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Effects of Rescattering in (e, e′p) Reactions within a Semiclassical Model
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The contribution of rescattering to final state interactions in (e, e′p) cross sections is studied
for medium and high missing energies using a semiclassical model. This approach considers two-
step processes that lead to the emission of both nucleons. The effects of nuclear transparency
are accounted for in a Glauber inspired approach and the dispersion effects of the medium at low
energies are included. It is found that rescattering is strongly reduced in parallel kinematics. At
high missing energies and momenta, the distortion of the short-range correlated tail of the spectral
function is dominated by a rearrangement of that strength itself. In perpendicular kinematics, a
further enhancement of the experimental yield is due to strength that is originally in the mean field
region. This contribution becomes negligible at large missing momenta.

PACS numbers: 25.30.Fj, 25.30.Dh, 21.60.-n, 21.10.Pc, 21.10.Jx.

I. INTRODUCTION

Nuclear correlations strongly influence the dynamics of
nuclear systems [1, 2]. In particular, the repulsive core
at small internucleon distances has the effect of depleting
the shell model orbitals and inducing high momentum
components in the nuclear wave functions [3, 4]. The
main effects of short-range correlations (SRC) consist in
shifting a sizable amount of spectral strength, about 10-
15% [5], to very high missing energies and momenta, to-
gether with increasing the binding energy [6]. The result-
ing reduction of the occupation numbers of the deeply
bound orbitals appears to be fairly independent of the
given subshell and of the size of the nucleus, except for
a slight increase with the central density of the system.
Theoretical studies of the distribution of short-range cor-
related nucleons for finite nuclei have been carried out
using a local density approximation (LDA) by Benhar et
al. [7] and with many-body Green’s functions by Müther
et al. [3]. These calculations suggest that most of the
missing strength is found along a ridge in the momentum-
energy plane (pm-Em) which spans several hundreds of
MeV/c (and MeV). Such behavior is confirmed by recent
experimental data [8].

It is important to note that the depletion of spectro-
scopic factors for closed shell orbitals observed near the
Fermi energy is more substantial than the 15% reduction
discussed above [9] due to long range effects like the cou-
pling to collective modes [2]. We note that this reduc-
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tion also tends to be weaker for loosely bound orbitals
like halo states [10, 11]. As a consequence, it becomes
particularly interesting to study the spectral distribution
in heavy nuclei where the mean field single particle or-
bitals extend to regions far from the Fermi level and tend
to decouple from surface effects. A measurement of the
spectral function for the complete mean field region of
208Pb has been undertaken recently at NIKHEF [12]. In
this region the single particle orbitals are sensibly frag-
mented and it is required to probe missing energies up
to 100 MeV [12] or more. Further detailed information
on SRC could be obtained from (e, e′p) experiments that
directly search for the missing strength at very high miss-
ing momenta and energies. This is particularly appealing
since the details of its distribution strongly influence the
binding energy of finite nuclei and nuclear matter [6]. Be-
sides, it could shed more light on how much the interior
of large nuclei is sensitive to the effects of finite size and
proton-neutron asymmetry.

Unfortunately, past measurements of the short-range
correlated tail by means of (e, e′p) reactions have been
limited due to the enormous background that is gener-
ated by final state interactions (FSI), see for example
Refs. [13, 14]. The issue of how to minimize the FSI
has been recently addressed in Ref. [15]. There, it was
suggested that FSI in exclusive (e, e′p) cross sections are
dominated by two-step rescattering processes like the one
depicted in Fig. 1. This becomes particularly relevant
when regions of small spectral strength are probed in
perpendicular kinematics [39]. A study of several kine-
matic conditions shows that the rescattered nucleons can
move spectral strength in the pm-Em plane, from the top
of the ridge toward regions where the correlated strength
is small, therefore submerging the direct signal in a large
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FIG. 1: (Color online) Schematic representation of the di-
rect knockout of a proton (a), given by the PWIA, and the
contribution from a two-step rescattering (b). In the latter
a proton or neutron is emitted with momentum pa and dif-
ferent missing energy and momentum (E′

m,p′

m). Due to a
successive collision, a proton is eventually detected with the
same momentum pf seen in the direct process.

background noise. Other possible contributions that in-
volve the excitation of a ∆ resonance are expected to be
more sensitive to transverse degrees of freedom. Parallel
kinematics tend to be more clean due to the high momen-
tum that is required for the detected proton. In Ref. [15],
it was suggested that the contribution of rescattering can
be diminished by choosing parallel kinematics and tak-
ing advantage of modern electron beam facilities. New
data were subsequently taken in these conditions by the
E97-006 collaboration at Jefferson Lab [8, 16, 17] for a
set of nuclei ranging from carbon to gold. Clearly, FSI
could still play a role even in parallel kinematics and need
to be properly addressed before the relevant physical in-
formation is extracted from the experiment. We note
that a similar dependency of the FSI on the kinematics
is also predicted in Ref. [18] for (e, e′NN) reactions in
superparallel kinematics.
The issue of computing the effects of rescattering

has been considered recently by means of the multi-
step dynamics approach [19] and by using Glauber the-
ory [20, 21, 22]. All these calculations suggest that multi-
ple rescattering contributions (more than two-steps) are
relatively small in light nuclei like 12C but can become
relevant for large systems. Interference effects between
FSI and SRC correlations can also play a role [21]. How-
ever, all these effects were seen to be reduced in parallel
kinematics. In Ref. [12], the scattered proton was de-
tected at energies at which a full distorted wave calcula-

tion, in terms of an optical potential, is required. How-
ever, rescattering processes leading to the emission of two
nucleons (one of which is not detected) can lead to the
reappearance of a part of the experimental strength ab-
sorbed by inelastic processes. This effect was investigated
in terms of a semiclassical model inspired by the work of
Ref. [23]. Even if very different kinematical situations
were considered, the reaction mechanism included in the
latter approach is the same as pointed out in Ref. [15]
and Fig. 1. Some partial simplifications occur for high
energy protons, since the relevant effects of the medium
are limited to Pauli blocking. Therefore this approach
offers a valid starting point to investigate the FSI effects
needed in the analysis of data at large missing energy
and momenta. Other effects such as meson exchange
currents and the excitation of resonances also need to
be investigated. However, these are beyond the scope of
the present paper and will be considered in future work.
In this paper, we consider the approach of Ref. [12] and
extend it to high missing energies. We then apply it to
the kinematics of both the NIKHEF [12] ad the E97-
006 [16, 17] experiments to evaluate the importance of
two-step processes for the different kinematics employed.

The model for computing the contribution of rescat-
tering is depicted in Sec. II, together with a discussion of
the inclusion of the absorption effects in terms of nuclear
transparency. A practical application requires the knowl-
edge of the in-medium differential cross section, which
is calculated in Sec. III by extending the approach of
Ref. [23]. Secs. IVA and IVB report on the results for
the kinematics used in the above experiments, at medium
and high missing energies respectively. Conclusions are
drawn in Sec. V.

II. MODEL

This work considers contributions to the experimental
yield that come from two-step mechanisms in which a
reaction (e, e′a) is followed by a scattering process from
a nucleon in the medium, N ′(a, p)N ′′, eventually leading
to the emission of the detected proton. In general, a
may represent a nucleon or another possible intermediate
particle. In this work we will only consider the channels
in which a is either a proton (with N ′ = p or n) or a
neutron. In the following we will also use the letter a to
label the possible open channels.

Following the semiclassical approach of Refs. [12, 23],
the contribution to the cross section coming from rescat-
tering through the above channels is written as
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d6 σrescatt.

dE0 dΩk̂o
dEf dΩp̂f

=
∑

a

∫

dr1

∫

dr2

∫ ω

0

dTa ρN (r1)
K Sh

a (p
′

m, E′

m) σcc1
ea

M (r1 − r2)2
gaN ′(|r1 − r2|)

×PT (pa; r1, r2)ρN ′(r2)
d3 σaN ′

dEf dΩp̂f

PT (pf ; r2,∞) , (1)

where (Eo,ko) and (Ef ,pf ) represent the four-momenta
of the detected electron and proton, respectively. Eq. (1)
assumes that the intermediate particle a is generated in
plane wave impulse approximation (PWIA) by the elec-
tromagnetic current at a point r1 inside the nucleus. Here
K = |pa|Ea is a phase space factor, Sh

a (p
′

m, E′

m)/M is the
spectral function of the hit particle a normalized to one
[i.e., M = N(Z) if a is a neutron (proton)] and σcc1

ea the
off shell electron-nucleon cross section, for which we have
used the cc1 prescription of de Forest [24]. The pair dis-
tribution functions gaN ′(|r1 − r2|) account for the joint
probability of finding a nucleon N’ in r2 after the parti-
cle a has been struck at r1 [25]. The integration over the
kinetic energy Ta of the intermediate particle a ranges
from 0 to the energy ω transfered by the electron. The
nuclear transparency factor PT (p; r1, r2) gives the trans-
mission probability that the struck particle a propagates,
without any interactions, to a second point r2, where it
scatters from the nucleon N ′ with cross section d3 σaN ′ .
The whole process is depicted in Fig. 1b. The point nu-
cleon densities ρN (r) are normalized to either the num-
ber of neutrons or protons. These were derived from ex-
perimental charge distributions by unfolding the proton
size [26]. We employed equal distributions for neutrons
and protons, which is a sufficiently accurate approxima-
tion since even in 208Pb neutron and proton radii differ
by less than 4%.
The nuclear transparency for the ejected nucleon was

considered in Ref. [23] according to Glauber theory. The
probability PT that a proton struck at r1 will travel with
momentum p to the point r2 without being rescattered
is given by

PT (p; r1, r2) =

exp {−
∫ z2

z1

dz [gpp(|r1 − r|) σ̃pp(p, ρ(r)) ρp(r) (2)

+ gpn(|r1 − r|) σ̃pn(p, ρ(r)) ρn(r)] } ,

where the z axis is chosen along the direction of prop-
agation p̂, an impact parameter b is defined so that
r = b+zp̂, and z1 (z2) refer to the initial (final) position.
Eq. (2) differs from the standard Glauber theory by the
inclusion of the pair distribution functions gpN (|r1 − r|).
In principle, the gpN functions should depend on the den-
sity and on the direction of the inter-particle distance.
However, these effects has been shown to be negligible
in Ref. [23]. In the present application we find that a
simple two-gaussian parameterization of the gpN can ad-
equately fit the curves reported there for nuclear matter

at saturation density. The in medium total cross sec-
tions σ̃pp(p, ρ) and σ̃pn(p, ρ) used in this work have been
computed according to Ref. [23] and account for the ef-
fects of Pauli blocking, Fermi spreading and the effective
mass generated by the nuclear mean field. For energies
above 300 MeV they have been extended to incorporate
the effects of pion emission [27].
The nuclear transparency is defined as the average over

the nucleus of the probability that the struck proton
emerges from the nucleus without any collision. This
is related to PT by

T =
1

Z

∫

drρp(r)PT (p; r,∞) . (3)

It should be mentioned that the practical experimental
definition of nuclear transparency depends on the spe-
cific kinematics employed and that Eqs. (2) and (3) rig-
orously apply only to the parallel case [28]. For the
present approach, these are the right quantities to be
included in Eq. (1) since they describe the loss of flux in
the direction of propagatiom. In the case of 208Pb and
an outgoing proton with energy Ef ∼ 1.1 GeV (kinetic
energy of ∼161 MeV), Eq. (3) gives T = 0.37. With
Ef ∼ 1.8 GeV, which is of interest for the calculations
of Sec. IVB, T = 0.63 for 12C and T = 0.29 for 197Au.
The PWIA contribution of the direct process, Fig. 1a,
also needs to be corrected for the nuclear transparency
effects,

d6 σPWIA(T )

dE0 dΩk̂o
dEf dΩp̂f

= K σcc1
ep Sh

p (p
′

m, E′

m) T , (4)

with T given by Eq. (3). Eq. (4) is consistent with the
assumptions of Eq. (1), from which it would be obtained
if the rescattering event was substituted with the limit of
r2 to infinity.

III. EVALUATION OF THE IN-MEDIUM

NUCLEON-NUCLEON RATE

The last ingredient required in Eq. (1) is the in medium
cross section for the rescattering process, in which the
particle a (either a proton or a neutron) hits against a
bound nucleon in its way out, eventually leading to the
emission of the detected proton. This can be evaluated
by extending the approach of Ref. [23] to describe the
angular dependence of the ejected proton. We start form
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the NN differential elastic cross section in free space

dσpN

dΩp̂f

= |fpN (cos θ)|2 =

∣

∣M̄(s, t, u)
∣

∣

2

64 π2 s
, (5)

where s, t and u are the Mandelstam invariants (
√
s being

energy in the c.m. system) and
∣

∣M̄(s, t, u)
∣

∣

2
represents

the square of the Lorentz invariant amplitude [29] aver-
aged (summed) over the initial (final) spins. For nucleon
momenta above 1 GeV/c and for small angles, the scat-
tering amplitude in Eq. (5) is well approximated by its
central part and can be written as

fpN =
pfσ

tot
pN

4π
(ǫpN + i)exp{−β2

pN(pi − pf )
2/2} , (6)

where pi and pf are the initial and final momentum of
the scattered nucleon, ǫpN is the ratio of the real to imag-
inary part of the scattering amplitude and σtot

pN is the
total scattering cross section. At low energy the values
of M(s, t, u) where extracted from the SAID phase shift
data analysis [30]. For the pp case, we chose to keep the
differential cross section constant for angles smaller than
5o and larger than 175o, in order to avoid the Coulomb
peak in the forward and backward directions. However,
the results of the present work are largely insensitive to
this choice of the cut off angle due to Pauli exclusion. The
solutions of the SAID program were used for energies in
the laboratory system up to 1.6 GeV for pp scattering
and 1.2 GeV for the pn case, which are well contained
within the range of validity of this data base. At higher
energies Eq. (6) was used with parameters σtot

pp =44.0 mb,

σtot
pn =41.1 mb and ǫpp = ǫpn =-0.48. The slope coeffi-

cients were chosen by requiring that Eq. (5) yields the
correct values σel

pN for the total elastic cross section. This
implies

β2
pN ≃

(1 + ǫ2pN ) σtot
pN

2

16 π σel
pN

, (7)

where σel
pp and σel

pn were extracted from the experi-
ment [31]. A direct comparison for energies above 1 GeV
showed that Eq. (6) appropriately approximates the data
from the SAID data base, thus there exists an overlap re-
gion where these approaches are both accurate and join
smoothly.

In deriving the rescattering rate we assume that the in-
teraction between the two nucleons is localized enough so
that the amplitude M(s, t, u) is not altered by the pres-
ence of the surrounding nucleons. However, the medium
can sensibly modify the cross section due to the spectral
distribution of the momentum of the hit nucleon and due
to the effects of Pauli blocking. In the spirit of the local
density approximation (LDA), which underlies Eq. (1),
the momentum of the hit nucleon, N ′, is taken to be lo-
cally distributed as in infinite nuclear matter. The den-
sity of the latter being the one of the point r2 where the
collision occurs, ρNM = ρN ′(r2). The effects of the nu-
clear surface are eventually included by integrating over
ρN ′(r2)dr2 in Eq. (1). For the present purposes it is
appropriate to further approximate the symmetric nu-
clear matter with a free Fermi gas [40]. The assumption
of a completely filled Fermi sea is also consistent with
the Dirac-Brueckner-Hartree-Fock (DBHF) employed be-
low. Initially, the hit nucleon N ′ is in the Fermi sea
and therefore must have a momentum h smaller than
kF = (3π2ρNM/2)1/3. At the same time the Pauli prin-
ciple requires that the particles in the final state will have
momenta pf and l, both larger than kF . Among all the
nucleons involved in the process, pf refers to the detected
proton while the others can be either neutrons or protons
depending on the channel a. The probability per unit
time of an event leading to the emission of a proton with
momentum pf is obtained by imposing the Pauli con-
straints and integrating over the unobserved momenta h

and l,

d3PaN ′

dpf dΩp̂f

= 2 θ(pf − kF ) L
3

∫ ∫

dh dl

(2π)6
θ(kF − h)θ(l − kF ) WI

= 2 p2f θ(pf − kF )

∫

dh

(2π)3
θ(kF − h)θ(l − kF )

1

64π2

∣

∣M̄(s, t, u)
∣

∣

2

Ea(pa)EN ′(h)Ef (pf )EN ′′(l)
δ(Ea + EN ′ − Ef − EN ′′)

∣

∣

∣

∣

∣

l=pa+h−pf

,(8)

where L3 is the volume of a normalization box and, for
a free nucleon, EN (p) = (p2 + m2

N )1/2. In Eq. (8), WI

is the probability per unit time for the event pµa + hµ →
pµf + lµ, which can be expressed in terms of M(s, t, u).
The inverse life time of the nucleon a for energies below

the pion production threshold is related to Eq. (8) by

1

τa
=

∑

N ′=p,n

∫

dΩp̂f

∫

dpf
d3PaN ′

dpf dΩp̂f

. (9)

At low energies, a nucleon traveling through the
medium acquires an effective mass due to dispersion ef-
fects. For infinite matter, this can be described by a
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scalar field US and the time component of a vector field
UV [32]. This particular approach allows to maintain the
relativistic framework adopted in Eq. (8). The values of
US and UV in nuclear matter were computed in Ref. [33]
by solving the DBHF equations. The results were found
to be consistent with the value of the non relativistic ef-
fective mass extracted from nucleon-nucleus scattering.
At the energies considered by the DBHF calculations,
US and UV are predicted to be essentially momentum
independent. Thus, the energy of a nucleon moving with
momentum p is given by

mD(ρNM ) = mN + US(ρNM ) , (10)

EN (p, ρNM ) =
√

p2 +m2
D(ρNM ) + UV (ρNM ) ,(11)

where mD is the Dirac effective mass. It should be noted
that US and UV have large and opposite values. The suc-
cess of the DBHF approach rely on a subtle cancellation
of their effects and require a self-consistent calculation of
the interaction with the medium [33]. As a consequence,
the use of Eqs.(10) and (11) to compute the in medium
cross section at low energy does not guarantee a priori
accurate predictions. In a relativistic model, this would
require a more elaborate calculation of the scattering am-
plitude M (see for example Refs. [34, 35]). In the present
work, we are simply interested in giving an approximate
treatment of the dispersion effects on the rescattering
of protons for the kinematics that will be considered
in Sec. IVA. The kinematics relevant for studying the
short-range correlated tail involve much higher energies,
where the nuclear cross section is known to approach the
free one. Above 1 GeV, US and UV are not known except
that they are no longer momentum independent and that
they should decrease to zero. In this case, Pauli blocking
gives the only relevant contribution of the medium and
the dispersion effects are negligible. Therefore US and
UV will be set to zero in the calculations of Sec. IVB.
When the effective mass is accounted for, the momen-

tum of a nucleon participating in the rescattering pro-
cess is related to its energy E(p) by Eq. (11). In general,
M(s, t, u) is off shell. However, following the assumption
that the interaction is not appreciably modified by the
in-medium effects we use the on shell values extracted
from the vacuum pN cross section, Eq. (5). In vacuum,
this depends on only two invariants that were chosen to
be s = (pµa + hµ)2 and t = (pµa − pµf )

2 and computed

accounting for the dispersion relation (11). The energy
denominators appearing in Eq. (8) were also taken to be
equal to the total energy of the nucleon, Eq. (11). We
note that this differs from the normalization of a Dirac
spinor in the medium [32]. However, this prescription is
consistent with the choice of using the free scattering am-
plitude M(s, t, u) since it provides the right normaliza-
tion in the non relativistic limit. Finally, the in medium
scattering rate is given by

d3 σaN ′

dEf dΩp̂f

=
1

ρN ′ vg

dpf
dEf

d3PaN ′

dpf dΩp̂f

, (12)
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FIG. 2: (Color online) In medium elastic pN cross sections
as a function of density for laboratory energies of 161 MeV
(top panel) and 250 MeV (bottom panel). The curves show
the vacuum cross section (full line), the results obtained by
accounting for Fermi spreading and Pauli blocking (dashed
line) and by adding the interaction with the medium through
Eq. (11) (dot-dashed line).

where ρN ′ is the density of the hit nucleon and vg =

dEa(pa)/dpa = pa/
√

p2a +m2
Da is the group velocity of

the incoming one. Note that the dispersion effects mod-
ify the rescattering rate, Eq. (12), in three different ways.
First, both vg and the Jacobian dpf/dEf depend on US

and UV . Second, the density of final states for the scat-
tered nucleons is modified by using Eq. (11) in the energy
delta function δ(Ea(pa) + EN ′(h) − Ef (pf ) − EN ′′(l)).
Third, the energies of nucleons just above kF are low-
ered by Eq. (11), which allows scattering at energies that
would otherwise be Pauli forbidden.

Figure 2 shows the in medium effective cross section
as a function of density obtained by integrating Eq. (12)
over angle and energy. Two values of the energy of the
incoming nucleon are considered. The solid line gives the
vacuum cross section while the dashed line includes the
effects of Pauli blocking and Fermi spreading. A further
reduction is produced by accounting for the dispersion ef-
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FIG. 3: (Color online) In medium elastic pN cross sections
computed for normal nuclear matter density as a function of
the nucleon energy. The curves show the vacuum cross section
(full line), the results obtained by including Pauli blocking
and Fermi spreading (dashed line) and also the dispersion
effects (dot-dashed line).

fects. While the calculation of the Pauli blocking effects
is equivalent to the work of Ref. [23], the full cross section
obtained here is somewhat smaller than the one obtained
in the corresponding non relativistic result. A difference
between the two approaches should be expected since the
present calculation is based on the Dirac effective mass,
given by Eq. (10). This is different form the non relativis-
tic definition of effective mass, which is instead related to
the vector potential UV [36]. The effects of Pauli blocking
at higher energies can be seen in Fig. 3 where the elastic
cross section is computed at normal nuclear matter den-
sity ρNM = 0.16 fm−3 for energies up to 3 GeV. As it
can be seen, the effects of Pauli blocking remain relevant
at large energies where they produce a constant reduc-
tion of the cross section. The further reduction due to
the effective mass affects the results at low energies and
tends to become less important at 1 GeV even for con-
stant values of US and UV . However, it is meaningless to
extend the calculation of the effective mass effects above
this energy since the values of US and UV are unknown
in this region.

IV. RESULTS

Eq. (1) requires the knowledge of the undistorted spec-
tral function Sh(pm, Em) of the target nucleus. For the
present purposes, the strength in the mean field region
can be described as a sum over the nuclear orbitals

Sh
MF (pm, Em) =

∑

i

Zi fi(Em) |Φi(pm)|2 , (13)

where Φi(pm) are the single particle wave functions, Zi

are their occupation numbers and each orbital is spread
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FIG. 4: (Color online) Theoretical results for the rescatter-
ing contribution to the reduced spectral strength of 208Pb
for the kinematics of Ref. [12]. The full (dashed) lines re-
fer to the kinematics with lower (EL

o ) and higher (EH
o ) en-

ergy beams. The black lines shows the input spectral func-
tion, Eq. (13). The results obtained for rescattering with two
nucleons emitted in the continuum are given by the green
curves. For the kinematics EL

o , the plots show the effects
due only to Pauli blocking and Fermi spreading (dot-dashed
lines). If the in medium dispersion was accounted for but no
two nucleon emission was imposed, Eq. (8) would give to the
dot-dot-dashed curves.

in energy according to a Lorentzian distribution with a



7

variable width [37],

fi(Em) =
1

2π

Γ(Em)

(Em − εi)2 + [Γ(Em)/2]2
, (14)

Γ(Em) =
a (Em − EF )

2

b+ (Em − EF )2
, (15)

where the Fermi energy was taken to be EF = 6 MeV,
a = 24 MeV and b = 500 MeV2. The neutron spectral
function was also obtained from Eq. (13) by including all
the neutron orbits occupied in the shell structure. For Pb
and Au no experimental data are available for neutrons,
thus the occupation numbers Zi were assigned by extrap-
olating the trend measured for protons in 280Pb [12]. For
kinematics chosen to probe medium and low missing en-
ergies, as those discussed in Sec. IVA, Sh

MF (pm, Em) cov-
ers all experimentally accessible strength. In Sec. IVB,
this will need to be extended by including the distribu-
tion of nucleons in the SRC correlated region.
In the following, the rescattering yield computed from

Eq. (1) has been converted to a reduced spectral function
by dividing it by |pfEf |Tσcc1

eN , evaluated for the kinemat-
ics of the direct process [according to Eq. (4)]. This gives
the straightforward correction to the model spectral func-
tion that is due only to single rescattering effects.

A. Application to 208Pb

The studies of Ref. [12], employed two different parallel
kinematics in which the outgoing proton was emitted in
the same direction as the momentum transfer (thus q

and pm were also parallel). The central kinetic energy
of the outgoing proton was kept constant at 161 MeV
(pf =570 MeV/c) in both cases. The two kinematics
differ only for the energy of the electron beam, which
was taken to be EH

o =674 MeV for the first case and
EL

o =461 MeV for the other. These choices correspond
to a virtuality Q2 ranging between 0.08 and 0.22 GeV2.
In applying the model of Secs. II and III to (e, e′p)

reactions one has to impose the further constraint that
both nucleons are emitted in the continuum. This is triv-
ially satisfied for high energy nucleons, for which the in-
teraction with the medium can be neglected. When the
dispersion effects are included from Eq. (11) one has to
require that El(l) > 0 in the integrand of Eq. (8). Pro-
cesses in which the undetected nucleon remains bound
are beyond the scope of the present work and would re-
quire a proper quantum mechanical treatment to include
its reabsorption vertex. At low energies this should be
analyzed in terms of a proper optical potential model.
The results of Eq. (1) for the rescattering contributions

leading to two nucleons in the continuum are plotted in
Fig. 4. The yield resulting from rescattering is between
one and two orders of magnitude smaller than the direct
signal, except for low missing momenta and missing ener-
gies above 60 MeV, where it gives a correction of about
20%. The rescattering effects are also found to be in-
dependent on which of the above kinematics is chosen.

For comparison we also show the results obtained by in-
cluding only Pauli blocking and Fermi spreading and the
ones obtained when the in medium effects are included
without requiring that the undetected nucleon is in the
continuum [i.e. allowing El(l) < 0 in Eq. (8)]. Although
the latter result has no direct physical relevance, it shows
that only a part of the suppression of the rescattering ef-
fects is due to the corrections for effective mass in the
medium (‘mD’ curves of Fig. 4). The remaining reduc-
tion is a consequence of the energy required to reach the
two-nucleon emission threshold.

B. Proton knock out from the SRC region

This section considers the results for the kinematics of
Ref. [17], where the aim is to directly probe SRC. In this
case it is convenient to write the spectral function as the
sum of a mean field and a correlated part,

Sh(pm, Em) = Sh
MF (pm, Em) + Sh

corr(pm, Em) , (16)

where Sh
corr(pm, Em) describes the short-range correlated

tail at very high missing energies and momenta [3, 7]. In
the present work this was parametrized as

Sh
corr(pm, Em) =

C e−αpm

[Em − e(pm)]2 + [Γ(pm)/2]2
(17)

where e(pm) and Γ(pm) are smooth functions of the miss-
ing momentum that were chosen to give an appropriate
fit to the available 12C(e, e′p) data in parallel kinemat-
ics [8]. The solid line in Fig. 5 shows the model spec-
tral function, Eq. (16), employed in the present calcula-
tions for that part of the pm–Em plane where Sh

corr domi-
nates. The calculation with a 197Au target employed the
same Sh

corr of Eq. (17) multiplied by 79/6 or 118/6 to
account for the correct number of protons and neutrons,
respectively. This is shown for protons in Fig. 6. At
energies close to the Fermi level the hole spectral func-
tion is dominated by its mean field component. For 12C
these are orbitals in the s and p shells, which are known
experimentally and represent about 60 % of the total
strength. The spectroscopic factors and wave functions
used in Eqs. (13)–(15) are the ones extracted from the
world data in Ref. [38]. Since no direct data are avail-
able for gold we choose to employ the spectral function
discussed above for the neighbor nucleus 208Pb [12] but
modifying the occupation of the last orbitals to account
for the different number of nucleons in those shells.
We have performed calculations of the rescattering

contributions by employing same sets of three parallel
and two perpendicular kinematics used in Ref. [16]. In
the parallel case, the initial momentum of the proton
(−pm) was centered at different angles with respect to
the momentum transfered by the electron, ϑqpi ∼ 25,
21 and 36 deg, while the corresponding energies of the
final proton were centered at Ef ∼ 1.6, 1.8 and 1.9 GeV.
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FIG. 5: (Color online) Theoretical results for the total (direct
+ rescattered) reduced spectral strength in the correlated re-
gion. The results are given for parallel (dashed line) and per-
pendicular kinematics (dot-dashed line). The full lines show
the model spectral function, Eq. (16), employed in the calcu-
lations. All panels refer to a 12C target and employ the same
line convention. Note that the results for different sets of par-
allel kinematics do not always overlap exactly. This is mostly
due to the dependence of the off-shell cross section σcc1

eN on
the kinematics [16].

This implied angles ϑqf ∼ 0.5, 1.5 and 10 deg, respec-
tively, between the final proton and the momentum trans-
fered. For the two perpendicular kinematics, the same
angle ϑqpi ∼ 90 deg was used, while Ef ∼ 1.25 and
1.35 GeV and ϑqf ∼ 25 and 29 deg. The four momen-
tum transfered by the electron was always in the range
Q2 ∼ 0.3–0.4 GeV2. More details on these kinematics
are discussed in Ref. [16].

Due to the loss of energy of the ejected nucleon at
the rescattering vertex, the spectral strength is always
shifted toward higher missing energies. This is clearly
visible in the results for both 12C and 197Au, which are
shown in Figs. 5 and 6 (the sum of direct plus rescatter-
ing signals is plotted). The contribution to parallel kine-
matics is negligible at missing energies below the peak of
the correlated tail but it tends to become more impor-
tant for Em >150–200 MeV. This confirms the expected
trend that a part of the strength seen in this region is
dragged from places where the hole spectral function is
larger [15]. The same behavior is seen in perpendicu-
lar kinematics where, however, rescattering effects are
already relevant at small missing energies. In this situa-
tion the direct process accounts for only 30–50% of the
total yield obtained at the top of the correlated peak.
At higher energies, the rescattering can overwhelm the
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FIG. 6: (Color online) Theoretical results for the total re-
duced spectral strength in the correlated region. The results
are given for parallel (dashed line) and perpendicular kine-
matics (dot-dashed line). The full lines show the model spec-
tral function, Eq. (16), employed in the calculations. All pan-
els refer to a 197Au target and employ the same line conven-
tion. Note that the results for different sets of kinematics do
not always overlap exactly. This is mostly due to the depen-
dence of the off-shell cross section σcc1

eN on the kinematics [16].

PWIA signal by more than an order of magnitude. It
should be noted that for both parallel and perpendicular
kinematics the FSI become more important as the mass
number increases. In general, this is due to the average
distance that the outgoing nucleon has to travel inside
the nucleus. Thus it carries a dependence on the nuclear
radius. Figure 7 compares the results for both target
nuclei in parallel kinematics. For comparison the yield
for 197Au has been normalized to the same number of
protons of 12C. The reduced spectral function of gold is
indeed always larger. The same consideration applies for
perpendicular kinematics in Fig. 8.

To study the origin of the rescattered strength, the cal-
culations were repeated for gold by neglecting the mean
field orbitals, Sh

MF , in Eq. (16). For this nucleus the
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FIG. 7: (Color online) Theoretical results for the total re-
duced spectral strength of 12C obtained in parallel kinemat-
ics (dashed line) compared to the analogous results for 197Au
(dot-dashed line), normalized to the number of protons of
carbon. The full line shows the input spectral function of
Eq. (16) employed in the calculations. All panels employ the
same line convention.

mean field strength extends to large missing energies, up
to ∼100 MeV. Thus rescattering effects can easily spread
it into the correlated region. Figure 9 compares the the-
oretical reduced spectral strength of Au with the anal-
ogous result obtained when Sh

MF is included. As one
can see, relevant contributions from the mean field ap-
pear for momenta up to about 500 MeV/c. The results
at higher missing momenta are completely dominated by
the rescattering from the correlated tail Sh

corr into the
correlated region itself. The situation is instead differ-
ent in parallel kinematics where the present results for
two-step rescattering do not shift any strength from the
mean field region, even for a large nucleus like Au. Such
large shift appears to be energetically forbidden do to
the large energy of the scattered proton adopted in these
kinematics.

V. CONCLUSIONS

A proper understanding of the relevance of FSI and
their dependence on the kinematics is important in mod-
ern (e, e′p) experiments that attempt to observe the cor-
related strength at medium and high missing energies.
The present work suggests a semiclassical approach to
compute the effects of two-step rescattering, which is one
of the leading contributions at high proton energies, and
applies it to investigate its consequences for the kinemat-
ics of two different experiments.
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FIG. 8: (Color online) Theoretical results for the total re-
duced spectral strength of 12C obtained in perpendicular kine-
matics (dashed line) compared to the analogous results for
197Au (dot-dashed line), normalized to the number of protons
of carbon. The full line shows the input spectral function of
Eq. (16) employed in the calculations. All panels employ the
same line convention.

The model assumes a PWIA for the electromagnetic
vertex, in which the struck nucleon is described by the
full hole spectral distribution of the target nucleus. This
gives the possibility of investigating how FSI shift the
original strength from the direct process within the miss-
ing energy and momentum plane. The absorption effects
of the medium were accounted for by means of trans-
parency factors. The rescattering is described in terms of
the differential nucleon-nucleon cross section modified in
order to account for Pauli blocking and Fermi spreading
effects. The dispersion effects due to the nuclear medium
have been included from DBHF results at the energies
where they are relevant.

For kinematics involving outgoing protons of the order
of few hundreds of MeV, the present model was employed
to estimate the reappearance of strength through inelas-
tic channels that lead to two-nucleon emission. In the
reaction 208Pb(e, e′p) the overall effects were seen to be
more than an order of magnitude smaller than the direct
signal, slightly increasing for small missing momenta and
missing energies above 60 MeV. This supports an anal-
ysis of the experimental data based on usual distorted
wave calculations.

The same model was applied for the kinematics of the
E97-006 experiment at JLab that focussed on the SRC
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FIG. 9: (Color online) Reduced spectral strength of 197Au
computed in perpendicular kinematics as generated by the
full spectral function of Eq. (16) (dashed line) or by the sole
correlated part Sh

corr (dot-dashed line). The full line shows
the model spectral function of Eq. (16). Its mean field compo-
nent, Sh

MF , is not visible in this plot except for small missing
momenta. Note that the dashed and dot-dashed lines over-
lap in the bottom panel. All panels employ the same line
convention.

distributions at high momenta. Calculations were per-
formed for 12C and 197Au targets, which have different
radii. In general, rescattering was found to be much

smaller in parallel kinematics than in perpendicular ones.
In the latter case a large amount of strength is shifted
from regions where the spectral function is big to regions
where it is smaller, thus overwhelming the experimental
yield from the direct process. This confirms the studies
of Ref. [15]. The contribution from rescattering effects is
also seen to increase with the nuclear radius. The rescat-
tering of nucleons originally emitted form the mean field
orbitals was found to be important in perpendicular kine-
matics and for missing momenta lower than∼500MeV/c.
No such a large shift of strength was found in the par-
allel case. The remaining effects of rescattering are due
to a rearrangement of the spectral strength within the
correlated tail itself.

The present results provide a good first insight in the
redistribution of strength due to FSI in (e, e′p) reactions.
However, it is clear that in order to properly explain the
real experimental yield observed at high missing ener-
gies and for heavy nuclei other effects beyond the two-
step rescattering need to be addressed [20, 21]. Rele-
vant extensions of the present formalism would include
corrections from meson exchange and nucleon excitation
processes, as well as an investigation of the importance
of multiple rescattering for heavy nuclei in parallel kine-
matics. Work in this direction is in progress.

Acknowledgments

We would like to acknowledge several useful discus-
sions with V. R. Pandharipande, D. Rohe and I. Sick,
and thank W. H. Dickhoff for comments on a preliminary
version of the manuscript. This work is supported by
the Natural Sciences and Engineering Research Council
of Canada (NSERC) and by the “Stichting voor Funda-
menteel Onderzoek der Materie (FOM)”, which is finan-
cially supported by the “Nederlandse Organisatie voor
Wetenschappelijk Onderzoek (NWO)”.

[1] V. R. Pandharipande, I. Sick, and P. K. A. deWitt Hu-
berts, Rev. Mod. Phys. 69, 981 (1997).

[2] W. H. Dickhoff and C. Barbieri, Prog. Part. Nucl. Phys.
52, 377 (2004).

[3] H. Müther and W. H. Dickhoff, Phys. Rev. C 49, R17
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