

 



Sample P25 Au/P25 Ag/P25 Pd/P25 Pt/P25 

Anatase / Rutile (%) 78/22 87/13 87/13 81/19 87/13 

Crystallite size (nm) 15 21 21 20 21 

BET Surface area   (m2g-1) 45.0 ± 0.1 47.3 ± 0.8 61.2 ± 0.6 57.0 ± 0.2 55.1 ± 0.2 

Band Gap energy (eV) 3.41 3.27 3.23 3.18 3.12 

 

Table 1: Main features of the selected photocatalysts. Cristallite size determined by the 

Scherrer equation. 

 

3.2 – Photoreforming of carbohydrates 

 

Blank tests 

Various blank tests have been carried out to exclude spurious effects.  

In absence of photocatalyst and glucose, no hydrogen was detected. When adding the 

photocatalyst and glucose under dark conditions, very limited glucose amount was missing 

from the carbon balance, due to adsorption on the catalyst. Indeed, the mass balance has 

been confirmed after reaction by thermogravimetry on the recovered catalyst. 

In presence of photocatalyst and in absence of sugar the amount of hydrogen detected was 

negligible, due to the very limited contribution of water splitting. This also rules out the effect 

of possible carbon-based impurities present in the sample, possibly acting as hole 

scavengers. 

The effect of pH for this reaction has been already studied [47] and turned out to affect for 

ca. 10% the hydrogen productivity. The best results were achieved around neutral 

conditions, overall matching the point of zero charge (PZC) of the semiconductor. The 



present TiO2 sample was characterised by a PZC  6.25, so the native pH of the aqueous 

glucose solution (pH = 5.5) was maintained ensuring a slightly positive charged surface. 

 

Afterwards we have investigated the effect of the different process variables on hydrogen 

productivity and organics conversion. We have singly varied each parameter in the 

experimental range applicable. Then the optimized parameters were kept fixed at the best 

value for further screening. The commercial P25 benchmark photocatalyst has been 

employed for all these preliminary screening and relative reproducibility analysis, in order to 

have a sufficient amount of identical sample. The further exploration of catalyst formulation 

and substrate type was performed on the previously optimized conditions. 

 

Effect of reactor pressure 

The effect of pressure has almost never been investigated in photocatalysis due to the 

typical use of quartz or glass devices. Thanks to the high pressure photoreactor developed 

we were able to assess the effect of this parameter (Fig. 2).  

 

Test 
# 

Co-
catalyst 

P 
(bar) 

T 
(°C) 

Glucose 
concentration 
(g/L) 

Catalyst 
concentration 
(g/L) 

H2 productivity 
(mol/h kgcat) 

C Conversion 
(%) 

1 - 2 80 5 1 0.649 12.9 

2 - 4 80 5 1 0.333 35.1 

3 - 6 80 5 1 0.141  / 

4 - 2 80 5 0.25 2.098 15.1 

5 - 4 80 5 0.25 1.910 20.3 

6 - 4 20 5 1 0 0 

7 - 4 40 5 1 0.029  / 

8 - 4 60 5 1 0.015 51.3 

9 - 4 80 15 0.25 0.587 2.4 

10 - 4 80 5 0.5 0.449 12.0 

11 - 4 80 5 0.125 2.934 27.0 

12 - 4 80 5 0.0625 6.603 21.8 

13 Pt 4 80 5 0.25 14.69 25.7 

14 Au 4 80 5 0.25 10.68 28.5 



15 Ag 4 80 5 0.25 4.64 10.0 

16 Pd 4 80 5 0.25 9.76 / 

 

Table 2: Results of activity testing under variable conditions for catalyst P25. Metal loading 

0.1 mol%. Conversion measured after 5 h. Maximum experimental error on H2 productivity 

=  7.3%, on C conversion = 10.2%. 

 

Tests 1-3 were carried out at increasing pressure. The H2 productivity decreased steadily 

with growing pressure, due to thermodynamic inhibition of the photoreforming reaction, 

which occurs with increasing number of moles. Identical trend was obtained at different 

catalyst concentration, i.e. 0.25 (Tests 4-5) or 1 g/L. However, the conversion of the organic 

carbon in liquid phase increased steeply with reactor pressure, likely thanks to more 

favourable adsorption of the reactant on the catalyst surface. Indeed, the increase of 

conversion was much more pronounced (from 12 to 35% when passing from 2 to 4 bar) at 

high catalyst concentration than at low one (from 15 to 20%).  

More in general, organics conversion and hydrogen productivity are not always correlated 

with each other, depending on the conversion pathway and intermediates conversion or 

accumulation. In turn, the latter depend on the operating conditions and on the byproducts 

appearing in the gas phase. For instance, glucose adsorbs over the catalyst surface, 

donates progressively electrons to saturate the forming holes, thus closing the circuit during 

electrons promotion in the conduction band. Each two electrons used for the production of 

one H2 molecule lead to more and more oxidised organic species, until the elimination of 

CO2 molecules occur. Based on the operating conditions and catalyst properties (e.g. the 

adsorption/desorption thermodynamics and kinetics for the substrate and each intermediate, 

compared with hydrogen production kinetics) the intermediate itself may remain adsorbed 

over the surface or released in the aqueous environment, so jeopardising the correlation 

between hydrogen formation rate and carbon conversion. 



Therefore, it is advisable to consider separately the two outcomes, of course making prevail 

the hydrogen yield in the decision point. 

 

Effect or reaction temperature 

The effect of reaction temperature is reported in Table 2 (Tests 2, 6-8), which evidences 

negligible conversion and hydrogen productivity at the lowest temperature (20°C). A slight 

increase of temperature showed a negligible effect on hydrogen productivity, which 

increased significantly only at the highest temperature. At 80°C the conversion was lower 

than at 60°C, but yet appreciable (ca. 35% after 5 h, test 2). However, the main effect is the 

improvement of H2 productivity. Indeed, by increasing by 40°C the temperature, an increase 

by one order of magnitude of H2 productivity was achieved.  

We suppose that increasing temperature can favour all the consecutive steps that lead to 

glucose progressive decomposition with full reforming. A different glucose conversion path 

is instead active at low temperature, e.g. its oxidative conversion, which is ineffective for the 

production of H2. 

This parameter has been scarcely investigated in the literature, with results on the hydrogen 

productivity very similar to those here reported, but unknown effect on glucose conversion. 

The higher efficiency at higher temperature has been explained on the basis of faster 

auxiliary steps [25,28], but it is not trivial, since higher thermal motion and disorder could 

also favour dissipative charge recombination. 

The increase of temperature should be also considered as for convenience on the overall 

thermal management of the system. In the present case the temperature is set and 

controlled through a thermosetting system, but that temperature can be reached (on a 1 L 

scale, with the presently used irradiance), through the lamp heating effect, by eliminating 

the cooling circuit. Thus, provided that on a scaled up plant the calculation should be 



rigorously take into account the geometry, volume and irradiance through the solution, it can 

be envisaged that external heating may not be needed to keep such temperature level. 

 

Effect of catalyst concentration 

The effect of catalyst concentration is reported in Table 2 (Tests 2, 5, 10-12). When 

examining the productivity of hydrogen, an exponential increase is observed when 

decreasing the catalyst loading in the reactor over more than one order of magnitude. 

However, by looking at the absolute H2 amount produced (Figure 5), i.e. not normalised over 

catalyst amount, much lower difference is observed. Nevertheless, low catalyst 

concentrations led to higher hydrogen productivity, with the best result achieved at 0.25 g/L. 

Meanwhile, organics conversion decreased from 35% at 1 g/L catalyst concentration to 21% 

at 0.0625 g/L. So, an intermediate catalyst concentration (0.25 g/L) represents a reasonable 

compromise between the higher hydrogen yield and organics conversion. 

 

 



Figure 5: Effect of catalyst concentration on H2 productivity and on the total moles of H2 

produced after 5 h testing. P = 4 bar, T = 80 °C, glucose concentration = 5 g/L, pH = 5.5. 

Measured irradiance (average in the reactor) = 256 W/m2. 

 

The effect of catalyst concentration is much more studied and responds to opposite 

requisites. On one hand, high concentration of the solid shields and scatters the incoming 

light, preventing a uniform irradiation of all the suspension, with very poor light penetration. 

On the other hand, too low catalyst amount depresses the possibility to convert the substrate 

due to an obvious lack of active sites. A compromise should be searched from this point of 

view, which has been found in the intermediate 0.25 g/L concentration with our experimental 

set up. The same optimal concentration has been recently reported for Pt/rGO/TiO2 catalysts 

in the case of glycerol photoreforming [48]. It should be stressed that this parameter cannot 

be regarded as universal, as it may happen in conventional fixed bed catalytic reactors, 

where the definition of a space velocity or a contact time uniquely defines a performance 

state. Indeed, in this slurry system the efficiency of mixing and the irradiance concur in 

determining the optimal amount of catalyst, which may vary depending on the selected 

photoreactor geometry, configuration and mixing. 

 

Effect of substrate concentration and type 

The effect of glucose concentration is reported in Table 2 (Tests 5 and 9). Both the 

conversion and the hydrogen productivity decreased when increasing the glucose 

concentration. This has been attributed to surface saturation at the highest glucose 

concentration, which limits the consecutive reaction steps that can lead to the full carbon 

removal and to improve hydrogen production. The same behaviour, thug in a different 

concentration range, has been also reported for the photoreforming of glycerol (maximum 

H2 productivity at 20 vol% substrate concentration) [48]. It should be also mentioned that 



increasing glucose concentration also showed detrimental in a completely different route to 

H2, such as the use of hydrogenase with E. coli [49,50]. 

5 g/L has been considered as a compromise between the need to achieve full conversion of 

the organic species and high hydrogen productivity, and the convenience to increase the 

substrate concentration. Indeed, biomass conversion is conveniently carried out leading to 

concentrated hydrolysed solutions, provided that they can remain sufficiently stable, without 

precipitation of humines. Indeed, depending of the hydrolysis conditions (and of biomass 

type), a different spectrum of products can be expected. Under milder hydrolysis conditions 

glucose yield can be maximised (e.g. 15-30%), but with a significant concentration of 

condensable by-products, that may decrease the overall yield of the process and deposit 

over the plant lines and on the subsequent photoreforming catalyst and apparatus. Also, 

this often results in a viscous solution with significant issues for suspension of the catalyst 

and transparency. These issues may be solved by using more diluted solutions (for instance 

most literature on photoreforming deals with glucose concentration < 1 g/L). Nevertheless, 

such a low concentration severely limits the productivity and volumetric efficiency of the 

process. Thus, a concentration of 5 g/L resulted a reasonable compromise between the two 

points. The need of low substrate concentration in general opens the way to the use of sugar 

containing waste waters that are typically diluted. 

A totally different approach can rely on the execution of the biomass hydrolysis step under 

harsh conditions. This typically leads to a much cleaner and stable solution, which consists 

of levulinic + formic acids (1:1 molar ratio), where the possible by-products and residues are 

solids easily separable from the liquid products. On this ground, we also explored the 

possibility to photoreform this latter products mixture (Figure 6). To the best of our 

knowledge, it is the first time that levulinic acid is used as substrate for this reaction, pure or 

mixed with formic acid. 

 



 

Figure 6: Effect of substrate type on hydrogen, ethylene and ethane productivity. P = 4 bar, 

T = 80 °C, catalyst concentration = 0.25 g/L, substrate concentration = 5 g/L. The pH was 

left as native after the preparation of the solution: 5.5 for glucose, levulinic acid 4, formic 

acid 2.5, levulinic + formic acid 3. Measured irradiance (average in the reactor) = 256 W/m2. 

Catalyst P25. 

 

Levulinc acid led to very low hydrogen productivity, whereas formic acid was the most 

productive one, leading to 2.5 mol H2/h kgcat. Their 1:1 mixture produced an average value 

between the two, letting surmise that only formic acid is substantially converted. The 

organics conversion was ca. 19% in the case of pure formic acid, comparable with the 20% 

conversion achieved with glucose, while it was much lower in the case of pure levulinic acid, 

ca. 6 %.  

In order to understand the reactivity of levulinic acid we deepened the products distribution 

(Figure 6). If the fragmentation of glucose and formic acid led to the production of H2, CO 



and CO2 as the only products in the gas phase, with levulinic acid, besides a minor fraction 

of H2 we have observed the formation of a significant amount of ethylene and most of all 

ethane. 

 

According to the molecular structure of levulinic acid, we can hypothesise as a first step to 

achieve the decarboxylation of the carboxylic group according to conventional fragmentation 

through the elimination of a C1 fragment, subsequently reformed. The same fate can be 

achieved on the opposite carbonyl group. However, the central CH2-CH2 fragment, either 

saturated or unsaturated, can be sufficiently stable and less interacting with catalyst surface 

to be desorbed. Indeed, higher concentration in gas phase was observed for ethane, much 

less polarisable than the unsaturated moiety (ethylene), which may remain more favourably 

adsorbed on the catalyst for further conversion or side reactions.  

 

Effect of reactor size and irradiance 

Finally, we have compared two different photoreactors with different size.  

The first semi-pilot scale system was compared with a more compact photoreactor, with 

similar geometric asset (similar length to diameter, immersion axial lamp), but with 0.25 

suspension volume instead of 1.2 L. The lamp power was also different, 125 W for the 

biggest reactor with respect to 75 W for the smallest one, to avoid overheating of the 

solution. Accordingly, the average irradiance was lower for the smaller reactor, i.e. 45 W/m2, 

to be compared with 265 W/m2 for the biggest one. The productivity of H2 was determined 

under the optimised reaction conditions as for catalyst and glucose concentration. However, 

the smallest reactor was made in glass and thus it allowed only ambient pressure operation. 

Accordingly, we also decreased the operating temperature to 60°C in order to avoid 



excessive evaporation of the solution during the test, not significant at higher pressure, 

which would have significantly varied the substrate and catalyst concentration at increasing 

reaction time.  

1642 mmol/h kgcat of H2 have been determined in the smaller reactor at 60°C, with a 17% 

conversion of the organic material. Also in this case, the operation at room temperature led 

to negligible hydrogen productivity both at 0.25 g/L of catalyst or 1 g/L. Overall, the operation 

at pressure above the ambient one, on one hand disfavoured gas evolution reactions, but 

proved very interesting at moderate levels (2-4 bar) to allow an increase of temperature with 

boosting H2 productivity. 

The comparison between the two reactors allowed to prove that a scaled up reactor is 

feasible and allows increased hydrogen productivity. Indeed, the best hydrogen productivity 

here achieved was between 2.0 and 6.6 mol/h kgcat, which is one of the best achievements 

among those reviewed in Table 3. It should be also underlined that this explorative 

investigation has been carried out with a very simple catalyst, a commercial material, 

inexpensive and durable. Further improvement of this performance is expected through 

optimisation of the catalyst formulation, which is also welcome to achieve more efficient 

solar light harvesting. According to various literature reports, it can be expected to further 

boost by 1-2 orders of magnitude the hydrogen productivity.  

A final comparison of these results with the most recent and promising literature results is 

reported in Table 3. Of course comparisons can only be indicative since the results strictly 

depend not only on catalyst formulation, but also on photoreactor assembly and irradiance. 

 

Catalyst 
Hole 

Scavenger 
Lamp 

power/irradiance 
H2 prod. 

(mol/kgcat h) 
Reference 

TiO2 P25 Glucose 256 W/m2 2.0 - 6.6 This work 

TiO2 P25 Formic acid 256 W/m2 2.6 This work 



TiO2 P25 Levulinic acid 256 W/m2 
0.03 H2 + 2.7 
C2H4 + 27.3 

C2H6 

This work 

Pt/TiO2 
Glucose from 
pure cellulose 

hydrolysis 
250 W 0.492 [35] 

Graphite/TiO2/NiOx 

Glucose and 
glucose form 

cellulose 
hydrolysis 

500 W 4.1 [28] 

8.9 wt%Au/TiO2 Methanol 
200 W, 20 
mW/cm2 

2.8 [51] 

0.5 wt%Pt/TiO2 Glucose 125 W 1 [26] 

Pt/TiO2 Swine sewage 60 W UVA 0.075 [32] 

Rh/TiO2 Glucose 300 W 0.56 [33] 

Pd/TiO2 Glucose 5 mW/cm2 8 [25] 

CdS/MoS2 Glucose 
300 W, visible 

light 

45.5 
(Decreasing 
activity from 
run to run) 

[24] 

TiO2 Glucose 
112/300/1000 W, 

visible 
- (oxidation 

glucose) 
[23] 

Pt/TiO2 
Hydrolised 

solution from 
pinewood 

200 mW/cm2 

0.000833 (not 
normalised 

per cat mass) 
Productivity 

steadily 
decreasing in 
consecutive 

runs 

[34] 

LaFeO3 Glucose 10 W 0.395 [22] 

TiO2 Glucose 10 W 2.5 [21] 

Ru/LaFeO3-Fe2O3 Glucose - (Vis light) 0.91 [15,20] 

Pt/g-C3N4 Glucose 
797 W/m2 

(natural solar 
light) 

1.37 [19] 

Fe2O3 Glucose 
150 W Simulated 

sunlight 
10 (mmol/h 

m2) 
[52] 

Pt/TiO2 Cellulose 

UVA (60W) or 
simulated solar 
light or natural 

solar light 

0.067 [32] 

NiO/TiO2 Methanol UVA 1.6 W 2.7 [53] 



Cu2O/TiO2 Glycerol 400 W 0.67 [54] 

TiO2/rGO/Pt Glycerol 450 W 70 [47] 

Ag2O/TiO2 Glycerol 300 W Xe arc 0.30 [55] 

Pt/TiO2 Cellulose 150 W 0.15 [27] 

 

Table 3: Comparison of literature data. 

 

Addition of metal co-catalysts 

In order to improve further the productivity we have added different noble metal co-catalysts 

to titania (Table 2, tests 13-16). All the selected metals showed a beneficial effect on 

hydrogen productivity, with a productivity order Pt > Au > Pd > Ag. The highest hydrogen 

productivity, reaching ca. 15 mol/h kgcat and glucose conversion (26% after 5 h) was 

obtained by adding 0.1 mol% Pt as co-catalyst. Furthermore, by looking to the products 

distribution in gas phase one may observe that the presence of the metal induces the 

formation of additional products in gas phase, such as ethane and ethylene (Figure 7). As 

in the case of levulinic acid this can be interpreted through the formation of sufficiently stable 

C2 fragments on the surface of the catalyst that desorb and move to the gas phase. This is 

detrimental if the goal of the process is the production of pure H2, but may be favourable if 

one desires the production of a gaseous fuel mixture, because these C2 compounds 

increase the heating power of the gas. 

 



 

Figure 7: Energy band positions, including the conduction and valence bands of the 

semiconductor, the work functions of the noble metals, and the electrochemical potentials 

of the redox couples involved. 

 

The enhancement of photocatalytic activity, especially with Pt, is in agreement with literature 

[2,4,56]. The hydrogen evolution is favoured for metals presenting a low hydrogen 

overpotential: the lowest overpotential for H2 is the one with Pt [57]. The other reason for the 

success of Pt can be explained according to its workfunction: the higher the latter, the 

greater the Schottky barrier formed between the metal and the semiconductor, the lower the 

recombination time for the photogenerated electron/hole pair and the higher the 

photoactivity. The metals workfunctions must be higher than that of TiO2, which is 4.0 eV 

[58], which is true for all the metals employed, namely Pt (6.35 eV), Pd (5.12 eV), Au (5.10 

eV) and Ag (4.64 eV) [59]. A visual scheme is provided in Figure 8. 

After Pt, the best performance was achieved with A, which, however, is expected to behave 

as Pd according to the workfunction values. The higher activity can be ascribed to its well-

known surface plasmon resonance feature [60–63]. The localized surface plasmon 



resonance (LSPR) is responsible, after light absorption, to enhance the absorption, the local 

electric field and excitation of active electrons and holes [63]. LSPR polarizes the reactant 

molecules in the fluid and increases the adsorption to the metal surface, also heating up the 

local environment, so that the mass transfer of the molecules is greater and, consequently, 

also the reaction rates.  

 

 

Figure 8: Energy band positions, including the conduction and valence bands of the 

semiconductor, the work functions of the noble metals, and the electrochemical potentials 

of the redox couples involved. 

 

4 - Conclusions 

The operating conditions for glucose photoreforming have been investigated in two 

geometrically similar photoreactors from the lab to a semi-pilot scale. Glucose 

photoreforming was effective to achieve significant hydrogen productivity at high 

temperature (60-80°C), also thanks to moderate pressure above the ambient value (2-4 bar). 

Increasing glucose concentration disfavoured the reaction, as well as high catalyst loading.  



Hydrogen productivity as high as 6.6 mol H2/h kgcat has been achieved with a very simple 

commercial photocatalyst as P25.  

Different parameters were investigated such as temperature, which proved one of the most 

sensitive, pressure (possible only thanks to a specifically designed high pressure 

photoreactor prototype, glucose and catalyst concentration. 

Under optimised reaction conditions, the addition of a metal co-catalyst proved in every case 

effective to improve the productivity of H2. The highest productivity was achieved with 0.1 

mol% Pt due to its higher workfunction in absolute value, which make it an effective electron 

trap. Furthermore, it has the lowest overpotential for H2 among this group. 

The photoconversion of levulinic acid and of its 1:1 mixture with formic acid has also been 

investigated as an attempt to exploit the products of biomass hydrolysis under harsh 

conditions. While formic acid was very active for H2 production, levulinic acid was negligible 

from this point of view, mainly leading to ethane and ethylene as gas phase products. 
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