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Abstract

The Standard Model of particle physics (SM) has demonstrated an amazing predictive
power in the last decades of high energy physics experiments, successfully describing
electromagnetic electromagnetic, strong and weak forces, and the Higgs interactions pro-
viding mass to elementary particles. However, the cosmological observations which un-
covered the existence of Dark Matter and Dark Energy, as well as a significant asymme-
try between matter and antimatter in the Universe, can not be explained by SM physics.
Moreover, theoretical arguments suggests the SM can be a“low energy” approximation,
effective up to the TeV energy scale, of a more fundamental theory describing physics
at higher energy scales.

The need for physics beyond the Standard Model, for which no clear evidence has
been found to date in particle physics experiments1, has pushed experimental searches
in many directions. Among these, the study of the electromagnetic dipole moments of
elementary and composite particles have a special importance, being excellent probes
for both Standard Model and beyond the SM physics. The CP -violating electromagnetic
dipole moments provide null tests for the SM, in which flavour-diagonal CP -violation
effects are extremely suppressed. The measured magnetic dipole moments of elemen-
tary particles, like leptons, are used as precision tests for the SM, while those associated
to composite particles, give precious information on the particle structure; in the case
of baryons, they are exploited to benchmark low-energy Quantum Chromo Dynamics
(QCD) models. The measurement of the electromagnetic dipole moments of short-lived
charm and beauty baryons, and of the τ lepton, has never been performed to date due
to technological limitations.

The first part of the thesis discusses an experiment proposal for short-lived heavy
baryon dipole moments measurement, exploiting spin precession of very high energy
particles channeled in bent crystals, produced from fixed-target collisions of multi- TeV
energy protons extracted from the main beam of the Large Hadron Collider accelera-
tor. The LHCb detector is considered to measure the baryon polarisation from its decay
distribution. The spin precession equations for ultra-relativistic positive and negative
particles in bent crystals have been derived, as well as the expected precision on the
dipole moments.

The same methodology is further extended to the measurement of τ+ lepton electro-
magnetic dipole moments, which is complicated by the presence of undetectable neutri-
nos. It is demonstrated that the kinematic requirements given by the channeling accep-
tance of bent crystals are able to select τ+ leptons with significant polarisation, which

1Actually, the presence of neutrino masses is already beyond the SM physics, but it may be described by a
minimal modification of the SM.
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x Thesis overview

can be exploited to extract dipole moments from spin precession. A novel method is
explored to determine the τ+ polarisation from partially reconstructed τ+ → π+π−π+ν̄τ
decay distributions. The achievable precision on the τ+ dipole moments is estimated for
a prospective dedicated experiment.

The second part of the thesis presents the current status of the amplitude analysis of
Λ+
c → pK−π+ decays from Λ0

b → Λ+
c µX production recorded by the LHCb experiment,

including the extraction of the Λ+
c polarisation vector. This analysis, which is an essen-

tial tool in light of the Λ+
c baryon dipole moments measurement, enables an unprece-

dented knowledge of the main Λ+
c decay mode, Λ+

c polarisation determination, parity
and CP -violation studies. Order one million Λ+

c → pK−π+ events are selected from
the LHCb dataset with negligible background contributions. The Λ+

c → pK−π+ decay
model for generic polarisation has been written in the helicity formalism and fitted to ex-
perimental data. An amplitude model for Λ+

c → pK−π+ decays has been obtained from
two-dimensional Dalitz plot fits, giving valuable information on the main intermediate
resonances, including the observation of new Λ∗ resonant contributions. A problem in
the implementation of the model preventing the extraction of the polarisation from full
phase space amplitude has been found and carefully studied.

The third part of the thesis deals with the Λ+
c polarisation measurement in proton-

neon collisions at
√
s = 68.6 GeV recorded by LHCb, which can provide information

on the Λ+
c baryon structure. A significant Λ+

c polarisation is also crucial for the pro-
posed Λ+

c baryon dipole moments measurement. The feasibility of the measurement has
been proved achieving two essential results. First, a few hundreds Λ+

c → pK−π+ de-
cays from fixed-target production have been selected from the proton-neon LHCb data
sample, separated from background contributions and overlapping proton-proton col-
lision events. Second, the possibility to measure the Λ+

c polarisation from the selected
sample has been proved on simulated pseudo-experiments, showing that the associated
systematic uncertainty is negligible compared to statistical uncertainties.



CHAPTER 1

Introduction

1.1 Discrete symmetries

A very important role in physics is played by discrete symmetries, in particular par-
ity (P ), charge-conjugation (C) and time-reversal (T ) transformations as well as their
sequential combinations CP and CPT [1].

Parity transformation is the inversion of spatial coordinates, similar to the transfor-
mation acted by a mirror1. Table 1.1 reports the effect of parity transformation on some
physical quantities.

On quantum states parity is represented by a unitary operator P acting as

P |ψ(x, t)〉 = ηP |ψ(−x, t)〉 . (1.1)

The normalisation of quantum states is not changed by parity,

1 = 〈ψ(−x, t) |ψ(−x, t)〉 = 〈ψ(x, t) |ψ(x, t)〉
=
〈
ψ(x, t)

∣∣P †P ∣∣ψ(x, t)
〉

= |ηP |2 〈ψ(−x, t) |ψ(−x, t)〉 = |ηP |2, (1.2)

implying ηP to be a phase (complex number with unit modulus eiθ, with real θ). Since
a second application of parity transformation restores the initial system, the P operator
must satisfy P 2 = 1, which, along with its unitarity PP † = 1, implies that P is also
an hermitian operator P = P−1 = P †. Parity eigenstates are said to be parity-defined
states, and their real eigenvalues ηP = ±1 represent a multiplicative quantum number
called P -parity.

Charge-conjugation transforms each particle into its own antiparticle, changing sign
to all charges associated to the quantum state. Table 1.1 reports the effect of charge-
conjugation transformation on some physical quantities.
As parity, it is represented by a unitary and hermitian operator C acting as

C |ψ〉 = ηC
∣∣ψ〉 , (1.3)

with ηC being a phase, and a C-parity quantum number can be defined for charge conju-
gation eigenstates. Existence of P - and C-parity allows to test directly the conservation
of these symmetries on physical processes. For instance, if parity is a symmetry of the
system, transitions between states with different P -parities are forbidden and any ob-
servable A odd under parity (such that P †AP = −A) must have zero expectation value
for every state of the system.

1The mirror transformation is equivalent to a parity transformation followed by a rotation of angle π. As-
suming rotational symmetry, which is regarded as a very fundamental physics principle, symmetry under
parity or mirror transformation are equivalent.

1



2 1.1 Discrete symmetries

Observable P -transformed C-transformed T -transformed

Time t t t −t
Position x −x x x
Momentum p −p p −p
Energy E E E E
Angular momentum J J J −J
Electric charge q q −q q
Electric field E −E −E E
Magnetic field B B −B −B

Table 1.1: Transformation of some physical quantities under parity, charge-conjugation and time-
reversal transformations.

Time-reversal transformation reverses the time direction: it leaves unchanged the
spatial coordinates but it reverses the direction of all momenta and swaps initial and final
states. From conservation of the canonical commutation relation [x, p] = i~ under time
reversal operator T follows TiT † = −i, meaning that time-reversal is represented by an
antiunitary (unitary and antilinear) operator. For this reason, tests of time-reversal sym-
metry are quite different from tests of parity and charge-conjugation symmetries. For
instance, the observation of a non-zero expectation value of a T -odd observable does not
necessarily imply T symmetry violation [1]. Time-reversal symmetry is usually tested
indirectly, because of the impossibility of building a time-reversed version of a quantum
state, apart few simple cases. For example, it is not possible to experimentally implement
the time-reversed state of a decaying particle starting from the incoherent superposition
of its asymptotic daughter particles states.

Gravity, electromagnetic and strong interaction conserve separately P , C and T sym-
metries, as far as it is currently known. This is not true for electroweak interaction.
The first suggestion that parity could not be a symmetry for weak interaction was put
forward in 1956 by Lee and Yang [2] as an explanation of the so-called θ − τ puzzle,
while the first experimental evidence of parity violation came one year later from the
study of cobalt-60 β-decay [3]. Due to the tight link between P and C symmetries in
weak interaction, many of the early experiments showing parity violation implied also
charge-conjugation violation. It was soon realized that weak interaction maximally vio-
late P and C symmetries, this because weak interaction involves only left-handed fields.
Given a left-handed neutrino, from weak interaction perspective does not exist neither
the right-handed neutrino (its P -transformed) nor the left-handed antineutrino (its C-
transformed). The fact that right-handed antineutrino existed (its CP -transformed) sug-
gested that CP symmetry could be conserved by weak interaction. The discovery of
CP -violation (CPV ) in kaon decays [4] was as unexpected as inexplicably small, raising
a great interest in CP symmetry violation studies, which is still lively now. Indeed, be-
sides being one of the main features of the quark mixing phenomenon, Sec. 1.2.1, the
violation of CP symmetry is one of the Sakharov’s conditions needed to explain the ori-
gin of the observed matter-antimatter asymmetry of the universe if assuming an initially
CP symmetric state [5].

The CPT transformation is the only combination of P , C and T transformations
which is still observed to be a symmetry of physical laws. The CPT combination has
a very special role because CPT symmetry follows from the assumption of a local and
Lorentz invariant field theory (CPT theorem [6]). Therefore, a CPT symmetry violation



Introduction 3

would imply the breakdown of the current quantum field theory paradigm, on which
the SM theory is built.

1.2 The Standard Model of particle physics

The Standard Model of particle physics (SM), the most reliable theory describing strong,
weak and electromagnetic interactions to date, is a Lorentz-invariant Yang-Mills quan-
tum field theory based on the SU(3)⊗SU(2)L⊗U(1)Y gauge group [7]. The SU(3) group
acts in the three-dimensional space of color charges giving rise to the strong interaction,
mediated by eight massless gluons, involving only quark fields. The SU(2)L ⊗ U(1)Y
group generates the unified electroweak interaction. The SU(2)L group acts in the two-
dimensional space of weak isospin, the L subscript indicating that only left-handed chi-
rality fields transforms under this group. They transform as isospin doublets in which
the three neutrinos are paired with their associated leptons and the three up-type quarks
with down-type ones,(

νe
e

)
,

(
νµ
µ

)
,

(
ντ
τ

) (
u
dW

)
,

(
c
sW

)
,

(
t
bW

)
, (1.4)

where dW , sW , bW are combinations of the three down-type quark mass eigenstates, a
phenomenon known as quark mixing, presented in Sec. 1.2.1. Similarly, the three neu-
trino νl are not neutrino mass eigenstate, this giving rise to an analogous lepton mixing
phenomenon producing neutrino flavour oscillations. The U(1)Y group acts as a phase
transformation on fields, the Y subscript indicating that is not the U(1) gauge group
of electromagnetism, but a different one based on hypercharge conservation. The elec-
troweak interaction is mediated by 4 vector fields, corresponding to the 4 generators of
the SU(2)L ⊗ U(1)Y group. The spontaneous symmetry breaking of the electroweak
gauge group (Brout-Englert-Higgs mechanism [8]) accounts for the huge mass of W±
and Z0 weak interaction mediator vector fields by means of an interaction with a com-
plex scalar field, called Higgs boson. The residual symmetry group unaffected by the
symmetry breaking is the U(1)EM gauge group of the electromagnetic interaction, asso-
ciated to the massless photon field.

1.2.1 Quark mixing and CP -violation in the Standard Model

The idea of quark mixing aroused in the ’60 when it was tried to classify the known u,
d and s quarks into weak isospin representations of SU(2)L group. In fact, the simple
classification as a doublet plus a singlet,(

u
d

)
,
(
s
)
, (1.5)

was not compatible with the observed s → u transitions. This problem was solved by
the seminal idea of Cabibbo [9] who proposed that the isospin eigenstates could be a
combination of d and s quark mass eigenstates characterized by a mixing angle θ,(

u
cos θd+ sin θs

)
,
(
− sin θd+ cos θs

)
. (1.6)

However, it was later noticed that this classification allowed flavour-changing neutral
current processes (FCNC, mediated by the Z0 field) to proceed with a much higher rate
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than observed. This conflict was settled by the introduction of the charm (c) quark (GIM
mechanism [10]) and the isospin classification involving two doublets,(

u
cos θd+ sin θs

)
,

(
c

− sin θd+ cos θs

)
, (1.7)

which correctly predicts the observed FCNC process suppression.
This scheme was not complete because it did not include the observed CP -violation

in weak interactions. Indeed, a CP -violating term in the weak interaction Lagrangian
must come from the presence of complex coefficients, nevertheless, with two quark
generations Eq. (1.7) the only degree of freedom is the real mixing angle θ. In 1973,
Kobayashi and Maskawa [11] theorized the existence of a third quark generation intro-
ducing bottom (b) and top (t) quarks. This way, the mixing of the three down-type quark
isospin eigenstates (dW , sW , bW ) in terms of the mass eigenstates (d, s, b) is expressed by
a unitary matrix called Cabibbo-Kobayashi-Maskawa (CKM) matrix dW

sW
bW

 =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 d
s
b

 . (1.8)

After fixing the arbitrary quark field phases, the three quark generation mixing matrix
can be parametrised by three real mixing angles and a complex phase allowing for CP -
violation. The CKM matrix features an interesting hierarchical structure2, captured by
the Wolfenstein CKM matrix parametrisation [12] 1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 , (1.9)

which is an approximation at the third order of the hierarchical parameter λ ∼ 0.22, rul-
ing favoured and suppressed weak interaction processes. The amount of CP -violation
provided by the CKM mechanism is very small, as observed, since the only matrix ele-
ments containing a complex phase Vub and Vtd are suppressed by a factor λ3 ∼ 0.01.

At present, the CKM mechanism successfully accounts for the observed amount of
CP -violation in hadron interaction and decays observed at particle physics experiments.

An additional source of CPV should come from the three generations lepton mixing,
whereCP -violation is given by the complex phase provided by the lepton mixing matrix.
Leptogenesis models, aimed at explaining the observed matter-antimatter asymmetry
via lepton mixing CPV , have been proposed [13]. However, these models are based on
the see-saw mechanism proposed to justify the smallness of the neutrino masses, which
envisages the presence of currently unobserved heavy Majorana neutrinos introducing
additional CP -violating phases.

Still in the Standard Model domain, the strong interaction Lagrangian admits a CP -
violating term,

Lθ = θ
g2

32π2

∑
a

FµνaF̃
µν
a , (1.10)

in which g is the strong coupling constant, Fµνa the gluon field strength tensor and
F̃µνa = εµνρσFρσa/2 its dual. The contribution of this term is proportional to the QCD

2Interestingly not observed in the analogous lepton mixing matrix.
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vacuum angle θ. The presence of this CPV term would produce a non-zero neutron
electric dipole moment, whose current experimental limit [14] constrains the angle θ to
a very tiny amount, order 10−10. The discussion on why this term is so suppressed is
known as “strong CP problem”. This issue has been addressed in different ways, the
most appealing being the Peccei-Quinn theory [15] introducing a new particle named
axion.

1.3 Spin

One of the key ideas underlying the rise of quantum mechanics was the realisation that
particles can possess internal degrees of freedom, called spin, in addition to those related
to the motion in the space-time. The spin is interpretable as an intrinsic angular momen-
tum of the particle; in fact, in particle reactions the quantity conserved as a consequence
of rotational invariance is the total angular momentum J , which is the sum of the orbital
angular momentum L, describing the orbital motion of particles around each other, and
the spin carried by each particle S. Therefore, orbital angular momentum and spin are
not separately conserved3.

In non-relativistic quantum mechanics, spin operators Ŝ = (Ŝx, Ŝy, Ŝz) are intro-
duced by analogy with the orbital angular momentum [16], satisfying the usual commu-
tation relations

[Ŝi, Ŝj ] = iεijkŜk. (1.11)

The spin states |s,m〉 are defined as the simultaneous eigenstates of the spin squared
modulus Ŝ2 and Ŝz , with eigenvalues s(s + 1) and m, respectively. While S2 is inde-
pendent of any reference frame, the spin operators are defined with respect to a specific
Cartesian system, called quantisation frame. The reference z-axis, defining the spin oper-
ator used to express the spin states, is called quantisation axis, andm is the z-component
of the spin. The particle spin s can be any non-negative integer or half-integer value,
while m belongs to the set of 2s+ 1 values differing by integers satisfying the condition
−s ≤ m ≤ s. A particle of spin s is therefore described by an internal Hilbert space of
dimension 2s+ 1, its state defined by 2(2s+ 1)− 2 = 4s real numbers.

The state of a statistical ensemble of particles, describing a not precisely known par-
ticle state, is defined by the associated density operator ρ̂ [16]. Given an ensemble of
states |ψi〉, each one occurring with probability pi, the density operator is

ρ̂ =
∑
i

pi |ψi〉 〈ψi| , (1.12)

so that the expectation value of any operator X̂ can be expressed as

〈X̂〉 =
∑
i

pi 〈ψi |X |ψi〉 = Tr
[
ρ̂X̂
]
. (1.13)

Since the density operator determines the expectation value of any operator, it is the
most fundamental description of a statistical ensemble. In fact, different statistical en-
sembles corresponding to the same density operator are physically indistinguishable.
The density operator definition Eq. (1.12) implies that ρ̂ is hermitian and with unit trace

3The separation between orbital and intrinsic angular momentum depends on the definition of the system
called “particle”. For instance, the spin of a composite particle can be seen as the composition of orbital angular
momentum and spin carried by its constituents.
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Trρ̂ = 1, while the quantity Trρ̂2, called purity, is smaller or equal to one. It is possible
to prove that Trρ̂2 = 1 only if ρ̂ describes a perfectly defined (pure) state ψ, that is if
ρ̂ = |ψ〉 〈ψ|; when Trρ̂2 < 1 it is said the state is mixed.

The spin density operator for a particle of spin s describes a statistical ensemble of
spin states |s,mi〉. Once a quantisation axis is chosen, the density operator can be written
as a (2s + 1) × (2s + 1) density matrix ρmm′ = 〈s,m | ρ̂ | s,m′〉. A mixed spin s state is
therefore defined by (2s+ 1)2 − 1 real parameters.

For spin 1/2 particles, the most general spin density matrix can be written as [16]

ρ =
1

2
(I + s · σ) , (1.14)

in which σ are the Pauli matrices and s is the spin-polarisation vector 4,

s = Tr [ρσ] =
2

~
〈Ŝ〉, (1.15)

since for s = 1/2 the spin operator matrices can be expressed by Pauli matrices, S =
~σ/2. The three polarisation components completely define the state of a spin 1/2 sta-
tistical ensemble. From Eq. (1.14) follows that Trρ2 = P 2, therefore one has a fully
polarised state if and only if it is a pure spin state, that is if exist a quantisation axis such
that ρ̂ = |s,m〉 〈s,m|.

The existence of the spin has consequences also for electromagnetic interactions, al-
lowing even fundamental, point-like particles to have not only an electric charge, but
also higher order electromagnetic multipole moments (multipoles, in the following). The
electromagnetic multipoles correspond to electromagnetic radiation with non-zero total
angular momentum J , which can be considered as the composition of the photon spin
s = 1 and an orbital angular momentum L, having eigenstates j or j ± 1. These states
correspond to magnetic and electric multipoles, respectively [1]. The total angular mo-
mentum determines the parity of the radiation: magnetic multipoles have parity eigen-
values ηP (M, j) = (−1)j+1, electric multipoles have opposite parity ηP (E, j) = (−1)j .
A particle with spin s can have up to 22s electromagnetic multipoles: for instance a spin
1/2 particle can only have electromagnetic dipole moments, while a spin 3/2 particle
like the Ω− can also have quadrupole and octupole moments.

For elementary particles, which only have spin as internal degree of freedom, the
expectation values of the magnetic and electric dipole moment operators, µ̂ and δ̂, re-
spectively, must be proportional to the spin S ones, since S is the only preferred direction
in space in an otherwise rotationally symmetric system. More formally, this follows from
the Wigner-Eckart theorem, implying

〈
s,m

∣∣∣ δ̂ ∣∣∣ s,m〉 =
〈
s,m

∣∣∣ Ŝ ∣∣∣ s,m〉
〈
s,m

∣∣∣ δ̂ · Ŝ ∣∣∣ s,m〉
s(s+ 1)

. (1.16)

This argument is no longer valid for composite systems featuring degenerate states, like
atoms and molecules.

4Hereafter the spin-polarisation vector will be called equivalently spin or polarisation, differing from the
spin vector S ≡ 〈Ŝ〉 just by a normalisation factor.
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1.3.1 Electromagnetic dipole moments

Magnetic (MDM) and electric (EDM) dipole moments can be written as (in Gaussian
units)

µ̂ = g
µB
~

Ŝ, δ̂ = d
µB
~

Ŝ, (1.17)

respectively, in which µB = e~/(2mc) is the particle magneton, m its mass. The g and d
dimensionless factors are called the gyromagnetic and gyroelectric ratios, respectively.

In non-relativistic approximation, the interaction of electromagnetic dipoles with ex-
ternal electromagnetic fields is described by the Hamiltonian

Ĥ = −µ̂ ·B − δ̂ ·E = −gµB
~

Ŝ ·B − dµB
~

Ŝ ·E, (1.18)

Under parity and time-reversal transformations, see Sec. 1.1 and Table 1.1, Ŝ and B
transform in the same way as axial vectors, making the magnetic dipole interaction in-
variant under P and T . On the contrary, the electric field transform as a polar vector
while Ŝ as an axial vector, and the electric dipole interaction violates both parity and
time-reversal symmetries, separately. This means that if parity and time-reversal trans-
formations are symmetries of the physical laws, fundamental particles must have zero
electric dipole moment. In general, it can be shown that parity and time reversal sym-
metry separately imply that elementary (non-degenerate) particles can only have even
electric and odd magnetic multipoles [17].

In quantum electrodynamics, the most general form of the electromagnetic coupling
of a spin 1/2 Dirac fermion with an electromagnetic field is written as [18]

〈p′ | JµEM | p〉Aµ = ū(p′)

{
F1(q2)γµ − iF2(q2)

2m
σµνqν −

F3(q2)

2m
σµνqνγ5

+ iFA(q2)
(
q2γµγ5 − 2mqµγ5

)}
u(p)Aµ (1.19)

in which p (p′) is the initial (final) fermion four-momenta, q the electromagnetic field
(virtual photon) four-momentum, ū(p′) (u(p)) the initial (final) spinor, γµ the four Dirac
matrices. The four form factors Fi(q2) describe the electromagnetic properties of the
particle, in particular F1(0) represents the charge and the regular (from Dirac’s equa-
tion) magnetic dipole moment, F2(0) the anomalous magnetic dipole moment, F3(0) the
parity and time-reversal violating electric dipole moment and FA(0) the parity odd but
time-reversal even anapole moment. The transformation properties of each term follow
from those related to spinor bilinears and electromagnetic fields under parity,〈

p′
∣∣P †γµP ∣∣ p〉 = 〈p′ | γµ | p〉 ,〈

p′
∣∣P †iσµνqνP ∣∣ p〉 = 〈p′ | iσµνqν | p〉 ,〈

p′
∣∣P †σµνqνγ5P

∣∣ p〉 = −〈p′ |σµνqνγ5 | p〉 ,〈
p′
∣∣P † (q2γµγ5 − 2mqµγ5

)
P
∣∣ p〉 = −

〈
p′
∣∣ (q2γµγ5 − 2mqµγ5

) ∣∣ p〉 ,
P †AµP = Aµ, (1.20)



8 1.3 Spin

and time-reversal transformations,〈
p′
∣∣T †γµT ∣∣ p〉 = 〈p′ | γµ | p〉 ,〈

p′
∣∣T †iσµνqνT ∣∣ p〉 = 〈p′ | iσµνqν | p〉 ,〈

p′
∣∣T †σµνqνγ5T

∣∣ p〉 = −〈p′ |σµνqνγ5 | p〉 ,〈
p′
∣∣T † (q2γµγ5 − 2mqµγ5

)
T
∣∣ p〉 =

〈
p′
∣∣ (q2γµγ5 − 2mqµγ5

) ∣∣ p〉 ,
T †AµT = Aµ. (1.21)

The gyromagnetic factor can be expressed in terms of the form factors as [19]

g = 2 [F1(0) + F2(0)] . (1.22)

At lowest order (tree-level) in perturbation theory, one has F1(0) = 1 as only non-zero
form factor, so g = 2 coinciding with the prediction of Dirac’s equation. At higher or-
ders (loop-level) in quantum electrodynamics an anomalous magnetic dipole moment is
produced, of order

a =
g − 2

2
≈ α

2π
≈ 10−3. (1.23)

The anomalous magnetic dipole moment of leptons can be very precisely calculated in
quantum field theory. For the electron, the extremely precise agreement between the pre-
dicted and the measured g−2 values [20], at δa/a ≈ 10−13 level, constitutes a spectacular
test of quantum electrodynamics. For the muon, a discrepancy between the predicted
and the measured [21] g − 2 values, with statistical significance of about 3.6 standard
deviations [22], could be a sign of beyond the standard model physics effects; for this
reason a more precise measurement [23] and more precise calculations are planned.

For composite particles, the MDM is sensitive to the inner particle structure and g−2
can be of order one. In fact, the direct study of baryon structures can not be performed in
low-energy quantum cromodynamics, since the large strong coupling prevents the use
of standard perturbation theory methods. The structure of baryons is therefore described
by means of phenomenological models which however have limited predictive power
and need to be properly tuned from experimental inputs. For instance, the measurement
of baryon MDMs contributed to confirm the validity of the quark model [24].

Magnetic dipole moments have been measured for different baryons: proton [25],
neutron [26], and most of the strange baryons decaying via weak interaction [24]. No
direct measurements of charm baryons, beauty baryons and tau leptons EDMs have
been performed to date. See e.g. [27] for a summary of experimental data and MDM
predictions from different phenomenological models.

The CPT symmetry implies the magnetic dipole moments for particle-antiparticle
pairs to be equal and opposite. Thus, if MDMs can be separately measured for a particle
and its antiparticle a test ofCPT symmetry can be performed. Such tests were performed
for the proton [28], electron [29], and muon [30], and a new experiment for the proton is
planned [31].

The measurement of heavy baryon dipole moments is of great interest, providing ad-
ditional information on the structure of heavy flavoured baryons and new, complemen-
tary probes for new physics coupled to heavy quarks. Indeed, the structure of heavy
baryons is expected to be very different from that of light baryons. In light baryons,
the QCD binding energy is much larger than the valence quark masses, resulting in a
strongly coupled relativistic bound state. Instead, most of the heavy baryons mass comes
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from the heavy quark, which is much larger than the QCD binding energy, and its dy-
namics can be separated from that of the light quarks and gluons. According to heavy
quark effective theory (HQET) [32], which implements this separation, the baryon prop-
erties are determined by the heavy quark up to corrections proportional to ΛQCD/mq , in
which ΛQCD ≈ 200 MeV is the typical QCD interaction energy scale and mq the heavy
quark mass. This suggests that the dipole moments of heavy baryons are closely related
to the heavy quark ones.

Predictions for charm baryon magnetic dipole moments have been obtained in the
quark model [33], from QCD sum rules [34], from QCD spectral sum rules [35], SU(4)
chiral constituent quark model [27], chiral perturbation theory [36]. Predictions for the
Λ+
c baryon MDM are in the range 0.15 − 0.40µN , where µN is the nuclear magneton

µN = e~/2mp. A precise charm baryon MDM measurement would allow to discriminate
between different phenomenological models. Predictions for beauty baryon magnetic
dipole moments have been obtained in quark models [37], in hyper central model [38],
in effective quark mass and shielded quark charge scheme [39]. Predictions for the Ξ

+

b

baryon MDM are in the range 0.050 − 0.066µN . MDM theoretical predictions for heavy
baryons are summarised in Fig. 1.1.

Indirect constrains on heavy quark EDMs have been derived from measured observ-
ables sensitive to quark electric (qEDM) and chromoelectric (qCEDM) dipole moments.
For the charm quark indirect limits from neutron [41,42] and electron [42] EDM limits, in-
clusive B → Xsγ branching fraction [41], total e+e− → cc̄ cross-section [43] and Z0 → cc̄
partial decay rate [44] have been derived. For the beauty quark, the following observ-
ables have been used: neutron [42, 45] and electron [42] EDM limits, total e+e− → bb̄
cross-section [43] and Z0 → bb̄ partial decay rate [44]. The indirect limits on the charm
quark EDM are in the range δ < 10−17 − 10−15e cm, while those on the beauty quark
EDM are in the range δ < 10−17 − 10−12e cm. The different values depend on the differ-
ent observable sensitivities and model assumptions. Supersymmetric extensions of the
Standard Model predicting charm quark EDM with values comparable to the indirect
limits have been proposed [46].

An electric dipole moment can be produced only by parity and time-reversal vio-
lating interactions. The only known source of time-reversal violation, which is related
to CP violation assuming CPT symmetry, comes from the CP -violating phase in the
CKM quark mixing matrix in weak nuclear interactions, Sec.1.2.1. However, since the
CKM CP -violating phase enters at tree-level only in flavour-changing quark transition,
its contribution to the creation of baryon EDMs is extremely small, occurring at high or-
ders of the perturbation theory expansion (3-loop level for quarks and 4-loop level for
leptons). Standard Model EDM predictions are at the order of 10−31e cm for the neu-
tron [47], 10−34e cm for quarks [48] and 10−40e cm for the electron [49]. These are orders
of magnitude less than the current experimental upper limits δ < 3.0× 10−26e cm for the
neutron [14] and δ < 1.1× 10−29e cm for the electron [50].

The allowed CP -violating term of the strong interaction Lagrangian, Sec. 1.2.1, could
have produced large baryon EDMs. On the contrary, the absence of neutron EDM at
current experimental precision constrain the possible strong CPV contribution to a very
small amount. Therefore, the experimental searches for the EDM of fundamental parti-
cles provide powerful probes for physics beyond the Standard Model.

Different new physics models introducing new CPV sources predict the appearance
of non-zero EDMs, e.g. non-standard spontaneous symmetry breaking Brout-Englert-
Higgs mechanisms, left-right symmetric models [51], supersymmetric grand unification
theories. Some new physics models have been ruled out by current experimental limits
on neutron EDM. A phenomenological approach to treat the implications of the mea-
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Figure 1.1: from Ref. [40]. Spread of theoretical predictions for the magnetic moments of heavy
baryons. Values in rows 1 to 10 are from different quark models, 11 from a soliton approach, 12 to
14 from sum rules, and 15 from chiral perturbation theory.
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sured EDM limits based on effective field theory can also be set [52].
A baryon EDM, being a composite particle, can arise from a collective CPV interac-

tion of its constituting quark and gluon fields with the electromagnetic field. It is de-
scribed by 5 CP -violating operators in an effective CP -odd flavour-diagonal Lagrangian
up to dimension six [53]

L 6P6Teff =θ̄
g2

64π2
εµναβGaµνG

a
αβ θ-QCD term

− i

2

∑
q=u,d,s,c,b

δq q̄σ
µνγ5q Fµν qEDM

+ i
∑

q=u,d,s,c,b

δ̃q q̄σ
µνγ5taq G

a
µν qCEDM

+
∑

i,j,k,l=u,d,s,c,b

Cijkl q̄iΓqj q̄kΓ′ql 4-quark op.

+
dW
6
fabcε

µναβGaαβG
b
µρG

c ρ
ν gCEDM (Weinberg op.)

(1.24)

The dimension-six gluon chromoelectric dipole moment (gCEDM) and 4-quark opera-
tors contribution is suppressed at the baryon energy scale of order 1 GeV with respect to
lower dimension operators: for dimensional analysis, their coupling constants must be
proportional to 1/Λ2, with Λ a large new physics energy scale & 1 TeV. The main con-
tributions to the baryon EDM are expected to come from qEDM and qCEDM operators
and the strong interaction CPV term (θ-QCD term). The stringent limit on the neutron
EDM put strong constraints on u and d quark q(C)EDMs and the θ-QCD term, the lat-
ter being independent of the baryon flavour. Measurements of heavy flavour baryons
are therefore able to constrain contributions from heavy quark (chromo)electric dipole
moments.

The importance of EDM searches was already recognized in the fifties [54], and since
then many measurements have been performed in a variety of systems: electron [50],
muon [55], neutron [14], proton (indirect from 199Hg) [56] andΛ baryon [57]. New exper-
iments are ongoing and others are planned, including those based on storage rings for
muon [23, 58], proton and light nuclei [59]. No direct measurements of charm baryons,
beauty baryons and tau leptons EDMs have been performed to date. The overall status
of EDM measurements, indirect limits and SM predictions is reported in Fig. 1.2.

The measurement of EDMs of composite systems like nuclei, atoms or molecules are
also interesting because the contribution of the constituent nucleon or electron EDMs can
be amplified [52]. For example, in paramagnetic atoms, the electron EDM is enhanced
proportionally to Z3α2

QED, which is larger than unity for heavy atoms. However, care is
needed to correctly interpret the measured limits, since the relation between the EDM of
a system and that of its constituents depends on the knowledge of the system structure.
Moreover, for polar atoms and molecules it is needed to separate the contribution of the
“intrinsic” EDM defined for a free particle (i.e. in the weak-field limit) from that induced
by the orientation of the system in an external field: while the first EDM is a truly time-
reversal violating effect the latter is not, because it is not related to free particle states.
In fact, a free polar system has no preferred orientation, so states with different orienta-
tion are degenerate and its EDM averages to zero in absence of T -violating effects. The
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Figure 1.2: from Ref. [60]. Overall status of EDM measurements: current experimental limits on
EDMs of fundamental particles are displayed as red bars from the top, indirect limits from other
measurements as orange bars. From below are the SM estimates from CKM CP -violation (violet
bars) and θ-QCD interaction term (grey bars).

application of a sufficiently strong external field removes the degeneracy modifying the
energy associated to different orientations and the eigenstates of the new Hamiltonian
turn out to be non-uniform superposition of free states leading to a non-zero EDM which
does not violate parity nor time-reversal symmetries [52].

1.3.2 Baryon polarisation

The baryon polarisation is a very interesting probe in high energy physics, since it gives
information on the baryon structure and production process, and it influences the angu-
lar distributions of decay or scattering processes. Indeed, the spin provide baryons with
an additional degree of freedom with respect to mesons, allowing measurements other-
wise not possible with spinless particles, like the heavy electromagnetic dipole moment
measurement described in Chapter 2.

Baryons produced in parity conserving (strong or electromagnetic) interactions can
have polarisation perpendicular to the production plane defined by the beam and heavy
baryon momenta [1]. In fact, for an unpolarised, e.g. proton-nucleon, interaction there
are three vectors available: the proton and heavy baryon momenta p(p), p(B) and the
heavy baryon spin s(B). The only scalar, linear term unchanged by parity transfor-
mation in the interaction Hamiltonian which can be constructed from these vectors is
p(p)× p(B) · s(B), which is nonzero only if s(B) is orthogonal to the production plane.
Instead, an heavy baryon polarisation within the production plane, involving parity-
odd scalar products s(B) · p(p), s(B) · p(B), would point to parity symmetry violation
in strong interactions.

The production plane defines a natural coordinate system for the polarisation mea-
surement, shown in Fig. 1.3: the heavy baryon momentum defines the z axis, while the
production plane defines the x axis, which is taken to be opposite to the component of
the beam direction orthogonal to the z axis. The heavy baryon initial polarisation vector
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beam

ŝ0 ≡ ŷ

p̂(B) ≡ ẑ
x̂

production plane

target

Figure 1.3: Production plane of the heavy baryon defined by the proton and the heavy baryon
momenta. The initial polarisation vector s0 must be perpendicular to the production plane, along
the y axis, thanks to parity conservation in strong interactions.

must be parallel to the y axis, s0 = (0, s0, 0), defined as ŷ ∝ p(p)× p(B).
The baryon polarisation produced from strong interaction is very difficult to predict

in QCD theory, being related to its non-perturbative low energy regime. Rather, polari-
sation measurements are useful to discriminate among different QCD models describing
the baryon structure.

The spin structure of the nucleons has been extensively studied, especially in po-
larised deep inelastic scattering experiments, trying to understand how the baryon po-
larisation arises from spin and orbital angular momentum of its constituents [61]. A
notable result is that light quark spins generate only a small fraction of the total baryon
polarisation [62]. On the contrary, the main contribution to the polarisation of baryons
composed by one heavy quark is expected to come from the heavy quark spin, according
to heavy quark effective theory, which is valid in the limit mq � ΛQCD ∼ 200 MeV. This
is the case for charm and beauty baryons, in which most of the heavy quark polarisation
is expected to be retained by the heavy baryon after hadronisation, allowing polarisation
measurements to give information on the heavy quark production mechanism [63, 64].

Focusing on baryon polarisation in proton-nucleon fixed-target collisions, which are
of special interest in light of Chapters 2 and 6, different measurements have been per-
formed for strange baryons: Λ and Λ [65], Σ− and Σ̄+ [66], Ξ0 [67], Ξ− and Ξ+ [68],
Ω− [69], for proton energies within 450 and 920 GeV. Overall, an increasing negative hy-
peron polarisation with transverse momentum pT and Feynman |xF | variable is found,
the latter defined as xF = 2pl/

√
s, pl being the longitudinal momentum of the baryon rel-

ative to beam direction in the centre of mass frame. Negative polarisation means that it is
opposite to the y axis defined in Fig. 1.3. Differences between baryon and antibaryon po-
larisation values have been observed, as expected since baryon and antibaryon produc-
tion from proton-nucleus collisions are not charge-conjugated processes. For instance,
while an heavy quark can form a baryon from the valence quark of the nucleons, the
antiquark composing heavy antibaryons have to be produced in the interaction.

Due to the smaller production cross-sections of heavy baryons with respect to light
ones, the heavy baryon polarisation in fixed-target collisions has been poorly studied
experimentally to date. The only measurements were performed for the Λ+

c baryon in
pK−π+ decays, showing a trend of increasing negative Λ+

c baryon polarisation with pT

like strange baryons. A polarisation of s0 = −0.65+0.22
−0.18 was measured in 230 GeV π− col-
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lisions on Cu target by the NA32 experiment at CERN-SPS [70]. The E791 experiment at
Fermilab [71] colliding 500 GeV π− on a Pt-diamond target measured theΛ+

c polarisation
for three pT intervals, finding a significant value s0 = −0.67± 0.15 for pT > 1.1 GeV/c. It
is important to note that both the Λ+

c polarisation measurements included decays from
Λ+
c and Λ−c baryons together, which should instead be separated since Λ+

c and Λ−c may
have different polarisation values.

In proton proton symmetric collisions, baryon polarisation measurements were per-
formed for the Λ at

√
s = 53 and 62 GeV [72], for Λ and Λ at

√
s = 7 TeV [73], and for

the Λ0
b at 7 and 8 TeV energy [74, 75]. The same trend with baryon pT is observed for

Λ at
√
s = 53 and 62 GeV, while measurements at the TeV energy scale show baryon

polarisation compatible with zero at few % level.
A measurement in e+e− symmetric collisions was performed for Λ and Λ at

√
s =

10.58 GeV by Belle [76]. The leptonic system allows a simpler interpretation of the mea-
sured polarisation in terms of polarised fragmentation functions, describing the produc-
tion of polarised hadrons from unpolarised quarks [77], contrary to hadronic collisions
in which initial effects due to the internal dynamics of the colliding hadrons contribute
to the baryon polarisation. A trend of increasing negative polarisation with pT and xF is
observed. The Λ and Λ polarisations have also been measured from e+e− → J/ψ → ΛΛ
processes at BESIII [78], showing a polarisation up to 20% level as a function of the
baryon direction in the J/ψ meson rest frame.

Baryon polarisation measurements in ion-ion collisions were performed for Λ and Λ
in Au-Au collisions by STAR [79] and in Pb-Pb collisions by ALICE [80]. In this case, the
baryon polarisation can be produced from the orbital angular momentum of the ion-ion
systems, and it is a probe for the initial conditions and dynamics of Quark Gluon Plasma,
as well as for the hadronisation process.

Baryons produced in weak decays, which violate parity symmetry, can feature po-
larisation components along their momentum as well. The value of the baryon polari-
sation depends on the particular weak decay in which it is produced, therefore, results
on baryon polarisation can be extracted from the analysis of the angular distribution of
the weak decay. In fact, the possibility of including the baryon decay distribution in
the angular analysis of a weak decay increases the number of the accessible observables.
This is the case for Λ baryons produced in Λ0

b → Λl+l− decays [81] (and Refs. therein) or
the Λ+

c baryon in Λ0
b → Λ+

c l
−ν̄l decays [82], for which the presence of a spinful particle

increases the sensitivity to possible beyond the SM physics contributions.

1.4 The helicity formalism for baryon amplitude analyses and polari-
sation measurements

1.4.1 Introduction

Amplitude analyses are a set of formalisms which have been developed for describ-
ing multi-body decays with a complex structure characterised by different intermediate
states and a non-trivial spin dependence. These formalisms exploit the Lorentz invari-
ance to constrain the functional form of the decay distributions up to a set of free param-
eters which can be determined from a fit to experimental data.

Amplitude analyses allow to extract the maximum information from the measured
decay distributions, therefore providing a wealth of physics results. Amplitude analyses
give information on the identity, spin, mass dependence and mutual interferences of the
resonant states contributing to the decay, making them a powerful tool also for spec-
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troscopic searches. Amplitude analyses of baryon decays enable the measurement of
baryon polarisation, and they can provide the best precision for baryons whose two body
decay modes are suppressed with respect to multi-body decays, as the case of charm and
beauty baryons. Amplitude analyses can be also used to study discrete symmetries vio-
lations. The amount of parity violation is particularly interesting since it determines the
correlation between decay kinematics and polarisation, while the knowledge of the de-
cay structure can be used to localise CP -violation effects in the decay distributions [83].

While many amplitude analyses have been performed for meson decays, only three
baryon amplitude analysis have been performed to date: for the Λ+

c → pK−π+ de-
cay [71], for the Λ0

b → pK−J/ψ decay [75], which lead to the discovery of the first pen-
taquark state, and for the Λ0

b → D0pπ− decay [84].
In the following, the helicity formalism for describing relativistic interactions among

particles with spin [85] is applied for baryon amplitude analyses and polarisation mea-
surements. After introducing the theoretical bases of the helicity formalism, the general
form of the decay amplitude for a baryon three-body decay is derived, along with the
differential decay rate for a generic polarisation state. In the end, some useful properties
of the polarised decay rate are discussed.

1.4.2 Rotation of reference frames

The rotation of an initial Cartesian reference frame (x, y, z) into a final one (X,Y, Z) can
be univocally described by an Euler rotation parametrised by three Euler angles α, β,
γ. Taking the z-y-z convention for the rotation axes, the Euler rotation is composed by a
first rotation of angle α around the z axis, a second rotation of angle β around the rotated
y′ axis and a third one of angle γ around the two-times rotated z′′ axis,

R(α, β, γ) = Rz′′(γ)Ry′(β)Rz(α) = e−iγĴz′′ e−iβĴy′ e−iαĴz . (1.25)

The latter equality expresses rotations in terms of the generating angular momentum
operators. Here, active rotations are considered, in which the normalised vectors x̂, ŷ, ẑ
defining the initial reference frame are actively rotated to those describing the final ref-
erence frame X̂, Ŷ , Ẑ,

X̂i = R(α, β, γ)x̂i. (1.26)

The three Euler angles can be computed as follows: given the vectorN = ẑ× Ẑ, α is the
angle between ŷ and N̂ , β is the angle between ẑ and Ẑ axes and γ is the angle between
N̂ and Ŷ axes. In formulae5,

α = atan2
(
ŷ · Ẑ, x̂ · Ẑ

)
∈ [−π, π],

β = arccos
(
ẑ · Ẑ

)
∈ [0, π],

γ = atan2
(
ẑ · Ŷ ,−ẑ · X̂

)
∈ [−π, π]. (1.27)

The Euler rotation can be also expressed in terms of rotations around the initial reference
frame axes only, by means of the equality, shown in Ref. [86],

R(α, β, γ) = Rz(α)Ry(β)Rz(γ) = e−iαĴze−iβĴye−iγĴz . (1.28)

5The function atan2(y, x) ∈ [−π, π] computes the signed angle between the x axis and the vector having
components (x, y).
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The active action of an Euler rotation on a vector v can be written in matrix notation as

Vi = Rij(α, β, γ)vj (1.29)

in which the vector and matrix components are expressed in the same, but arbitrary,
reference frame. Instead, the passive action on vector components, expressed in the
initial (vi) or the final (vI ) reference frames connected by an Euler rotationR(α, β, γ), is

vI = viR(α, β, γ)iI = RT (α, β, γ)Iivi = R(−γ,−β,−α)ijvj , (1.30)

in which the latter equality follows fromRT = R−1 and Eq. (1.28).
The action of the rotation operators R(α, β, γ) on angular momentum eigenstates

|J,m〉 can be written as

R(α, β, γ) |J,m〉 =

J∑
m′=−J

DJ
m′,m(α, β, γ) |J,m′〉 , (1.31)

in which the Wigner D-matrices DJ
m′m(α, β, γ) are the matrix elements of the rotation

operator in the given spin reference frame,

DJ
m′,m(α, β, γ) = 〈J,m′|R(α, β, γ)|J,m〉 . (1.32)

From the latter equality of Eq. (1.28), the Wigner D-matrices can be factorised as

DJ
m′,m(α, β, γ) = 〈J,m′|e−iαĴze−iβĴye−iγĴz |J,m〉

= e−im
′αdJm′,m(β)e−imγ , (1.33)

in which the Wigner d-matrices elements are known combinations of trigonometric func-
tions of β depending on J,m,m′ parameters [86].

1.4.3 Spin in relativistic decays

The description of a particle decay into two or more particles with spin is not trivial
for relativistic processes, since a covariant definition for the spin operators is not possi-
ble [16]. Indeed, while the total angular momentum operators, conserved for rotational
invariance, are well defined in any reference frame, the separation between spin and
orbital angular momentum is dependent on the reference system. The set of covariant
Pauli-Lubanski operators are the most similar to a covariant spin operator,

Ŵσ = −1

2
εµνρσM̂

µν P̂ ρ, (1.34)

defined in terms of the generators of the Poincaré group M̂µν (Lorentz group) and P̂ ρ

(translations). They satisfy the commutation relations[
Ŵµ, Ŵν

]
= iεµνρσŴ

ρP̂σ, (1.35)

which reduce to the angular momentum commutation relations only if Ŵµ operators
act on particle states at rest, where the operators Ŝi = Ŵi/m correspond to the non-
relativistic spin operators. The expectation values of the Pauli-Lubanski operators on
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a particle state form a 4-pseudovector aµ = (a0,a). In the rest frame of the particle
aµ = (0, s), and pµ = (mc,0), so that in any reference frame aµpµ = 0 and aµaµ = −s2.

The spin-orbit formalism developed to combine angular momenta in non-relativistic
quantum mechanics can not be directly applied to relativistic processes because each
particle spin is defined only in its rest frame. It is therefore necessary to understand
how particle spin states can be represented by observers moving with respect to the
particle. Let us consider an observer with a given coordinate system S = (x, y, z), and a
particle having momentum p in the system S. To express the particle spin states |s,m〉,
the observer frame S must be Lorentz-transformed to the particle rest frame. However,
the choice of the particle spin reference frame is ambiguous, since rest frames obtained
by Lorentz-transformations differing by a rotation around p, will represent the particle
spin with different spin states. There are two main choices for the spin coordinate frame
in literature, the canonical choice and the helicity choice [16]:

• The canonical choice corresponds to the reference frame obtained from S by do-
ing a pure Lorentz boost L(−p), with no additional rotation, so that the observer
describes the particle with the spin states |s,m〉 defined by its coordinate frame S.

• The helicity choice consists in choosing the particle spin quantisation axis z to be
along the particle momentum in the observer frame. Its spin states become helic-
ity states |s, λ〉, with the helicity defined as the spin projection along the particle
momentum,

λ̂ = Ŝ · p
p
. (1.36)

The helicity states for p having polar and azimuthal angles θ, φ in the observer
reference frame are obtained from the observer S system by applying an Euler ro-
tation R(φ, θ, ψ) aligning the z axis with p, called helicity rotation, followed by a
boost L(−pz) along the z axis. The advantage of using helicity states is that he-
licity is invariant under rotations and boosts along p. It is important to note that
any rotation of the reference frame around the momentum direction, represented
by the third Euler angle ψ, would lead to equivalent helicity states |s, λ〉: while the
canonical choice fixes all the coordinate axes, the helicity choice does not fix the
axes orthogonal to the spin quantisation direction. These axes must be therefore
defined by fixing a convention, the two most used in the literature are ψ = 0 and
ψ = −φ. In the author’s opinion, this fact was not stressed enough in the literature,
so it worth to point out two things: first, there is no “correct” choice of the angle
ψ, but any choice is equivalent; second, once defined, the choice of the orthogo-
nal axes of the helicity frame must be consistently used. Indeed, the effect of the
helicity rotation, following from Eq. (1.25), is

R(φ, θ, ψ) |s,m〉 = e−iψĴz′′ e−iθĴy′ e−iφĴz |s,m〉

= e−iψĴz′′ |s, λ〉 = e−iψλ |s, λ〉 (1.37)

in which z′′ is parallel to the particle momentum, showing that the ψ rotation
changes the overall phase of the helicity state. Thus, helicity frames with differ-
ent definitions of the orthogonal axes have different relative phases, which can
lead to unphysical quantum interference effect if mixed up.
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1.4.4 Helicity amplitudes

To apply the spin-orbit formalism for combining particle spins to relativistic processes
the helicity formalism is employed, which was developed in Ref. [85] and reviewed in
Ref. [86]. This formalism is based on the definition of two sets of two-particle states:
plane-wave helicity states describing propagating particles with well defined momen-
tum and spherical-wave helicity states, describing states of definite total angular mo-
mentum.

A single-particle plane-wave helicity state is labelled by the particle momentum p,
spin s and helicity λ, |p, s, λ〉. A two-particle plane-wave helicity state is just the direct
product of the two single-particle states

|p1, s1, λ1〉 ⊗ |p2, s2, λ2〉 . (1.38)

In the two-particle centre-of-mass (CM) frame the two momenta are back-to-back, p1 =
−p2, and the same state can be described using the spherical coordinates of p1: its mod-
ulus p = |p1| = |p2|, and the polar and azimuthal angles θ and φ with respect to a given
coordinate frame.

These states are indicated as |p, θ, φ, λ1, λ2〉, in which s1 and s2 labels have been
dropped.

Similarly, a two-particle spherical-wave helicity state in its CM frame is denoted by
|p, J,M, λ1, λ2〉, in which J is the total angular momentum of the system and M its pro-
jection along the z axis. These states transform irreducibly under rotations according
to Eq. (1.31), while plane-wave helicity states do not. The relation between plane- and
spherical-wave helicity states is worked out in [86], being

|p, θ, φ, λ1, λ2〉 =
∑
J,M

√
2J + 1

4π
DJ
M,λ1−λ2

(φ, θ, ψ) |p, J,M, λ1, λ2〉 . (1.39)

The crucial point of this derivation is that invariance under rotations of the helicity al-
lows to consider the state |p, 0, 0, λ1, λ2〉 (in which particles are aligned to the z axis)
which is eigenstate of Jz with eigenvalue λ1 − λ2. Then, exploiting the invariance of the
helicity under rotations, this state is rotated to |p, θ, φ, λ1, λ2〉 with unchanged helicities.
Note that, following the discussion of Sec. 1.4.3, the third argument of the D matrix is
arbitrary, since any additional rotation around the z axis will lead to equivalent helicity
states. In the following, the convention ψ = 0 is chosen.

The angular distribution of a two-body decay A → 1, 2 can now be obtained from
Eq. (1.39) working in the A rest frame. The initial state is the spin state of the particle
A expressed in a given spin reference frame6, |i〉 = |sA,mA〉, while the final state is the
plane-wave helicity state

|f〉 = |θ1, φ1, λ1, λ2〉 , (1.40)

in which the p label is dropped because fixed by energy-momentum conservation. The
angles θ1 and φ1 represent the spherical coordinates of p1 in the A spin reference (rest)
frame; the polar angle is often called the particle 1 helicity angle in the A frame. These

6The initial spin reference frame can be chosen arbitrarily, while the helicity frames for the daughter parti-
cles are univocally determined starting from the initial frame.
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angles are determined as

θ1 = arccos (ẑ · p̂1) ,

φ1 = atan2 [ŷ · p̂1, x̂ · p̂1] . (1.41)

The amplitude for the A particle to decay to the final state |f〉 is, neglecting constant
overall terms,

AmA,λ1,λ2
(θ1, φ1) = 〈f |T | i〉

= 〈θ1, φ1, λ1, λ2 |T | sA,mA〉 , (1.42)

in which T represents the transition operator describing the decay dynamics. Inserting
a basis of two-particle spherical-wave helicity states |Jf ,Mf , λ1, λ2〉 and using Eq. (1.39)
one finds

AmA,λ1,λ2
(θ1, φ1) = 〈θ1, φ1, λ1, λ2 |T | sA,mA〉

=
∑
Jf ,Mf

〈θ1, φ1, λ1, λ2 | Jf ,Mf , λ1, λ2〉 〈Jf ,Mf , λ1, λ2 |T | sA,mA〉

=
∑
Jf ,Mf

√
2Jf + 1

4π
D
∗Jf
Mf ,λ1−λ2

(φ1, θ1, 0)δJf ,sAδMf ,mA×

× 〈Jf ,Mf , λ1, λ2 |T | sA,mA〉
= Hλ1,λ2

D∗sAmA,λ1−λ2
(φ1, θ1, 0), (1.43)

in which the term
Hλ1,λ2 ≡ 〈sA,mA, λ1, λ2 |T | sA,mA〉 , (1.44)

called helicity coupling, encodes the decay dynamics and can not depend onmA for rota-
tional invariance. The possible helicity couplings are determined by angular momentum
conservation, requiring

|λ1| ≤ s1, |λ2| ≤ s2, |λ1 − λ2| ≤ sA. (1.45)

If the decay conserves parity symmetry helicity couplings for opposite helicities are
constrained by the relation shown in Ref. [86],

Hλ1,λ2
≡ 〈sA,mA, λ1, λ2 |T | sA,mA〉
= 〈sA,mA, λ1, λ2 |PTP | sA,mA〉
= ηAη1η2(−1)s1+s2−sAH−λ1,−λ2

, (1.46)

in which η are the parity eigenvalues of the particle states.
The helicity formalism can be applied to multi-body particle decays by breaking the

decay chain in sequential two-body decays mediated by intermediate particles states.
Let us consider a three-body decay A → R(→ 1, 2), 3, which can be broken in two two-
body decays A → R, 3 and R → 1, 2, with R an intermediate state. The first one can be
expressed by Eq. (1.43)

AA→R,3mA,λR,λ3
(θR, φR) = 〈θR, φR, λR, λ3 |T (A→ R, 3) | sA,mA〉

= HA→R,3λR,λ3
D∗sAmA,λR−λ3

(φR, θR, 0). (1.47)
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The second decay can be written in the same form by taking the R state as decaying
particle, with initial state |sR, λR〉 expressed in the R helicity frame reached from the A
reference frame,

AR→1,2
λR,λ1,λ2

(θ1, φ1) = 〈θ1, φ1, λ1, λ2 |T (R→ 1, 2) | sR, λR〉

= HR→1,2
λ1,λ2

D∗sRmR,λ1−λ2
(φ1, θ1, 0), (1.48)

in which θ1 and φ1 are the spherical coordinates of p1 in the R spin reference frame.
The total amplitude is then written introducing R as intermediate state, summing the
amplitudes over the allowed R helicity states satisfying the conditions Eq. (1.45),

AA→R,3→1,2,3
mA,λ1,λ2,λ3

(θR, φR, θ1, φ1) = 〈p1,p2,p3, λ1, λ2, λ3 |T (A→ 1, 2, 3) | sA,mA〉

=
∑
λR

〈θ1, φ1, λ1, λ2 |T (R→ 1, 2) | sR, λR〉 〈θR, φR, λR, λ3 |T (A→ R, 3) | sA,mA〉

=
∑
λR

AA→R,3mA,λR,λ3
(θR, φR)AR→1,2

λR,λ1,λ2
(θ1, φ1)

=
∑
λR

HR→1,2
λ1,λ2

D∗sRλR,λ1−λ2
(φ1, θ1, 0)HA→R,3λR,λ3

D∗sAmA,λR−λ3
(φR, θR, 0)

=
∑
λR

HR→1,2
λ1,λ2

HA→R,3λR,λ3
dsRλR,λ1−λ2

(θ1)dsAmA,λR−λ3
(θR)eiλRφ1eimAφR . (1.49)

The latter expression shows the amplitude factorised in helicity couplings, real Wigner
d-matrices associated to polar angles θ1, θR and phase factors associated to azimuthal
angles φ1, φR via Eq. (1.33). It is important to stress that helicities and angles are defined
in the different and specific reference frames described previously. Usually, the interme-
diate state R is not a particle state with a definite mass, but a resonant state featuring
a non-trivial mass distribution, which is often described by a function of the invariant
mass of the 1, 2 particle pair m12 called lineshape, R(m12). For most resonances, the
lineshape can be chosen to be a relativistic Breit-Wigner function. It is assumed that the
dependence on the lineshape is factorised in the amplitude,

AA→R,3→1,2,3
mA,λ1,λ2,λ3

(m12, θR, φR, θ1, φ1)

=
∑
λR

HR→1,2
λ1,λ2

D∗sRλR,λ1−λ2
(φ1, θ1, 0)

×HA→R,3λR,λ3
D∗sAmA,λR−λ3

(φR, θR, 0)R(m12), (1.50)

i.e. the helicity couplings Eq. (1.44) are assumed to not depend on the resonance mass.

Now, let us consider an intermediate state contributing to the three-body decay via
a different decay channel, e.g. A → S(→ 1, 3), 2. Its associated amplitude is, following
Eq. (1.49),

AA→S,2→1,2,3
mA,λ′1,λ

′
2,λ
′
3

(θS , φS , θ
′
1, φ
′
1) = 〈p1,p2,p3, λ

′
1, λ
′
2, λ
′
3 |T (A→ 1, 2, 3) | sA,mA〉

=
∑
λS

HS→1,3
λ′1,λ

′
3
D∗sSλS ,λ′1−λ′3

(φ′1, θ
′
1, 0)HA→S,2λS ,λ′2

D∗sAmA,λS−λ′2
(φS , θS , 0) (1.51)

in which primed quantities have been used to stress that these angles and helicities are
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defined in different reference frames with respect to the amplitude for theR intermediate
state. To be explicit, quantities related to S and 2 particles are defined in the A reference
frame, while those related to 1, 3 particles are expressed in the S helicity frame reached
from the A reference frame.

When different intermediate states contribute to the decay, the total amplitude is the
sum of the single amplitudes over all the allowed helicity state for each intermediate
state, but the helicity frames for the final particles must be the same for each decay chan-
nel. Therefore, a reference helicity frame for each final particle must be chosen, and all
the different helicity frames must be rotated to the chosen one. These reference frames
can be chosen arbitrarily for each final particle rest frame. In the example above, the
amplitude for S intermediate state can be referred with respect to the helicity frames de-
fined for R intermediate states, |λi〉R. To this end, the latter must be expressed in terms
of the helicity states defined for S intermediate states, |λ′i〉S , as

|λi〉R = R(αi, βi, γi) |λi〉S

=

si∑
λ′i=−si

|λ′i〉S 〈λ
′
i|S R(αi, βi, γi) |λi〉S

=

si∑
λ′i=−si

Dsi
λ′i,λi

(αi, βi, γi) |λ′i〉S , (1.52)

in whichR(αi, βi, γi) are the rotations from the helicity frames for S states to those for R
states. The amplitude for S intermediate state becomes

AA→S,2→1,2,3
mA,λ1,λ2,λ3

(Ω) = 〈p1,p2,p3, λ1, λ2, λ3 |T (A→ 1, 2, 3) | sA,mA〉

=

s1∑
λ′1=−s1

D∗s1λ′1,λ1
(α1, β1, γ1)

×
s2∑

λ′2=−s2

D∗s2λ′2,λ2
(α2, β2, γ2)

×
s3∑

λ′3=−s3

D∗s3λ′3,λ3
(α3, β3, γ3)

×
∑
λS

HS→1,3
λ′1,λ

′
3
D∗sSλS ,λ′1−λ′3

(φ′1, θ
′
1, 0)HA→S,2λS ,λ′2

D∗sAmA,λS−λ′2
(φS , θS , 0) (1.53)

Note that the Euler angles describing all the reference frame rotations for each decay
chain can be computed from the set of phase space variables Ω describing the multi-body
decay, so they do not constitute independent degrees of freedom.

The amplitude associated to a decay with definite values of mother and final particle
spins is obtained summing the helicity amplitudes associated to each allowed helicity
state of the intermediate resonances. For example, the total amplitude for a three body
decay in which sets of intermediate states {Ri} → 1, 2, {Sj} → 1, 3 and {Uk} → 2, 3 are
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contributing is

AA→1,2,3
mA,λ1,λ2,λ3

(Ω) =
∑
i

AA→Ri,3→1,2,3
mA,λ1,λ2,λ3

(Ω)

+
∑
j

AA→Sj ,2→1,2,3
mA,λ1,λ2,λ3

(Ω)

+
∑
k

AA→Uk,1→1,2,3
mA,λ1,λ2,λ3

(Ω). (1.54)

1.4.5 Differential decay rate and extraction of the decaying particle polarisation

The differential decay rate for a particle A decaying to a final-state f is described by the
probability density p(Ω,P ), function of the phase-space variables Ω, and the A particle
spin polarisation vector P . The final particle polarisations do not enter the decay rate
unless measurable, which is not usually the case. The decay probability for definite spin
states is the squared modulus of the amplitude of the multi-body decay between the A
particle initial state |sA,mA〉 and the final particle state |{pi}, {λi}〉,

p(A→ f) = | 〈sA,mA|T |{pi}, {λi}〉 |2 = |AA→fmA,{λi}(Ω)|2. (1.55)

In practice, it is not possible to measure event-by-event particle polarisations, therefore
statistical mixtures of pure quantum spin states must be considered, expressing the prob-
ability density in terms of spin density matrices, Eq. (1.12). The above expression, rewrit-
ten by inserting suitable identity operators, becomes

p(A→ f) = tr
[
ρATρfT

†] , (1.56)

in which ρA and ρf are the A and f spin density matrices expressed in their own spin
reference frames, respectively, and T now represents the transition operator matrix ele-
ments between A and f spin states,

TmA,{λi} = AA→fmA,{λi}(Ω). (1.57)

If final particle polarisations are not measured, the final spin state is a maximally mixed
state, ρf = I/(2s+ 1), in any spin reference frame [16]. By making explicit the sum over
spin states, the differential decay rate is written as

p(Ω,P ) =

sA∑
m,m′=−sA

{si}∑
{λi}={−si}

(ρA)mm′ A
A→f
m′,{λi}(Ω)A∗A→fm,{λi}(Ω). (1.58)

The differential decay rate of a particle with spin can be therefore exploited to extract
its (statistically-averaged) polarisation. The polarisation can be extracted together with
the amplitude model of the decay by means of an amplitude analysis over the full decay
phase space Ω.

1.4.6 Properties of the polarised decay rate

Let us consider the decay of a particle A, having polarisation vector P . The polarisation
vector is the only quantity specifying a direction in the A particle system. If P is zero,
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nothing specifies a direction in the A system and its decay rate must be isotropic with
respect to a reference frame independent of the decay, e.g. a givenA spin reference frame.
In other words, the decay rate specifies the relative angular distribution among daughter
particles, but not their orientation relative to an external reference frame. This provide
a benchmark test for codes implementing amplitude models: the angular distributions
describing the orientation of the decay with respect to an external reference frame must
be isotropic irrespective of the amplitude model.

Now let us suppose P 6= 0. Under rotations of the polarisation frame, the polari-
sation vector rotates too, but, for rotational invariance, the decay phase space variables
of the differential decay rate must rotate consistently. This implies that the relative ori-
entation of the daughter particles can not depend on the orientation of the decay with
respect to an external reference frame. The kinematic distributions describing the rel-
ative orientation of daughter particles must be therefore the same for any value of the
A polarisation vector, this providing another benchmark test for the amplitude model.
Moreover, this fact allows to study the decay amplitude model independently of the
polarisation, since the information on the A polarisation only comes from the angular
distributions describing the orientation of the decay.

The sensitivity of the decay rate to the particle polarisation depends critically on the
amount of parity symmetry violation characterising the decay. If the decay is mediated
by a parity conserving interaction, the decay rate does not depend on the polarisation
vector. Indeed, parity symmetry requires the decay angular distribution to be symmetric
under space coordinates inversion, which requires the decay angular distribution to be
equal for +|P | and −|P | polarisation values, for any polarisation vector P . In other
words, if the decay conserves parity, the resulting angular distribution is not able to
discriminate between different polarisation states. Actually, parity violation introduce
an asymmetry in the direction specified by P .

The particle polarisation vector can be measured from its angular decay distribution
only if its decay features parity violation. The situation is different in case the polarisa-
tion of the final particles can be accessed (e.g. in case they have a weak decay) or if the
particle is produced from a weak decay [16]. In the latter case, a complete angular anal-
ysis of the weak decay (including other particles produced together with the one under
study) allows to determine the particle polarisation, even if it has a parity conserving
decay.

As mentioned in Sec. 1.3, the polarisation vector P completely specifies the particle
spin state only for spin 1/2 particles. For generic spin values s, the particle spin state
can be described in terms of spherical tensor operators TLM , with 0 < L < 2s and −L <
M < L, with L called the rank of the operator [16]. The polarisation vector components
constitute the three rank 1 operators. It is possible to demonstrate that from the angular
distribution of a parity conserving particle decay, only operators with even rank can
be measured, while parity violation (or additional information, as mentioned before) is
needed to measure odd rank operators.
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CHAPTER 2

Heavy baryon electromagnetic dipoles experiment
proposal

2.1 Motivation

The measurement of electromagnetic dipole moments is based on the phenomenon of
spin precession in electromagnetic fields; in the non-relativistic approximation the po-
larisation precesses according to [87]

ds

dτ
= µ×B∗ + δ ×E∗ (2.1)

in which E∗ and B∗ are the electromagnetic fields in the rest frame of the particle and s,
µ and δ are the expectation values of the spin, MDM and EDM operators. The measure-
ment of the change in spin direction while travelling in an electromagnetic field allows
to access the particle gyromagnetic and gyroelectric factors.

To measure spin precession, an experiment must rely on three main elements: a
source of polarised particles, having known polarisation direction and magnitude; a suf-
ficiently intense electromagnetic field to induce a sizeable spin precession angle within
the experiment size; a detector able to measure the final polarisation vector. For short-
lived particles like charm (beauty) baryons, having a proper lifetime of order 10−13

(10−12) s, the conventional electromagnetic fields are too weak to induce significant
spin precession before the particle decays. No direct measurement of charm and beauty
(heavy, in the following) baryons has been possible until now.

In the following sections the proposal for an experiment measuring heavy baryon
electromagnetic dipole moments will be detailed. The possibility of doing CPT symme-
try tests using positive and negative charm baryon MDMs will also be discussed. This
work has been published as part of Refs. [88, 89].

2.2 Experiment description

The limitations given by the short lifetime of heavy baryons can be overcome by ex-
ploiting the phenomenon of particle channeling through a bent crystal [90], where the
particle experiences the very large crystal interatomic electric field, of order 1011V/m,
and by using heavy baryons produced in 7 TeV proton on fixed-target interactions at
the Large Hadron Collider (LHC) [91, 92], to amplify the electric field in the baryon rest
frame and to dilate the baryon lifetime thanks to Lorentz boost factors up to γ ∼ 1000.

As mentioned in Sec. 2.1, an experiment measuring particle dipole moments from
spin precession must rely on three key elements: a source of polarised particles, a suffi-

27
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ciently intense electromagnetic field to induce a sizeable spin precession and a detector
able to measure the final polarisation vector.

In proton-nucleon collisions, heavy baryons can be produced with polarisation per-
pendicular to the production plane defined by the beam and heavy baryon momenta,
Sec. 1.3.2, with initial polarisation parallel to the y axis of the coordinate system depicted
in Fig. 1.3.

A sizeable spin precession, sensitive to the heavy baryon dipole moments, is achieved
exploiting the intense electric field E between the crystal planes experienced by charged
particles when channeled through a bent crystal. In the particle rest frame the electric
field transforms into an electromagnetic field

E∗ ≈ γE, B∗ ≈ −γβ ×E/c, (2.2)

which is amplified by the particle Lorentz boost γ with respect to the laboratory frame.
An introduction to the channeling phenomenon is given in Sec. 2.3, while the analyti-

cal study of spin precession in the crystal electric field is performed in Sec. 2.4. To induce
spin precession for heavy baryons polarised in the y axis direction, the crystal must be
bent in the same direction. The coordinate system for the crystal is defined as in Fig. 2.1:
the longitudinal crystal direction defines the z axis and the bending direction the y axis,
the x axis defining the non-bending direction of the crystal. While for heavy baryons
channeled in axial configuration the motion is bound in both bending and non-bending
directions, for planar channeling the motion along the x axis is not constrained by the
crystal. If the crystal is aligned to the beam (coinciding z axes for the two coordinate
frames) the planar channel would constrain the heavy baryon production plane to be
the xz crystal plane, and the baryon polarisation to the bending direction y.

In practice the crystal can not be perfectly aligned with the proton beam since chan-
neling of the incoming proton beam must be avoided to prevent the beam to interfere
with the detector. For axially bent crystals a tilt in the xz plane by an angle much greater
than the Lindhard one, e.g. order 100 µrad, is sufficient, and fixes the polarisation di-
rection up to variations of order θL. For planarly bent crystals, which do not impose
acceptance requirements in the x direction, a tilt of order 100 µrad in the yz plane is
needed. The tiny discrepancy between heavy baryon polarisation and crystal bending
direction would produce a negligible polarisation in the crystal z direction and no polar-
isation in the non-bending one, so that the initial polarisation is basically still parallel to
the y axis in the crystal coordinate frame. Moreover, it is important to note that events in
which the heavy baryon is produced in opposite x directions will feature opposite polar-
isation1, so that spin precession has to be analysed in bins of the angle θx between baryon
and beam directions; otherwise, the crystal acceptance must be made asymmetric in the
x direction, e.g. translating the crystal in the x direction with respect to the proton beam.

In the limit of large boost with Lorentz factor γ � 1 and in absence of baryon EDM,
the spin precession is confined to the yz plane, and the precession angle Φ, defined as the
angle between the initial and final polarisation vectors, as shown in Fig. 2.1, is [90, 93]

Φ ≈ g − 2

2
γθC . (2.3)

The precession angle is proportional to the anomalous MDM, the Lorentz boost and the
crystal bending angle θC = L/R, in which L is the length (circular arc) of the crystal and

1Events in which the baryon is produced in the opposite x direction with respect to the beam are related by
a π angle rotation around the beam axis, which reverses the polarisation in the crystal frame Fig. 2.1 or the y
axis defined from the production plane Fig. 1.3.
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Figure 2.1: from Ref. [88]. Deflection of the heavy baryon trajectory and spin precession in the
yz and xy plane induced by the particle MDM and EDM, respectively. The red dashed arrows
indicate the (magnified) sx spin component proportional to the particle EDM. Φ is the MDM pre-
cession angle and θC is the crystal bending angle.

R its curvature radius. For a precession angle of order one, a curvature θC ≈ 10 mrad is
needed, with crystal parameters of order L ≈ 10 cm and R ≈ 10 m.

In presence of a non-zero EDM, the spin precession is no longer confined to the yz
plane, originating a polarisation component along the non-bending x axis proportional
to the particle EDM2,

sx ≈ s0
d

g − 2
(1− cos Φ), (2.4)

represented by the red dashed arrows in Fig. 2.1. A final x component polarisation
would constitute a clear experimental signature of a particle EDM.

The possibility to use the highest available proton beams at the LHC energies offers
multiple advantages that allow to apply this experimental setup to short-lived heavy
baryons: first, the intensity of the electromagnetic fields experienced by the channeled
particle, and in turn the amount of spin precession determining the sensitivity to the
dipole moments, is proportional to γ, Eqs.(2.2),(2.3); second, the particle lifetime in the
laboratory reference system is proportional to γ, increasing the number of heavy baryons
able to completely traverse the crystal (i.e. undergoing the maximum and analytically
known spin precession) before their decay; third, the number of heavy baryons that can
enter the channeling condition is proportional to γ1/2, thanks to the narrower angular
spread of heavy baryons with increasing Lorentz boost (proportional to 1/γ), which is
partly compensated by the reduction of the channeling acceptance angle Eq. 2.6, propor-
tional to 1/

√
γ.

The heavy baryon polarisation can be measured from the angular distribution of the
particles produced in their decays. While the angular distribution of non-channeled par-
ticles allows to determine the initial polarisation along the y axis, that of channeled par-
ticles allows to extract the polarisation after precessing in the crystal, which compared
to the initial polarisation allows the extraction of the gyromagnetic and gyroelectric fac-
tors. The initial polarisation can be also determined from the final one, along with g and
d factors, up to discrete ambiguities, discussed in Appendix A.1.

In the simplest case of heavy baryons decaying to two-body final states, the angular

2Note that in the limit g − 2 → 0 the sx expression is not singular because it is linear in g − 2. In fact,
expanding the cosine function and substituting Eq. (2.3) one finds 1− cos Φ ∝ (g − 2)2.
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Figure 2.2: from Ref. [89]. Experimental layout for the heavy baryon dipole moments measure-
ment.

distribution of the final state baryon in the heavy baryon rest frame is described by

dN

dΩ∗
∝ 1 + αfs · k̂, (2.5)

in which αf is a parity violating coefficient depending on the final state and k̂ the final
baryon momentum direction in the heavy baryon rest frame. For heavy baryon decays
to more than two particles, the best sensitivity to the polarisation (and therefore to the
dipole moments) is achievable by means of an amplitude analysis of the decay over
the full decay phase-space, because it allows to exploit all the available decay statistics
taking into account the contribution of each intermediate state.

Considering theΛ+
c charm baryon, an amplitude analysis of theΛ+

c → pK−π+ decay,
which is the main decay channel of the Λ+

c baryon, has been performed by the E791
experiment at Fermilab on a data sample of 1000 events only [71]. The LHCb experiment
has recorded millions of Λ+

c → pK−π+ events, allowing to perform detailed studies of
the intermediate resonances contributing to the decay. The current status of the full
phase space amplitude analysis of the Λ+

c → pK−π+ decay, including the extraction of
the polarisation vector, being performed on LHCb data from Λ0

b semileptonic decays is
detailed in the second part of this thesis.

The Λ+
c polarisation in proton-nucleus fixed-target collisions can be measured at the

100 GeV energy scale using proton-gas collision data recorded by the LHCb experiment
in its fixed-target configuration. The feasibility of the Λ+

c polarisation measurement on
the LHCb proton-neon fixed-target sample is demonstrated in the third part of this the-
sis.

The layout of the experiement for heavy baryon dipole moments measurement is
depicted in Fig. 2.2. Its core consists of a dense target, e.g. a tungsten target, in which
proton-nucleon collisions take place, attached to a silicon or germanium bent crystal, to
maximise the number of heavy baryons decaying after the crystal. This device is to be
placed at a safe distance from the too intense LHC proton beam, while a secondary, less
intense proton beam is to be extracted and directed on the target. An extraction scheme
using a bent crystal to deflect part of the main LHC beam halo has been proposed [94]
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and more detailed studies are ongoing. The target-crystal device must be tilted by a
small angle, order 100 µrad, to produce polarised heavy baryons and to avoid the chan-
neling of the incoming proton beam. Decays of channeled heavy baryons, which are
bent by the crystal at an angle order 10 mrad from the beam direction, are to be re-
constructed by a detector covering the forward angle region close to the beam axis, and
featuring excellent tracking and vertexing capabilities, precise momentum measurement
and good particle identification performances. Among the existing experiments at the
LHC, the LHCb detector is the only one satisfying these requirements. The target-crystal
device would be placed in front of the LHCb detector, as close as possible to its vertex
locator (see Sec. 4), so that channeled heavy baryons can enter the detector acceptance,
≈ 10 mrad from the beam axis. The non-interacting protons of the secondary beam and
most of the background particles will follow the beampipe without affecting LHCb op-
erations. Sensitivity studies to estimate the achievable precision on heavy baryon dipole
moments according to the presented layout are described in Sec. 2.5.

To control systematic uncertainty effects, a second target-crystal device deflecting
heavy baryons in the opposite direction should be employed. For example, spin preces-
sion effects due to weak nuclear interactions with the crystal lattice are expected to be
equal for opposite bending directions, while MDM and EDM induced spin precession
effects are opposite for different bendings [95].

The spin precession of particles channeled in bent crystals was firstly observed by the
E761 Collaboration [96]. Using a 800 GeV/c proton beam impinging on a Cu target, Σ+

baryons with 375 GeV/c average momentum were produced and channeled in two bent
crystals with opposite bending angles. The MDM of the Σ+ baryon was measured and
proved the viability of this technique for the measurement of the MDM of short-lived
particles.

This experiment proposal extends the physics program of a proposed experiment for
the measurement of the Λ+

c baryon MDM, based on a similar experimental layout [91,92,
97,98], to the measurement of positive and negative heavy baryon magnetic and electric
dipole moments.

2.3 Channeling of high energy charged particles

In a crystal the strong electric field experienced by a charged particle in the proximity
of the periodic structure of the atoms results in a strong confinement force, which can
bound the particle trajectory to follow a crystalline plane or an atomic string, a phe-
nomenon called channeling. In a continuum approximation, which consider the crystal
planes and axes as continuous neglecting single-atom effects, a charged particle sees
the crystal as a stack of channels, separated by electric potential walls, which become
preferential pathways for traversing the crystal. The accuracy of this approximation in-
creases with the particle energy. Channeling can occur if the angle between the particle
trajectory and a crystal plane (planar channeling) or a crystal axis (axial channeling) is
sufficiently small for the electric potential wall to bound the particle inside the channel.
This critical (Lindhard) angle can be expressed as

θL =
√

2U0/(pβc), (2.6)

in which U0 is the potential-well depth, p the particle momentum and β its velocity [99,
100]. Planar channeling for positive particles has been observed and studied in labora-
tory up to 6.5 TeV proton energy at the LHC [101]. Channeling of negative particles has
been observed in both planar [102] and axial [103] configurations.
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Channel width potential depth maximum electric field
Si 110 dp(Å) U (eV) U ′ (GV/ cm)

Planar 1.92 16 5.7
Axial 3.85 114

Table 2.1: Characteristics of planar and axial Si crystal 110 channel, from Ref. [100].

In a bent crystal, the crystallographic planes and axes are bent too, and channeled
particles can follow the crystal curvature, resulting in a net deflection of the incoming
direction by an angle equal to that of crystal bending. Charged particle steering with-
out magnets is therefore possible exploiting channeling in bent crystals, which has pro-
gressed significantly over the last years. Up to 80% deflection efficiency was reached
for positive particles in planar channeling [104], and 90% for negative particles in axial
channeling [105], at hundreds of GeV scale. Various applications as circular accelera-
tor halo collimation [106] or beam extraction from an accelerator ring for fixed-target
experiments [94] have been studied and proposed also for the LHC.

In the case of axial channeling, negative particles are bound to atomic strings in
spiral-like trajectories. Negative particles having a transverse energy (i.e. related to the
motion orthogonal to the channel) slightly above the potential barrier are not trapped
along a single atomic string, but are deflected due to their stochastic scattering with dif-
ferent atomic strings. This phenomenon is called stochastic deflection, and allows nega-
tive particles to avoid the fast dechanneling occurring for planar channeling. Moreover,
the axial channels for negative particles feature higher potential walls, leading to bet-
ter channeling efficiency. Axial channeling is therefore promising for negative particles
beam deflection. However, reaching a condition of axial alignment for beam steering
is relatively more difficult than for planar channeling since the orientation of the crys-
tal with respect to two instead of one rotational axes must be achieved. Note that for
positive particles, axial channels are too shallow to be interesting for beam deflection as
compared to planar channeling.

Table 2.1 summarises the characteristics of planar and axial silicon (Si) crystal 110
channel, taken from Ref. [100], which will be employed as reference in the following
studies.

The planar channel electric potential seen by a positive particle is approximately har-
monic, Fig. 2.3, and can be expressed as

V (d) =
k

e

d2

2
, (2.7)

in which d is the interplanar distance from the position of the potential minimum and
k is a crystal and channel dependent constant representing the curvature of the poten-
tial. For a particle moving in a bent crystal, the centrifugal force adds a linear term to
the potential, which does not change the curvature but the particle equilibrium position.
Therefore, in a bent crystal a channeled particle experiences a net electric field, caus-
ing both the particle deflection and spin precession [90]. In Sec. 2.4.1 the spin precession
equation are derived for positive planar-channeled particles assuming an harmonic elec-
tric potential for the channel.

On the contrary, the planar channel potential seen by a negative particle, Fig. 2.3, or
the potential associated to axial channels are far from an harmonic approximation [100].
The validity of the spin precession equations for non-harmonic and axial channel poten-
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Figure 2.3: from Ref. [89]. Harmonic (red dash-dotted line) and non-harmonic (blue continuous
line) electric potential versus interplanar distance for positive and negative particles in a (110)
silicon crystal. The electric potential is extracted from GEANT4 simulations. For the sake of com-
parison the electric potential for negative particles is shifted by half of the interplanar distance.

tials is discussed in Secs. 2.4.3 and 2.4.4, respectively.

Positive particles in channeling condition are repelled by the positive nuclei elec-
tric field and their trajectories tend to be far from the lattice sites, experiencing smaller
energy losses than particles not in the channeling regime. On the contrary, negative
particles are attracted by the same field and can repeatedly oscillate across the nuclei
composing the crystal lattice. For this reason negative particles are more likely to un-
dergo nuclear collisions and escape from a channeling bound state. The phenomenon
in which a channeled particle leaves the planar or axial channel, as due to interactions
with crystal nuclei and electrons, is called dechanneling, and the average length that a
channeled particle covers before leaving the potential well is called dechanneling length,
Ld. For positive ultra relativistic particles it is well known for crystals having a length
along the beam comparable to Ld [100],

Ld =
256

9π2

pβc

ln(2mec2γ/I)− 1

aTFdp
Ziremec2

, (2.8)

which scales almost proportionally to the particle momentum-velocity pβ. Here me and
re are the mass and the classical radius of the electron, I is the mean ionisation energy,
dp is the interplanar spacing, aTF is the Thomas-Fermi screening radius, and Zi and γ
are the charge number and boost of the incident particle. The analytical dependence of
Ld for negative particles is not known.

The channeling efficiency is defined as the fraction of particles channeled when en-
tering the crystal, i.e. within the Lindhard angle, that conserve the channeling condition
until they exit from the crystal. Under harmonic potential approximation, the potential
depth for positive particles in a bent crystal as a function of the crystal bending radius R
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is reduced,

U0(R) = U0(R→∞)

(
1− Rc

R

)2

, (2.9)

in which Rc is the critical radius for channeling, the minimum bending radius for which
channeling can occur, corresponding to the crystal curvature for which the centrifugal
force exceeds the electric one,

Rc =
pβ

U ′
, (2.10)

in which U ′ is the maximum channel electric field.

The acceptance Lindhard angle Eq. (2.6) is thus also reduced

θL(R) = θL(R→∞)

(
1− Rc

R

)
, (2.11)

and the dechanneling length Eq. (2.8) is shortened by a factor [100]

Ld(R) = Ld(R =∞)

(
1− Rc

R

)2

. (2.12)

The channeling efficiency as a function of R can be therefore written as

εCH(R) =
θL(R)

α
exp

(
− L

Ld(R)

)
, (2.13)

in which α is the angular divergence of the incoming particles and L is the crystal length.
The channeling efficiency is thus factored in two terms, the first represents the efficiency
for a particle to enter the channeling regime, the second expresses the efficiency reduc-
tion due to dechanneling effects. The first term is valid for the usual case in which the
particle angular divergence is much greater than the Lindhard angle and assuming the
particle angular distribution to be approximately uniform.

The deflection efficiency of the channeling process in bent crystals for negative parti-
cles, for which analytical formulas are not available, can be studied by means of Monte
Carlo simulations [89].

2.4 Spin precession equations

The time evolution of the spin-polarisation vector for a particle with charge q in an elec-
tromagnetic field, as a function of the proper time τ , is given by the Thomas-Bargmann-
Michel-Telegdi (T-BMT) covariant equation in the quasi-classical particle motion approx-



Heavy baryon electromagnetic dipoles experiment proposal 35

imation3 [107],

daµ

dτ
=

gµB
~

[
Fµνaν +

(
aαF

αβuβ
) uµ
c2

]
− (aαu̇

α)
uµ

c2

− dµB
~

[
F ∗µνaν +

(
aαF

∗αβuβ
) uµ
c2

]
, (2.14)

in which Fµν is the electromagnetic field strength tensor, aµ = (a0,a) is the spin 4-
pseudovector, and pµ = muµ = (E/c,p) is the momentum 4-vector. For homogeneous
fields the velocity derivative is given by the Lorentz force,

u̇µ ≡ duµ

dτ
=

q

mc
Fµνuν . (2.15)

In a frame in which the particle has velocity β = p/mγ, e.g. the laboratory frame, aµ is
given by [16, 87]

a = s +
γ2

γ + 1
(β · s)β , a0 = β · a = γ(β · s), (2.16)

in which the components of the momentum 4-vector are p0 = γmc2 and p = γmβc.
Substituting in Eq.(2.14), the spin precession equation become [16, 87, 108],

ds

dt
= s×Ω =



dsx
dt

= syΩz − szΩy
dsy
dt

= szΩx − sxΩz

dsz
dt

= sxΩy − syΩx

,

Ω = ΩMDM + ΩEDM + ΩTH, (2.17)

in which t is the time in the laboratory frame, and the precession angular velocity vec-
tor Ω has been split into three terms, corresponding to the MDM, EDM and Thomas
precession contributions,

ΩMDM =
gµB
~

(
B− γ

γ + 1
(β ·B)β − β ×E

)
,

ΩEDM =
dµB
~

(
E− γ

γ + 1
(β ·E)β + β ×B

)
,

ΩTH =
γ2

γ + 1
β × dβ

dt

=
q

mc

[(
1

γ
− 1

)
B +

γ

γ + 1
(β ·B)β

−
(

1

γ + 1
− 1

)
β ×E

]
. (2.18)

3Quantum mechanical effects are negligible for relativistic particles, since their associated Compton and
De Broglie wavelengths are much smaller than the other length scales involved (they are order 10−17 m for a
particle energy of 100 GeV).
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in which the electromagnetic fields E and B are expressed in the laboratory frame.
Thomas precession, caused by the rotation of the instantaneous inertial frame pro-

duced by the Lorentz force, does not contribute for a neutral particle (q = 0); in that case
the classical spin precession equation is obtained

ds/dτ = µ×B∗ + δ ×E∗, (2.19)

in which E∗ and B∗ are the electromagnetic fields in the rest frame of the particle [87]; τ
is the time in the particle rest frame. Eqs. (2.17) and (2.18) can be generalised to account
for field gradient effects as described in Ref. [109, 110].

2.4.1 Spin precession of planar-channeled positive baryons

For the case of positive baryons channeled in a bent crystal B = 0 and q = +1, so
Eq. (2.18) simplifies to

Ω =
2µ′

~
(E× β) +

dµB
~

E +
1

γ + 1

2µB
~

(E× β)

− dµB
~

γ

γ + 1
(β ·E)β, (2.20)

in which
µ′ =

g − 2

2

e~
2mc

, (2.21)

is the anomalous magnetic moment for a spin-1/2 particle. The term proportional to
1/(γ + 1) can be neglected for ultra relativistic heavy baryons, having γ � 1, since
being composite particles, the heavy baryon g − 2 is expected to be of order 1. Similarly,
γ/(γ + 1) can be approximated to 1.

The trajectory of a particle channeled in a bent crystal is described using the coordi-
nate system defined in Fig. 2.1. It is defined such that the origin of the coordinate system
coincides with the crystal center of curvature. Radial coordinates are then defined in
order to separate the longitudinal motion of the channeled particle at constant radius
from the transverse motion given by oscillations in the channel potential, as depicted in
Fig. 2.4 [111]

x(t) = const.,

y(t) = ρ(t) cos(Ωt),

z(t) = ρ(t) sin(Ωt), (2.22)

in which Ω is the revolution frequency for the particle traversing the bent crystal, i.e.
rotating around the curvature center. In ultra-relativistic regime it is well approximated
by Ω ≈ c/R, R being the crystal curvature radius. This way, a down-bending crystal, i.e.
with y coordinate opposite to the bending direction, is described.

The electric potential felt by the channeled baryon can be approximated as an har-
monic potential, Sec. 2.3,

V (ρ) =
k

e

[ρ(t)− ρ0]
2

2
, (2.23)
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Figure 2.4: from Ref. [88]. Radial coordinates definition: ρ0 is the radius corresponding to the
minimum of the harmonic electric potential; ρ′0 represents the radial equilibrium position of the
electric and centrifugal potential. The red curve represents the particle trajectory inside the crys-
tal in presence of the radial electric field E, a is the oscillation amplitude and Ω the revolution
frequency.

and the corresponding electric field is

Ex = 0,

Ey = −dV
dρ

cos(Ωt),

Ez = −dV
dρ

sin(Ωt). (2.24)

The radius of the trajectory as a function of time follows an harmonic motion,

ρ(t) = ρ′0 + a cos(Ωkt+ δ), (2.25)

in which a, Ωk and δ are the oscillation amplitude, frequency and phase, respectively.
The radial equilibrium position ρ′0 differs from the electric potential minimum position
ρ0, thanks to the centrifugal potential. The oscillation frequency depends on the potential
curvature k and the particle energy W as

Ωk =
√
kc2/eW, (2.26)

while a and δ depend on the baryon incoming angle and position with respect to the
planar channels.

Substituting the radial coordinates and applying the ultra-relativistic approximation
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to Eq. (2.20), the precession vector Ω is

Ωx ≈ 2µ′

~
(Eyβz − Ezβy) =

2µ′

~

(
−dV
dρ

ρΩ

c

)
,

Ωy ≈ dµB
~

[Ey − (β ·E)βy]

= −dµB
~

dV

dρ
cos(Ωt)

+
dµB
~

dV

dρ

ρ̇

c2
[−ρΩ sin(Ωt) + ρ̇ cos(Ωt)] ,

Ωz ≈ dµB
~

[Ez − (β ·E)βz]

= −dµB
~

dV

dρ
sin(Ωt)

+
dµB
~

dV

dρ

ρ̇

c2
[ρΩ cos(Ωt) + ρ̇ sin(Ωt)] . (2.27)

In absence of EDM, i.e. d = 0, the precession vector is along the x axis, and the spin
precession inside the bent crystal is confined to the yz plane. Eq. (2.17) becomes

dsx
dt

= 0
dsy
dt

= sz(t)Ωx
dsz
dt

= sy(t)Ωx, (2.28)

leading to the differential equations

d2sy(z)

dt2
= −Ω2

xsy(z)(t)± sz(y)(t)
dΩx
dt

(2.29)

for y and z spin components. Solving the equations applying the s0 = (0, s0, 0) initial
condition, the spin time evolution

s(t) =


sx(t) = 0

sy(t) = s0 cos
(∫ t

0
Ωxdt

′
)

sz(t) = s0 sin
(∫ t

0
Ωxdt

′
) , (2.30)

The integral can be expressed as follows, using Eqs. (2.23), (2.25), (2.27),∫ t

0

Ωxdt
′ = −2µ′Ω

~c

∫ t

0

ρ
dV

dρ
dt′

= −2µ′Ω

~c

∫ t

0

[ρ′0 + a cos(Ωkt+ δ)]
k

e
[ρ′0 − ρ0 + a cos(Ωkt+ δ)] dt′

≈
[

2µ′

~
E(ρ′0)t− 2µ′

~
ka

eΩk
sin(Ωkt+ δ)

]
= ωt− β sin(Ωkt+ δ), (2.31)

in which ρ′0 = c/Ω and a � ρ have been used. The term ωt represents a constant spin
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precession of frequency

ω =
2µ′

~
E(ρ′0), (2.32)

which is the effect of the non-zero electric field E(ρ′0) felt by the particle in its equilib-
rium position. The value of the spin precession frequency can be obtained requiring the
electric force in the particle equilibrium position ρ′0 to be identical to the centripetal force,

fc =
mγc2

ρ′0
= eE(ρ′0). (2.33)

The spin precession angle introduced in Eq. (2.3) is therefore Φ = ωt, with t ≈ L/c
the time needed to traverse the crystal, L being the crystal length. Eq. 2.3 is obtained
substituting Eqs.(2.32), (2.33) in the Φ definition, originally derived in [93].

The second term proportional to

β =
2µ′ka

~eΩk
(2.34)

represents an oscillating spin precession contribution with zero mean value due to the
particle oscillations around its equilibrium position.

To understand the impact of the oscillating (and experimentally uncontrollable) con-
tribution, it is useful to estimate the typical values for the physical quantities involved
for the experimental layout under consideration. Taking R ∼ 10 m as a typical value for
the crystal curvature, the revolution frequency is Ω ≈ c/R ∼ 107 Hz, the oscillation am-
plitude is a ∼ 10−10 m, and the channel potential curvature is k ≈ 3.5 × 1017 eV/ cm2

for a Si 110 channel4, estimated from Table 2.1 values, yielding Ωk ≈ 1.8 × 1013 Hz
for 1 TeV particles. A typical value for the spin precession frequency can be derived
from Eqs. (2.32),(2.33), obtaining ω ∼ 1010 Hz. Therefore, a hierarchy of frequencies
Ω ∼ 107 Hz� ω ∼ 1010 Hz� Ωk ∼ 1013 Hz arise.

Taking L ∼ 10 cm as a typical crystal length, the constant spin precession term is at
the order of ωL/c ≈ 3 rad. The β parameter, representing the amplitude of the oscillating
contribution can be estimated remembering that for a baryon 2µ′ ∼ µB = e~

2mc and
choosing for instance the mass of the Λ+

c baryon m = m(Λ+
c ) ≈ 2.3 GeV, resulting in

β ∼ 3× 10−4 rad. This term can be therefore neglected.
Finally, the spin time evolution is [111],

s(t) =

 sx(t) = 0
sy(t) = s0 cos (ωt)
sz(t) = s0 sin (ωt)

. (2.35)

In presence of a non-zero EDM the spin precession is no longer confined to the yz
plane, since all the Ω vector components become non-zero. Given that EDMs of funda-
mental particles are still unobserved, it reasonable to expect any EDM effect to be tiny
compared to the MDM effects, i.e. d� (g − 2). In other words one expects Ωy,Ωz � Ωx,
and spin precession equations can still be obtained analytically. In this approximation
and looking at Eq. (2.27) the sy and sz spin components evolve as in the zero EDM case
(d = 0), with the precession determined only by the MDM, while the EDM generates an

4According to the harmonic approximation Eq. (2.23), the curvature of the potential k depend on the chan-
nel depth U0 and the interplanar separation a as k = 8U0/a2.
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sx spin component otherwise not present,

dsx
dt

= syΩz − szΩy

=
dµB
~

dV

dρ
s0

{
sin [(ω − Ω)t]

+
ρ̇ρΩ

c2
cos [(ω − Ω)t]− ρ̇2

c2
sin [(ω − Ω)t]

}
. (2.36)

In Eq. (2.36) one can approximate ω − Ω ≈ ω and neglect terms of order ρ̇/c, since

ρ̇ = −aΩk sin(Ωkt+ δ) ∼ aΩk ∼ 103 m/s� c, (2.37)

so that it reduces to
dsx
dt

=
dµB
~

(
−dV
dρ

)
s0 sin(ωt), (2.38)

Writing the electric field as done in Eq. 2.31,

E(ρ) = −dV/dρ = −k
e

(ρ(t)− ρ0) = E(ρ′0)− k

e
a cos(Ωkt+ δ), (2.39)

Eq. (2.38) can be split in two analytically integrable parts

sx(t) =
dµB
~
s0E(ρ′0)

∫ t

0

sin(ωt′)dt′ − dµB
~

ka

e
s0

∫ t

0

cos(Ωkt
′ + δ) sin(ωt′)dt′. (2.40)

Substituting Eqs. (2.21),(2.32), the first integral is

dµB
~

E(ρ′0)

ω
[1− cos(ωt)] =

d

g − 2
[1− cos(ωt)] , (2.41)

which, in terms of the precession angle Φ, is the anticipated Eq. (2.4). The second can
be decomposed into two terms proportional to sin(Ωkt

′) sin(ωt′) and cos(Ωkt
′) sin(ωt′),

whose integrals are trigonometric functions multiplied by the factor

∼ dµB
~

ka

eΩk
∼ d

g − 2
β, (2.42)

in which the Ωk at the denominator comes from the integration itself. The quantity β,
defined in Eq. (2.34), was already seen to be order 2 × 10−4 making this contribution
negligible.

The time evolution of the spin-polarisation vector in presence of a non-negligible
EDM is therefore

s(t) =


sx(t) ≈ s0

d

g − 2

[
1− cos(ωt)

]
sy(t) ≈ s0 cos (ωt)
sz(t) ≈ s0 sin (ωt)

. (2.43)

Summarizing, the baryon spin, initially directed along the y axis as required by the
strong production, precesses in the yz (bending) plane due to the interaction of the
baryon MDM; in presence of a non-zero EDM a spin component in the x direction is
produced.
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A comparison between spin precession analytical calculations and numerical inte-
gration of the T-BMT classical equations of motion in Monte Carlo simulation has been
successfully performed [89].

2.4.2 Electric field gradients

The equations describing the particle trajectory and its spin precession in an electro-
magnetic field, including first-order electromagnetic field gradients, as well as a particle
EDM contributions, are derived in [110]. In absence of magnetic fields the spin preces-
sion vector Ω = ΩMDM + ΩEDM + ΩTH is

ΩMDM =
gµB
~

[E× β] (2.44)

+
gµB
2mc

γ(β ×∇)

γ + 1
[s · (E× β)] ,

ΩEDM =
dµB
~

[
E− γ(β ·E)β

γ + 1

]
+

dµB
2mc

γ(β ×∇)

γ + 1

[
s ·
(

E− γβ(β ·E)

γ + 1

)]
,

with unchanged Thomas precession component as in Eq. (2.18). Assuming the harmonic
potential approximation Eq. (2.23), the typical magnitude of the electric field gradient is

d|E|
dρ

=
k

e
, (2.45)

and employing the values used in the previous Sec. 2.4.1, the ratio of the field gradient
terms to the homogeneous field ones is estimated to be

~ d|E|/dρ
2mc|E|

=
~kρ′0

2m2γc3
∼ 2.3× 10−3 1

γ
, (2.46)

which is negligibly small in the ultra-relativistic regime considered.
When including electric field gradient effects, in absence of magnetic fields, the par-

ticle trajectory equation becomes

mc
d(γβ)

dt
= qE

+ γ2 gµB
2

[
∇+ β × (β ×∇) +

β

c

∂

∂t

]
[s · (E× β)]

+ γ2 dµB
2

[
∇+ β × (β ×∇) +

β

c

∂

∂t

]
[
s ·
(

E− γβ(β ·E)

γ + 1

)]
, (2.47)

in which the first term is the Lorentz force and the following two terms are the MDM
and EDM contributions. In the experimental setup under consideration the initial spin
vector is orthogonal to E × β, making the MDM contribution negligible. The typical
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magnitude of the ratio between the EDM electric field gradient term and the Lorentz
force contribution, computed similarly as for Eq. (2.46), is ∼ dγ × 10−3, which can be
close to 1 for γ ∼ 1000 only if d ∼ 1, that is for similar EDM and MDM magnitudes.
However, we assume the EDM magnitude to be tiny with respect to the MDM one, as
already assumed in the derivation of the spin equation of motion. In case of a very
large EDM, this term would make the spin precession frequency dependent on the spin
direction.

2.4.3 Spin precession for planar-channeled negative baryons

The spin precession time evolution derived for planar-channeled positive baryons in
Sec. 2.4.1 can not be straightforwardly applied to planar-channeled negative baryons.
Indeed, those equations were derived under the assumption of an harmonic electric po-
tential which is unsuitable for crystal channels as seen by negative particles, Fig. 2.3.
Nonetheless, a simple argument allows to extend the validity of the mentioned spin pre-
cession equations to the general case of a non-harmonic potential.

The derivation of the spin time evolution in Sec. 2.4.1 did not use the assumption
of an harmonic potential until Eq. (2.30). The integral expressing the amount of spin
precession can be approximated as∫ t

0

ρ
dV

dρ
dt′ ≈ ρ′0

∫ t

0

dV

dρ
dt′, (2.48)

since the radial coordinate ρ is fixed by the crystal channel up to δρ/ρ = O(Å/m) =
10−10. Over a complete oscillation in the channel potential it is showed that the effect
of this term is equivalent to that of the electric field in the particle equilibrium radial
position ρ′0, ∫ t

0

dV

dρ
dt′ = −E(ρ′0)t, (2.49)

which is determined solely by the centripetal force fc, Eq. (2.33). This statement follows
by computing ∫ t

0

dV

dρ
dt′ − [−E(ρ′0)t] =

∫ t

0

(
dV

dρ
+
fc
e

)
dt′ (2.50)

for a complete particle oscillation. By changing the integration variable to dρ and dt′ =
dρ/ρ̇, then ρ̇ is determined by the non-relativistic energy conservation for the radial mo-
tion of channeled particles [100]

Wr =
1

2
Mρ̇2 + eV (ρ) + fcρ, (2.51)

as

ρ̇ =

√
2

m

√
(Wr − fcρ− eV (ρ)), (2.52)

in whichM = mγ andWr is the total radial energy, assumed to be constant during a par-
ticle oscillation. The relation holds because the longitudinal motion is ultra-relativistic
and independent from the radial one, which is non-relativistic since the potential depth
is O(100 eV) � m. The integration boundaries ρ1,2 are chosen to be the particle oscilla-
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tion limits, in which

1

2
Mρ̇2 = 0↔ eV (ρ1,2) + fcρ1,2 = Wr . (2.53)

Finally, the integral can be trivially computed as

1

e

√
m

2

∫ ρ2

ρ1

edVdρ + fc√
Wr − fcρ− eV (ρ)

dρ

= −1

e

√
m

2

(√
Wr − fcρ2 − eV (ρ2)

−
√
Wr − fcρ1 − eV (ρ1)

)
= 0. (2.54)

The derivation of spin precession equations for non-zero EDM hold as well, since the
approximations ρ̇ � c and β � 1 applied to obtain Eq. (2.43) are still valid also for
non-harmonic potentials.

Therefore, spin precession effects due to the particle oscillation in the channel can-
cel out at each particle oscillation, so that the net spin precession depends uniquely on
the electric field in the equilibrium position. The spin evolution equations describing
MDM and EDM effects, Eq. (2.43), hold as for an harmonic planar channel potential,
and in particular for the potential seen by negative particles. These equations have been
successfully cross-checked against Monte Carlo simulation also for negative planarly-
channeled baryons [89].

2.4.4 Axial channeling case

The phenomenon of axial channeling has been observed both for positive and negative
particles, see Sec. 2.3, but it has not been considered for spin precession to date. Here
the possibility to induce spin precession in axial-channeled particles for potential appli-
cations in MDM and EDM measurements of charged baryons is discussed.

The same layout of Fig. 2.1 is considered, in which the crystal is now bent along a
crystallographic axis instead of a plane. Polar coordinates are introduced for the bending
plane as in Eq. (2.22) and the electric field described by the axial channel potential V (x, ρ)
is

E =



Ex = −dV
dx

Ey = −dV
dρ

cos(Ωt)

Ez = −dV
dρ

sin(Ωt) .

(2.55)

In analogy with planar-channeled particles described in Sec. 2.4.1, the longitudinal ve-
locity is ultra-relativistic, while the velocity components orthogonal to the channel are
non-relativistic; their contribution to the spin precession described in Eq. (2.18) is negli-
gible. Accordingly, the particle velocity inside the bent crystal can be simplified as

βx = 0, βy = − sin(Ωt) ≈ 0, βz = cos(Ωt) ≈ 1, (2.56)
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to a very good approximation for a typical crystal bending angle θC ∼ 10 mrad5.
The spin evolves according to the spin precession Eq. (2.17) with precession vector Ω

following from Eqs. (2.18), (2.55), (2.56),

Ω =


Ωx = −2µ′

~
dV

dρ
− dµB

~
dV

dx

Ωy =
2µ′

~
dV

dx
− dµB

~
dV

dρ

Ωz = 0 .

(2.57)

The main difference with respect to the planar channeling case is the presence of the Ex
electric field component, which in principle entangles the MDM and EDM induced spin
rotation. Nonetheless, in the following it is shown that the contribution of the dV/dx
terms can be neglected and the spin precession evolution derived for planar-channeled
charged baryons applies also to axial-channeled particles.

During one oscillation in the channel potential, the particle spin can be assumed to
be constant since the typical spin precession frequency ω = 2µ′E(ρ′0)/~ ∼ 1010 Hz is
three orders of magnitude lower than the oscillation frequency of the particle trapped
in the channel, Ωk ∼ 1013 Hz6. In the d � g − 2 assumption, the two MDM-induced
dominant components Ωx ∝ dV/dρ and Ωy ∝ dV/dx, describing spin precession in the
yz and xz planes, respectively, can be considered to act independently of each other;
namely, the spin rotation in the yz plane is not influenced by the spin rotation in the
xz plane and vice versa. In this case Eq. (2.49) can be applied to both contributions:
while the centripetal force induces a net spin precession in the yz plane identical to that
of planarly-channeled particles, the effect of dV/dx mediates to zero over each particle
oscillation, since no centripetal force acts in the x direction, i.e. Ex(ρ′0) = 0.

The limit of the assumptions is checked estimating the typical amount of spin pre-
cession accumulated during an incomplete particle oscillation, which may lead to an
imperfect cancellation of the dV/dx contribution. From Eq. (2.57), this amount is at the
order of

∆ ≈ 2|µ′|
~

∫
half

|E|dt ≈ 2|µ′|
~
|E|
2Ωk

, (2.58)

in which the integration is carried on one half of an oscillation. The typical electric field
magnitude of the axial channel during half oscillation is estimated as the ratio between
the potential depth U0 and half of the channel width dp/2 for a 110 axis aligned Si crys-
tal, Table 2.1, yielding |E| ≈ 6 × 1011 eV/m. An estimate of the oscillation frequency
Eq. (2.26), is obtained assuming the potential curvature associated to an harmonic poten-
tial k = 8U0/a

2 ≈ 6.1× 1017 eV/ cm2 for W = 1 TeV particles, finding Ωk ≈ 2.3× 1013 Hz.
Note that this frequency does not change significantly from that associated to planar
channeling. Finally it is taken 2µ′ ∼ µB = e~

2mc with the Λ+
c baryon mass, and the quan-

tity ∆ is found to be of order
∆ ≈ 1.7× 10−3 rad. (2.59)

Neglecting EDM effects (d = 0), Eqs. (2.17), (2.57) show that dV/dx modifies the
sx spin component via dsx/dt = −szΩy . Since the sz spin component is not constant
during a complete oscillation, the dV/dx contribution is not exactly zero and can be

5These are equivalent to the approximations ρ̇� c and Ω� ω applied in the derivation of Eq. (2.43).
6Note that while ω depends only on the centripetal force, which is the same in case of planar and axial chan-

neling for identical crystal curvatures, Ωk it is expected to be even higher for negative particle axial channels
since these feature more intense electric fields, see Sec. 2.3.



Heavy baryon electromagnetic dipoles experiment proposal 45

conservatively estimated as

δsx ≈
2µ′

~

∫
sz(t)

dV (t)

dx
dt / ∆

2µ′

~

∫
half

dV (t)

dx
dt

/ ∆2 ≈ 2.9× 10−6 rad. (2.60)

in which sz(t) = sz + δsz(t) changes by an amount of order ∆. The integrated effect
along the whole crystal is conservatively estimated by multiplying δsx by the number of
particle oscillations,

∆sx ≈ δsx
LΩk
c
≈ 2.2× 10−2 rad, (2.61)

in which a crystal length of L = 10 cm is taken. Such a component does not signifi-
cantly affect the main MDM spin precession in the yz plane, so that Eq. (2.35) hold as
for planarly-channeled particles. Therefore, axial channeling is suitable to measure the
MDM of negative particles, and the separate measurement of particle and antiparticle
MDMs, exploiting both planar and axial channeling spin precession, would allow CPT
symmetry tests.

The amount of sx spin component induced by MDM spin precession may fake a pos-
sible EDM effect: however, the conservatively estimated ∆sx has to be considered as an
upper limit. For example, the effect produced for each particle oscillation may not sum
coherently over all the crystal length, as assumed in the estimation. More detailed stud-
ies of the dynamics of axially-channeled particles will be needed to properly quantify
∆sx and enable EDM measurements with axial channeling spin precession.

2.5 Sensitivity study

In this section, the achievable precision on the dipole moments of heavy baryons is stud-
ied considering the experiment layout described in Sec. 2.2. Numerical values will be
computed for the most abundant Λ+

c charm baryon.
The rate of heavy baryons B produced with 7 TeV protons colliding on a fixed target

can be estimated as
NB =

PoT

A
σ(pp→ BX)NT , (2.62)

in which PoT = Ft is the number of protons directed to the target, equal to the product
of the proton flux F times the data-taking time t, A is the beam transverse area, NT is the
number of target nucleons, and σ(pp → BX) is the cross-section for B production in pp
interactions at

√
s = 114.6 GeV center-of-mass energy. The number of target nucleons is

NT =
NAρTATAN

AT
, (2.63)

in which NA is the Avogadro number, ρT (T ) is the target density (thickness) and AT
(AN ) is the atomic mass (atomic mass number). The rate of heavy baryons channeled in
the bent crystal and reconstructed in the LHCb detector is estimated as

N reco
B = NBB(B → f)εCH(B)εDF(B)εdet(B → f), (2.64)

in which B(B → f) is the branching ratio for the baryon decay to the final state f and
the decay reconstruction efficiency has been factored into channeling, decay flight and
detector efficiencies. The numerical values employed for the sensitivity study are sum-
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Definition Quantity Value Unit

Avogadro number NA 6.022× 1023 atoms/mol
Target density (W) ρT 19.25 g/cm3

Target thickness T 0.5 cm
Atomic mass (W) AT 183.84 g/mol
Atomic mass number (W) AN 183.84

pp cross-section to Λ+
c σ(pp→ Λ+

c X) 10.8 µb
Branching fraction [24] B (Λ+

c → ∆++K−) 1.08%
Lorentz boost γ 437

Crystal length L 10 cm
Crystal radius R 10 m

Channeling efficiency εCH (Λ+
c ) 5.5× 10−4

Decay flight efficiency εDF(Λ+
c ) 2.2%

Detector efficiency εdet(Λ+
c → pK−π+) 5.4%

Λ+
c mass [24] m 2286.46 MeV

Λ+
c lifetime [24] τ 2.00× 10−13 s

Λ+
c polarisation s0 0.6

Asymmetry parameter α∆++K− −0.67
MDM anomaly (g − 2)/2 0.3

Table 2.2: Definitions and estimated values of the relevant quantities for the Λ+
c charm baryon

EDM and MDM sensitivity study, for a tungsten (W) target.

marized in Table 2.2.
The Λ+

c cross section can be estimated from the total charm production cross section
per nucleon measured by the LHCb experiment in proton-helium collisions at

√
s =

86.6 GeV [112]7,
σcc = (144± 12.1stat. ± 3.5syst.) µb, (2.65)

rescaled to
√
s = 114.6 GeV assuming a linear dependence on

√
s. By applying the Λ+

c

average fragmentation function from LEP measurements [113], σΛ+
c
/σcc = 5.7 ± 0.6 ±

0.3%, the Λ+
c cross section is σpp→Λ+

c
≈ 10.8µb.

The channeling efficiency of the crystal is estimated as in Eq. (2.13), using the Si 110
planar channel characteristics in Table 2.1. The typical angular divergence is α ≈ 1/γ ≈
2.3 mrad for 1 TeVΛ+

c baryons, the critical radius Eq. (2.10) is Rc = 1.75 m, the Lindhard
angle Eq. (2.6) for a straight crystal is θL = 5.66µrad and the straight crystal dechan-
neling length Eq. (2.8) is Ld = 11.3 cm using I = 176 eV, aTF = 0.194Å in silicon and
er = 2.818×10−15 m [100]. The channeling efficiency is found to be εCH(Λ+

c ) = 5.5×10−4.
The fraction of Λ+

c baryons decaying after the crystal, i.e. experiencing spin preces-
sion through all the crystal length, is

εDF(B) = exp

(
− L

cτγ

)
, (2.66)

in which τ is the heavy baryon lifetime. The requirement that the baryon should have

7The cc̄ cross-section reported in Ref. [112] is twice the correct one. An erratum is in preparation.
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decayed after the crystal selects effectively the baryons with higher energy. For 1 TeVΛ+
c

baryons the decay flight efficiency is εDF(Λ+
c ) ≈ 2.2%, raising up to εDF(Λ+

c ) ≈ 19% for
γ = 1000. Therefore, a precise assessment of this efficiency would require the knowledge
of the heavy baryon energy spectrum.

The detector efficiency εdet groups different detector-related reconstruction efficien-
cies. The geometrical acceptance for Λ+

c → pK−π+ decaying into the LHCb detector is
estimated at the order of εgeo ≈ 25% according to simulation studies [88]. The LHCb
software-based trigger for the upgraded detector [114] is expected to have an efficiency
for charm hadrons comparable to the current high level trigger [115], εtrigger ≈ 80%. A
specific trigger scheme for the fixed-target experiment can be adopted to enhance the
trigger efficiency for Λ+

c decays close to 100%, based, for example, on the energy loss in
an instrumented silicon crystal as exploited in the E761 experiment [96]. The tracking
efficiency is estimated to be 70% per track, leading to an efficiency εtrack ≈ 34% for a Λ+

c

decay with three charged particles. The detector reconstruction efficiency is therefore
εdet = εgeoεtriggerεtrack ≈ 5.4× 10−2.

The final polarisation of Λ+
c baryons can be easily measured from the angular dis-

tribution of Λ+
c decays to quasi-two body final states like pK∗0, ∆++π−, or Λ(1520)π+,

which is described by Eq. (2.5). This way, the polarisation along a given axis î can be
extracted by means of a fit to the cos θi = î · k̂ distribution,

dN

d cos θi
=

1

2
(1 +Ai cos θi), (2.67)

in which Ai = αfsx. The asymmetry parameters af for the mentioned final states can
be computed from the Λ+

c → pK−π+ amplitude analysis performed by the E791 exper-
iment [71] as described in Ref. [88]. In the following the Λ+

c → ∆++K− decay will be
considered, for which α∆++K− = −0.67± 0.30.

For the sensitivity study s0 = 0.6 and (g − 2)/2 = 0.3 are assumed for the Λ+
c

baryon, as inspired by the experimental results and the available theoretical predictions,
respectively, reported in Secs. 2.1, 2.2. The d and g − 2 values can be obtained inverting
Eqs. (2.3), (2.4), as

d ≈ (g − 2)Ax
αs0 (cos Φ− 1)

,

g − 2 ≈ 2

γθC
arccos

(
Ay
αs0

)
≈ 2

γθC
arcsin

(
Az
αs0

)
, (2.68)

From linear fit properties, the statistical uncertainty on the fitted Ai values is

σAi =

√
1−A2

i

N2
≈ 1√

N
, (2.69)

in the Ax � 1 limit. Thus, the main contribution to the statistical uncertainty on d and g
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can be estimated as

σd ≈ g − 2

αs0 (cos Φ− 1)

1√
N reco
Λ+
c

,

σg ≈ 2

αs0γθC

1√
N reco
Λ+
c

. (2.70)

Negligibly small uncertainties on θC , γ and the initial Λ+
c polarisation s0 are assumed,

the latter to be measured with large samples of non-channeled Λ+
c decays.

According to Ref. [94], the proton flux which can be directed on the target-crystal de-
vice can be up to F = 107p/ s. Assuming a data-taking time compatible with a dedicated
run of the LHCb experiment of one month, one can obtain≈ 2.6× 1013 PoT. From these
collisions, ≈ 12 channeled Λ+

c baryons can be recorded, enough for a proof-of-principle
test of the experimental layout but not for a dipole moment measurement.

Nonetheless, such a proton flux may be compatible with a longer data-taking run
concurrent with the LHCb proton-proton collision program. Assuming a two-year ef-
fective data-taking with the same proton flux, ≈ 6.2 × 1014 PoT can be obtained, cor-
responding to ≈ 290 channeled Λ+

c baryons, leading to precisions on the gyromagnetic
and gyroelectric factors of order

σg ≈ 4%, σd ≈ 8%. (2.71)

The precision on the Λ+
c baryon EDM would be at σδ ≈ 1.8 × 10−16e cm level. Better

precisions could be reached with a future dedicated experiment for fixed-target physics,
allowing for higher proton flux and better reconstruction efficiency.

A more precise sensitivity study should take into account the energy spectrum and
the angular distribution of the produced baryons, which would also allow to optimise
the crystal length and curvature according to the best precision on the dipole moments.
Moreover, a detailed amplitude model of the Λ+

c → pK−π+ decay would allow to
achieve the best precision on the Λ+

c polarisation and to employ all the Λ+
c → pK−π+

decays. A better precision is therefore expected with respect to the presented estimates.
Compared to charm baryons, beauty baryons feature lower production cross-sections,

lower branching fractions (because they have more final states available), lower recon-
struction efficiencies (because of the cascade decays leading to more final state particles)
but higher lifetimes. Sensitivity studies based on the Ξ

+

b baryon, which is the lightest
charged beauty baryon stable under strong interaction, show that the achievable preci-
sion on beauty baryon dipole moments is two orders of magnitude worse than for charm
baryons [89].

2.6 Conclusions

A proposal to measure the dipole moments of heavy baryons using bent crystals at
the LHC has been presented. Previous proposals regarding the measurement of charm
baryon magnetic dipole moments have been extended to the even more interesting case
of EDM measurements, which are powerful probes for new physics, deriving the spin
precession equations for planarly-channeled positive baryons in bent crystals for non-
zero EDM. The same equations have been shown to be valid also for negative baryons
channeled in both planar and axial configuration, opening the possibility to perform
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CPT tests by comparing baryon and antibaryon MDMs. Sensitivity studies have been
performed considering a realistic experimental layout, in which protons extracted from
the main LHC beam are directed onto a target-bent crystal device placed in front of
the LHCb detector, which is used to reconstruct the heavy baryon decays. A dedicated
run of one month would allow a proof-of-principle of the measurement, while an ex-
tended data-taking concurrent with the proton-proton collision program would be able
to measure Λ+

c baryon gyromagnetic factor at σg ≈ 4% precision, which would allow
to effectively discriminate among different charm baryon models. The attainable Λ+

c

baryon EDM limit would be at the 10−16e cm level, already able to challenge the current
charm EDM indirect limits. The expected number of beauty baryons is too low for an in-
teresting measurement of their dipole moments in the proposed setup, however, beauty
baryons can be interesting in light of a possible dedicated fixed-target experiment able
to run at higher proton flux intensities.





CHAPTER 3

τ lepton electromagnetic dipole moments proposal

3.1 Motivation

The measurement of the τ lepton electromagnetic dipole moments is extremely inter-
esting since, for a third generation elementary particle, both electric and magnetic DMs
are probes for physics beyond the SM. For instance, the anomalous MDM of the elec-
tron has provided an extremely accurate test of quantum electrodynamics, while that
of the muon is contrasting with SM predictions with a statistical significance of about
3.6 standard deviations [22]. Moreover, new physics effects can be naively expected to
be enhanced with increasing particle masses: the electroweak corrections to dipole mo-
ments are proportional to m2

τ/Λ
2, in which mτ is the τ mass and Λ a new physics energy

scale, leading to an m2
τ/m

2
e ∼ 107 and m2

τ/m
2
µ ∼ 3 × 102 relative enhancement of new

physics effects compared to the electron and muon, respectively [116,117]. In the SM, the
τ anomalous MDM is expected to be a = (g− 2)/2 ≈ 10−3 [116], along with a practically
negligible EDM.

Indirect estimates of the τ MDM have been extracted from the comparison between
precise measurements of τ+τ− pair production cross sections in e+e− annihilation and
theoretical predictions. As of today, a is experimentally known at few percent level [24,
118], more than one order of magnitude above the SM prediction. Similarly, τ EDM
indirect limits have been derived from the quadratic dependence of τ+τ− cross sec-
tions on the CP -violating EDM form factor [117], leading to indirect limits at 10−16 e cm
level [119].

The direct measurement of the τ lepton electromagnetic dipole moments has never
been performed because of the τ short lifetime ≈ 3 × 10−13 s, posing similar problems
to the measurement of heavy baryons dipole moments. Indeed, the τ mass and lifetime
are similar to charm baryons typical ones, and, contrarily to the lighter leptons, the τ
decays to hadronic final-states with large branching fractions. However, there are two
critical problems to be overcome in order to apply the experimental setup devised for
heavy baryons dipole moments measurement.

One problem is that the direct production of τ+τ− pairs in proton-nucleon collisions
is an electromagnetic process, which is expected to be much suppressed with respect to
the strong interaction mediated charm baryon production cross-section Eq. (2.65). Much
larger samples of τ leptons can be therefore obtained from decays of charm mesons,
mostly from the D+

s → τ+ντ decay. However, the almost complete polarisation along
the τ momentum produced in the weak decay mediates to zero in the laboratory refer-
ence frame, since a spin-zero meson decay is isotropic. An additional complication with
respect to the heavy baryon case is that, for conservation of the lepton flavour number,
at least one undetectable neutrino is produced in the τ decay. Therefore it is not possi-

51



52 3.2 Kinematic selection of τ+ polarisation

ble to completely reconstruct the decay angular distribution from detectable final state
particles.

In the following, it is shown how the experimental setup proposed for the measure-
ment of heavy baryons electromagnetic dipole moments can be adapted to select τ+ lep-
tons with non-zero polarisation, along with a novel method to extract the τ+ polarisation
from partially reconstructed hadronic decays. Spin precession equations and sensitivity
studies for the measurement of τ+ dipole moments are also presented. This work has
been published in Physical Review Letters, Ref. [120].

3.2 Kinematic selection of τ+ polarisation

The spin-polarisation vector of the τ+ in its rest frame can be determined from the
squared decay amplitude of the D+

s → τ+ντ decay. Summing over the neutrino spin
states and considering that the ντ is massless and unobserved [121],

|M|2 =
g4

8m4
W

|Vcs|2f2
Dsm

2
τ (p · k −mτa · k) , (3.1)

in which g = e/ sin θW , with θW the electroweak mixing angle, mW the W boson mass,
Vcs the Cabibbo-Kobayashi-Maskawa matrix element, fDs the D+

s decay constant, p (k)
the 4-momentum of the τ+ (ντ ), and aµ the τ+ spin 4-pseudovector vector. In the τ+

rest frame, aµ = (0, s). Evaluating Eq. (3.1) in the τ+ rest frame, and neglecting constant
terms one obtains

p · k −mτa · k = ω (1 + s · q̂′) , (3.2)

in which ω = (m2
Ds
−m2

τ )/2 and q̂′ is the unit vector along the D+
s momentum in the τ+

rest frame. Therefore the τ+ spin-polarisation vector is directed along the D+
s direction

as seen from its rest frame. Expressed in terms of laboratory frame momenta, Eq. (3.2)
becomes

s = q̂′ =
1

ω

(
mτq− q0p +

q · p
p0 +mτ

p

)
. (3.3)

When evaluated in the D+
s rest frame, Eq. (3.2) leads to s = −p̂?, i.e. that the τ+ has

negative helicity in the D+
s rest frame, as expected from the structure of charged weak

current interactions and angular momentum conservation.
The decay of a spin-zero meson is isotropic for rotational invariance, implying that to

obtain a non-zero τ+ mean polarisation in the laboratory frame kinematic requirements
must be applied. This is not trivial since undetectable neutrinos characterise both pro-
duction and decay of the τ+ lepton. The problem is solved exploiting the narrow angular
acceptance of the channeling condition for ultra-relativistic particles: a longitudinal neg-
ative polarisation (along the crystal z axis, with the crystal coordinate frame defined as
in Fig. 2.1), sz ≈ β?/β ≈ −0.10, is induced by the larger acceptance for forward emit-
ted τ+ with respect to the backward direction, since the first have larger Lorentz boost
and narrower angular spread. Here β (β?) indicates the velocity of the D+

s (τ+) in the
laboratory (D+

s rest) frame. The sz polarisation can be enhanced by applying kinematic
selection criteria to further increase the population of forward emitted τ+ leptons, e.g.
selecting τ+ decays with large momentum of the detectable final particle system.

A large transverse (along the crystal y axis) sy ≥ 50% polarisation can be obtained
by considering D+

s → τ+ντ decays in which the D+
s meson decays after channeling

through a first bent crystal and τ+ leptons are channeled through a second bent crystal,
tilted with respect to the first one. This way the angle between D+

s and τ+ momenta
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Figure 3.1: from Ref. [120]. Spin-polarisation along the (blue) z and (green) y axes as a function
of (left) the momentum of the 3π system and (right) the θy,Dsτ angle. The coloured bands rep-
resent one-standard deviation regions arising from the limited simulation statistics. The yellow
histograms show the spectra of the signal (channeled) τ+ leptons, normalized to unity. The polar-
isation along x, not shown, is consistent with zero.

is constrained, but at the price of a much lower efficiency mainly due to the double
channeling requirements. This two crystal scheme was also proposed in Ref. [122].

Considering the laboratory and crystal reference frames defined for the heavy baryon
experiment case, Fig. 2.1, with the crystal tilted by an angle θy ≈ 100µrad in the bending
plane yz with respect to the proton beam, the projections of the polarisation vector are

s0,x ≈ mτ |q|
ω

θx,Dsτ ,

s0,y ≈ mτ |q|
ω

θy,Dsτ ,

s0,z ≈ s0,‖ =
1

ω
(|q| p0 − q0 |p|) , (3.4)

in which s0,‖ is the spin projection along the τ+ direction (longitudinal polarisation, s·p̂),
θDsτ is the angle between the D+

s meson and the τ+ lepton in the laboratory frame, and
θy,Dsτ (θx,Dsτ ) its projection along the crystal y (x) axis. All angles are small, O( mrad),
due to the highly boosted D+

s mesons produced by the multi-TeV protons and the low
Q-value of the D+

s → τ+ντ decay. Rotational invariance in the τ+ production and the
fact that θx,Dsτ is unconstrained in planar channeling implies that sx averages to zero,
whereas sz and sy depend on momenta and θy,Dsτ , respectively.

The τ+ polarisation is studied by exploiting large samples of simulated D+
s → τ+ντ ,

τ+ → π+π−π+ν̄τ events from 7 TeV proton collisions on protons at rest, generated using
PYTHIA [123], EVTGEN [124], and a fast simulation that generates phase-space kinemat-
ics of the D+

s and τ+ decays. The τ+ planar channeling has been simulated using a
parametrization based on the current theoretical description described in Sec. 2.3. Here,
a L = 8 cm length, θC = 16 mrad bent germanium crystal tilted by θy = 0.1 mrad, placed
Ltar = 8 cm downstream of a T = 1 cm thick tungsten target, has been taken, following
from the sensitivity study described later in Sec. 3.5. Fig. 3.1, shows the dependence
of the selected τ+ polarisation as a function of (left) the momentum of the 3π system,
highly correlated with the τ+ momentum itself, and (right) the θy,Dsτ angle.

The initial τ+ polarisation can be accurately determined by reconstructing unchan-
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neled τ+ decays with kinematic properties similar to the signal or using simulated de-
cays calibrated with data samples, provided that an accurate description of the experi-
mental setup is available.

3.3 Spin precession equations

The spin-polarisation precession induced by the interaction of the MDM and EDM of a
relativistic, positive particle planarly channeled in a bent crystal was derived in Sec. 2.4.1
under the hypothesis that for a composite particle the anomalous MDM is order 1. This
is not the case for the τ+ lepton, for which a ≈ 10−3, and the term

1

γ + 1

2µB
~

(E× β) (3.5)

in Eq. (2.20) can be no longer neglected even for γ ≈ 1000, since the other MDM contri-
bution is proportional to a. This term contributes to the spin precession in the yz bending
plane independently of the anomalous MDM of the particle. In absence of a τ+ EDM,
the precession angle becomes

Φ ≈
(
g − 2

2
+

1

γ + 1

)
γθC , (3.6)

with unchanged precession equation Eq. (2.35) for transverse initial polarisation. For
longitudinal initial polarisation the spin precession equation is

s(t) =

 sx(t) = 0
sy(t) = −s0 sin (ωt)
sz(t) = s0 cos (ωt)

. (3.7)

For non-zero EDM, the assumption d � g − 2 may be still valid, leading to analogous
equations as for heavy baryons. Nonetheless, a more refined analytical calculation has
been performed for the case in which MDM and EDM effects have comparable magni-
tudes, for both transverse and longitudinal initial polarisation [120].

The spin rotation for longitudinal initial polarisation, s0 = (0, 0, s0,z), is

sx
s0,z
≈ d′

a′d

[
−c sin Φ +

a′

a′d
s (1− cos Φ)

]
≈ − d

′

a′d
sin Φ,

sy
s0,z
≈ a′

a′d

[
sin Φ +

d′
2

a′da
′ sc (1− cos Φ)

]
≈ a′

a′d
sin Φ,

sz
s0,z
≈ a′

2

a′d
2

[(
1 +

d′
2

a′2
c2

)
cos Φ +

d′
2

a′2
s2

]
≈ cos Φ, (3.8)

in which
a′ =

g − 2

2
+

1

1 + γ
, (3.9)

d′ = d/2, a′d =
√
a′2 + d′2, and Φ = γθCa

′
d is the precession angle. The coefficients s and

c are given by sin(Ωt) and cos(Ωt), respectively, in which Ωt ≈ c/R×L/c = θC ∼ 10−2 rad
is the average rotation angle of the particle trajectory when traversing the bent crystal
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with revolution frequency Ω in a time interval t (see definitions in Sec. 2.4.1). For each
component, the first expression holds at precision O(10−5), whereas the second approx-
imation applies at O(10−2). Similarly, the spin motion for transverse initial polarisation,
s0 = (0, s0,y, 0), is given by

sx
s0,y
≈ d′

a′d

[
a′

a′d
c (1− cos Φ) + s sin Φ

]
≈ d′a′

a′d
2 (1− cos Φ) ,

sy
s0,y
≈ a′

2

a′d
2

[
d′

2

a′2
c2 +

(
1 +

d′
2

a′2
s2

)
cos Φ

]
≈ d′

2

a′d
2 +

a′
2

a′d
2 cos Φ,

sz
s0,y
≈ a′

a′d

[
− sin Φ +

d′
2

a′da
′ sc (1− cos Φ)

]
≈ − a

′

a′d
sin Φ, (3.10)

which, in the limit g− 2� 1/γ, d, reduces to the expression obtained for heavy baryons,
Eq. (2.43).

3.4 Polarisation extraction from partially reconstructed decays

A novel analysis technique based on multivariate classifiers using reconstructed kine-
matic variables of the τ+ decays is employed to determine the rotation of the τ+ spin-
polarisation vector. In the following, the τ+ → π+π−π+ν̄τ is considered because of its
favourable features compared to other τ+ final states: one single undetectable neutrino,
a measurable decay vertex defined by the three hadron tracks and a large branching
fraction of (9.31± 0.05)% [24].

The optimal polarisation extraction technique for τ leptons exploited for LEP experi-
ments [125], cannot be directly applied in this case because the τ+ energy is not known.
Indeed, at the e+e− LEP collider τ+τ− pairs were produced from Z0 decays, the τ+ en-
ergy being Eτ =

√
s/2 ≈ m(Z0)/2 from energy conservation, while in proton-nucleus

collisions the centre-of-mass energy of the parton-parton collision is unknown. There-
fore, the angles between the 3π system and the crystal axes in the τ+ rest frame are not
precisely determined, and it is not possible to easily relate the τ+ polarisation with the
decay angular distribution. A novel technique is explored to extract the τ+ polarisa-
tion, in which the theoretical decay distribution is replaced by multivariate classifiers
taking into account the uncertainties related to the imperfect reconstruction of the decay,
without need of an explicit parametrisation of partial reconstruction effects.

For each crystal axis, a classifier discriminating τ+ full polarisation between positive
and negative axis direction is built. It is trained on simulated τ+ → π+π−π+ν̄τ decays
of channeled τ+ passing the selection requirements described in Sec. 3.2, in which full
±1 τ+ polarisation is set in turn along the crystal axes. The discrimination is based on
the variables describing the τ+ → π+π−π+ν̄τ decay distribution, referred hereafter with
the symbol ζ: the angle between the 3π system and the polarisation direction in the
τ+ rest frame, two- and three-pion invariant masses and the angles describing the 3π
decay plane orientation in the 3π helicity frame reached from the τ+ rest frame1. For
the determination of an approximate τ+ rest frame, the τ+ momentum magnitude is
estimated taking the mean expected value in bins of the 3π momentum magnitude and
angle formed with the τ+ decay direction. In absence of the undetectable τ+ production

1It is the coordinate frame in which the z axis coincides with the 3π momentum expressed in the τ+ rest
frame.



56 3.4 Polarisation extraction from partially reconstructed decays

vertex, the τ+ momentum direction is assumed to be that connecting the D+
s produc-

tion vertex and the τ+ decay vertex, following the curvature of the crystal channeling
plane. The vertex positions are smeared according to Gaussian distributions to mimic
experimental resolutions, assumed to be 13µm and 70µm for D+

s production vertices in
the longitudinal and transverse directions with respect to the beam, respectively, 100µm
and 1 mm for τ+ decay vertices. These values have been taken from the LHCb VELO de-
tector performances [126], in which primary pp collision vertices resolutions have been
chosen for theD+

s production vertices, while VELO decay vertices resolutions have been
multiplied by a factor 5 to mimic the larger uncertainties in the reconstruction of very
boosted τ+ decays.

The polarisation component si is extracted by fitting the classifier distributionWi(η),
in which η ≡ η(ζ) is the classifier response, with templates representing the response
distributionsW±i (η) for si = ±1 polarisations,

Wi(η) =
1 + si

2
W+
i (η) +

1− si
2
W−i (η)

=
W+
i (η) +W−i (η)

2
+ si
W+
i (η)−W−i (η)

2
. (3.11)

The statistical separation between templates, measuring the ability of the classifier to
discriminate between opposite polarisations, also represents the squared average event
Fisher information [125] or sensitivity to the polarisation (at si = 0) from maximum-
likelihood fits,

S2
i =

1

Nσ2
i

=

〈(
W+
i (η)−W−i (η)

W+
i (η) +W−i (η)

)2
〉
, (3.12)

in which σi is the statistical uncertainty on si.
The polarisation vector is obtained fitting independently each polarisation compo-

nent from the three classifier responses. The method is tested on simulated channeled
τ+ decays passing the selection requirements, with τ+ polarisation as produced by the
D+
s → τ+ντ decay, and compared against the analytical result, retrieving compatible

polarisation values. The template fits for the case of longitudinal polarisation generated
with a single bent crystal, for Multilayer Perceptron Networks classifiers are shown in
Fig. 3.2. Negligible differences are seen using either Multilayer Perceptron Networks or
Boosted Decision Trees [127] classifiers. The precision loss on the polarisation compo-
nents due to partial reconstruction can be estimated from the average event information
associated to the template fits, Eq. (3.12), compared to the ideal value of 0.58 reached in
case the complete kinematics of the τ+ decay is reconstructed [125]. The average event
information values are Sx ≈ Sy ≈ 0.42 and Sz ≈ 0.23, corresponding to an increase
of statistical uncertainies of a factor ≈ 1.4 for x, y polarisation components and a factor
≈ 2.5 for the sz component.

Studies with variants of the τ+ rest frame reconstruction algorithm, including the
one proposed in Ref. [128], show that the angle between the 3π system and the z axis in
the τ+ rest frame is very sensitive to the estimation of the τ+ momentum, this leading
to significantly different distribution between true and reconstructed values. On the
contrary, the angles between the 3π system and the x, y axes in the τ+ rest frame are
basically independent on the τ+ momentum. This behaviour is a consequence of the
large τ+ Lorentz boost in the z direction, and it explains the lower precision on the sz
polarisation component observed.

Summarising, it has been shown that this method is able to measure the τ+ polarisa-
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Figure 3.2: Template fit to Multilayer Perceptron Networks responses on simulated events for (top
left) x, (top right) y and (bottom) z components, for longitudinal polarisation generated by a single
bent crystal.
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tion from measurable quantities of its decay distribution, without the need of an explicit
parametrisation of the detector response and partial reconstruction effects, since differ-
ences in the reconstructed τ+ decay distributions between polarisation states are learned
by the classifiers from simulated decays. Therefore, a sufficiently accurate simulation (as
compared to the expected τ+ dipole moments uncertainties) of the experimental setup
and of the τ+ → π+π−π+ν̄τ decay is needed to apply this technique.

3.5 Sensitivity study

The vast majority of τ+ leptons produced in proton-nucleon interactions at ≈ 115 GeV
centre-of-mass energy comes from D+

s → τ+ντ decays. The corresponding cross section
is estimated to be σ[pp→ D+

s (→ τ+ντ )X] ≈ 0.98µb using the following inputs: the total
charm production cross section measured by LHCb in proton-helium collisions at

√
s =

86.6 GeV [112], Eq. (2.65), rescaled to
√
s = 114.6 GeV assuming a linear dependence on√

s, the fragmentation fraction f(c → D+
s ) = (9.25 ± 0.82)% [113], and the branching

fraction B(D+
s → τ+ντ ) = (5.55± 0.24)% [24].

The rate of τ+ leptons produced with 7 TeV protons on a fixed target can be estimated
as done for heavy baryons, Eqs. (2.62), (2.63),

Nτ+ =
PoT

A
σ[pp→ D+

s (→ τ+ντ )X]NT , (3.13)

while those reconstructed by the experimental setup can be expressed as in Eq. (2.64),

N reco
τ+ = Nτ+B(τ+ → π+π−π+ν̄τ )εCH(τ+)εDF(D+

s , τ
+)εdet. (3.14)

Here, εDF(D+
s , τ

+) includes both D+
s and τ+ decay flight requirements, i.e. that the τ+

lepton is produced before the crystal and decays after channeling through the whole
crystal length.

The largely dominant contribution to the statistical uncertainty on a and d can be
estimated from Eqs. (3.8) and (3.10). For small Φ (as γθC ∼ 10 and a′d ∼ 10−3) and
longitudinal initial polarisation,

σa ≈
1

Sys0,zγθC

1√
N reco
τ+

, σd ≈
2

Sxs0,zγθC

1√
N reco
τ+

, (3.15)

in which Si is the average event information obtained in Sec. 3.4. Negligibly small un-
certainties on θC , γ and s0, are assumed. Analogously, for transverse initial polarisation,

σa ≈
1

Szs0,yγθC

1√
N reco
τ+

, σd ≈
2

Sxs0,y(γθC)2a′
1√
N reco
τ+

. (3.16)

For given γ, N reco
τ+ , initial polarisation and average event information along the three

axes, the sensitivities are similar except for d from transverse polarisation, which has a
relative ∼ 10 suppression factor, which comes from the quadratic dependence on Φ in
Eq. (3.10).

An optimization of the single bent crystal configuration (initial longitudinal polari-
sation) has been performed to minimise the statistical uncertainty on the τ+ dipole mo-
ments, using the simulation described in Sec. 3.2. The optimal crystal values have been
found to be θC = 16 mrad and L = 8 cm for a germanium crystal; moreover minimal
uncertainties are found for channeled events satisfying p3π > 800 GeV/c (more details in
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Definition Quantity Value Unit

Target thickness T 2.5 cm

pp cross-section to D+
s (→ τ+ντ ) σ[pp→ D+

s (→ τ+ντ )X] 0.98 µb
Branching fraction [24] B (τ+ → π+π−π+ν̄τ ) 9.31%
τ mass [24] m 1776.86 MeV

Crystal length L 8 cm
Crystal curvature θC 16 mrad
3π momentum cut p3π > 800 GeV/c

Average Lorentz boost γ 775
Initial z polarisation s0,z −0.178
Combined channeling and

εCH(τ+)εDF(D+
s , τ

+) 7.68× 10−6

decay flight efficiency
Detector efficiency εdet 40%

Table 3.1: Values employed for the τ+ lepton EDM and MDM sensitivity study.

Ref. [120]).
For germanium crystal with optimal parameters, a longitudinal polarisation s0,z =

−0.178, a combined channeling and decay flight efficiency εCH(τ+)εDF(D+
s , τ

+) = 7.68×
10−6 and average Lorentz boost γ = 775 are obtained. Germanium crystals provide en-
hanced channeling efficiency over silicon ones, featuring higher potential walls thanks
to the higher Z nucleus charge, while keeping identical polarimeter characteristics. A re-
construction efficiency of 40% is assumed for a detector dedicated to fixed-target events.

Using the quantities summarised in Table 3.1, Eqs. (3.13), (3.14) and assuming a
dataset of 1017 PoT, about 8.1 × 105 fully channeled τ+ → π+π−π+ν̄τ decays can be
reconstructed. From Eqs. (3.15), (3.16), a statistical uncertainty on the anomalous τ+

MDM of 1.2× 10−3 can be obtained, sufficient to test SM predictions. A precision on the
gyroelectric factor of σd = 2.4×10−3, corresponding to a τ+ EDM at σδ ≈ 6.5×10−18e cm
is achievable.

More refined estimates have been obtained in Ref. [120], in which a and d sensitiv-
ities are assessed from a large number of pseudo-experiments generated and fit using
a probability density function based on the spin precession equation of motion and an-
gular distributions proportional to 1 + Sisik̂i, in which k̂ is the τ+ direction in the D+

s

helicity frame. This method provides uncertainties about a factor two larger than those
obtained analytically.

3.6 Conclusions

A novel method for the direct measurement of the τ+ electromagnetic dipole moments
has been presented with interesting perspective for a stringent test of the SM and search
of new physics. The experimental setup for the proposed measurement of heavy baryons
dipole moments using bent crystals can be applied also for τ+ leptons produced from
charm meson decays, in which a non-zero polarisation is produced by the kinematic
selection required by the channeling condition. Spin precession equations have been
derived for the case of small (≈ 10−3) anomalous MDM. A novel technique based on
multivariate classifiers has been tested to measure the τ+ polarisation from measured
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distributions of the partially reconstructed τ+ → π+π−π+ν̄τ decay. A sensitivity study
is performed considering a single bent crystal setup with a detector dedicated to fixed-
target collisions. The SM prediction for the τ+ anomalous MDM is shown to be exper-
imentally testable with a statistics of order 1017 protons on target; at the same time a
search for the τ+ EDM reaching 10−17e cm level can be performed.



Part II

Amplitude analysis of the
Λ+c → pK−π+ decay at LHCb





CHAPTER 4

The LHCb experiment

4.1 CERN and the Large Hadron Collider

The CERN (Conseil Européen pour la Recherche Nucléaire) is the European Council for
Nuclear Research, founded in 1952. The laboratory extends across the border between
Switzerland and France in the Geneva area, located between the Léman lake and the
Jura massif.

The jewel in the crown of the CERN facilities is undoubtedly the Large Hadron Col-
lider (LHC) particle accelerator [129], which is the most powerful particle accelerator to
date. It is built inside a 26.7 km circular tunnel at a depth of about 100 m underground
and provided proton-proton collisions at a centre of mass energy

√
s of 7 TeV from 2010

to 2011, 8 TeV during 2012 and up to 13 TeV during Run 2 (2015-2018). For Run 3 op-
erations, which will start in 2021 after the ongoing Long Shutdown 2 phase, the LHC is
expected to reach its design pp collision energy of 14 TeV. LHC is also able to operate
with heavy ions, notably proton-lead and lead-lead collisions. The LHC is able to accel-
erate particles up to the TeV energy scale thanks to its superconducting radio-frequency
cavities, generating electric potentials up to 2 MV each. A system of dipole supercon-
ducting magnets provides the necessary ≈ 8 T magnetic field to maintain particles into
circular trajectory, while quadrupole and octupole magnets focus the particle bunches to
minimise beam losses. Superconducting magnets operate at 1.9 K temperature, which is
achieved thanks to a huge cooling system based on superfluid helium.

The CERN accelerator complex, Fig. 4.1, is composed by a chain of accelerators of in-
creasing dimension allowing to gradually boost the energy of protons or heavy ions up
to the LHC operational energy. The proton acceleration chain starts with the extraction of
protons as nuclei of hydrogen atoms. These are accelerated to 50 keV energy and lead to
the LINAC2 linear accelerator in which they reach 50 MeV energy. Then, protons reach
1.4 GeV energy in the Proton Synchrotron Booster and 26 GeV in the Proton Synchrotron
from which they are injected into the Super Proton Synchrotron (SPS), which accelerates
protons up to 450 GeV energy. Finally, protons are transferred to the LHC, where pro-
tons are accelerated in opposite directions into separate beampipes and forced to collide
in four interaction points (IP) where the seven current LHC experiments are located: AT-
LAS and LHCf (IP1), ALICE (IP2), CMS and TOTEM (IP5), LHCb and MoEDAL (IP8).
Protons running in the LHC are organised in bunches up to 1.15 × 1011 protons, with a
maximum of 2808 circulating bunches in the ring. The bunch crossing rate is 40 MHz,
corresponding to an interval of 25 ns between two consecutive collisions. A key param-
eter of an accelerator is the instantaneous luminosity L(t), representing the number of
collisions provided as a function of time. The luminosity increases not only with the
intensity of the colliding beams but also reducing the region in which proton bunches
interact. The LHC features a nominal peak instantaneous luminosity of 1034cm−2s−1.

63
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Figure 4.1: from cdsweb.cern.ch. The CERN accelerator complex.
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4.2 Overview of the LHCb experiment

The LHCb experiment is the flavour physics experiment on the Large Hadron Collider
(LHC) at CERN [130]. Its main purpose is the indirect search of beyond the SM physics
effects by making very precise measurements on heavy hadron decays, especially by
studying rare processes and CP -violating signatures. However, the LHCb experiment
has significantly contributed also to other particle physics studies, thanks to its particular
geometry: heavy baryon spectroscopy, with the discovery of new quark bound states;
searches for possible new light particles; studies of heavy ion (proton-lead and lead-lead)
collisions. Moreover, LHCb is the only experiment at the LHC able to collect proton-gas
fixed-target collisions thanks to its internal gas target SMOG.

The LHCb detector has been specifically designed for flavour physics at the LHC ac-
celerator. Its peculiar structure is much more similar to a fixed-target experiment design
than to the “barrel plus endcaps” design which characterises the other large detectors
at the LHC. This geometry was chosen following the peaked angular distributions at
low polar angles of bb quark pairs, Fig. 4.3, which are mainly produced from the fu-
sion of two (or more) gluons radiated by the proton quark constituents. Beauty particles
are therefore very likely to be produced in the same forward (or backward) direction
at very small angles with respect to the beam axis. A large number of beauty particles
are produced thanks to the high bb cross-section at TeV energy scale. For example, at√
s = 7 TeV pp center of mass energy the cross-section to produce beauty hadrons inside

the LHCb acceptance is [131]

σ(pp→ HbX) = (75.3± 5.4stat ± 13.0syst) µb (4.1)

much larger than at B-factory experiments using e+e− collisions, which exploit the
electromagnetic production process. Moreover, LHCb has access to many more beauty
hadron states than B-factories, like unprecedented samples of beauty baryons.

The LHCb detector is designed as a single-arm forward spectrometer with an approx-
imate angular acceptance from 10 mrad to 300 mrad in the magnet bending plane and to
250 mrad in the non-bending plane, which corresponds to a pseudorapidity1 range of
2 < η < 5. Fig. 4.2 presents the layout of the LHCb detector and of its subdetectors.
The tracking system, described in Sec. 4.2.1 is composed by: the Vertex Locator (VELO),
which is able to measure the heavy hadron decay vertices displaced from the pp col-
lision point; the TT and T1,T2,T3 stations, tracking charged particles before and after
the magnet, respectively, to provide momentum and charge measurements. The parti-
cle identification information is obtained from different systems for different particles,
Sec. 4.2.2: two ring-imaging Čerenkov (RICH) detectors provide particle identification
mainly for charged hadrons, the calorimeters identify electrons and neutral photons, the
Muon system identifies muon tracks. The trigger system deployed for Run 2 to effec-
tively select only the interesting pp collision events is presented in Sec. 4.2.3. The SMOG
system to collect proton-gas fixed-target collisions is described in Sec. 4.2.4.

The LHCb experiment in Run 2 operated at a nominal average luminosity of 4× 1032

cm−2s−1, much smaller than the luminosity delivered to ATLAS and CMS detectors, in
order to have a smaller number of interactions, about one pp collision per bunch cross-
ing. This choice is needed for a good track reconstruction; for instance, multiple pp
interactions in the same event may be mistaken for heavy hadron decay vertices. The
luminosity at the LHCb interaction point is levelled during LHC fills by changing the

1Pseudorapidity is defined as η = − ln(tan(θ/2)), θ being the angle measured with respect to the beam
axis.
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Figure 4.2: from cdsweb.cern.ch. Lateral view of the LHCb detector.
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Figure 4.3: from lhcb.web.cern.ch. Simulated bb angular distribution at
√
s = 14 TeV. The red

region corresponds to the LHCb detector acceptance.

transversal distance between the two beams, to keep a stable instantaneous luminosity,
within a ±5% range. This allows to reduce effects of the luminosity decay due to proton
beam losses, like systematic uncertainties due to different detector occupancies, and to
keep the same trigger configuration during a fill.

4.2.1 Tracking system

Starting from the pp interaction point, the Vertex Locator (VELO) [132] is the first subde-
tector, which provides precise measurement of the track coordinates close to the inter-
action point, allowing the LHCb experiment to reconstruct displaced decay vertices of
charm and beauty hadron decays.

The VELO system consists of 21 silicon stations placed along the beam direction, each
one composed by one left and one right module. Each module consist of two sensors: a
radial (R-sensor) and an angular one (Φ-sensor). The azimuthal coverage is about 182◦

for each sensor, giving a small overlap between the right and left modules in order to
simplify the relative alignment and to guarantee a full azimuthal acceptance. In addition
to the 42 VELO stations, 4 Pile-Up (PU) veto modules containing only an R-sensor are
installed in the opposite direction with respect to the rest of the LHCb detector, and
used as a pile-up veto counter for the Level-0 trigger. The inter-strip pitch of the silicon
sensors varies from approximately 40 to 100 µm. The VELO single hit resolution ranges
between 4 and 20 µm, depending on the inter-strip pitch and on the track angle. The two
modules are closed only when the proton beam is in stable condition, because the closed
VELO approaches the proton beam down to 8 mm distance. Otherwise, e.g. during
injection phase, the modules are mechanically opened to avoid destructive interactions
with the beam. The VELO system configuration and a schematic view of the sensors are
shown in Fig. 4.4.

The VELO system is able to measure tracks in the full LHCb angular acceptance and
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Figure 4.4: from Ref. [130]. (top) VELO detector layout and VELO sensors in (bottom left) closed
and (bottom right) open configuration.

partially in the backward hemisphere to improve the primary vertex resolution. The
error on the primary vertex position mainly depends on the number of tracks produced
in a pp collision, Fig. 4.5. For a typical event, the resolution in the beam direction is 71
µm and 13 µm in the perpendicular direction [126]. The resolution on the track impact
parameter (IP), essential quantity to identify decay vertices displaced from the primary
vertex, is at tens of µm level, inversely proportial to the track transverse momentum,
Figure 4.6.

Besides the VELO detector, the tracking system consists of a silicon Inner Tracker
(IT) [133] and a gas-based Outer Tracker (OT) [134]. It provides efficient reconstruction
and precise momentum measurement of charged tracks, track directions for ring recon-
struction in the RICH detectors and information for the higher level trigger.

The tracking detectors are arranged in four stations. The Tracker Turicensis (TT) is lo-

Figure 4.5: from Ref. [126]. Primary vertex (left) x,y and (right) z coordinate resolutions measured
by the VELO detector as a function of the number of tracks in the pp event.
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Figure 4.6: from Ref. [126]. Impact parameter x coordinate resolution measured by the VELO
detector as a function of the inverse of the track transverse momentum.

cated before the magnet, after RICH1 detector. Due to its reduced dimensions it contains
only IT modules. Three stations (T1, T2, T3) are located after the magnet, before RICH2
detector, and they are composed by an IT module located in an elliptical shaped region
around the beam pipe and an OT one which covers most of the acceptance. Indeed, in
the region covered by the IT the particle flux is about 20 times bigger than the flux in
the OT region, so IT employs a different technology to achieve a finer granularity and a
better radiation hardiness.

The IT system employs silicon microstrips detectors with a strip pitch of 183 µm for
the TT and 198 µm for other stations. To improve track reconstruction, these detectors
are composed by four layers with vertical strips in the first and in the last layer, whereas
the other two layers are rotated by stereo angles of ±5◦, to provide tracking information
in the vertical direction, Fig. 4.7. Hit resolutions have been measured to be 59 and 50 µm
for the TT and other IT modules, respectively. The OT system is composed by an array
of straw tubes modules each one consisting of two panels and two sidewalls forming a
stable, gas-tight box containing up to 256 straw tubes. Each tube has an inner diameter
of 4.9 mm, filled with a mixture of argon (70%) and carbon dioxide (28.5%) and oxygen
(1.5%), which guarantees fast drift time and a sufficient drift-coordinate hit resolution of
about 200 µm. Like the silicon tracker, also OT modules are composed by four layers
arranged in a similar geometry.

The momentum of charged tracks is measured from the curvature induced by the
dipole magnetic field between TT and T1, T2, T3 tracking stations. The field is generated
by a dipole warm magnet [135], composed by two trapezoidal coils bent at 45◦ on the
two transverse sides and placed mirror-symmetrically, Fig. 4.8. It has a bending power
(given by the integrated magnetic field) of 4 Tm. A very good momentum resolution of
charged particles is reached by the LHCb tracking system, with a relative uncertainty of
0.5% at low momentum up to 1.0% for p = 200 GeV/c [115], Fig. 4.9.

4.2.2 Particle identification system

Charged hadron identification in LHCb is performed by means of an high performance
Ring-Imaging Čerenkov system composed by two detectors aiming at different momen-
tum ranges [136]. They reconstruct Čerenkov light emitted by charged particles travers-
ing a medium faster than the speed of light in the medium. The angle of Čerenkov
radiation emission with respect to the particle momentum θC is related to the particle
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Figure 4.7: from Ref. [130]. Layout of the third TT detection layer. Different readout sectors are
indicated by different shadings.

Figure 4.8: from lhcb.web.cern.ch. The LHCb magnet.
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Figure 4.9: from Ref. [115]. Relative uncertainty on charged tracks momentum.

velocity as

cos(θC) =
1

nβ
, (4.2)

in which n is the medium refractive index. Combining this information with the mo-
mentum measured by the tracking system, the particle mass can be obtained.

RICH1 is located upstream of the magnet and it identifies low momentum particles
2 < p < 60 GeV/c. It employs C4F10 gas radiators and has a polar angle acceptance
from 25 to 300 mrad. RICH2, located downstream of the magnet and the tracking sta-
tions, has a smaller angular acceptance (from 15 to 120 mrad in the horizontal plane
and from 15 to 100 mrad in the vertical plane) and it covers the high momentum range,
15 < p < 100 GeV/c, by means of aCF4 radiator. RICH1 and RICH2 layouts are shown in
Fig. 4.10. Čerenkov light is focused onto the photon detector planes using tilted spherical
mirrors and secondary plane mirrors, in order to reflect the image out of the spectrom-
eter acceptance. The baseline photon detectors are multianode photomultiplier tubes
(MaPMT).

The reconstructed Čerenkov angles for single tracks are reported in (left) Fig.4.11,
showing well resolved bands for muons, pions, kaons and protons over most of the
covered momentum range. The ability of kaon identification using delta log-likelihood
differences for the two hypothesis is shown in (right) Fig.4.11.

The LHCb calorimeter system [137] has been devised for the identification of high
transverse energy hadrons, electrons and photons candidates. It measures their energy
and position providing essential information for the Level-0 trigger candidate selection.
Its structure consists of a single-layer pre-shower detector (PSD) made by 14 mm thick
lead plates and 10 mm square scintillators, followed by an electromagnetic calorimeter
(ECAL) and an hadronic calorimeter (HCAL). A scintillator pad detector (SPD) is located
before the PSD.

The ECAL is made up of 70 layers consisting of 2 mm thick lead plates and 4 mm
thick polystyrene-based scintillator plates. It has the important function of detecting
photons with adequate granularity and energy resolution for prompt photons and π0

reconstruction. For pT < 2 GeV/c neutral pions are mainly reconstructed combining two
separate clusters in the ECAL (resolved π0), while for greater transverse momenta the
two photons are measured as a single cluster (merged π0).

The HCAL consists of 16 mm thin iron plates spaced with 4 mm thick scintillating
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Figure 4.10: from Ref. [130]. (left) RICH 1 and (right) RICH 2 schemes.

Figure 4.11: from Ref. [115]. (left) Reconstructed Čerenkov angle for isolated tracks, as a function
of track momentum in the C4F10 radiator. (right) Kaon identification efficiency and pion misiden-
tification rate measured as a function of track momentum.
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Figure 4.12: from Refs. [130], [139]. (left) Side view of the Muon System and (right) Station layout
with the four regions R1-R4.

tiles arranged parallel to the beam pipe.
The energy resolution has been measured to be

σE
E
' 9%√

E[ GeV]
⊕ 0.8%,

σE
E
' 69%√

E[ GeV]
⊕ 10%, (4.3)

for the ECAL and the HCAL, respectively. The good resolution of the ECAL allow to
effectively distinguish electrons from charged hadrons, while the HCAL information is
employed for the Level-0 trigger to select purely hadronic events.

The muon system [138] consists of five tracking stations placed along the beam axis,
the first one (M1) lies in front of the calorimeters and the other four, interleaved with
three 80 cm thick iron filters to stop all other charged particles, lie after the calorimeters,
(left) Fig. 4.12. The muon stations are equipped with Multi Wire Proportional Cham-
bers (MWPCs) except for the inner region of M1, where Gas Electron Multiplier (GEM)
chambers are employed for their better ageing properties, as they have to stand a greater
particle flux.

The inner and outer angular acceptances of the muon system are 20 (16) mrad and
306 (258) mrad in the bending (non-bending) plane, similar to the tracking system accep-
tances. This corresponds to a geometrical acceptance of about 20% of the full solid angle
for muons coming from b quark decays. Each station is subdivided in four regions R1-R4
whose linear dimensions and logical pad size scale in the ratio 1:2:4:8 with the beam dis-
tance, (right) Fig. 4.12. The detector granularity varies such that its contribution to the
muon pT resolution compensates the multiple-scattering contribution. This latter con-
tribution increases as the muons energy decrease, therefore the detector resolution must
increase with the distance from the beam axis because high-momentum tracks tend to
be closer to the beam.

The muon system has been designed to achieve a 95% trigger efficiency for events
producing a muon, the trigger algorithm requiring a five-fold coincidence in a time lapse
smaller than the pp collision period (25 ns). The lower momentum threshold for efficient
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Figure 4.13: from Ref. [139]. (top left) Muon trigger efficiency εIM and (others) charged hadron-
to-muon misidentification rates P(h→ µ).

muon triggering is about 6 GeV/c. Muon trigger efficiency and charged hadron-to-muon
misidentification rates are reported in Fig. 4.13.

4.2.3 Trigger system in Run 2

The amount of raw data collected by the LHCb detector in 40 MHz pp collisions is too
big to be stored, moreover, only few pp interactions produce interesting events. The
LHCb trigger system for Run 2 [140], which improved the original Run 1 version [141],
has been developed to reduce the event rate to be recorded down to about 12.5 kHz,
which is small enough to allow to store the selected events for the offline analysis. The
trigger system consist of two main selections: the Level-0 trigger (L0) and the High Level
Trigger (HLT). The trigger scheme is summarised in Fig. 4.14.

L0 is hardware-implemented and reduces the event rate at 1 MHz, at which the detec-
tor can be read out. L0 selects candidates combining information from calorimeter and
muon system, selecting events featuring high transverse momentum and/or energy, at
few GeV level. HLT is software-based and reduces the event rate at 12.5 kHz using a
full event reconstruction based on particle identification, track and vertex reconstruc-
tion and impact parameter measurements. It consists of two different levels HLT1 and
HLT2 acting sequentially, HLT1 being designed to be faster than HLT2 to cope with the
L0 output event rate. The HLT1 performs an inclusive selection of events based on one-
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40 MHz bunch crossing rate

450 kHz
h±
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µ/µµ

150 kHz
e/γ

L0 Hardware Trigger : 1 MHz 
readout, high ET/PT signatures

Software High Level Trigger

12.5 kHz (0.6 GB/s) to storage

Partial event reconstruction, select 
displaced tracks/vertices and dimuons

Buffer events to disk, perform online 
detector calibration and alignment

Full offline-like event selection, mixture 
of inclusive and exclusive triggers

LHCb 2015 Trigger Diagram

Figure 4.14: The LHCb trigger diagram for Run 2.

or two-track signatures, on the presence of muon tracks displaced from the PVs, or on
dimuon combinations in the event. Events selected by the HLT1 trigger are buffered to
disk storage, so they can be further processed during inter-fill periods, and the detec-
tor can be calibrated and aligned before running the HLT2 stage. Once the detector is
aligned and calibrated, events are passed to HLT2, in which a full reconstruction is per-
formed, which allows for a wide range of inclusive and exclusive final states to trigger
the event.

4.2.4 SMOG system

The system for measuring overlap with gas (SMOG) device, has been originally designed
to perform precise luminosity measurements [142] thanks to “beam-gas imaging” lu-
minosity calibration; indeed it allowes LHCb to operate as a fixed-target experiment,
extending its initial physics reach. The SMOG system, Fig. 4.15, injects noble gases in
the beam pipe section crossing the VELO detector, with pressures of order 10−7 mbar,
two orders of magnitude higher than the typical pressure of the LHC vacuum. SMOG
gives the unique opportunity to study nucleus-nucleus and proton-nucleus collisions on
various targets. Thanks to the very high boost of the proton-nucleus system, the LHCb
acceptance covers the backward rapidity hemisphere in the center-of-mass system of the
reaction y∗, in the range −2.5 < y∗ < 0.

4.3 LHCb data samples

The pp collision data samples recorded by the LHCb experiment are summarised in
Fig. 4.16, in which the integrated luminosity and the circulating proton beams energy
is reported for each year of data taking. LHCb has recorded a total of ≈ 9 fb−1, of which
≈ 6 fb−1 at

√
s = 13 TeV during Run 2, and ≈ 3 fb−1 at

√
s = 7− 8 TeV during Run 1.
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Figure 4.15: from Ref. [143]. The SMOG gas feed system.

Figure 4.16: from lhcb.web.cern.ch. Integrated luminosity recorded by the LHCb experiment
in pp collisions. The legend reports the year of data taking and the energy of the circulating proton
beams .
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Figure 4.17: from lhcb.web.cern.ch. Heavy ion pPb and PbPb collision samples recorded by
the LHCb experiment.

Figure 4.18: from lhcb.web.cern.ch. SMOG proton-gas fixed-target samples recorded by the
LHCb experiment.

LHCb has also recorded heavy ion samples in pPb and PbPb collision mode, sum-
marised in Fig. 4.17, and proton-gas fixed-target SMOG events, Fig. 4.18. Since the den-
sity of the gas is known only at 10% level, the exact luminosity of the SMOG fixed-
target data samples can be measured independently from proton-electron elastic col-
lisions [144]. To date, the luminosity measurement has been performed only for the
proton-helium data samples collected in 2016.

4.4 LHCb upgrade

At the time of writing this thesis, the LHCb experiment is undergoing a major upgrade,
which will make LHCb able to run at a luminosity of 2 × 1033 cm−2s−1, five times the
nominal Run 2 value, with a target integrated luminosity of 50 fb−1 to be recorded dur-
ing Run 3 and 4. The LHCb spectrometre used in Run 1 and 2 is not suitable for such
a rate of pp collisions, in particular due to perfomance degradation with increasing de-
tector occupancy, limits of the trigger system and insufficient radiation hardness of the
tracking detectors. The major features of the upgraded LHCb experiment concern trig-
ger and tracking systems.
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The new trigger strategy will be software-based only, with no hardware selection
anymore [114]. All the subdetectors will be read out at the 30 MHz rate of pp inelastic
collisions, and raw data processed by a dedicated computing farm. A two-level software
trigger will select the interesting events to be stored and will perform real-time detector
calibration and alignment. The complete reconstruction performed by the second soft-
ware level will produce data ready for offline analysis. This trigger scheme will allow to
increase significantly the efficiency for a broad range of LHCb physics channels.

New detectors will replace the tracking system [145], all featuring better tracking
performances and increased radiation hardness: the new vertex locator will consist of
55×55µm pixel sensors, able to move down to 5 mm from the beam; the tracking stations
before the magnet will be replaced by the upstream tracker (UT), consisting of silicon
microstrips with finer segmentation than before; the tracking stations after the magnet
will be replaced by a scintillating fibre tracker (SciFi), featuring spatial resolutions of
≈ 70µm.

Particle identification detectors will also undergo updates [146]. The RICH1 detector
will have a modified optics and mechanics to reduce occupancy, with new multianode
photomultipliers with finer granularity. The calorimeter system has been adapted to
withstand the higher particle fluxes, lowring the photomultiplier tubes gain. SPD and
PS detectors, as well as the first muon station will be removed. New read-out electronics
have been developed for all subdetectors, to enable their read-out at 30 MHz frequency.

The SMOG internal gas target will also be upgraded to SMOG2 [143]. The main ele-
ment of SMOG2 is a storage cell for the injected gas, to be installed at the upstream edge
of the VELO, coaxial with the LHC beam. Its main advantage is the possibility to reach
effective areal gas densities (and thus luminosities) higher by one order of magnitude
with respect to SMOG by injecting gas at the same flow rate. Moreover, SMOG2 will al-
low to inject gas species other than noble gases, a more precise determination of the gas
density (and luminosity), and a better defined interaction region. In principle, SMOG2
could also run in parallel with pp collision runs, if fixed-target collisions are proved to
not interfere with pp data taking.

4.4.1 Future plans

Besides the ongoing upgrade, the LHCb collaboration is considering the future detector
upgrades to take place during Long Shutdown 3 (upgrade Ib) and 4 (upgrade II) [147],
with the goal of fully exploiting the LHC potential for flavour physics, aiming at 300
fb−1 of pp collisions to be recorded during Run 5 and 6. A number of projects are under
consideration to improve detector granularity and radiation hardness, improve cover-
age for low pT tracks and the inclusion of timing information in tracking (4D tracking),
which would enable to effectively distinguish different collision vertices. The current
and foreseen LHCb upgrades within LHC schedule are summarised in Table 4.1, along
with the recorded and planned integrated luminosities in pp collisions.

4.5 LHCb analysis software

All LHCb analysis software is developed under Gaudi [148] framework, an experiment
independent open project providing interfaces and services for building HEP experi-
ment frameworks for event data processing applications. Dedicated packages take care
of the different steps necessary to obtain completely reconstructed candidates from raw
data as well as accurate event simulations describing both particle physics and detector
response.
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LHC phase Years LHCb upgrades Recorded/Planned
∫
Ldt

Run 1 2010-2012 3 fb−1

Long Shutdown 1 2013-2014
Run 2 2015-2018 6 fb−1

Long Shutdown 2 2019-2020 Upgrade I
Run 3 2021-2023
Long Shutdown 3 2024-2025 Upgrade Ib
Run 4 2026-2029 50 fb−1

Long Shutdown 4 2030 Upgrade II
Run 5 2031-2033
Long Shutdown 5 2034
Run 6 2035-2037 300 fb−1

Table 4.1: The LHC schedule, with the planned LHCb experiment upgrades. Integrated luminosi-
ties refer to pp collisions.

4.5.1 Offline data reconstruction

Data selected by both L0 and HLT trigger levels, consisting of digitised data coming from
the different subdetectors, are stored for the offline analysis. Candidates reconstruction
is performed by Brunel [149] package: it takes care of track identification starting from
measured hits in each detector, reconstructs particles momentum and energy as well
as primary and secondary vertexes (derived from the intersection of two or more tracks)
and performs the particle identification (PID) process combining data from RICH, ECAL,
HCAL and muon system to compute efficient PID variables.

Next, data go through the stripping process, in which candidates are divided into
categories called streams grouping decays with common features. For each stream sev-
eral loose selection criteria called stripping lines are defined. Each stripping line is a set
of standard requirements for restricting the search for a particular decay channel to a
subset of the whole data. The stripping procedure as well as the complete decay chain
reconstruction is performed by DaVinci [150] package.

4.5.2 Monte Carlo simulation

Simulated events generated with the Monte Carlo (MC) method are extensively used in
particle physics analyses. MC dataset production process is carried out by Gauss [151]
package, interfaced with specific packages for handling generation and simulation phases.
Generation of the physical process including the proton-proton interaction described by
the known theoretical models and the subsequent hadronisation process is performed by
PYTHIA [123] package, simulation of the mother B particle decay of interest is done by
EVTGEN [124] package, in which final-state radiation is generated using PHOTOS [152]
package. Heavy baryon events produced in heavy nuclei collisions are obtained combin-
ing heavy baryon decays generated from proton-proton collisions with minimum bias
heavy nuclei collisions generated with the EPOS [153] package. The simulation phase
consisting in describing the interaction among particles and detectors, taking into ac-
count all the geometric and material details of each subdetector, is made by Geant4 [154]
package. Output produced by Gauss package is further elaborated by Boole [155]
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package, the LHCb digitisation application, simulating the detector response, the read-
out electronics behaviour and also the Level-0 trigger level. Its output, digitised data
reproducing real data coming from the real detector, are then reconstructed exactly in
the same way as real data.



CHAPTER 5

Amplitude analysis of the Λ+
c → pK−π+ decay at LHCb

5.1 Motivation

The weak interaction, charged-current mediated, Cabibbo favoured Λ+
c → pK−π+ de-

cay is the most abundant decay mode of theΛ+
c baryon, with a known branching fraction

of (6.35 ± 0.33)% [24], making it the most suited channel to study the Λ+
c baryon prop-

erties, like polarisation and electromagnetic dipole moments. Indeed, two-body decays
like Λ+

c → pK0
S or Λ+

c → Λπ+, which are characterised by simple angular distributions,
feature lower branching fractions / 1% and a reduced detector reconstruction efficiency
for the presence of strange particles with lifetimes of order 10−10 s. The latter is very
relevant for fixed-target experiments performed with protons at the TeV energy, where
the large Lorentz boost increases the typical strange particle mean flight distances up to
tens of meters.

Nonetheless, the Λ+
c → pK−π+ decay structure is poorly known to date, since the

only amplitude analysis ofΛ+
c → pK−π+ decays was performed by the E791 experiment

at Fermilab on a data sample of ≈ 1000 candidates only [71]. Moreover, the amplitude
model employed in the E791 amplitude analysis is not correct, since the rotation of the
final proton spin for different decay chains to a reference helicity frame, as in Eq. (1.52),
is missing.

A precise amplitude analysis of the Λ+
c → pK−π+ decay, including the extraction of

the Λ+
c polarisation, is of fundamental interest beyond the determination of its interme-

diate resonance structure. A method to extract the Λ+
c baryon polarisation is essential for

the proposed search of charm baryon electric and magnetic dipole moments using bent
crystals at LHC(b), Chapter 2. As discussed in Sec. 1.3.2, Λ+

c polarisation measurements
are closely related to the c-quark polarisation, allowing to study both new physics contri-
butions and the non-perturbative QCD regime hadronisation process [64]. For example,
the inclusion of a Λ+

c → pK−π+ amplitude model in Λ0
b → Λ+

c l
−ν̄l angular analyses

increases the sensitivity to possible beyond the SM physics contributions [82]. Methods
to perform angular analyses of semileptonic b → clν processes even at hadron collider
experiments like LHCb have been proposed [156].

The amplitude analysis of the Λ+
c → pK−π+ decay allows to study parity viola-

tion, e.g. by measuring the unknown effective decay asymmetry parameters α relating
the Λ+

c polarisation to the quasi two-body decay distribution of spin 1/2 intermediate
resonances,

dN

d cos θR
∝ 1 + α cos θR, (5.1)

in which cos θR = P · p̂(R) is the cosine of the angle between the polarisation vector and
the direction of the intermediate resonance in the Λ+

c rest frame. A linear dependence
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on cos θR arise from the interference of parity conserving and parity violating ampli-
tudes [16]. The α parameters can be extracted from the resonance contribution to the
amplitude fit by integrating over all the decay angles except cos θR. Knowledge of the
decay structure is also useful for performing localised CP -volation searches in the de-
cay phase space. These can be carried out in a model-dependent way by comparing
amplitude model fits to baryon and antibaryon decays, or in a model-independent way
by tailoring the partition of the phase space according to the known intermediate reso-
nances to localise and optimise the sensitivity to CP -violation [83].

The LHCb experiment has recorded millions of Λ+
c → pK−π+ candidates, both from

semileptonic Λ0
b → Λ+

c µ
−X decays and from prompt pp collisions, allowing to perform

very detailed studies of its decay structure and to measure the Λ+
c polarisation in both

weak and strong interaction production processes. In this part of the thesis, the sta-
tus of the Λ+

c → pK−π+ amplitude analysis from semileptonic production at LHCb is
presented. In Sec. 5.2 the Λ+

c → pK−π+ amplitude model is built following the helicity
formalism detailed in Sec. 1.4; the selection of Λ+

c → pK−π+ candidates from LHCb data
samples, including combinatorial and physical background rejection, is presented in
Sec. 5.3. The amplitude fits are detailed in Sec. 5.4: in particular two-dimensional Dalitz
plot fits are shown in Sec. 5.4.4 and full phase space five-dimensional fits in Sec. 5.4.5.
The conclusions of the amplitude analysis are summarised in Sec. 5.5.

5.2 The Λ+
c → pK−π+ amplitude model

5.2.1 Λ+
c baryon polarisation frame

Charm baryons originated in Λ0
b semileptonic decays can be polarised thanks to the

structure of the charged current weak force mediating semileptonic decays. Since par-
ity is maximally violated in such transitions, the baryon polarisation is expected to be
mostly parallel to the Λ+

c momentum as seen from the Λ0
b rest frame. Therefore, the

“ideal” polarisation frame would be the helicity frame of the Λ+
c baryon reached from

the Λ0
b rest frame. However, the presence of an undetectable neutrino in the Λ0

b decay
prevents a precise reconstruction of the Λ0

b rest frame, making the mentioned polarisa-
tion frame hardly accessible.

In this analysis the helicity frame of theΛ+
c baryon reached from the laboratory frame

is employed, which is well defined since the Λ+
c decay is fully reconstructed. However,

this choice leads to a dilution of the original polarisation since the actual quantisation
axis will be uncontrollably rotated event-by-event from the “ideal” one, because of the
unknown orientation of the Λ0

b decay in the laboratory frame.

The muon momentum is used to define the orthogonal polarisation axes, by choosing
the x-axis as the component of the muon momentum orthogonal to the Λ+

c momentum.
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Figure 5.1: Definition of the Λ+
c polarisation frame.

The three polarisation frame axes are thus defined as follows, Fig. 5.1,
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c
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c
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c
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p(Λ+

c )× p(µ−)∣∣p(Λ+
c )× p(µ−)

∣∣ , (5.2)

in which the Λ+
c and muon momenta are expressed in the laboratory frame.

5.2.2 Three-body decay phase space

A particle three-body decay is described by 5 degrees of freedom, resulting from 12 four
momentum components constrained by 3 mass requirements and 4 energy-momentum
conservation relations, which confines the daughters momenta to a plane in the rest
frame of the mother particle. For an unpolarised baryon, there is no preferred direction
in space and the decay is isotropic for rotational invariance. In this case, the decay plane
orientation is irrelevant and the decay is described by two variables only, which are usu-
ally chosen to be two of the three available two-body invariant masses (Dalitz variables)
since the phase space density is uniform over them. For the Λ+

c → pK−π+ decay, m2
pK−

and m2
K−π+ are selected. For non-zero polarisation the decay is no more isotropic and

the decay spatial orientation must be specified by the three Euler angles describing the
rotation from the Λ+

c polarisation frame to the decay plane reference frame.

The decay plane (DP) reference frame is chosen in such a way that the proton mo-
mentum defines the z axis, while the component of the kaon momentum orthogonal to
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Figure 5.2: Definition of the Euler angles describing the rotation from the Λ+
c polarisation frame to

the decay plane reference frame: (left) proton polar and azimuthal angles and (right) χ angle.

the proton momentum defines the x axis,

ẑDP = p̂(p)

x̂DP =
p(K−)− [p(K−) · p̂(p)] p̂(p)

|p(K−)− [p(K−) · p̂(p)] p̂(p)|

=
p(p)× p(K−)

|p(p)× p(K−)|
× p̂(p)

ŷDP = ẑDP × x̂DP

=
p(p)× p(K−)

|p(p)× p(K−)|
(5.3)

in which the momenta are expressed in the Λ+
c rest frame. With this definition the α

Euler angle is the azimuthal angle of the proton in the Λ+
c polarisation frame, φp, the β

angle is the polar angle of the proton, θp, and the γ angle is the signed angle formed by
the proton and the Λ+

c quantisation axis ẑΛ+
c

and the plane formed by the kaon and the
pion, named χ, Fig. 5.2. In formulae, following from Eq. (1.27),

φp = atan2(p̂(p) · ŷΛ+
c
, p̂(p) · x̂Λ+

c
)

θp = arccos
(
p̂(p) · ẑΛ+

c

)
χ = atan2(ẑΛ+

c
· (p̂(p)× p̂(K−)),−ẑΛ+

c
·
[
(p̂(p)× p̂(K−))× p̂(p)

]
) (5.4)

The five phase space variables are therefore chosen to be

Ω = (m2
pK− ,m

2
K−π+ , cos θp, φp, χ), (5.5)

so that the phase space density is uniform over the five variables. Their allowed range
is cos θp ∈ [−1, 1] and φp, χ ∈ [−π, π]. while the mass distributions are constrained to a
rounded-triangle shape in the (m2

pK− ,m
2
K−π+) plane (Dalitz plot, see Fig. 5.16).
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5.2.3 Amplitude model for the Λ+
c → pK−π+ decay

The amplitude model for the Λ+
c → pK−π+ decay is built exploiting the helicity for-

malism described in Sec. 1.4.4. Intermediate states can contribute to the decay for all
the three possible two-particle systems, so that amplitudes for Λ+

c → Λ∗(→ pK−)π+,
Λ+
c → ∆++∗(→ pπ+)K− and Λ+

c → K∗(→ K−π+)p decay chains must be considered.
Let’s first consider the decay chain Λ+

c → Λ∗(→ pK−)π+. The weak decay Λ+
c →

Λ∗π+ is described by Eq.(1.43),

AΛ
+
c →Λ

∗π+

m
Λ
+
c
,λΛ∗

(θΛ∗ , φΛ∗) = HΛ
+
c →Λ

∗π+

λΛ∗ ,0
D
∗1/2
m
Λ
+
c
,λΛ∗

(φΛ∗ , θΛ∗ , 0), (5.6)

in which mΛ+
c

is the Λ+
c spin projection along the Λ+

c quantisation axis, λΛ∗ the Λ∗ helic-
ity and θΛ∗ , φΛ∗ the polar and azimuthal angles of the Λ∗ momentum in the Λ+

c frame.
Angular momentum conservation relations Eq. (1.45) imply there are 2 allowed helicity
couplings, λΛ∗ = ±1/2, to fit for each resonance whatever JΛ∗ is. The two couplings are
independent of each other because of parity violation in the weak Λ+

c → Λ∗π+ decay.
The strong decay Λ∗ → pK− is described by

AΛ
∗→pK−

λΛ∗ ,λΛ
∗

p
(θΛ

∗

p , φΛ
∗

p ) = HΛ
∗→pK−

λΛ∗p ,0
D∗JΛ∗
λΛ∗ ,λΛ

∗
p

(φΛ
∗

p , θΛ
∗

p , 0)R(m2
pK−), (5.7)

in which R(m2
pK−) is the lineshape of the Λ∗ resonance. Since strong decays conserve

parity the two helicity couplings corresponding to λΛ
∗

p = ±1/2 are related by Eq. (1.46),

HΛ
∗→pK−
−λΛ∗p ,0

= −PΛ∗(−1)JΛ∗−1/2HΛ
∗→pK−

λΛ∗p ,0
, (5.8)

in which PΛ∗ is the parity of the Λ∗ resonance and the proton and kaon parities Pp = 1,
PK = −1 have been inserted. In the fit model these couplings can not be determined

independently of HΛ
+
c→Λ

∗π+

λΛ∗ ,0
couplings, so that they are absorbed into the latter setting

them as HΛ
∗→pK−

+1/2,0 = 1 and HΛ
∗→pK−
−1/2,0 = −PΛ∗(−1)JΛ∗−1/2, with zero imaginary parts.

The angles φΛ
∗

p and θΛ
∗

p are the azimuthal and polar angles of the proton momentum in
the Λ∗ helicity frame, while the proton helicity λΛ

∗

p is defined in the proton helicity frame
reached from the Λ∗ resonance.

Considering now the decay chain Λ+
c → ∆++∗(→ pπ+)K−, the weak decay Λ+

c →
∆++∗K− is described by

AΛ
+
c →∆

++∗K−

m
Λ
+
c
,λ∆++∗

(θ∆++∗ , φ∆++∗) = HΛ
+
c →∆

++∗K−

λ∆++∗ ,0
D
∗1/2
µ,λ∆++∗

(φ∆++∗ , θ∆++∗ , 0), (5.9)

with two helicity couplings corresponding to λ∆++∗ = ±1/2 to fit for each resonance, as
for the Λ∗ decay chain. The strong decay ∆++∗ → pπ+ amplitude is written as

A∆
++∗→pπ+

λ∆++∗ ,λ∆
++∗

p

(θ∆
++∗

p , φ∆
++∗

p ) = H∆
++∗→pπ+

λ∆++∗
p ,0

D
∗J∆++∗

λ∆++∗ ,λ∆
++∗

p

(φ∆
++∗

p , θ∆
++∗

p , 0)R(m2
pπ+),

(5.10)
in which φ∆

++∗

p and θ∆
++∗

p are defined in the ∆++∗ helicity frame, and λ∆
++∗

p in the
proton helicity frame reached from the∆++∗ resonance. In the fit model the strong decay

helicity couplings are absorbed into HΛ
+
c →∆

++∗K−

λ∆++∗ ,0
setting them to H∆

++∗→pπ+

+1/2,0 = 1 and
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H∆
++∗→pπ+

−1/2,0 = −P∆++∗(−1)J∆++∗−1/2.

For the third decay chain Λ+
c → K∗(→ K−π+)p, the weak decay Λ+

c → K∗p is
described by

AΛ
+
c →K

∗(→K−π+)p

m
Λ
+
c
,λK∗ ,λ

Λ
+
c

p

(θK∗ , φK∗) = HΛ
+
c →K

∗p

λK∗ ,λ
Λ
+
c

p

D
∗1/2

µ,λK∗−λ
Λ
+
c

p

(φK∗ , θK∗ , 0), (5.11)

in which λ
Λ+
c

p is defined in the proton helicity frame reached from the Λ+
c baryon. For

spin zero K∗ resonances angular momentum conservation allows two complex cou-

plings corresponding to λ
Λ+
c

p = ±1/2, for higher spin resonances four couplings are

allowed, corresponding to {λK∗ = 0, 1; λΛ
+
c

p = 1/2} and {λK∗ = −1, 0; λΛ
+
c

p = −1/2}.
The strong decay K∗ → K−π+ contribution is

AK
∗→K−π+

λK∗
= HK

∗→K−π+

0,0 D∗JK∗λK∗ ,0
(φK , θK , 0)R(m2

K−π+), (5.12)

in which φK and θK are the kaon azimuthal and polar angles in the K∗ helicity frame.

In the fit model the couplingHK∗→K−π+

0,0 is set equal to 1 and absorbed inHΛ
+
c →K

∗p

λK∗ ,λ
Λ
+
c

p

.

Before summing the amplitudes, the different proton helicity frames defined for each
decay chain must be rotated to a reference proton spin frame. The reference proton spin
frame is taken to be the canonical frame reached from the Λ+

c polarisation frame, the one
obtained by a pure boost from the Λ+

c to the proton rest frames. The other proton helic-
ity frames are rotated to the reference one by means of the Euler rotation Eq. (1.52). The
Euler angles are determined applying Eq. (1.27) to the coordinate axes describing each
proton helicity frame obtained by sequentially applying the helicity transformations to
the Λ+

c polarisation frame, by sequentially applying the helicity rotations to the latter
system. After application of the proton spin rotation, as in Eq. (1.53), the helicity ampli-
tudes for the three kind of intermediate states become, denoting withmp the proton spin
projection in its canonical reference frame,

AΛ
+
c →Λ

∗(→pK−)π+

m
Λ
+
c
,λΛ∗ ,mp

(Ω) =
∑

λΛ∗p =±1/2

D
∗1/2
λΛ∗p ,mp

(αΛ∗ , βΛ∗ , γΛ∗)

×D∗1/2m
Λ
+
c
,λΛ∗

(φΛ∗ , θΛ∗ , 0)D∗JΛ∗
λΛ∗ ,λΛ

∗
p

(φΛ
∗

p , θΛ
∗

p , 0)

×HΛ
+
c →Λ

∗π+

λΛ∗ ,0
HΛ

∗→pK−
λΛ∗p ,0

R(m2
pK−),

AΛ
+
c →∆

++∗(→pπ+)K−

m
Λ
+
c
,λ∆++∗ ,mp

(Ω) =
∑

λ∆++∗
p =±1/2

D
∗1/2
λ∆++∗
p ,mp

(α∆++∗ , β∆++∗ , γ∆++∗)

×D∗1/2m
Λ
+
c
,λ∆++∗

(φ∆++∗ , θ∆++∗ , 0)D
∗J∆++∗

λ∆++∗ ,λ∆
++∗

p

(φ∆
++∗

p , θ∆
++∗

p , 0)

×HΛ
+
c →∆

++∗K−

λ∆++∗ ,0
H∆

++∗→pπ+

λ∆++∗
p ,0

R(m2
pπ+),
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AΛ
+
c→K

∗(K−π+)p
m
Λ
+
c
,λK∗ ,mp

(Ω) =
∑

λ
Λ
+
c

p =±1/2

D
∗1/2

λ
Λ
+
c

p ,mp

(αK∗ , βK∗ , γK∗)

×D∗1/2
m
Λ
+
c
,λK∗−λ

Λ
+
c

p

(φK∗ , θK∗ , 0)D∗JK∗λK∗ ,0
(φK , θK , 0)

×HΛ
+
c →K

∗p

λK∗ ,λ
Λ
+
c

p

HK
∗→K−π+

0,0 R(m2
K−π+). (5.13)

The complete amplitude for the Λ+
c → pK−π+ decay is obtained summing the am-

plitudes for all the intermediate resonances and their allowed helicity states, like in
Eq. (1.54),

Am
Λ
+
c
,mp(Ω) =

NΛ∗∑
i=1

∑
λΛ∗

i

AΛ
+
c →Λ

∗
i (→pK−)π+

m
Λ
+
c
,λΛ∗

i
,mp

(Ω)

+

N∆++∗∑
j=1

∑
λ
∆

++∗
j

AΛ
+
c→∆

++∗
j (→pπ+)K−

m
Λ
+
c
,λ
∆

++∗
j

,mp
(Ω)

+

NK∗∑
k=1

∑
λK∗

k

AΛ
+
c →K

∗
k(K−π+)p

m
Λ
+
c
,λK∗

k
,mp

(Ω). (5.14)

The differential decay rate for Λ+
c baryons in a generic state of polarisation to be

measured from the amplitude fit, is represented by Eq. (1.56). The most general spin 1/2
density matrix is

ρΛ
+
c =

1

2
(I + P · σ) =

1

2

(
1 + Pz Px − iPy
Px + iPy 1− Pz

)
, (5.15)

in which Px, Py , Pz are the polarisation components in the chosen coordinate system and
σ the three Pauli matrices. The density matrix representing the pK−π+ polarisation is
that of a maximally mixed state (in any proton spin basis)

ρpK
−π+

=
I
2
, (5.16)

since the proton polarisation can not be measured.

The transition operator matrix elements in the chosen Λ+
c and proton spin bases are

the helicity amplitudes Am
Λ
+
c
,mp(Ω), Eq. (5.14)

T =

(
A1/2,1/2(Ω) A1/2,−1/2(Ω)
A−1/2,1/2(Ω) A−1/2,−1/2(Ω)

)
, (5.17)
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and the differential rate Eq. (1.56) turns out to be proportional to

p(Ω, ~P ) ∝
∑

mp=±1/2

[
(1 + Pz)|A1/2,mp(Ω)|2 + (1− Pz)|A−1/2,mp(Ω)|2

+ (Px − iPy)A∗1/2,mp(Ω)A−1/2,mp(Ω)

+ (Px + iPy)A1/2,mp(Ω)A∗−1/2,mp
(Ω)
]
. (5.18)

5.2.4 Polarisation effects on the phase space distributions

Following the discussion in Sec. 1.4.6, the presence of a Λ+
c polarisation can only influ-

ence the three angular distributions cos θp, φp, χ describing the orientation of the decay
plane. These effects can be easily seen using the Dalitz plot decomposition proposed in
Ref. [157], which factorises the decay amplitude separating invariant mass and orienta-
tion angles dependence. For the Λ+

c → pK−π+ decay the decomposition is written as

Am
Λ
+
c
,mp(Ω) =

∑
ν
Λ
+
c

D∗1/2m
Λ
+
c
,ν
Λ
+
c

(φp, θp, χ)O
ν
Λ
+
c

mp (m2
pK− ,m

2
K−π+), (5.19)

in which the Wigner D matrix describes the rotation of the Λ+
c spin states from its polar-

isation frame to the decay plane coordinate system defined in Sec. 5.2.2, while the rest
of the amplitudeO

ν
Λ
+
c

mp (m2
pK− ,m

2
K−π+) describes the Λ+

c decay amplitude in terms of Λ+
c

spin projections expressed in the decay plane coordinate system. This way of writing
the Λ+

c → pK−π+ amplitude model is equivalent to that described in Sec. 5.2.3. In that
case, the relation between Λ+

c and resonant states is done starting directly from the Λ+
c

polarisation frame, and the intermediate state helicity angles θR, φR depend on all the
five phase space variables.

The decay rate following from the decomposition Eq. (5.19) in terms of theΛ+
c density

matrix is (omitting Λ+
c subscripts)

p(Ω, ~P ) ∝
∑
m,m′

ρm,m′
∑
ν,ν′

D∗1/2m,ν (φp, θp, χ)D
1/2
m′,ν′(φp, θp, χ)

×
∑
mp

Oνmp(m2
pK− ,m

2
K−π+)O∗ν

′

mp (m2
pK− ,m

2
K−π+). (5.20)

The properties of the decay rate described in Sec. 1.4.6 following from rotational in-
variance are apparent from the properties of the D rotation matrices. For unpolarised
baryons, ρm,m′ = δm,m′/2, isotropy follows from the orthogonality of the rotation oper-
ators ∑

m

D∗1/2m,ν (φp, θp, χ)D
1/2
m,ν′(φp, θp, χ) ∝ δν,ν′ , (5.21)

while the independence of invariant mass distributions from the polarisation vector fol-
lows from the orthogonality relation∫ π

−π
dφp

∫ π

−π
dχ

∫ π

0

d cos θpD
∗1/2
m,ν (φp, θp, χ)D

1/2
m′,ν′(φp, θp, χ) ∝ δm,m′δν,ν′ . (5.22)

The effects of the polarisation vector on the decay distribution have a simple dependence
on the decay plane orientation angles, which can be shown from the decay rate decom-
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position Eq. (5.20) after some algebraic operations, integrating over the invariant mass
variables. A z-components polarisation introduces a Pz cos θp dependence, while the or-
thogonal components affect the azimuthal proton angle distribution adding a Px cosφp
or Py sinφp dependence. Basically, this simple angular dependence describes the pro-
jection of the Λ+

c polarisation vector on the decay plane coordinate system. Note that
the structure of the Λ+

c decay amplitude, described by the O
ν
Λ
+
c

mp (m2
pK− ,m

2
K−π+) terms,

determines the coefficients multiplying the polarisation-dependent angular terms, influ-
encing the decay sensitivity to the polarisation components.

5.3 Data and simulation samples

The data samples considered in this analysis consist of pp collisions recorded by the
LHCb experiment in 2015 and 2016, corresponding to integrated luminosities of 0.33
and 1.67 fb−1, respectively. The Λ+

c → pK−π+ signal candidates are selected from
semileptonic Λ0

b decays by using a filtering set of criteria, called B2DMuNuX Lc stripping
line,whose selection criteria are listed in Table 5.1. Candidates are also required to have
activated the following trigger lines of the LHCb trigger system, described in Sec. 4.2.3:
L0Muon, Hlt1TrackMuon and one of the topological Hlt2TopoMuNBodyDecision,
N = 2, 3, 4, trigger lines. The L0Muon hardware trigger line requires the event to contain
a muon with sufficiently high pT; the Hlt1TrackMuon trigger is devised for selecting
heavy hadrons decaying to at least one muon by exploiting the muon pT and χ2 im-
pact parameter with respect to the primary vertex; the Hlt2TopoMuNBodyDecision
triggers exploit the event topological information in a Boosted Decision Tree to trigger
inclusively on heavy hadron decays to N particles including one muon. The five Λ+

c →
pK−π+ phase-space variables are computed applying the kinematic fitter DecayTreeFit-
ter [158], performing a refitting of the entire decay chain fixing the reconstructed Λ+

c

invariant mass to the PDG value [24].

Two simulation samples are used in the analysis. The first reproduces semileptonic
Λ0
b → Λ+

c `
−ν̄` decays, l = µ−, τ−, with the Λ+

c → pK−π+ decay simulated with a sim-
ple decay model including the three resonances Λ∗(1520), ∆++∗(1232),K∗(892) and a
flat phase space component, which compose the E791 amplitude model [71]. This sam-
ple consists of 107 generated events, of which ≈ 130′000 passing stripping and trigger
requirements, and will be referred to as “full simulation”. A second simulation sam-
ple with higher statistics is generated using the faster-simulation option ReDecay [159],
which reduces by 10 times the CPU consumption by re-using each complete simulated
event by generating 100 signal decays which are added to the same non-signal part of the
event. This sample reproduces Λ+

c → pK−π+ flat phase space decays from semileptonic
Λ0
b → Λ+

c µ
−ν̄µ events and consists of 1.6 millions events after stripping and trigger re-

quirements. Distributions for different physical quantities, including the Λ+
c → pK−π+

phase space variables, have been compared between the two simulation samples, to
check the assumptions behind the ReDecay method are suitable for the analysis pur-
poses. The validation plots are reported in Appendix A.2, in which only the flat phase
space Λ+

c → pK−π+ events are selected for comparison. Simulated events which are not
reconstructed as signal Λ+

c → pK−π+ decays are removed from the simulation samples
(truth-matching).
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Particle Quantity Requirement

µ min pT 1 GeV
min p 6 GeV

track ghost probability < 0.35
track χ2/ndf < 3

min primary vertex IP χ2 9
min PIDµ 0

hadron min pT 250 MeV
track ghost probability < 0.35

track χ2/ndf < 3
min primary vertex IP χ2 4

K min p 2 GeV
min PIDK -2

π min p 2 GeV
max PIDK 10

p min p 8 GeV
min PIDp 0

min PIDp − PIDK 0
Λ+
c m(pKπ) interval m(Λ+

c )PDG ± 80 MeV
DOCA χ2 limit between daughter tracks 20

max vertex χ2/ndf 6.0
min χ2 distance from primary vertex 25

min cos(DIRA) 0.99
Λ0
b m(Λ+

c µ) interval 2.2-8.0 GeV
DOCA χ2 limit between daughter tracks 10

max vertex χ2/ndf 9.0
min cos(DIRA) 0.999

Λ+
c vertex z position - Λ0

b vertex z position > −2 mm

Table 5.1: B2DMuNuX Lc stripping line selection criteria. Ghost probability refers to the probability
of the track to be a fake one; track χ2/ndf is computed from the track fit done at event reconstruc-
tion stage; PIDh is the delta log-likelihood between h and pion identities obtained from particle
identification systems; DOCA is the distance of closest approach between a pair of tracks; DIRA
is the angle between the momentum of the particle and the direction of flight from the primary
vertex to the decay vertex.
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Quantity Requirement

Λ+
c vertex z position - Λ0

b vertex z position < 6 mm
log(FDχ2)(Λ0

b) > 6.5
ProbNN(p→ p) > 0.95
ProbNN(p→ K−) > 0.7

Table 5.2: Selection requirements for Λ+
c → pK−π+ candidates from Λ0

b semileptonic decays. See
text for quantity definitions.

5.3.1 Selection and invariant mass fit

A tight selection is developed to reduce the combinatorial background contamination to
a level small enough to neglect its contribution to the amplitude fit. A cut-based selection
has been studied on 2015 year data, its requirements reported in Table 5.2. The selection
requires Λ+

c → pK−π+ candidates to have: a limited displacement between Λ+
c and Λ0

b

vertex z positions; a Λ0
b vertex separated from the primary vertex, measured by the loga-

rithm of the flight distance χ2, log(FDχ2)(Λ0
b); good particle identification responses for

proton and kaon hadrons, measured from the neural-network based ProbNN(h → h′)
variables representing the probability for the hadron h to be identified as h′. The separa-
tion between signal and background distributions for the employed variables, obtained
applying the sPlot statistical technique [160] to the 2015 data sample, is displayed in
Fig. 5.3. The requirement on the proton identification ProbNN(p→ p) is by far the most
effective.

To evaluate the amount of combinatorial background passing the selection require-
ments, its contribution is separated from Λ+

c → pK−π+ candidates by means of a fit
to the pK−π+ invariant mass distribution. The Λ+

c → pK−π+ candidates are modelled
using two Crystal-Ball PDFs with asymmetric power-law tails, while the combinatorial
background is parametrised by an exponential PDF ∝ ecx. The Crystal Ball PDF is a
four-parameter function made of a Gaussian connected with a power-law tail in such a
way to have continuous derivative,

CB(x|x, σ, α, n) = N


exp

(
(x−x)2

2σ2

)
for α > 0, (x−x)

σ > −α
for α < 0, (x−x)

σ < −α
A
(
B − (x−x)

σ

)−n
for α > 0, (x−x)

σ < −α
for α < 0, (x−x)

σ > −α

, (5.23)

in which A =
(
n
|α|

)n
exp

(
− |α

2|
2

)
, B = n

|α| − |α| and N is the normalisation factor.

The fit to the pK−π+ invariant mass distribution for 2016 data selected candidates
is shown in Fig. 5.4, results reported in Table 5.3. The selection retains 1.28 millions of
Λ+
c → pK−π+ candidates, reducing the combinatorial background contribution in the

signal region chosen as |m(pK−π+) −m(Λ+
c )PDG| < 15 MeV to 1.7% of the candidates.

Only candidates from this signal region will be employed for the amplitude fits.
The Λ+

c → pK−π+ phase space one-dimensional projections of 2016 data selected
candidates are reported in Fig. 5.5. The residual background distributions are estimated
from the signal sidebands defined as |m(pK−π+)−m(Λ+

c )PDG| > 40 MeV.
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Figure 5.3: Separation between signal (red) and background (black) s-Weighted normalised distri-
butions of the selection variables for 2015 data.

Parameter Central value ± Uncertainty

Signal events 1281200 ± 1450
Background events 117150 ± 1950
CB x

[
GeV/c2

]
2.2868 ± 0.00000280

CB1 σ
[

MeV/c2
]

4.9518 ± 0.00388
CB2 σ

[
MeV/c2

]
8.2588 ± 0.0340

CB1 α 2.3119 ± 0.00212
CB2 α -4.7914 ± 7.51
CB1 n 1.0774 ± 0.00364
CB2 n 15.166 ± 29.6
CB1 fraction 0.67358 ± 0.000798
Exp c

[
( GeV/c2)−1

]
-3.3642 ± 0.217

Table 5.3: Results of the fit to the pK−π+ invariant mass of 2016 data selected candidates.
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Figure 5.5: (blue) Λ+
c → pK−π+ phase space one-dimensional projections of 2016 data selected

candidates. (red) background contribution estimated from the signal sidebands.
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5.3.2 Physical backgrounds

Three-body hadronic decays of charm hadrons can constitute potential physical back-
grounds to the Λ+

c → pK−π+ decays if some of the final-state hadrons are wrongly iden-
tified. The Cabibbo-favoured D+ → K+π−π+ and D+

s → K+K−π+ may enter the sig-
nal region due to a proton mis-identification, while Cabibbo-suppressed Λ+

c → pK−K+

and Λ+
c → pπ−π+ may fake signal candidates due to a wrong kaon or pion assignment.

Moreover, four-body decays of charm mesons in which one hadron is not reconstructed
may contribute as well to the Λ+

c signal region. The presence of these physical back-
grounds is searched for by reconstructing the invariant mass of the three daughter par-
ticle with different mass hypothesis plotted versus the pK−π+ invariant mass. Fig. 5.6
shows the invariant mass distributions for candidates passing stripping and trigger re-
quirements only. Contributions from D+ → K+π−π+ and D+

s → K+K−π+ decays
due to single mis-identifications are visible as horizontal lines corresponding to D+ and
D+
s invariant masses, while Λ+

c → pK−K+ and Λ+
c → pπ−π+ decays do not contribute

because outside the range covered byΛ+
c → pK−π+ candidates (the horizontal band cor-

responding to the Λ+
c mass is empty). No broader structures at K+π−π+ and K+K−π+

invariant masses lower than D+ and D+
s masses, indicating partially reconstructed de-

cays, are visible. After application of the selection requirements no evidence of residual
physical backgrounds is visible, Fig. 5.7. In fact, charm meson decays are effectively
rejected by the tight proton PID requirement.

A complementary study, which is more sensitive to partially reconstructed back-
grounds, is performed by plotting the momentum asymmetries of the Λ+

c daughters ver-
sus the pK−π+ invariant mass. The three momentum asymmetries βh for h = p,K−, π+

hadrons versus the other two hadrons in the decay h1, h2 is defined as

βh =
p(h1) + p(h2)− p(h)

p(h1) + p(h2) + p(h)
. (5.24)

Along with the Λ+
c invariant mass under the nominal Λ+

c → pK−π+ mass assignment, it
fully parametrises alternative mass hypotheses in which the assignment of the h hadron
is changed. The βh −m(pK−π+) plane therefore provides an additional check. Fig. 5.8
shows the momentum asymmetry distributions for the three hadrons, for candidates
passing stripping and trigger requirements only: sharp bands are visible only for βp,
these corresponding to the already observed D+ → K+π−π+ and D+

s → K+K−π+

backgrounds. No broader structures highlighting partially reconstructed decays are
present. After application of the full selection no evidence of residual physical back-
grounds is visible, Fig. 5.9. Therefore, no selection cuts against physical backgrounds
are applied.

5.3.3 Comparison between real and simulated data

Simulated data are used in this analysis to describe the efficiency of the detector as a
function of the Λ+

c → pK−π+ decay phase space variables. To properly subtract the
detector efficiency reconstruction effects it is therefore crucial for the simulation to re-
produce real data as accurately as possible.

The variables used to select Λ+
c → pK−π+ candidates, listed in Table 5.2, have been

chosen not only for their ability to separate signal from combinatorial background, but
also because their distributions are well reproduced in simulation. Fig. 5.10 reports the
comparison between s-Weighted Λ+

c → pK−π+ real data and simulated ReDecay sam-
ple distributions for the selection variables. The agreement is quite good, even if not
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Figure 5.6: Invariant mass distributions for pK−π+ mass hypothesis versus (Top, Center) D+
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h+h−h+ and (Bottom) Λ+
c → ph−h+ alternative mass hypothesis for candidates passing stripping

and trigger requirements. Horizontal dashed lines correspond to the (yellow) D+, (orange) D+
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c PDG masses [24].
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perfect, but it is important to stress that a perfect agreement between real and simulated
data is difficult to achieve since the real Λ+

c → pK−π+ decay structure is unknown, its
determination being the target of this analysis.

5.4 Amplitude fit

The amplitude model free parameters, collectively indicated as ω, are determined from
a maximum likelihood (ML) fit to the data sample {Ωi} by minimising the negative log-
arithmic likelihood (NLL)

− logL(ω) = −
N∑
i=1

log ptot(Ωi|ω), (5.25)

in which ptot(Ωi|ω) represents the total fitting PDF,

ptot(Ωi|ω) =
p(Ωi|ω)ε(Ωi)

I(ω)

nsig
N

+ pbkg(Ωi)
nbkg
N

, (5.26)

describing the conditional probability of having the experimental points Ωi given the
parameters ω. This PDF includes the Λ+

c → pK−π+ decay rate Eq. (5.18) now indicated
as p(Ωi|ω), the efficiency variation over the phase space ε(Ω) and the background contri-
bution, which, in this approach, is included in the amplitude model with a parametric
PDF pbkg(Ω) rather than statistically subtracted (see Ref. [75] for a comparison of the two
methods). The number of signal and background events, nsig and nbkg , can be deter-
mined from the fit to the Λ+

c invariant mass, Fig. 5.4. I(ω) is the normalisation of the
signal part of the total PDF,

I(ω) =

∫
p(Ω|ω)ε(Ω)dΩ, (5.27)

which can be computed numerically without explicitly knowing the efficiency function
ε(Ω), by using simulated flat phase space events reconstructed through the detector. In-
deed, the integration variables can be changed from the decay phase space dΩ to the
phase space as seen from the detector viewpoint dΩ′ = ε(Ω)dΩ, so that

I(ω) =

∫
p(Ω|ω)dΩ′ =

∑
i p(Ω

MC
i |ω)

NMC
, (5.28)

in which {ΩMC
i }, i = {1, ..., NMC} are the simulated phase space points.

Exploiting the logarithm properties, the log-likelihood Eq. (5.25) can be rewritten as

− logL(ω) = −
N∑
i=1

log

[
p(Ωi|ω) +

pbkg(Ωi)I(ω)

ε(Ωi)

nbkg
nsig

]
+N log I(ω) + constant, (5.29)

showing that in presence of a background contribution, both the efficiency and back-
ground functions over the decay phase space ε(Ω) and pbkg(Ω) need to be parametrised.
However, their contribution to the parameter estimation is proportional to the ratio
nbkg/nsig , which for a good background rejection is small, and any systematic uncer-
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tainty associated to the choice of the parametrisation is suppressed by this ratio. The
tight selection presented in Section 5.3.1 reduces the ratio to nbkg/nsig = 1.7%, small
enough to neglect the background contribution (see Fig. 5.5). In this case the NLL be-
comes

− logL(ω) = −
N∑
i=1

log p(Ωi|ω) +N log I(ω) + constant, (5.30)

and no efficiency parametrisation is needed since its effect is folded in the computation
of the amplitude model normalisation, Eq. (5.28).

The central value of the parameters ω are estimated by finding the stationary points
ω0 of the NLL, corresponding to

∂ logL(ω)

∂ω
=

N∑
i=1

∂ptot(Ωi|ω)

∂ω

1

ptot(Ωi|ω)
= 0. (5.31)

For generic likelihoods, the 1σ statistical standard deviation of the fit parameters ω is
given by the multi-dimensional contour defined by

logL(ω0)− logL(ω) =
1

2
, (5.32)

which, in practice, is very arduous to compute for a large number of parameters. In
many practical cases the likelihood function is approximately Gaussian, and the NLL
parabolic in ω. In this case, the second derivative of the NLL is related to the variance of
the Gaussian likelihood function as

−∂
2 logL(ω)

∂ω2

∣∣∣∣
ω0

=
1

σ2

=

N∑
i=1

∂2ptot(Ωi|ω)

∂ω2

1

ptot(Ωi|ω)
−
(
∂ptot(Ωi|ω)

∂ω

)2
1

ptot(Ωi|ω)2
, (5.33)

and can be used to estimate the 1σ standard deviation interval associated to each fit
parameter. Note that while Eq. (5.32) defines a possibly asymmetric multi-dimensional
1σ contour, Eq. (5.33) returns by construction symmetric 1σ intervals for each parameter
independently.

For performing the Λ+
c → pK−π+ amplitude analysis the TensorFlowAnalysis pack-

age [161] is chosen. TensorFlowAnalysis is a collection of useful functions to perform
amplitude fits, developed within the LHCb Collaboration, based on top of the machine-
learning framework TensorFlow [162]. An already implemented amplitude model for
Λ+
c → pK−π+ decays has been generalised from Dalitz plot to full phase space 5-

dimensional fit, including the extraction of the Λ+
c polarisation vector and the inclusion

of detector efficiency effects. The main advantages of the TensorFlowAnalysis package
with respect to other amplitude fit frameworks are those following from Tensorflow fea-
tures.

Tensorflow is based on the computer algebra paradigm, in which users do not run di-
rectly calculations, but specify the computational graph describing what has to be com-
puted. For example, the definition of the amplitude model can be more flexible since
the explicit data flow behind its definition needs not to be specified, but it is handled
automatically by Tensorflow. Tensorflow is able to handle tensor data, optimise auto-
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matically the computational graph, and compile for different architectures. This is very
important for the present analysis, since the amplitude model is complicated due to the
presence of sequential decays, involving many rotations, and a large number of resonant
states, which would be prohibitive to implement using basic, hard-coded functions.

One drawback is that Tensorflow built-in minimisation functions are not suitable for
physics, since they do not deal with the errors associated to fit parameters. For this rea-
son the TensorFlowAnalysis package exploits the MINUIT package for ML fits [163]. In
MINUIT, the NLL minimisation algorithm MIGRAD is employed, along with the HESSE
method for computing 1σ standard deviations by means of Eq. (5.33). MINUIT also pro-
vides the MINOS method for error computation, which returns asymmetric 1σ standard
deviation intervals representing 1-dimensional projections of the contour Eq. (5.32) for
each fit parameter. The MINOS method is not used by default since it is very demanding
in terms of computational resources; tests on simplified amplitude models showed that
MINOS errors are not significantly different from HESSE ones.

The free parameters ω include the real and imaginary parts of the complex helicity
couplings, resonance parameters like masses and widths and the three Λ+

c polarisation
components. Since the normalisation of the model is fixed, Eq. (5.27), one of the helicity
couplings must be fixed to a constant value, so that the value of the other couplings is
expressed relative to the reference one. In this analysis the K∗(892) helicity coupling

HΛ
+
c →K

∗p

0,−1/2 has been chosen as the reference coupling, fixed to one, with zero imaginary
part.

The fit quality can be assessed in different ways. The simplest method is to compare
1- or 2- dimensional phase space distributions between data and model. Graphically it
is achieved by comparing data with model histograms, the latter obtained by weighing
the flat phase space simulated events according to amplitude model values, in order to
include the detector efficiency effect as for the amplitude model normalisation. This is
the most straightforward method to spot manifest discrepancies and their location in
the decay phase space, but its sensitivity is limited by the use of projections. A χ2-based
test is more sensitive to differences between data and model phase space multidimen-
sional distributions. A generalised version of the χ2 test for weighted histograms [164]
is computed by dividing the decay phase space in bins with roughly the same amount of
data points, by using the adaptive binning technique implemented in the ROOT pack-
age [165]. A p-value for the two distributions to be statistically compatible can be drawn
knowing the number of degrees of freedom. The distributions of the residuals for each
bin give information on the location of the discrepancies in the phase space.

5.4.1 Preliminary amplitude fit test to simulation events

As a first preliminary test, the amplitude fit framework has been tested on simulated
events at generation-level, without including detector reconstruction effects. The chosen
amplitude fit reproduces the full simulation sample decay model, which includes the
three resonances Λ∗(1520), ∆++∗(1232),K∗(892) and a flat phase-space component. In
the simulation, the Λ+

c baryon is generated with zero polarisation, with uniform decay
orientation angles, while the amplitude model allows for a generic polarisation vector.
Moreover, the amplitude model allows for interference between resonances, while the
simulated sample has been generated without interference effects. The amplitude model
contains 18 parameters to be determined from the fit, of which 12 real couplings, the
Λ∗(1520) mass and width, the flat phase-space component fraction and 3 polarisation
components. Masses and widths of the K∗(892) and ∆++∗(1232) resonances are fixed to
the PDG values [24] Note that it is not possible to perfectly match the implementation of
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Figure 5.11: Test fit done on 50’000 generation-level simulation events.

the decay model between the amplitude model and that used for the simulation: small
discrepancies in phase space distributions between simulation and amplitude model are
thus expected.

The test fit done on 50’000 simulation events is reported in Fig. 5.11. Apart some
discrepancies in the mass distributions, which can be due to the mismatch between gen-
eration and fit amplitude models, the polarisation vector is found to be compatible with
the generation null value,

Px = −0.001± 0.021 Py = 0.001± 0.021 Pz = 0.054± 0.026.

To study the ability of the amplitude model to measure non-zero polarisation, toy
simulation samples are generated sampling the amplitude model resulting from the pre-
vious fit to the generation-level simulation sample, but imposing full polarisation in
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turn on the three components. The test fits performed on 50’000 toy simulated events
show that the polarisation vector is correctly measured for all the three components: for
Pz = 1, Figure 5.12,

Px = −0.037± 0.020 Py = −0.029± 0.020 Pz = 0.984± 0.025;

for Px = 1, Figure 5.13,

Px = 0.991± 0.022 Py = −0.017± 0.020 Pz = −0.013± 0.023;

for Py = 1, Figure 5.14,

Px = −0.029± 0.021 Py = 1.000± 0.039 Pz = −0.019± 0.023.

The effect of the polarisation is clearly visible in the phase space angular distributions.
A longitudinal polarisation produce a linear dependence in cos θp, while the orthogo-
nal components affect the azimuthal proton angle distribution adding a cosφp or sinφp
dependence for Px or Py polarisation, respectively, as expected from the discussion in
Sec. 5.2.4.

Next, the amplitude model is tested on simulatedΛ+
c → pK−π+ events reconstructed

by the LHCb detector. The detector efficiency is included by using the high-statistics Re-
Decay simulation of flat phase spaceΛ+

c → pK−π+ decays to compute the normalisation
of the amplitude model, Eq. (5.28). A test fit is done on 30’000 reconstructed simulation
events, basically all events passing the selection requirements, reported in Fig. 5.15. The
efficacy of the method is visible in the phase space angular distributions: the evident dis-
tortions due to the detector reconstruction are well reproduced by the fit model within
statistical uncertainties, and the measured polarisation is correctly compatible with zero,

Px = 0.009± 0.023 Py = 0.033± 0.024 Pz = −0.009± 0.034.

5.4.2 Model building

The Λ+
c → pK−π+ amplitude model is built by adding helicity amplitudes correspond-

ing to the various intermediate states, Eq. (5.14). The intermediate resonances must be
carefully chosen in order to describe the decay phase-space distributions. Following the
discussion in Sec. 1.4.6, the determination of the resonance structure of theΛ+

c → pK−π+

decay can be factorised from theΛ+
c polarisation determination, and the first can be stud-

ied by means of 2-dimensional Dalitz plot fits.
The knowledge about Λ∗, ∆++∗ and K∗ resonances according to the PDG [24] is

summarised in Table 5.4. The contribution of Σ∗ → pK− resonances is possible but
suppressed since it involves a ∆I = 1 strong isospin difference, while Λ∗ resonances
have zero isospin [24]. Moreover, their contribution would be difficult to separate from
that of Λ∗ resonances, so they are neglected as done in [75].

The efficiency-uncorrected Dalitz plot for 2016 Λ+
c → pK−π+ selected candidates is

shown in Fig. 5.16. In first approximation, Λ∗ → pK− resonances are visible as verti-
cal bands, K∗ → K−π+ as horizontal bands and ∆++∗ → pπ+ as diagonal bands, in
which the different intensity patterns can be given by the spin of the resonance, by in-
terference patterns or non-uniform detector efficiency. Regarding the Λ∗ pattern, there
are two clear narrow bands corresponding to the Λ∗(1520) and Λ∗(1670) resonances,
plus broader bands in between and below the Λ∗(1520) mass, possible signs of Λ∗(1405)
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Figure 5.12: Test fit done on 50’000 toy simulation events generated with Pz = 1.
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Figure 5.13: Test fit done on 50’000 toy simulation events generated with Px = 1.
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Figure 5.14: Test fit done on 50’000 toy simulation events generated with Py = 1.
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Figure 5.15: Test amplitude fit done on 30’000 reconstructed simulation events. “Bkgr” indicates
the flat phase space component.
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Resonance JP BW mass ( MeV) BW width ( MeV) Existence

Λ∗(1405) 1/2− 1405.1+1.3
−1.0 50.5± 2.0 certain

Λ∗(1520) 3/2− 1519.5± 1.0 15.6± 1.0 certain
Λ∗(1600) 1/2+ 1560− 1700 50− 250 very likely
Λ∗(1670) 1/2− 1660− 1680 25− 50 certain
Λ∗(1690) 3/2− 1685− 1695 50− 70 certain
Λ∗(1710) 1/2+ 1713± 13 180± 40 poor
Λ∗(1800) 1/2− 1720− 1850 200− 400 very likely
Λ∗(1810) 1/2+ 1750− 1850 50− 250 very likely
Λ∗(1820) 5/2+ 1815− 1825 70− 90 certain
Λ∗(1830) 5/2− 1810− 1830 60− 110 certain
Λ∗(1890) 3/2+ 1850− 1910 60− 200 certain
Λ∗(2000) ≈ 2000 poor
Λ∗(2020) 7/2+ ≈ 2020 poor
Λ∗(2050) 3/2− 2056± 22 493± 60 poor
Λ∗(2100) 7/2− 2090− 2110 100− 250 certain
Λ∗(2110) 5/2+ 2090− 2140 150− 250 very likely

∆++∗(1232) 3/2+ 1230− 1234 114− 120 certain
∆++∗(1600) 3/2+ 1500− 1640 200− 300 certain
∆++∗(1620) 1/2− 1590− 1630 110− 150 certain
∆++∗(1700) 3/2− 1690− 1730 220− 380 certain

K∗0 (700) 0+ 824± 30 478± 50 certain
K∗(892) 1− 891.76± 0.25 47.3± 0.5 certain
K∗(1410) 1− 1421± 9 236± 18 certain
K∗0 (1430) 0+ 1425± 50 270± 80 certain

Table 5.4: List of Λ∗, ∆++∗ and K∗ resonances possibly contributing to the Λ+
c → pK−π+ phase

space according to the PDG [24]. Here, JP is the spin-parity assignment, BW mass and widths
represent the approximate values assuming relativistic Breit-Wigner lineshape and the last column
reports the degree of experimental evidence for the resonance existence.
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Figure 5.16: Efficiency-uncorrected Dalitz plot for 2016 Λ+
c → pK−π+ candidates.
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Resonance JP BW mass ( MeV) BW width ( MeV)

Λ∗(1405) 1/2− 1405.1 50.5
Λ∗(1520) 3/2− 1515− 1523 10− 20
Λ∗(1600) 1/2+ 1600 150
Λ∗(1670) 1/2− 1670 25
Λ∗(1690) 3/2− 1690 60
Λ∗(2000) 1/2− 1900− 2100 20− 400

∆++∗(1232) 3/2+ 1232 120
∆++∗(1620) 1/2− 1620 130

Non-resonant 0+

K∗(892) 1− 891.76 47.3
K∗(1410) 1− 1421 236
K∗0 (1430) 0+ 1425 270

Table 5.5: List of the intermediate resonances included in the reduced Λ+
c → pK−π+ amplitude

model, with JP the spin-parity assignment, and the Breit-Wigner parameters which, in the ampli-
tude fit, are floated within the reported range, or fixed to the given value if no interval is quoted.

(whose pole mass is below the pK− mass threshold) and Λ∗(1600) resonances. The only
other vertical band is an excess of events in the region m2

pK− ∈ 3.8− 4.0 GeV2, better vis-
ible in the m2

pK− projection Fig. 5.5, which can be a sign of additional Λ∗ resonances for
which there is no clear evidence according to the PDG [24]. Regarding theK∗ resonances
there is only the clear band of the K∗(892); higher mass K∗(1410) and K∗0 (1430) reso-
nances, having pole masses outside the allowed phase-space, may contribute thanks to
the lower mass tail of their broad distribution, possibly explaining the presence of a large
number of events at high m2

K−π+ invariant mass. Even if a spin-zero non-resonant com-
ponent cannot be excluded by eye, the center of the Dalitz plot is almost empty of events.
Finally, the diagonal band of the ∆++∗(1232) is apparent, plus an unclear band at higher
m2
pπ+ mass compatible with another ∆++∗ resonance; according to the 1-dimensional

m2
pπ+ projection the excess is mostly compatible with a ∆++∗(1620) resonance.

Following the qualitative inspection of the Dalitz plot, two amplitude models are set,
with the same resonance content but with a different number of free parameters. The
possible Λ∗ resonances contribution in the region m2

pK− ∈ 3.8 − 4.0 GeV2 is considered
by introducing a spin 1/2 Λ∗(2000) resonance component. In the “reduced” model, de-
fined in Table 5.5, most of the Breit-Wigner masses and widths are fixed to the central
values reported by the PDG [24]; for the very narrow Λ∗(1520) resonance its mass and
width are left floating around the central values to take into account experimental res-
olution effects, while for the Λ∗(2000) resonance its mass and width are floated in wide
ranges. In the “extended model”, defined in Table 5.6, the mass and widths of resonances
which have not been experimentally well determined, according to the PDG, are left as
floating parameters in the fit. The “reduced model” consist of 60 free parameters: 54 real
couplings, 2 masses, 2 widths and 2 LASS lineshape parameters (see next Sec. 5.4.3). The
extended model feature 71 free parameters, having 5 and 6 more floating masses and
widths, respectively.
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Resonance JP BW mass ( MeV) BW width ( MeV)

Λ∗(1405) 1/2− 1405.1 50.5
Λ∗(1520) 3/2− 1515− 1523 10− 20
Λ∗(1600) 1/2+ 1550− 1700 50− 300
Λ∗(1670) 1/2− 1670 25− 50
Λ∗(1690) 3/2− 1690 60
Λ∗(2000) 1/2− 1900− 2100 20− 400

∆++∗(1232) 3/2+ 1200− 1300 110− 150
∆++∗(1620) 1/2− 1590− 1630 110− 150

Non-resonant 0+

K∗(892) 1− 891.76 47.3
K∗(1410) 1− 1421 236
K∗0 (1430) 0+ 1375− 1475 190− 350

Table 5.6: List of the intermediate resonances included in the extended Λ+
c → pK−π+ amplitude

model, with JP the spin-parity assignment, and the Breit-Wigner parameters which, in the ampli-
tude fit, are floated within the reported range, or fixed to the given value if no interval is quoted.

5.4.3 Resonance lineshapes

By default resonances are parametrised with relativistic Breit-Wigner lineshapes, which
are well-suited for relatively narrow resonances far from other nearby resonances and
the threshold of additional decay channels. To reproduce the typical suppression of tran-
sitions involving non-zero orbital angular momentum, the Breit-Wigner parametrisation
is multiplied by angular barrier terms involving Blatt-Weisskopf form factors [166, 167]

RBW(m2) =

[
q(m)

q0

]L
Λ
+
c

[
p(m)

p0

]LR FΛ+
c

(m,LΛ+
c

)FR(m,LR)

m2
0 −m2 − im0Γ(m)

, (5.34)

in which the mass-dependent width

Γ(m) = Γ0

[
p(m)

p0

]2LR+1
m0

m
F 2
R(m,LR), (5.35)

is introduced. The definition of the different quantities entering the above expressions
are the following: m is the invariant mass of the resonance, m0 and Γ0 are its Breit-
Wigner mass and width, p(m) is the momentum of one of the decay products in the
resonance two-body decay, p0 ≡ p(m0), q(m) is the momentum of one of the decay
products in the Λ+

c two-body decay Λ+
c → Rh, q0 = q(m0), LΛ+

c
and LR are the orbital

angular momenta associated to the Λ+
c and R decays, respectively. The Blatt-Weisskopf

form factors [166, 167] for the resonance, FR(m,LR), and for the Λ+
c , FΛ+

c
(m,LΛ+

c
), are
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parametrised as

FR,Λ+
c

(m,L) =



1 L = 0√
1+z20

1+z2(m) L = 1√
9+3z20+z40

9+3z2(m)+z4(m) L = 2√
225+45z20+6z40+z60

225+45z2(m)+6z4(m)+z6(m) L = 3

, (5.36)

in which the definitions of the terms z(m) and z0 depend on whether the form factor
for the resonance R or for the Λ+

c is being considered. For R these terms are given
by z(m) = p(m)d and z0 = p0d, in which p(m) is the momentum of one of the decay
products in the resonance two-body decay, p0 ≡ p(m0), and d is a radial1 parameter
taken to be 1.5 GeV−1. For the Λ+

c baryon the respective functions are z(m) = q(m)d
and z0 = q0d, in which q(m) is the momentum of one of the decay products in the Λ+

c

two-body decay Λ+
c → Rh, q0 = q(m0), and d = 5.0 GeV−1. Previous studies showed the

amplitude analysis is very weakly sensitive to the d values [84].

The mass-dependent width and the form factors depend on the orbital angular mo-
menta of the two-body decays. For the Λ+

c weak decay, the orbital angular momentum
is not constrained, so the minimum possible one is taken. For half-integer spin Λ∗, ∆∗++

resonances it is LΛ+
c

= JR − 1/2, JR being the resonance spin, it is LΛ+
c

= 0 for spin
zero K∗ resonances and LΛ+

c
= JR − 1 for higher spin K∗ resonances. For the strong

decay of Λ∗, ∆∗++ resonance, the orbital angular momentum LR is determined by the
conservation of angular momentum, which requires LR = JR ± 1/2, and the parity of
the resonance2, PR = −(−1)LR , which chooses one of the LR values. For K∗ resonances,
decaying into two mesons, the orbital angular momentum is LR = JR.

Some of the resonances employed in the amplitude model can not be parametrised
by relativistic Breit-Wigner lineshapes. The K∗0 (1430) resonance strongly interferes with
the non-resonant S-wave component and they are collectively parametrised by the LASS
lineshape [168],

RLASS(m2) =
m

q cot δB − iq
+ e2iδB

m0Γ0
m0

q0

m2
0 −m2 − im0Γ0

q
m
m0

q0

(5.37)

in which
cot δB =

1

aq
+

1

2
rq, (5.38)

with a and r being parameters named the scattering length and the effective range, re-
spectively, while other quantities are defined as for Eq. 5.34. Since a and r are decay-
dependent they are left as floating parameters in the amplitude fit.

The Λ∗(1405) resonance has its pole mass below the threshold of pK− production,
and it contributes to the Λ+

c → pK−π+ decay due to its higher mass tail. Its effect
can be described by the Breit-Wigner lineshape Eq. 5.34 with one modification: in the
computation of the momenta the pole mass is replaced by an effective one meff

0 inside

1The angular barrier factors arise from the non-relativistic quantisation of a particle in a radial potential,
and d represents, loosely speaking, the radius of the resonance.

2The additional minus sign is given by the negative parity of the final state meson.
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the kinematically allowed range, by means of the ad-hoc formula [169]

meff
0 = mmin +

1

2

(
mmax −mmin

) [
1 + tanh

(
m0 − mmin+mmax

2

mmax −mmin

)]
(5.39)

in which mmin and mmax are the minimum and maximum allowed masses. The Flatté
lineshape [170] has not been used for the moment, since it would add two additional
parameters to the fit model.

5.4.4 Dalitz plot 2-dimensional fits

Two-dimensional Dalitz plot fits have been performed integrating over the decay orien-
tation angles cos θp, φp, χ, therefore not sensitive to the Λ+

c polarisation, but only to the
decay amplitude model. The Dalitz plot fits are carried out on 100’000 Λ+

c → pK−π+

data candidates selected from the data sample collected in 2016, a number of events de-
termined by the available statistics of the ReDecay simulation sample, which amounts
to ≈ 450’000 events passing the selection process. A sufficiently large simulation sample
is needed to precisely compute the model normalisation and subtract the detector effi-
ciency effects. The fit is performed with initial values of the floating parameters thrown
randomly in their allowed range, and the best result according to the minimum NLL
is selected among 10 different fits. Fit fractions for each resonance R are obtained by
computing the integral over the Dalitz plot of the amplitude model in which only the R
contribution is left, ∫

dΩ
∑

m
Λ
+
c
,mp

∣∣∣∣∣∑
λR

AΛ
+
c→Rh

m
Λ
+
c
,λR,mp

(Ω)

∣∣∣∣∣
2

. (5.40)

The departure of the sum of the fit fractions from one indicates the presence of interfer-
ence effects.

The amplitude fit result for the reduced model described in Table 5.5 is shown in
Fig. 5.17, the fit parameters values returned by MINUIT are reported in Table 5.7. The
amplitude fit result for the extended model described in Table 5.6 is shown in Fig. 5.19,
the fit parameters values which were fixed in the reduced model are reported in Table 5.8.
The fit fractions associated to the two models are reported in Table 5.9, the associated
statistical uncertainties are missing since their computation has still to be implemented3.

The best amplitude fit with the reduced model shows no significant discrepancies
in the 1-dimensional projections. The residuals between data and fit model distribu-
tions are reported in Fig. 5.18: a negative tension is apparent in the center of the Dalitz
plot, where the model seems to overestimate the data, while a positive tension is visible
at the edge where the Λ∗(1520) and K∗(892) resonances meet. The associated χ2/ndf
is 1436.37/939=1.53, with a NLL for of -20379.3. The best amplitude fit with the ex-
tended model features no significant discrepancies in the 1-dimensional projections as
well. The residuals between data and fit model distributions are reported in Fig. 5.20,
displaying the same tensions as for the reduced model, Fig. 5.18. The associated χ2/ndf
is 1418.05/928=1.53, practically equal to that of the reduced model, with a NLL of -
20421.4. All the resonances included in the amplitude models have non-negligible fit
fractions, apart from the Λ∗(1690) resonance, whose fit fraction is ≤ 1%.

3Its evaluation will be important when systematic uncertainties associated to fit fractions will be properly
estimated.
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Figure 5.17: Dalitz plot amplitude fit results for the reduced model on 100’000 Λ+
c → pK−π+

candidates.
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Figure 5.18: Dalitz plot amplitude fit residuals between data and model, for the reduced model on
100’000 Λ+

c → pK−π+ candidates. The associated χ2/ndf is 1436.37/939=1.53.
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Parameter Central value± Uncertainty Parameter Central value± Uncertainty

a LASS 0.974626± 0.055703 r LASS 19.133840± 1.157610
ML1520 1.520529± 0.000634 GL1520 0.014623± 0.002538
ML2000 1.972995± 0.001762 GL2000 0.138392± 0.002990
ArKswave 1 -6.482974± 0.586021 AiKswave 1 14.720211± 0.678673
ArKswave 2 5.381012± 0.767511 AiKswave 2 3.656190± 0.630537
ArKst892 2 -0.420210± 0.071521 AiKst892 2 -0.328464± 0.078473
ArKst892 3 -0.502029± 0.069484 AiKst892 3 1.530955± 0.049805
ArKst892 4 -0.084397± 0.043801 AiKst892 4 -0.198552± 0.052774
ArKst1410 1 -2.824465± 0.400512 AiKst1410 1 4.468027± 0.574243
ArKst1410 2 -2.815474± 0.475799 AiKst1410 2 -0.071873± 0.661246
ArKst1410 3 -1.313387± 0.751539 AiKst1410 3 4.934985± 0.494556
ArKst1410 4 6.720931± 0.353235 AiKst1410 4 3.368807± 0.367342
ArKst1430 1 2.278030± 0.504737 AiKst1430 1 -15.098954± 0.403538
ArKst1430 2 -10.237877± 0.410889 AiKst1430 2 -3.424862± 0.354024
ArL1405 1 -2.052190± 0.090731 AiL1405 1 -1.683788± 0.152498
ArL1405 2 -1.171505± 0.168473 AiL1405 2 -0.230015± 0.150507
ArL1520 1 0.508186± 0.095989 AiL1520 1 -0.163491± 0.027476
ArL1520 2 -0.130801± 0.032993 AiL1520 2 0.187029± 0.038424
ArL1600 1 0.211495± 0.119396 AiL1600 1 -1.093854± 0.109560
ArL1600 2 -1.463896± 0.128385 AiL1600 2 -1.229667± 0.125308
ArL1670 1 0.670561± 0.028507 AiL1670 1 0.281996± 0.049339
ArL1670 2 0.381101± 0.027047 AiL1670 2 -0.036219± 0.040471
ArL1690 1 0.427019± 0.048743 AiL1690 1 0.136084± 0.071195
ArL1690 2 -0.096511± 0.081779 AiL1690 2 -0.684386± 0.058000
ArL2000 1 2.899369± 0.123978 AiL2000 1 -1.951281± 0.162981
ArL2000 2 -3.439083± 0.156026 AiL2000 2 -1.444882± 0.147557
ArD1232 1 1.625160± 0.089338 AiD1232 1 1.180555± 0.119759
ArD1232 2 2.690759± 0.086101 AiD1232 2 -0.841648± 0.094539
ArD1620 1 -0.415376± 0.089799 AiD1620 1 1.591540± 0.085674
ArD1620 2 0.282203± 0.082533 AiD1620 2 -0.397312± 0.083178

Table 5.7: Fit parameters returned by MINUIT for the Dalitz plot amplitude fit with reduced model
on 100’000 Λ+

c → pK−π+ candidates. Uncertainties are the 1σ standard deviations returned by
HESSE. Fit parameters are defined in Appendix A.3.

Parameter Central value ± Uncertainty PDG values ( GeV)

MKst1430 1.475000 ± 0.007415 1.425± 0.050
GKst1430 0.350000 ± 0.008271 0.270± 0.080
ML1520 1.519833 ± 0.000489 1.5195± 0.0010
GL1520 0.013496 ± 0.001198 0.0156± 0.0010
ML1600 1.617676 ± 0.008456 1.560− 1.700
GL1600 0.123779 ± 0.019487 0.050− 0.250
GL1670 0.037830 ± 0.003100 0.025− 0.050
ML2000 1.973700 ± 0.002141 ≈ 2
GL2000 0.130829 ± 0.006173
MD1232 1.234520 ± 0.002144 1.230− 1.234
GD1232 0.119093 ± 0.006507 0.114− 0.120
MD1620 1.630000 ± 0.000902 1590− 1630
GD1620 0.150000 ± 0.002814 0.110− 0.150

Table 5.8: Resonance masses and widths returned by MINUIT for the Dalitz plot amplitude fit
with extended model on 100’000 Λ+

c → pK−π+ candidates. Uncertainties are the 1σ standard
deviations returned by HESSE. Fit parameters are defined in Appendix A.3. Results are compared
to the PDG values reported in Table 5.4.
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Figure 5.19: Dalitz plot amplitude fit results for the extended model on 100’000 Λ+
c → pK−π+

candidates.
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Figure 5.20: Dalitz plot amplitude fit residuals between data and model, for the extended model
on 100’000 Λ+

c → pK−π+ candidates. The associated χ2/ndf is 1418.05/928=1.53.
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Resonance FF reduced FF extended FF reduced
alternative sample

Non resonant 0.109282 0.182511 0.109799
K∗(892) 0.151852 0.143938 0.178592
K∗(1410) 0.076787 0.097761 0.179808
K∗(1430) 0.287793 0.415955 0.205860
Λ∗(1405) 0.054438 0.052562 0.062724
Λ∗(1520) 0.022108 0.017247 0.015797
Λ∗(1600) 0.046379 0.024183 0.030307
Λ∗(1670) 0.048842 0.054381 0.033665
Λ∗(1690) 0.009556 0.004960 0.016908
Λ∗(2000) 0.162436 0.156100 0.180881
∆∗++(1232) 0.093962 0.098731 0.091483
∆∗++(1620) 0.035749 0.055507 0.042587

Sum 1.099183 1.303839 1.148411

Table 5.9: Fit fractions for the Dalitz plot amplitude fit with reduced and extended model on
100’000 Λ+

c → pK−π+ candidates, and for the reduced model on the alternative sample of 100’000
Λ+
c → pK−π+ candidates. The computation of statistical uncertainties has to be implemented.

Even if reduced and extended models feature basically the same fit quality, some
of the resonance fit fractions are different between the two, notably for non resonant,
K∗(1430) and Λ∗(1600) contributions. Also the sum of fit fractions is significantly dif-
ferent, showing large interference effects for the extended model. The resonance masses
and widths returned by the fit are reported in Table 5.8: while most are well within their
allowed range, the K∗(1430) and ∆∗++(1620) mass and width are found at the maxi-
mum values.

As a cross-check, the fit for the reduced model is repeated on a different sample of
100’000 Λ+

c → pK−π+ data candidates, in the following called alternative sample. Its
results are displayed in Fig. 5.21 and the associated fit fractions reported in Table 5.9.

The best amplitude fit with the reduced model on the alternative sample shows no
discrepancies in the 1-dimensional projections. The residuals between data and fit model
distributions are reported in Fig. 5.22, displaying a similar pattern as in Fig. 5.18. The
associated χ2/ndf is 1393.59/928=1.48, slightly better than the previous reduced model
fit, with a lower NLL of -20824.0 as well.

The fit fractions retrieved by the fit on the alternative sample show differences with
respect to those obtained fitting the nominal sample, especially for overlapping reso-
nances. In particular it is difficult to isolate contributions from K∗(1410) and K∗(1430),
since they enter the decay phase space only via their low mass tails. Moreover, the am-
plitude fit does not seem to significantly depend on the resonance parameters which are
left floating in the extended model. Therefore, at present the amplitude fit is not able
to discriminate well between neighbouring resonance contributions. A better discrimi-
nation could be achieved by increasing the fitted number of events or by fitting the full
five-dimensional phase space.

The fit fraction of the Λ∗(2000) resonance included in the fit models is greater than
15% for all the presented fits, despite no clear evidence for such kind of states has been
reported to date. To quantify the statistical significance of the observed contribution, the
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Figure 5.21: Dalitz plot amplitude fit results for the reduced model on the alternative sample of
100’000 Λ+

c → pK−π+ candidates.
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Figure 5.22: Dalitz plot amplitude fit residuals between data and model, for the reduced model
on on the alternative sample of 100’000 Λ+

c → pK−π+ candidates. The associated χ2/ndf is
1393.59/939=1.48.
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Figure 5.23: Dalitz plot amplitude fit results for the reduced model without Λ∗(2000) resonance
on 100’000 Λ+

c → pK−π+ candidates.

amplitude fit is repeated removing the Λ∗(2000) resonance from the reduced model. The
result of the fit is reported in Fig. 5.23: clearly it is not possible to obtain a good fit of
the m2

pK− invariant mass in the 2 GeV region without the Λ∗(2000) state. The NLL asso-
ciated to the best fit is -19833.7, the difference with respect to the reduced model being
∆LL = 545.6. According to the Wilks’ theorem [171], the quantity 2∆LL approaches
the χ2 distribution in the limit of infinite statistics, with a number of degrees-of-freedom
equal to the difference of free parameters between the two models. In this case, there
are six parameters associated to the Λ∗(2000) resonance (mass, width and four real cou-
plings), leading to a χ2/ndf of 1090/6, corresponding to a statistical significance of 32.5σ.
The amplitude fits establish with overwhelming statistical significance the presence of
Λ∗ resonances contribution in the region m2

pK− ∈ 3.8 − 4.0 GeV2; this contribution can
be parametrised by a spin 1/2 state with a mass around 1.97 GeV and a width around
140 MeV.

5.4.5 Full phase space 5-dimensional fits

The full phase space fits are performed in analogy with the Dalitz plot fit, on 100’000
Λ+
c → pK−π+ data candidates selected from the data sample collected in 2016, using the

reduced model, Table 5.5. The result is shown in Fig. 5.24 and the associated fit fractions
in Table 5.10.

Discrepancies in the one-dimensional phase space distributions are visible for the
best full phase space amplitude fit: the invariant mass distributions do not match those
of the Dalitz plot amplitude fits and there is a different trend between data and ampli-
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Figure 5.24: Phase space amplitude fit results for the reduced model on 100’000 Λ+
c → pK−π+

candidates.
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Resonance Fit fraction

Non resonant 0.003625
K∗(892) 0.201816
K∗(1410) 0.283104
K∗(1430) 0.003664
Λ∗(1405) 0.087003
Λ∗(1520) 0.024638
Λ∗(1600) 0.057809
Λ∗(1670) 0.029792
Λ∗(1690) 0.017905
Λ∗(2000) 0.146268
∆∗++(1232) 0.115455
∆∗++(1620) 0.007105

Sum 0.978184

Table 5.10: Fit fractions for the phase space amplitude fit with reduced model on 100’000 Λ+
c →

pK−π+ candidates.

tude model in the φp distribution. The cos θp and χ distributions are in good agreement.
The fitted polarisation components are

Px = 0.224± 0.007 Py = 0.015± 0.007 Pz = −0.120± 0.007.

To understand why the fit is unable to match the invariant mass distributions of
data and amplitude model, contrarily to the good agreement reached in Dalitz plot fits,
the phase space amplitude fit is also performed by fixing the decay amplitude model
according to the Dalitz plot fit results presented in Table 5.7 and fitting only for the three
polarisation components. The best result is shown in Fig. 5.25, which displays enhanced
discrepancies in the mass distributions and a weird step distribution for the amplitude
model φp distribution. The observed problems point towards issues in the way the 5-
dimensional amplitude model is implemented in TensorFlowAnalysis, which however
were not visible in the test fits done on simulated events, Sec. 5.4.1. In the following
section extensive tests of the amplitude model trying to isolate the source of the problem
are presented.

5.4.6 Extensive amplitude fit tests

The first test performed is to check if the model is isotropic in the decay orientation an-
gles for zero polarisation. As explained in Sec. 1.4.6 this property follows from rotational
invariance and must be satisfied irrespective of the decay model. The test has been per-
formed generating 100’000 events from the reduced amplitude model Dalitz plot fit, Ta-
ble 5.7, with no polarisation, showing the phase space distributions reported in Fig. 5.26.
Consistently with the results of Fig. 5.25, while cos θp and χ distributions are uniform,
the φp distribution has a clearly unphysical step. The step is located at φp = 0, suggesting
the model is in some way different for positive and negative φp. However, it is important
to note that the distributions associated to the single resonances fractions are uniform for
all the intermediate states, indicating that the problem is related to interference effects
only. This is consistent with the tests performed on simulated events, Sec. 5.4.1, since the
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Figure 5.25: Phase space amplitude fit results for fixed reduced model and floating polarisation
vector on 100’000 Λ+

c → pK−π+ candidates.
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model used to produce the simulation sample did not include interference effects.

The test is repeated changing the resonance content of the amplitude model. It is
found that anisotropies in φp distributions arise only when resonances belonging to dif-
ferent decay channels interfere: they have been observed in the interference of one Λ∗
and one ∆∗++, one K∗ and one ∆∗++ and one Λ∗ and one K∗ resonances. On the other
hand, no anisotropies are seen when resonances belonging to the same decay channel
interfere. Fig. 5.27 presents the test performed generating 106 events from the reduced
amplitude model Dalitz plot fit at zero polarisation in which onlyΛ∗ resonances are kept.

A second test is performed generating 100’000 events from the same model but with
full polarisation on the different components, Figs. 5.28-5.31. For rotational invariance
the invariant mass distributions must be constant for varying polarisation; indeed the
invariant mass distributions are basically the same for zero and full polarisations. Re-
garding the angular distributions associated to the single resonance fraction, these fol-
low the simple patterns for full polarisation seen in Figs. 5.12-5.14: linear in cos θp for
Pz and a cosφp or sinφp dependence for Px or Py polarisation, respectively. The angular
distributions of the total model are more complicated, still featuring the step at φp = 0.

A third test is set performing a full phase space amplitude fit using the reduced
model to a sample consisting of 80’000 events, featuring invariant mass distributions
generated according to the Dalitz plot fit of Table 5.7 and uniformly generated angu-
lar distributions corresponding to zero polarisation. No detector efficiency effects are
included here. The result is reported in Fig. 5.32: the fit is able to select an amplitude
model with uniform angular distributions at the price of creating discrepancies in the
invariant masses. Interestingly, the extracted polarisation is close to zero as it should be,

Px = −0.005± 0.007 Py = −0.033± 0.008 Pz = −0.014± 0.003,

with a bias of ≈ 0.03 in Py , even if uncertainties are oddly different for different compo-
nents.

The last test is performed as the third one, but including efficiency effects. The gen-
erated sample is built in the same way but throwing events from the ReDecay simulated
sample. The result is reported in Fig. 5.33 and it is in line with that of Fig. 5.32. The
extracted polarisation is less compatible with to zero than before,

Px = −0.059± 0.005 Py = −0.014± 0.005 Pz = 0.066± 0.005,

with a bias up to 0.066, but this time uncertainties are similar for all the polarisation
components.

From the latter two tests, it is possible to conclude that the departure of the ampli-
tude model angular distributions from isotropy for zero polarisation is heavily model-
dependent; so the strange step-like φp distribution is a feature of the particular model
employed and exists models whose angular distributions are uniform. This has been
cross-checked by repeating the first test, Fig. 5.26, with different models, showing that
the interference pattern changes with the generation model.

Summarising, the amplitude model shows an unphysical, model-dependent behaviour
in interference effects, which prevents the full phase space amplitude fit to reproduce the
observed distributions. At the time of writing this thesis, the cause of this problem is still
under investigation.



Amplitude analysis of the Λ+
c → pK−π+ decay at LHCb 123

2 2.5 3 3.5 4 4.5
]2(pK) [GeV2M

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2]
2

) 
[G

eV
π

(K
2

M

0

5

10

15

20

25

30 Model

D1232

D1620

Kstar1410

Kstar1430

Kstar892

KswaveNR

L1405

L1520

L1600

L1670

L1690

L2000

2 2.5 3 3.5 4 4.5
0

500

1000

1500

2000

2500

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

500

1000

1500

2000

2500

3000

3500

1 1.5 2 2.5 3
0

200

400

600

800

1000

1200

1400

1600

1800

2000

1− 0.5− 0 0.5 1
0

200

400

600

800

1000

1200

3− 2− 1− 0 1 2 3
0

200

400

600

800

1000

1200

3− 2− 1− 0 1 2 3
0

200

400

600

800

1000

1200

Figure 5.26: Phase space distributions generated from the amplitude model obtained from the
Dalitz plot fit to the reduced model with zero polarisation, for 100’000 events.
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Figure 5.27: Phase space distributions generated from the amplitude model obtained from the
Dalitz plot fit to the reduced model with zero polarisation in which only Λ∗ resonances are kept,
for 106 events.
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Figure 5.28: Phase space distributions generated from the amplitude model obtained from the
Dalitz plot fit to the reduced model with full polarisation Pz = 1, for 100’000 events.
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Figure 5.29: Phase space distributions generated from the amplitude model obtained from the
Dalitz plot fit to the reduced model with full polarisation Pz = −1, for 100’000 events.
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Figure 5.30: Phase space distributions generated from the amplitude model obtained from the
Dalitz plot fit to the reduced model with full polarisation Px = 1, for 100’000 events.
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Figure 5.31: Phase space distributions generated from the amplitude model obtained from the
Dalitz plot fit to the reduced model with full polarisation Py = 1, for 100’000 events.
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Figure 5.32: Fit to a generated sample with uniform angular distributions of 80’000 events, without
detector efficiency effects. See text for details.
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Figure 5.33: Fit to generated sample with uniform angular distributions of 80’000 events, including
detector efficiency effects. See text for details.
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5.4.7 Sensitivity to polarisation

The precision of the proposed experiment for the Λ+
c baryon dipole moments measure-

ment depends in a critical way on the sensitivity of theΛ+
c → pK−π+ decay distributions

to the Λ+
c polarisation. In Sec. 2.5, the sensitivity to the polarisation has been estimated

from the information available on the quasi two-body decay Λ+
c → ∆++K−. In the fol-

lowing, the sensitivity to the polarisation of the reduced amplitude model derived in
Sec. 5.4.4 is studied. Since this model is not the final amplitude fit, given the problems
affecting the full phase space amplitude fit, the presented results have to be considered
preliminary; the aim of this study is to show how the sensitivity to the polarisation can
be extracted from an amplitude model.

The amplitude model defined by the polarised decay rate Eq. (5.18) is considered for
the case of Pz polarisation only: for rotational invariance, the sensitivity to the polari-
sation will be the same for any component, as far as detector efficiency effects are not
included. For instance, the study for the τ+ polarisation extraction presented in Sec. 3.4
showed a different sensitivity for different polarisation components because reconstruc-
tion effects were included in the definition of the templates Eq. (3.11). The decay rate
Eq. (5.18) for Px = Py = 0 can be written, following the notation of Ref. [125], as

p(Ω, Pz) = f(Ω) + Pz g(Ω), (5.41)

with

f(Ω) ∝
∑

mp=±1/2

[
|A1/2,mp(Ω)|2 + |A−1/2,mp(Ω)|2

]
= p(Ω, Pz = 0)

g(Ω) ∝
∑

mp=±1/2

[
|A1/2,mp(Ω)|2 − |A−1/2,mp(Ω)|2

]
∝ p(Ω, Pz = 1)− p(Ω, Pz = −1), (5.42)

normalised in such a way that∫
p(Ω, Pz)dΩ =

∫
f(Ω)dΩ = 1, (5.43)

with the g function integrating to zero over the phase space,∫
g(Ω)dΩ = 0. (5.44)

Given the NLL Eq. (5.25) with ptot the decay rate Eq. (5.41), the Pz uncertainty for
Pz = 0 follows from Eq. (5.33) as

1

σ2
= −∂

2 logL(ω)

∂P 2
z

∣∣∣∣
Pz=0

=

N∑
i

g2

f2
(Ωi), (5.45)

in which the fit parameters ω are fixed to the values obtained for the reduced model
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Dalitz plot fit, Table 5.7.
The sensitivity to the polarisation is measured by the squared average event Fisher

information

S2 =
1

Nσ2
=

〈
g2

f2
(Ω)

〉
=

∫
g2

f
(Ω)dΩ, (5.46)

which, for the amplitude model under study, is found to be S = 0.38. This value is
compared to the case of the two-body decay distribution Eq. (2.5), for which the Fisher
information depends on the decay asymmetry parameter αf as

S =
|αf |√

3
. (5.47)

An effective α parameter for the amplitude model can be obtained inverting Eq. (5.47),
obtaining α = 0.65.

This preliminary result suggests that the sensitivity of the amplitude model to the
polarisation is similar to that assumed for the quasi two-body decay Λ+

c → ∆++K− in
Table 2.2, |α∆++K− | = 0.67; however, the use of the amplitude model allows to exploit
the full statistics of Λ+

c → pK−π+ decays. Therefore, in the sensitivity study for the Λ+
c

dipole moments, Sec. 2.5, the number of useful Λ+
c decays N reco

Λ+
c

can be increased by a
factor B(Λ+

c → pK−π+)/B(Λ+
c → ∆++K−) ≈ 5.8, according to the PDG values [24].

To evaluate the sensitivity to the polarisation as a function of the Dalitz plot, the
squared Fisher information is computed as a function of m2

pK− and m2
K−π+ invariant

masses,

S2(m2
pK− ,m

2
K−π+) =

∫
g2

f
(Ω)d cos θpdφpdχ, (5.48)

and shown in Fig. 5.34.
The sensitivity to the polarisation of each contribution of the amplitude model is ob-

tained computing S when only one resonance is kept in the amplitude model; however,
this way the information about the interference pattern is lost. The S values and the asso-
ciated decay asymmetry α parameters are reported in Table 5.11. When final values will
be available, these α parameters will supersede those derived from the E791 experiment
amplitude analysis [88].

5.5 Conclusions and future plans

The amplitude analysis of Λ+
c → pK−π+ decays from Λ0

b semileptonic production recor-
ded by the LHCb experiment is well under way. The amplitude model for a full phase
space fit of Λ+

c → pK−π+ decays, allowing the extraction of the polarisation vector, has
been developed following the helicity formalism, within the TensorFlowAnalysis pack-
age. A very pure selection of Λ+

c → pK−π+ candidates has been developed, which
allow to neglect background contributions in the amplitude fit. This way the code is
able to account for detector efficiency effects exploiting simulated Λ+

c → pK−π+ events
reconstructed by the LHCb detector without the need of explicit parametrisation.

The decay model is built according to the current knowledge of resonances contribut-
ing to pK−, pπ+ and K−π+ decay channels. Two models with identical resonance con-
tent but different number of fit parameters have been considered. The 2-dimensional
Dalitz plot amplitude fits well describe the invariant mass decay distributions. An unex-
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Figure 5.34: Squared Fisher information associated to Pz polarisation over the Dalitz plot.

Resonance S α

Non resonant 0.42 0.72
K∗(892) 0.46 0.80
K∗(1410) 0.31 0.53
K∗(1430) 0.19 0.33
Λ∗(1405) 0.38 0.66
Λ∗(1520) 0.40 0.69
Λ∗(1600) 0.28 0.49
Λ∗(1670) 0.33 0.57
Λ∗(1690) 0.24 0.41
Λ∗(2000) 0.04 0.07
∆∗++(1232) 0.19 0.33
∆∗++(1620) 0.48 0.84

Table 5.11: Fisher information and decay asymmetry parameters associated to each contribution
of the amplitude model.
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Resonance Fit fraction

Non resonant 0.418255
K∗(892) 0.091210
K∗(1410) 0.118811
K∗(1430) 0.290045
Λ∗(1405) 0.059900
Λ∗(1520) 0.014751
Λ∗(1600) 0.052037
Λ∗(1670) 0.012482
Λ∗(1690) 0.014049
Λ∗(2000) 0.157156
∆∗++(1232) 0.086709
∆∗++(1620) 0.066167

Sum 1.381570

Table 5.12: Fit fractions for the phase space amplitude fit for the reduced model on 100’000 Λ+
c →

pK−π+ candidates, performed with a preliminary amplitude model based on the prescriptions of
Refs. [157, 172].

pected contribution from Λ∗ resonances is observed with statistical significance of 32.5σ,
which can be parametrised by a spin 1/2 state with mass around 1.97 GeV and width
around 140 MeV. Fit fractions for overlapping resonances are not well determined with
the employed statistics.

Full phase space 5-dimensional amplitude fits are performed, but a problem related
to the implementation of the amplitude model prevents the fits to find a good descrip-
tion of the phase space distributions. A thorough set of tests has shown that the is-
sue is uniquely related to an unphysical, model-dependent interference pattern, which
only arise when resonances belonging to different decay chains interfere. The cause of
this problem was still not clear at the time of writing this thesis. During the review
stage, a possible issue related to unphysical phases introduced between different decay
chains has been identified [172]. Preliminary work in this direction suggests that a pre-
cise matching of the phases associated to spin states is able to solve the discrepancy seen
in the φp distribution: Fig. 5.35 shows a phase space amplitude fit for the reduced ampli-
tude model, the analogue of Fig. 5.24, performed with a preliminary amplitude model
based on the prescriptions of Refs. [157, 172]; the associated fit fractions are reported in
Table 5.12. This amplitude fit must be considered as work in progress, since a proper test
of its implementation has not been performed yet.

A preliminary study to quantify the sensitivity to the polarisation of the amplitude
model has been performed, suggesting that it is similar to that assumed for the quasi
two-body decay Λ+

c → ∆++K− in the sensitivity study for the proposed experiment
for charm baryon dipole moments measurement. This would allow an increase of the
useful Λ+

c decays for the dipole moments measurement of a factor six. Interestingly,
the sensitivity to the polarisation is basically unchanged when computed with the new,
preliminary amplitude model of Fig. 5.35, suggesting it is a model-independent feature
of the Λ+

c → pK−π+ decay.
Besides understanding the problem affecting full phase space amplitude fits, the next

step of the analysis will be to increase the fitted data sample to allow a better deter-
mination of the amplitude model. The bottleneck is currently given by the size of the
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Figure 5.35: A phase space amplitude fit for the reduced model on 100’000 Λ+
c → pK−π+ can-

didates, performed with a preliminary amplitude model based on the prescriptions of Refs. [157,
172]. This amplitude fit is the analogue of Fig. 5.24 and must be considered as work in progress.
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simulation sample. After a reasonably good amplitude model is found, systematic un-
certainties can be evaluated. A particular attention would be required for the systematic
uncertainty associated to the choice of the amplitude model.
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CHAPTER 6

Λ+
c polarisation measurement in proton-neon collisions at√

s = 68.6GeV at LHCb

6.1 Motivation

The measurement of Λ+
c baryon polarisation is an interesting probe for low-energy QCD

models trying to explain its structure [173]. According to heavy quark effective the-
ory, most of the c-quark polarisation is expected to be retained by the charm baryon,
this giving information on the c-quark polarisation and its production mechanisms, see
Sec. 1.3.2.

Due to the smaller production cross-sections of charm baryons with respect to light
and strange ones, only two Λ+

c polarisation measurements have been performed to date,
both in proton-nucleus fixed-target configurations. The measurements using 230 GeV π−

collisions on Cu target by the NA32 experiment at CERN-SPS [70] and 500 GeV π− on a
Pt-diamond target by the E791 experiment [71], reported a trend of increasing negative
Λ+
c baryon polarisation with pT

The Λ+
c → pK−π+ events from collisions of 2.5 TeV protons on gaseous neon re-

corded by the LHCb experiment in its fixed-target (SMOG) configuration can probe the
Λ+
c polarisation at the unprecedented center-of-mass energy

√
s = 68.6 GeV. A signifi-

cant Λ+
c polarisation in fixed-target collisions of LHC protons is crucial for the proposed

search of charm baryon electromagnetic dipole moments using bent crystals at LHC(b),
Chapter 2, being the sensitivity to dipole moments directly proportional to the Λ+

c po-
larisation, Eq. (2.70).

In this part of the thesis, the status of the the Λ+
c polarisation measurement in proton-

neon collisions at
√
s = 68.6 GeV recorded by LHCb is presented. In Sec. 6.2 the studies

performed to select Λ+
c → pK−π+ candidates from the LHCb SMOG proton-neon data

sample are presented, including the rejection of combinatorial background and of pp
collision events. The effectiveness of the polarisation extraction and the evaluation of the
associated systematic uncertainty, using the Λ+

c → pK−π+ amplitude model obtained
from pp collisions in Chapter 5, is reported in Sec. 6.3. The conclusions are summarised
in Sec. 6.4.

6.2 Data and simulation samples

The Λ+
c polarisation in proton-gas fixed-target collisions is studied using the proton-

neon data sample recorded by the LHCb experiment in 2017, in which 2.5 TeV protons
collided on neon atoms injected in the Vertex Locator tank by the SMOG system, yield-
ing fixed-target collisions at centre-of-mass energy of 68.6 GeV. This sample has been

139
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Particle Quantity Cut

hadron min pT 200 MeV
min p 3 GeV

track χ2/ndf < 5
min primary vertex IP χ2 2

p min PIDp 5
min PIDp − PIDK 5

K min PIDK 5
π max PIDK 5
{p,K, π} greater hadron pT > 1 GeV

greater two hadron pT > 400 MeV
greater hadron primary vertex IP χ2 > 9

greater two hadron primary vertex IP χ2 > 4

Λ+
c m(pKπ) interval m(Λ+

c )PDG ± 500 MeV
DOCA χ2 limit between daughter tracks 2.0

Table 6.1: HeavyIonOpenCharmLc2PKpiLine selection criteria. See Table 5.1 for quantity defi-
nitions.

obtained from a total of 4.5×1023 protons on target, corresponding to an integrated lumi-
nosity of ≈ 200 nb−1. Contrarily to previous proton-gas data samples, recorded during
dedicated accelerator operations with no proton-proton collision program, proton-neon
collisions were recorded simultaneously with proton-proton collisions at

√
s = 5 TeV.

This allowed for an unprecedented luminosity of the recorded sample, but at the price
of an higher background rate of overlapping proton-proton collisions.

SMOG data samples are indeed collected only when fully-filled Beam 1 bunches cross
empty Beam 2 bunches at the Interaction Point (IP), so that no proton-proton collisions
are expected. However, due to imperfections in the beam operations, some protons of
the Beam 2 can leak from filled bunches to empty ones, called ghost charges, causing
unwanted proton-proton collision events. These events can be separated from true fixed-
target collisions thanks to the different topology of the latter, as explained in Sec. 6.2.1.

The Λ+
c → pK−π+ candidates are selected from the proton-neon 2017 sample ap-

plying the HeavyIonOpenCharmLc2PKpiLine stripping selection, whose criteria are
listed in Table 6.1. Two software trigger selection lines are available: Hlt1SMOGpKPi
and Hlt2SMOGLc2KPPi, with selection criteria listed in Tables 6.2 and 6.3, respectively.
No specific hardware trigger selection is applied.

A simulation sample reproducing Λ+
c → pK−π+ fixed-target collisions with a flat

phase space decay model has been produced. To reproduce the typical features of a
proton-nucleus collision, the charm baryon decay generated using PYTHIA [123] package
is superimposed on minimum bias proton-neon events generated with the EPOS gener-
ator for heavy ion collisions [153]. The sample consists of one million generated events,
of which 4188 passing the stripping requirements, whose reconstructed m(pK−π+) is
displayed in Fig. 6.1. Only 1046 events (25% of the total), composing the peak at the
known Λ+

c mass, are correctly reconstructed as signal events, while the remainder con-
sist of badly reconstructed events. The main cause of unsuccessful reconstruction is due
to background tracks coming from other primary vertexes (37%), from the same primary
vertex (20%) or from fake tracks (14%); a consequence of the harsh environment charac-
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Particle Quantity Cut

hadron min pT 600 MeV
min p 4 GeV

max track χ2/ndf 2
{p,K, π} greater hadron pT > 900 MeV

DOCA limit between daughter tracks 0.2 mm
Λ+
c m(pKπ) interval m(Λ+

c )PDG ± 150 MeV
max vertex χ2/ndf 10

Table 6.2: Hlt1SMOGpKPi trigger selection criteria.

Particle Quantity Cut

hadron min pT 200 MeV
{p,K, π} greater hadron pT > 1 GeV

greater two hadron pT > 400 MeV
Λ+
c m(pKπ) interval [2211, 2543] MeV

max vertex χ2/ndf 25

Table 6.3: Hlt2SMOGLc2KPPi trigger selection criteria.

terising the proton-neon data-taking.

6.2.1 Global selection of fixed-target events

A global selection of fixed-target events to reject proton-proton collision events due to
ghost charge collisions can be set exploiting the different characteristic topology of fixed-
target events with respect to pp collision events. The topology can be controlled by
the following quantities: the z coordinate of the primary vertex zPV , the number of
hits registered in the VELO pile-up veto counter nPUHits and the number of recon-
structed backward tracks (opposite to the rest of the LHCb detector) nBackTracks.
Fixed-target events feature forward, high momentum and high pseudorapidity tracks
only, nBackTracks ≈ 0, and a wide zPV distribution following the gas density in the
beampipe. If the primary vertex is inside the VELO detector, no hits are expected in
the pile-up counter described in Sec. 4.2.1, nPUHits ≈ 0; events in which the primary
vertex is upstream the VELO, featuring significant activity in the pile-up counter, can
also be considered as signal events. Proton-proton collision events are instead symmet-
ric in forward and backward directions, characterised by significant backward activity
and a zPV distribution centred around the interaction point z = 0. Note that the VELO
pile-up counters are located between z = −315 and z = −220 mm. The zPV -nPUHits
distribution of stripped Λ+

c → pK−π+ candidates, highlighting the three types of decay
topologies present in the SMOG dataset, is displayed in Fig. 6.2

A conservative global selection is applied to effectively remove pp collisions, sum-
marised in Table 6.4. In the region −100 < zPV < 100 mm in which most of the pp colli-
sion events take place no activity in the backward part of the VELO detector, nPUHits
= 0 and nBackTracks = 0. Some backward activity, nPUHits < 5 and nBackTracks
< 5, is allowed for events in −200 < zPV < −100 and 100 < zPV < 200 mm. Fur-
ther studies can be carried out to improve the signal efficiency, possibly including signal
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Figure 6.1: The pK−π+ invariant mass distribution of Λ+
c → pK−π+ simulated events passing

stripping requirements.
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Figure 6.2: The zPV -nPUHits distribution of stripped Λ+
c → pK−π+ candidates. SMOG events

occurring inside the VELO detector correspond to the bottom horizontal band at nPUHits≈ 0
extending inside the VELO coverage; upstream SMOG events correspond to the diagonal band
extending in the backward direction with increasing pile-up counter activity; pp collision events
correspond to the vertical band mostly confined to the −100 < zPV < 100 mm region.

zPV region (mm) nPUHits nBackTracks

−200 < zPV < −100 < 5 < 5
−100 < zPV < 100 = 0 = 0
100 < zPV < 200 < 5 < 5

Table 6.4: Global selection cuts applied to remove pp collisions events.
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Quantity Cut

PIDp(p) > 15
PIDK(K) > 15
PIDK(π) < −30
Λ+
c decay vertex χ2/ndf < 6

Λ+
c PV impact parameter χ2/ndf < 2

DIRA angle < 0.015
Λ+
c lifetime > 0.5 ps

Table 6.5: Requirements of the cut-based selection for Λ+
c → pK−π+ fixed-target candidates. See

Table 5.1 for quantity definitions.

Parameter Central value ± Uncertainty

Signal events 172.07 ± 16.1
Background events 242.05 ± 18.1
Gauss x

[
GeV/c2

]
2.2889 ± 0.000669

Gauss σ
[

MeV/c2
]

6.6869 ± 0.668
Exp c

[
( GeV/c2)−1

]
-0.081944 ± 1.40

Table 6.6: Results of the invariant mass fit ofΛ+
c → pK−π+ candidates after the cut-based selection

described in Table 6.5.

events occurring upstream the VELO detector.

6.2.2 Selection and invariant mass fit

A simple cut-based selection, aiming at high signal purity, is studied on Λ+
c → pK−π+

candidates selected by the stripping line and triggered on signal by both the trigger
lines described in Sec. 6.2, its requirements listed in Table 6.5. The selection requires
Λ+
c → pK−π+ candidates to have: good hadron identification responses, measured from

the delta log-likelihood PIDh between h and pion hypotheses; goodΛ+
c decay vertex; Λ+

c

impact parameter compatible with the primary vertex; Λ+
c momentum compatible with

flight direction and a sufficiently long lifetime to remove prompt background.
Signal and background contributions are separated from Λ+

c → pK−π+ candidates
by means of a fit to the pK−π+ invariant mass distribution, in which a Gaussian and an
exponential are employed as signal and background models, respectively. The fit to the
pK−π+ invariant mass distribution for fixed-target Λ+

c → pK−π+ selected candidates is
shown in Fig. 6.3, results reported in Table 6.6. A signal yield of 172± 16 is found, with
a peak resolution of ≈ 6.7 MeV. The background yield 242 ± 18 corresponds to a back-
ground fraction of ≈ 21% in the signal region chosen as |m(pK−π+) − m(Λ+

c )PDG| <
15 MeV. The significance figure-of-merit S/

√
S +B, computed using signal and back-

ground yields in the signal region, is 11.7.
Besides the cut-based selection, a more refined selection based on a multivariate clas-

sifier is explored. The basic idea is to exploit the sample of D+ → K−π+π+ fixed-
target candidates, having a much larger statistics than the Λ+

c → pK−π+ one, to train
a Boosted Decision Tree (BDT) discriminating between signal and background events.
The D+ → K−π+π+ has indeed a three-body topology similar to Λ+

c → pK−π+ de-



144 6.2 Data and simulation samples

2.25 2.3 2.35
]2c) [GeV/+π−Kp(m

0

10

20

30

40

50

60

70

80)2 c
C

an
di

da
te

s 
/ (

6.
4 

M
eV

/  data+π−Kp → c
+Λ

Full fit
Signal
Background

2.25 2.3 2.35
 

5−
4−
3−
2−
1−
0
1
2

3
4

5

Pu
ll

3

0

-3

Figure 6.3: Invariant mass distribution of Λ+
c → pK−π+ candidates after the cut-based selection

described in Table 6.5.

Quantity Cut

PIDK(K) > 0
PIDK(π) < −70
D+ decay vertex χ2/ndf < 6
D+ PV impact parameter χ2/ndf < 4
DIRA angle < 0.03
D+ lifetime > 0.3 ps

Table 6.7: Loose selection requirements for the D+ → K−π+π+ training sample.

cays, but the D+
s meson mean lifetime τ(D+) = 1.04 ps is about five times larger than

the Λ+
c baryon one τ(Λ+

c ) = 0.2 ps. The classifier response on D+ → K−π+π+ and
Λ+
c → pK−π+ candidates is therefore expected to be similar but not equal. Training on

a simulated Λ+
c → pK−π+ sample larger than the one available at present is planned

to reach a better agreement with Λ+
c → pK−π+ candidates. In this study trigger re-

quirements are not applied since they have a signal efficiency of 1/3 only. The training
sample is obtained from D+ → K−π+π+ candidates selected from their dedicated strip-
ping line satisfying the fixed-target global selection described in Sec. 6.2.1. The purity of
the sample is increased applying the loose requirements listed in Table 6.7. Signal and
background yields from the K−π+π+ invariant mass fit, employing the same model as
for Fig. 6.3, are S = 7652 ± 155 and B = 46347 ± 250. The invariant mass fit is shown
in Fig.6.4, results reported in Table 6.8. This way the sample is pure enough to apply the
sPlot statistical technique [160] to derive signal and background distributions.

The classifier is trained using topological information on half of the D+ → K−π+π+

sample; since the final hadrons are different for D+ and Λ+
c decays, particle identifica-
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Figure 6.4: Invariant mass distribution of D+ → K−π+π+ candidates passing the loose require-
ments described in Table 6.7.

Parameter Central value ± Uncertainty

Signal events 7652.4 ± 155
Background events 46347 ± 250
Gauss x

[
GeV/c2

]
1.8701 ± 0.000156

Gauss σ
[

MeV/c2
]

7.3893 ± 0.160
Exp c

[
( GeV/c2)−1

]
1.0611 ± 0.101

Table 6.8: Results of the invariant mass fit of D+ → K−π+π+ candidates passing the loose re-
quirements described in Table 6.7.
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Quantity Statistical separation (%)

D+ lifetime 45.49
D+ decay vertex χ2/ndf 41.52
DIRA angle 35.74
faster π+ PV impact parameter logχ2/ndf 35.61
slower π+ PV impact parameter logχ2/ndf 28.93
K− PV impact parameter logχ2/ndf 14.48
Primary vertex χ2/ndf 11.79
D+ PV impact parameter χ2/ndf 6.371

Table 6.9: Topological variables used for the BDT training, ranked according to their statistical
separation evaluated on the D+ → K−π+π+ training sample.

Quantity Cut

PIDp(p) > 5
PIDK(K) > 5
D+ decay vertex χ2/ndf < 6
D+ PV impact parameter χ2/ndf < 4
DIRA angle < 0.03
D+ lifetime > 0.3 ps

Table 6.10: Loose selection requirements for the Λ+
c → pK−π+ sample, equal to those applied to

the D+ → K−π+π+ training sample, Table 6.7, apart from particle identification requirements.

tion requirements are to be studied separately. The topological variables with the best
statistical separation1 between signal and background distributions, Table 6.9, are fed to
the BDT.

The optimisation of the cut on the BDT response is performed by finding the max-
imum of the significance figure-of-merit, computed using signal and background effi-
ciencies derived from the second half of the D+ → K−π+π+ sample starting from initial

1The difference between signal and background PDFs for a training variable x, s(x) and b(x), representing
its discrimination power, can be measured by the statistical separation defined as

〈S2〉 =
1

2

∫ (
s(x)− b(x)

s(x) + b(x)

)2

dx. (6.1)

Parameter Central value ± Uncertainty

Signal events 503.29 ± 71.9
Background events 23213 ± 167
Gauss x

[
GeV/c2

]
2.2898 ± 0.000683

Gauss σ
[

MeV/c2
]

4.4576 ± 0.764
Exp c

[
( GeV/c2)−1

]
1.5587 ± 0.142

Table 6.11: Results of the invariant mass fit of theΛ+
c → pK−π+ fixed-target sample with the loose

requirements of Table 6.7 applied.
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Figure 6.5: Invariant mass distribution of the Λ+
c → pK−π+ fixed-target sample with the loose

requirements of Table 6.7 applied.
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Figure 6.7: Invariant mass distribution of the Λ+
c → pK−π+ fixed-target sample with loose re-

quirements (Table 6.7) and BDT > 0.2131 cut applied.

values of signal and background Λ+
c → pK−π+ yields. The latter are estimated from an

invariant mass fit to fixed-target Λ+
c → pK−π+ candidates to which the loose require-

ments of Table 6.10 are applied, Fig. 6.5, obtaining S = 503 ± 72 and B ≈ 4352 in the
|m(pK−π+) − m(Λ+

c )PDG| < 15 MeV signal region. The invariant mass fit is shown in
Fig. 6.5, results reported in Table 6.11. The BDT cut optimisation is presented in Fig. 6.6:
a cut value BDT > 0.2131 corresponding to a maximum significance of 19.04 is sug-
gested. The invariant mass fit of Λ+

c → pK−π+ candidates after application of loose
requirements and BDT > 0.2131 cut is shown in Fig. 6.7, results reported in Table 6.12,
returning a signal yield of 167 ± 15 with a background fraction of ≈ 19% in the signal
region, corresponding to a significance of 11.5. The performance of this BDT selection
is very similar to the cut-based selection Fig. 6.3, but the former has been achieved with
the sole use of topological information, without particle identification nor trigger re-
quirements. The actual significance of the BDT selection is much smaller than the one
expected from the optimisation, but this is not surprising as a different BDT response
is expected between training and Λ+

c → pK−π+ candidates. To obtain a better signifi-
cance a looser cut value BDT > 0.07 is applied: the corresponding invariant mass fit of
Λ+
c → pK−π+ candidates is shown in Fig. 6.8, results reported in Table 6.13, returning

a signal yield of 392± 27 with a background fraction of ≈ 42% in the signal region, cor-
responding to a significance of 15.1. The looser BDT cut allows a better selection with
more than double signal yield, at the price of an increased background contamination.

Summarising, the use of a BDT exploiting topological information extracted from
D+ → K−π+π+ decays is more effective than a simple cut-based selection. The way
the BDT is trained and optimised can be improved, since the BDT response is not equal
between differentD+ and Λ+

c decays, e.g. by using simulated Λ+
c → pK−π+ decays. The

performances of the BDT selection can also be improved by adding particle identifica-
tion information. Anyway, the important point is that a few hundreds Λ+

c → pK−π+
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Parameter Central value ± Uncertainty

Signal events 167.04 ± 15.3
Background events 235.96 ± 17.4
Gauss x

[
GeV/c2

]
2.2888 ± 0.000609

Gauss σ
[

MeV/c2
]

6.1331 ± 0.529
Exp c

[
( GeV/c2)−1

]
1.9802 ± 1.41

Table 6.12: Results of the invariant mass fit of the Λ+
c → pK−π+ fixed-target sample with loose

requirements (Table 6.7) and BDT > 0.2131 cut applied.
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Figure 6.8: Invariant mass distribution of the Λ+
c → pK−π+ fixed-target sample with loose re-

quirements (Table 6.7) and BDT > 0.07 cut applied.

signal candidates can be selected from the proton-neon data sample, with sufficiently
good purity to perform a polarisation measurement, as demonstrated in the following
Sec. 6.3.

6.3 Strategy for polarisation measurement

The minimum uncertainty on the Λ+
c polarisation can be achieved by exploiting an am-

plitude model of the Λ+
c → pK−π+ decay. The differential decay rate of the Λ+

c →
pK−π+ decay in terms of the Λ+

c polarisation vector P can be written in the helicity for-
malism as in Eq. (5.18), so that if the decay amplitudes betweenΛ+

c and proton spin states
As

Λ
+
c
,λp are known, the Λ+

c polarisation can be extracted from a maximum-likelihood fit
of the decay distribution. The E791 experiment at Fermilab [71] published an amplitude
model based on ≈ 1000 events. A far more precise amplitude model can be extracted
from the large samples of Λ+

c → pK−π+ decay recorded by the LHCb experiment in
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Parameter Central value ± Uncertainty

Signal events 392.23 ± 27.1
Background events 1520.8 ± 43.1
Gauss x

[
GeV/c2

]
2.2887 ± 0.000398

Gauss σ
[

MeV/c2
]

5.2928 ± 0.374
Exp c

[
( GeV/c2)−1

]
2.5642 ± 0.559

Table 6.13: Results of the invariant mass fit of the Λ+
c → pK−π+ fixed-target sample with loose

requirements (Table 6.7) and BDT > 0.07 cut applied.

proton-proton collisions, Chapter 5.
To maximise the precision on the Λ+

c polarisation for the low statistics fixed-target
data, the amplitude model is fixed to the one obtained from pp collisions, and only the
polarisation vector components are determined from the fit. The polarisation frame for
fixed-target heavy baryon production depicted in Fig. 1.3 is employed. Since parity con-
servation requires the Λ+

c polarisation to be orthogonal to the production plane, two
possible fits can be performed: a single parameter fit in which only the orthogonal com-
ponent of the polarisation Py is measured; and a three parameter fit extracting the full
polarisation vector, which can be used as a cross-check of the polarisation measurement.

The polarisation extraction via ML fit and the systematic uncertainty associated to
the choice of the amplitude model are studied by means of toy experiments, in which
Monte Carlo samples generated according to a nominal amplitude model are fit using
the same or an alternative simplified amplitude model. The nominal model is the best
amplitude fit using the reduced model from LHCb pp collisions data, Fig. 5.17 and Ta-
ble 5.7. The alternative model is an effective three-resonance model (containing one
Λ∗ → pK−, one ∆∗++ → pπ+ and one K∗ → K−π+ contributions) whose parameters
(including Breit-Wigner masses and widths) are determined from an amplitude fit to
10’000 Λ+

c → pK−π+ candidates of LHCb pp collisions data. The amplitude fit result
is displayed in Fig. 6.9, the fit parameters values returned by MINUIT are reported in
Table 6.14, and the associated fit fractions in Table 6.15. This effective model is better
than the E791 model because the latter employs a narrow Λ∗(1520) component which
is unable to parametrise the broad structure in m2

pK− mass observed2. Nonetheless, the
effective model is still a crude approximation of the real Λ+

c → pK−π+ decay distri-
butions, given the large deiations from Λ+

c → pK−π+ data phase space distributions,
so it provides a conservative estimate for the systematic effect due to the choice of the
amplitude model.

Monte Carlo samples are generated for zero Λ+
c polarisation, while the polarisation

components starting values in the fit are thrown randomly for each toy. From a hundreds
of toy experiments the distributions of the extracted polarisation values, the analytical
statistical uncertainties from HESSE and the pull (Pi(fit) − Pi(gen))/σ(Pi) are obtained.
In an ideal case, the measured polarisation distribution should be a Gaussian centred
around the generated null value, its width representing the actual statistical uncertainty.
The analytical computation of the statistical uncertainty from the ML fit is valid only in
the large statistics limit; it can be used only if it corresponds to the standard deviation
of the polarisation values, otherwise the latter value should be quoted as statistical un-
certainty. The pull distributions should be Gaussian distributions with zero mean and

2This was already noted by the authors of Ref. [71], who mention that “a model with a spin 1/2 resonance
decaying to pK− having m = 1.556± 0.019 GeV and Γ = 279± 74 MeV reduces the overall χ2 of the fit”.
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Figure 6.9: Dalitz plot amplitude fit results for the effective three-resonance model on 10’000Λ+
c →

pK−π+ candidates.

Parameter Central value± Uncertainty Parameter Central value± Uncertainty

MKstar892 0.917853± 0.001950 GKstar892 0.120000± 0.000169
ML1520 1.539318± 0.001561 GL1520 0.160000± 0.000541
MD1232 1.300000± 0.000271 GD1232 0.299987± 0.001111
ArKst892 2 1.511903± 0.304827 AiKst892 2 -0.224266± 0.195552
ArKst892 3 1.460999± 0.322751 AiKst892 3 2.651460± 0.294940
ArKst892 4 1.227009± 0.289348 AiKst892 4 -2.527752± 0.292490
ArL1520 1 -0.173920± 0.453407 AiL1520 1 2.740105± 0.773901
ArL1520 2 5.093427± 0.513726 AiL1520 2 -4.313387± 0.698702
ArD1232 1 -5.237213± 0.390332 AiD1232 1 -4.624444± 0.641536
ArD1232 2 -5.021403± 0.929781 AiD1232 2 4.406277± 0.886508

Table 6.14: Fit parameters returned by MINUIT for the Dalitz plot amplitude fit with effective
three-resonance model on 10’000 Λ+

c → pK−π+ candidates. Uncertainties are the 1σ standard
deviations returned by HESSE. Fit parameters are defined in Appendix A.3.

Resonance Fit fraction

Kstar892 0.444850
L1520 0.234014
D1232 0.373394

Sum 1.052257

Table 6.15: Fit fractions for the Dalitz plot amplitude fit with effective three-resonance model on
10’000 Λ+

c → pK−π+ candidates.
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Figure 6.10: Fit validation study for a single polarisation component measurement, done for 300
generated samples of 200 events each, including a 20% flat background component.

unit standard deviation. A significant deviation of the pull distribution from zero would
signal a bias in the polarisation measurement.

The validity of the ML framework for a limited number of events is performed con-
sidering 300 generated samples of 200 events each, a number considered as a lower limit
of the possible Λ+

c → pK−π+ yield. The nominal model is used for both generation and
fit. Furthermore, a flat background component with an equivalent fraction of 20% of
the generated events is added to the Λ+

c → pK−π+ amplitude model. The distributions
for the measurement of a single polarisation component3 and the full polarisation vec-
tor are reported in Figs. 6.10 and 6.11, respectively. The polarisation distributions have
a Gaussian-like shape, centred around the zero generation value, showing a negligible
bias given the number of samples. The standard deviation is around 0.21, slightly higher
than the analytical uncertainty retrieved by HESSE (see Sec. 5.4) at around 0.19, the first
representing the achievable precision on the polarisation with 200 Λ+

c → pK−π+ candi-
dates. The pull distributions highlight the absence of bias and the slight underestimation
of the statistical uncertainty. No significant differences are seen for the measurement of
a single polarisation component. The fit framework is therefore working even at very
low statistics. Given that the selections presented in Sec. 6.2.2 can be further optimised,
the statistical uncertainty on the polarisation components can be expected to be < 0.2.

The systematic uncertainty associated to the choice of the amplitude model is stud-
ied on 1000 generated samples of 1000 events each, a number of events higher than the
achievable Λ+

c → pK−π+ yield: the reduced statistical uncertainties increase the sensi-
tivity to possible biases. The nominal model is used for generation and the alternative
for the ML fits. The distributions for the measurement of the full polarisation vector are
shown in Fig. 6.12. The polarisation distributions have a Gaussian-like shape, with a
mean value < 0.02 much smaller than the standard deviation. As for the fit model val-
idation, the actual statistical uncertainty on the polarisation components, at 0.07 − 0.08
level, is slightly higher than the analytical one computed by HESSE. This study demon-
strates that the possible polarisation bias is subdominant at the given statistical uncer-
tainty, even for an alternative model very different for the nominal one.

3Since detector effects are not included at this stage, any of the polarisation components can be considered
for rotational invariance.
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Figure 6.11: Fit validation study for the full polarisation vector measurement, done for 300 gener-
ated samples of 200 events each, including a 20% flat background component.



154 6.3 Strategy for polarisation measurement

h_Px
Entries  1000

Mean   0.00467

Std Dev    0.0712

0.5− 0.4− 0.3− 0.2− 0.1− 0 0.1 0.2 0.3 0.4 0.5
xP

0

20

40

60

80

100

120

T
oy

 e
xp

er
im

en
ts

/0
.0

2

h_Px
Entries  1000

Mean   0.00467

Std Dev    0.0712

h_Py
Entries  1000

Mean  0.00768− 

Std Dev    0.0756

0.5− 0.4− 0.3− 0.2− 0.1− 0 0.1 0.2 0.3 0.4 0.5
yP

0

20

40

60

80

100

T
oy

 e
xp

er
im

en
ts

/0
.0

2

h_Py
Entries  1000

Mean  0.00768− 

Std Dev    0.0756

h_Pz
Entries  1000

Mean   0.0194

Std Dev    0.0794

0.5− 0.4− 0.3− 0.2− 0.1− 0 0.1 0.2 0.3 0.4 0.5
zP

0

20

40

60

80

100

T
oy

 e
xp

er
im

en
ts

/0
.0

2

h_Pz
Entries  1000

Mean   0.0194

Std Dev    0.0794

h_sigma_Px
Entries  1000

Mean   0.0669

Std Dev    0.00117

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
)

x
(Pσ

0

200

400

600

800

1000

T
oy

 e
xp

er
im

en
ts

/0
.0

08

h_sigma_Px
Entries  1000

Mean   0.0669

Std Dev    0.00117

h_sigma_Py
Entries  1000

Mean   0.0669

Std Dev    0.00113

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
)

y
(Pσ

0

200

400

600

800

1000

T
oy

 e
xp

er
im

en
ts

/0
.0

08

h_sigma_Py
Entries  1000

Mean   0.0669

Std Dev    0.00113

h_sigma_Pz
Entries  1000

Mean   0.0719

Std Dev    0.00131

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
)

z
(Pσ

0

100

200

300

400

500

T
oy

 e
xp

er
im

en
ts

/0
.0

08

h_sigma_Pz
Entries  1000

Mean   0.0719

Std Dev    0.00131

h_pull_Px
Entries  1000

Mean   0.0699

Std Dev      1.07

5− 4− 3− 2− 1− 0 1 2 3 4 5
)

x
(Pσ)/x,gen-P

x
(P

0

10

20

30

40

50

60

70

80

T
oy

 e
xp

er
im

en
ts

/0
.2

h_pull_Px
Entries  1000

Mean   0.0699

Std Dev      1.07

h_pull_Py
Entries  1000

Mean  0.114− 
Std Dev      1.13

5− 4− 3− 2− 1− 0 1 2 3 4 5
)

y
(Pσ)/y,gen-P

y
(P

0

10

20

30

40

50

60

70

T
oy

 e
xp

er
im

en
ts

/0
.2

h_pull_Py
Entries  1000

Mean  0.114− 
Std Dev      1.13

h_pull_Pz
Entries  1000

Mean    0.262

Std Dev       1.1

5− 4− 3− 2− 1− 0 1 2 3 4 5
)

z
(Pσ)/z,gen-P

z
(P

0

10

20

30

40

50

60

70

80

T
oy

 e
xp

er
im

en
ts

/0
.2

h_pull_Pz
Entries  1000

Mean    0.262

Std Dev       1.1

Figure 6.12: Amplitude model systematic uncertainty study for the full polarisation vector mea-
surement, done for 1000 generated samples of 1000 events each, fit using the alternative model.
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6.4 Conclusions

The analysis aimed at the measurement of the Λ+
c polarisation in proton-neon collisions

at
√
s = 68.6 GeV has started. Two essential results, demonstrating the feasibility of the

measurement, have been achieved.
First, Λ+

c → pK−π+ fixed-target candidates can be distinguished from proton-proton
collisions due to ghost charges, and a non-negligible yield can be separated from the
combinatorial background. A cut-based and a BDT selection are presented, showing
that a few hundreds Λ+

c → pK−π+ candidates can be selected with enough purity to
perform the polarisation measurement.

Second, it has been demonstrated that the ML fit to extract the polarisation, based
on the use of amplitude models derived from LHCb proton-proton collision data, is
effective. With a Monte Carlo study in which hundreds of samples are generated and
fit, it has been shown that a negligible bias on the polarisation extraction is induced by
the ML fit itself and by the choice of a different amplitude model, at the given statistical
uncertainty. The statistical uncertainty on the polarisation components, whose actual
value will depend on the specific final selection criteria, will be smaller than 0.2, with a
systematic effect due to the fit model choice below 0.02.





CHAPTER 7

Summary and prospects

The first part of the thesis presents how the electromagnetic dipole moments of short-
lived heavy baryons and τ lepton can be measured for the first time exploiting the spin
precession phenomenon for channeled particles in bent crystals. The electromagnetic
dipole moments are of particular interest for probing both Beyond the Standard Model
physics and low-energy Quantum Chromodynamics effective theories. Spin precession
equations are derived for positive and negative particles in planar or axial channeling
conditions, for non-zero electric dipole moment contributions. An experimental layout
exploiting a beam of 7 TeV protons extracted from the main LHC accelerator beam and
directed onto a target-bent crystal device placed in front of the LHCb detector is studied.
Such a setup is shown to be able to challenge the current indirect limits on the charm
baryon dipole moments. The possibility of selecting polarised τ leptons in a similar
experimental layout is demonstrated, and a novel technique to measure the τ+ polar-
isation from partially reconstructed τ+ → π+π−π+ν̄τ decay distributions explored. A
sensitivity study for a future dedicated experiment is presented, which would able to
challenge the SM prediction for the τ+ anomalous magnetic dipole moment with order
1017 protons on target, and searching for the τ+ electric dipole moment at 10−17e cm
precision.

Subsequently, the thesis discusses two ongoing data analyses, the amplitude anal-
ysis of Λ+

c → pK−π+ decays including extraction of the Λ+
c polarisation vector and

the measurement of the Λ+
c polarisation in proton-neon collisions, in light of the possi-

bility to measure the Λ+
c baryon electromagnetic dipole moments. The first analysis is

needed for the determination of the Λ+
c → pK−π+ decay structure and for providing a

method to measure the Λ+
c polarisation from its decay distributions. The second analy-

sis provides crucial information on the polarisation degree of Λ+
c baryons produced in

proton-nucleon fixed-target collisions. At the time of writing this thesis, both data analy-
ses performed on LHCb data are still not complete; however, most of the critical aspects
have been addressed and some important preliminary results achieved.

The second part of the thesis presents the current status of the amplitude analysis
of Λ+

c → pK−π+ decays from Λ0
b semileptonic production recorded by the LHCb ex-

periment. It is shown how an amplitude model for the Λ+
c → pK−π+ decay allowing

for the Λ+
c baryon polarisation extraction can be written in the helicity formalism. This

amplitude model is implemented within the TensorFlowAnalysis software package. The
possibility of selecting order one million Λ+

c → pK−π+ decays from the LHCb proton-
proton collision dataset with negligible background contributions is demonstrated.

Preliminary results are obtained for 2-dimensional “Dalitz plot” invariant mass fits.
A decay model well describing the invariant mass decay distributions is found. An un-
expected Λ∗ contribution is observed with statistical significance of 32.5σ, which can be
parametrised by a spin 1/2 state with mass around 1.97 GeV and width around 140
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MeV. Full phase space 5-dimensional amplitude fits are performed, but a problem in-
troducing an unphysical, model-dependent interference pattern is found, which is cur-
rently under investigation. The sensitivity to the polarisation of the amplitude model
has been preliminarily estimated, found to be similar to that assumed for the measure-
ment of Λ+

c baryon dipole moments, this allowing an increase of the useful Λ+
c decay

statistics by a factor six.
The third part of the thesis demonstrates the feasibility of the Λ+

c polarisation mea-
surement in proton-neon collisions at

√
s = 68.6 GeV recorded by the LHCb experiment.

A few hundreds Λ+
c → pK−π+ fixed-target candidates are distinguished from symmet-

ric proton-proton collisions events and combinatorial background. It is shown that the
Λ+
c polarisation can be extracted from maximum-likelihood fits with the use of ampli-

tude models derived from LHCb proton-proton collision data. By means of a toy Monte
Carlo study, the achievable statistical uncertainty on the polarisation components is esti-
mated to be smaller than 0.2, and the systematic uncertainty due to the amplitude model
choice to be below 0.02.

At the time of writing this thesis, the installation of a target-bent crystal device for
measuring heavy baryon electromagnetic dipole moments at the LHC is actively dis-
cussed witihin the CERN Physics Beyond Colliders initiative and the LHCb Collabora-
tion. The proposal to measure the electromagnetic dipole moments of short-lived par-
ticles has become an ERC funded project, SELDOM. The studies presented in the thesis
have been an essential contribution towards these achievements.



APPENDIX A

Appendices

A.1 Discrete ambiguities

From Eq. (2.43) one can see that, if all the three components of the final polarisation vec-
tor s are measured, the g and d factors can be extracted along with the initial polarisation
s0, up to discrete ambiguities. If {s0, g

′, d} is a solution, then{
−s0, g

′ ± nπ

γθC
, d

(
1± nπ

γθC

1

g′
cos Φ− 1

cos Φ + 1

)}
,

{
s0, g

′ ± mπ

γθC
, d

(
1± mπ

γθC

1

g′

)}
, (A.1)

are also solutions, with n (m) an odd (even) integer. A simultaneous fit in bins of γ to
the angular distribution Eq. (2.5) is able to resolve the ambiguity.
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Figure A.1: Comparison between full (red) and ReDecay (blue) simulation two-body invariant
mass, Λ+

c lifetime, number of tracks distributions.

A.2 ReDecay faster simulation validation for Λ+
c → pK−π+ decays

The validity of the ReDecay faster simulation [159] for the description of the detector effi-
ciency effects is studied comparing a large set of distributions against the full simulation
sample, in which only the flat phase space Λ+

c → pK−π+ events are considered, to avoid
effects of the full simulation decay model on the distributions. The following distribu-
tions are checked: invariant masses, Λ+

c lifetime, number of tracks (Fig. A.1), momenta
(Fig. A.2), transverse momenta (Fig. A.3), particle identification delta log-likelihoods
(Fig. A.4), neural network based ProbNN variables (Fig. A.5) and the one-dimensional
projections of the detector efficiency over the Λ+

c → pK−π+ phase space (Fig. A.6). No
significant discrepancies are visible.
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Figure A.2: Comparison between full (red) and ReDecay (blue) simulation momentum distribu-
tions.
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Figure A.3: Comparison between full (red) and ReDecay (blue) simulation transverse momentum
distributions.
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Resonance type Coupling number λR λp

Λ∗, ∆∗ 1 1/2
2 -1/2

K∗ 1 0 -1/2
2 -1 -1/2
3 1 1/2
4 0 1/2

Non resonant 1 -1/2
2 1/2

Table A.1: Definition of the helicity couplings. λR is the resonance helicity in the Λ+
c rest frame, λp

is the proton helicity defined in the resonance rest frame.

A.3 Definition of the amplitude fit parameters

In this appendix, the naming conventions for the amplitude fit parameters are detailed.

Resonances

Resonant states are indicated as L (Λ∗), D (∆∗), Kst (K∗) and Kswave (non-resonant
contribution), followed by their mass identification as assigned by the PDG, Table 5.4.

Lineshape parameters

For most resonances, parametrised using relativistic Breit-Wigner or its modification for
sub-threshold resonances, Sec. 5.4.3, the Breit-Wigner mass and width are indicated as
M or G (for “Gamma”), respectively, and expressed in GeV units. The LASS parameters
scattering length a and effective range r are called a LASS and r LASS, respectively, and
expressed in GeV−1 units.

Helicity couplings

Each complex helicity coupling is introduced in the amplitude fit via two real fit param-
eters representing its real, Ar, and imaginary, Ai, parts. The number after the resonance
specification labels the helicity coupling for specific resonance and proton helicities, as
described in Table A.11. The allowed helicity couplings follow from angular momentum
conservation, as explained in Sec. 5.2.3.

1Helicity couplings for baryonic resonances Λ∗ and ∆∗ do not depend on proton helicities for parity con-
servation in their decay.
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