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Abstract. We consider a diffuse interface model for the phase separation of an incom-
pressible and isothermal non-Newtonian binary fluid mixture in three dimensions. The
averaged velocity uuu is governed by a Navier-Stokes system with a shear dependent viscos-
ity controlled by a power p > 2. This system is nonlinearly coupled through the Korteweg
force with a convective nonlocal Cahn-Hilliard equation for the order parameter ϕ, that
is, the (relative) concentration difference of the two components. The resulting equa-
tions are endowed with the no-slip boundary condition for uuu and the no-flux boundary
condition for the chemical potential µ. The latter variable is the functional derivative of
a nonlocal and nonconvex Ginzburg-Landau type functional which accounts for the pres-
ence of two phases. We first prove the existence of a weak solution in the case p ≥ 11/5.
Then we extend some previous results on time regularity and uniqueness if p > 11/5.

1. Introduction

We consider a mixture of incompressible, isothermal and (partially) immiscible binary
fluids in a given bounded domain Ω ⊂ R3. We suppose that they both have density
equal to one and we denote by uuu their (volume) averaged velocity and by ϕ the (relative)
concentration difference. A well-known diffuse interface model (see, e.g., [4, 25, 26]) for
the phase separation of the mixture is given by

∂tuuu+ (uuu · ∇)uuu− divS
(
ϕ,Du

)
+∇π = µ∇ϕ+ hhh(t)(1.1)

divuuu = 0(1.2)

∂tϕ+ (uuu · ∇)ϕ = ∆µ(1.3)

µ = −∆ϕ+ F ′(ϕ)(1.4)

in Ω× (0, T ), T > 0. Here the mobility and other constants have been taken equal to one,
F is a double well potential (e.g., F (r) = (r2−1)2, r ∈ R) which accounts for the presence
of two components, hhh is an external force. The stress tensor S, up to the pressure term,
depends on the symmetric gradient Du := (∇u + ∇Tu)/2 of the velocity field u and,
possibly, on ϕ, through a suitable constitutive law. If, for instance, we have

(1.5) S
(
ϕ,Du

)
= ν(ϕ)Du ,

ν being a given strictly positive function, then we are in presence of a Newtonian mixture.
The corresponding system (1.1)-(1.4) is called Cahn-Hilliard-Navier-Stokes system (see,
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e.g., [1, 8, 9, 20, 30, 34, 36]). When the mixture has non-Newtonian features, then the
stress tensor itself depends on some power of |Du|. A typical example is given by

(1.6) S
(
ϕ,Du

)
=
(
ν1(ϕ) + ν2(ϕ)|Du|p−2

)
Du ,

where νi, i = 1, 2, are strictly positive functions and p > 1. Concerning the single non-
Newtonian fluids see, for instance, [32] for the physical background, and [31] for the basic
mathematical theory; cf. also [10, 13] and its references for more advanced development.
More recently, system (1.1)-(1.4) has also been investigated in a number of contributions
(see [2, 7, 27, 23, 24]). In those papers, the chemical potential µ (see (1.1)) is the functional
derivative of the Ginzburg-Landau type functional

F(ϕ) =

∫
Ω

(
|∇ϕ(x)|2

2
+ F (ϕ(x))

)
dx .

However, this is a phenomenological assumption and a more rigorous approach shows that
the functional should be nonlocal (see [21, 22]). For instance, following [5] , we can take

E(ϕ) =
1

4

∫
Ω×Ω

J(x− y)|ϕ(x)− ϕ(y)|2dxdy +

∫
Ω

F (ϕ(x))dx .(1.7)

Here J : R→ R is a sufficiently smooth interaction kernel such that J(x) = J(−x). With
this choice the chemical potential becomes

µ = aϕ− J ∗ ϕ+ F ′(ϕ) ,

where

(1.8) a(x) :=

∫
Ω

J(x− y)dy , (J ∗ ϕ)(x) =

∫
Ω

J(x− y)ϕ(y)dy .

Therefore we have the following nonlocal system in Ω× (0, T )

∂tuuu+ (uuu · ∇)uuu− divS
(
ϕ,Du

)
+∇π = µ∇ϕ+ hhh(t)(1.9)

divuuu = 0(1.10)

∂tϕ+ (uuu · ∇)ϕ = ∆µ(1.11)

µ = aϕ− J ∗ ϕ+ F ′(ϕ) .(1.12)

In the case (1.5), system (1.9)-(1.12) has been studied first in [11]. Then, under various
assumptions and generalizations, in several other papers (see, for instance, [15, 16, 17, 14,
18]). Here we want to analyze this system within a reasonably simple (but meaningful)
non-Newtonian setting. Namely, we assume that S only depends on Du with a (p− 1)-
power growth (cf. (1.6) and see Section 2 for all the assumptions). Moreover, we suppose
that F is smooth enough with a polynomially controlled growth and satisfies a coercivity
condition of order 2q + 2, for some q ≥ 0 (see Section 2 for the details). Summing up,
here we consider the system

∂tuuu+ (uuu · ∇)uuu− divS
(
Du
)

+∇π = µ∇ϕ+ hhh(t)(1.13)

divuuu = 0(1.14)

∂tϕ+ (uuu · ∇)ϕ = ∆µ(1.15)

µ = aϕ− J ∗ ϕ+ F ′(ϕ)(1.16)
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in Ω× (0, T ), subject to the initial and boundary conditions

uuu = 000 ,
∂µ

∂n
= 0 on ∂Ω× (0, T )(1.17)

uuu(0) = uuu0 , ϕ(0) = ϕ0 in Ω .(1.18)

Our first result is the existence of a global weak solution (see [11] for the case (1.5)).
We point out that the basic energy estimate essentially yields (see Section 4)

uuu ∈ L∞(0, T ;L2(Ω))∩Lp(0, T ; (W 1,p(Ω))3), ϕ ∈ L∞(0, T ;L2q+2(Ω))∩L2(0, T ;W 1,2(Ω)) .

If p ≥ 11/5 and q ≥ qp, where qp is given by (3.13) below, this regularity is enough to
prove that ∂tuuu and ∂tϕ belong to the respective dual spaces. This fact has the following
consequences:

(i) the couple (uuu, µ) is an admissible test function for (1.13) and (1.15), respectively;
(ii) any weak solution satisfies the energy identity;

(iii) existence of weak solutions can be shown using the monotone operator theory.

The above restrictions on p and q are not necessary, however, if merely the problem
of existence of solutions is considered. For instance, the value q = 0 is enough to handle
the equation for ϕ, provided that p is large enough. The equation for uuu is more delicate;
but it is possible to pass to the limit by a subtle modification of Minty’s trick, taking a
suitable truncation of uuu as a test function. This so-called Lipschitz truncation method
enables one to prove the existence of solutions down to the value p = 6/5, which seems
optimal as for even lower values of p, the convective term in (1.13) ceases to be integrable
(see [13]).

On the other hand, it does not seem possible to further relax the condition p ≥ 11/5
as issues (i) and (ii) are concerned. A fortiori, the uniqueness of weak solutions certainly
cannot be shown for smaller p (note that p = 2 includes the incompressible Navier-Stokes
equations as a special case). Resting on the estimates of differences of two solutions, in
view of the nonlinear character of the problem, strictly higher values of p and q seem
necessary. In particular, as was already observed already for single fluids (see [28]), the
class of weak solutions is unique provided that p ≥ 5/2. More precisely, speaking of single
fluids, any weak solution with additional regularity uuu ∈ Lpuniq(0, T ; (W 1,p(Ω))3) is unique
among all the weak solutions, where puniq = 2p/(2p − 3). Note that weak solutions have
this regularity if p ≥ 5/2.

This further motivates the search for additional regularity of weak solutions. In view
of the above observations, a slight improvement of the time regularity would imply their
uniqueness. This issue has been solved in a quite satisfactory way in [10]. Here it was
shown, roughly speaking, that if p > 11/5 then any weak solution, considered as a time-
dependent function with values in (W 1,p(Ω))3, has locally fractional time regularity analo-
gous to the regularity of the external force hhh, considered as a function into the dual space
of (W 1,p(Ω))3. This was made possible by using the class of Nikolskii spaces.

Here we extend the result to (1.15)-(1.18) (cf. [24] for a similar result in the case (1.1)-
(1.4)). We also improve the result slightly, by showing that under explicit and natural
conditions on the initial data, the time regularity holds globally, i.e., up to t = 0.

This fact has two expected corollaries. First of all, the uniqueness assertion implies that
any approximation scheme yields the same weak solution, with all the regularity obtained
along the way provided the data are regular enough. In particular, the L∞(Ω × (0, T ))
bound for ϕ can be devised, using a Alikakos-Moser type scheme. A second general
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consequence is the unique continuation property: if two weak solutions coincide on some
nontrivial interval [t0, τ ], t0 ≥ 0, then they also coincide for all t > τ . This implies,
together with the above-mentioned energy identities, that the existence of global and
exponential attractors for large times can be proven within the setting of `-trajectories.
We however do not elaborate on this point further, as an otherwise standard machinery
is employed (see [23, Section 3], cf. also [7, 24]).

2. Basic assumptions, function spaces and operators

Let us begin with the assumptions on S, J and F which will be used in the sequel. We
suppose:

• S(·) continuously depends on a symmetric tensor eee ∈ R3×3 and satisfies the fol-
lowing conditions

(2.1)

(
S(eee1)− S(eee2)

)
:
(
eee1 − eee2

)
≥

{
c1

(
1 + |eee1|+ |eee2|

)p−2|eee1 − eee2|2

c2|eee1 − eee2|2 + c2|eee1 − eee2|p

|S(eee1)− S(eee2)| ≤ c3 (1 + |eee1|+ |eee2|)p−2 |eee1 − eee2|, S(0) = 0 ,

for all eee1, eee2 ∈ R3×3, for some ci > 0, i = 1, 2, 3, and some p > 2. Here | · | stands
for the Euclidean norm of a tensor.
• J ∈ W 1,1

loc (R3). Moreover, we set

a∗ := sup
x∈Ω

∫
Ω

|J(x− y)| dy <∞ , b := sup
x∈Ω

∫
Ω

|∇J(x− y)| dy <∞ .

• F ∈ C2(R) has a polynomially controlled growth

(2.2) |F ′(s)|r ≤ c4

(
|F (s)|+ 1

)
, r ∈ (1, 2]

for some c4 > 0 and satisfies the coercivity condition:

(2.3) F ′′(s) + a(x) ≥ c5 max
{

1, |s|2q
}

for all s ∈ R, almost any x ∈ Ω, some c5 > 0 and some q ≥ 0.

Here a is defined by (1.8).

Remark 1. From the mathematical viewpoint assumption (2.3) is satisfied, in particular,
if a ≡ 0 and F (strictly) convex. This assumption is physically justified and relevant (see
[19] for a detailed discussion).

We employ the standard Lebesgue and Sobolev spaces, pertinent to the weak formula-
tion of our problem, namely, setting

V := {v ∈ D(Ω)3 : divv = 0} ,
we define

G := VL
2(Ω;R3)

, Vp := VW
1,p(Ω;R3)

.

For other Hilbert spaces X the scalar product will be denoted by (·, ·)X . The notation
〈·, ·〉Y and ‖ · ‖Y will stand for the duality pairing between a Banach space Y and its dual
Y ′, and for the norm of Y , respectively. In order to simplify the notation, we indicate
the norms ‖ · ‖W s,p(Ω) and duality pairings 〈·, ·〉W s,p(Ω) always as ‖ · ‖W s,p and 〈·, ·〉W s,p ,
respectively, for all s ∈ R and all p ∈ [1,∞].
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Moreover, we introduce

Hs
(0)(Ω) := {ψ ∈ Hs(Ω) : 〈ψ, 1〉Hs = 0} ,

for s ∈ R, and we set

(2.4) ‖u‖2
Hs =

∑
j∈N

λsjc
2
j cj =

∫
Ω

u(x)ωj(x) dx ,

where {(λj, ωj)}j∈N are the eigenvalues and eigenfunctions of the weak Laplace operator
BN with homogenous Neumann boundary condition, that is, for f ∈ H1(Ω)′ and u ∈
H1(Ω) we have

(2.5) BNu = f ⇐⇒
∫

Ω

∇u · ∇φ = 〈f, φ〉H1 ∀φ ∈ H1(Ω).

We recall that BN is an isometry between H1
(0)(Ω) and the space

H−1
(0) (Ω) := {f ∈ H1(Ω)′ : 〈f, 1〉H1 = 0}.

In particular, we have

(2.6) ‖B−1
N φ‖H1 ≤ c‖φ‖(H1)′ , ‖B−1

N φ‖H2 ≤ c‖φ‖ .
Our main focus will be the time regularity of vector-valued function u : [0, T ] → X,

where X is some (real) Banach space. The symbol d
dt

denotes the weak (distributional)

derivative, and C(·), C0,λ(·) indicates the usual spaces of continuous and λ-Hölder con-
tinuous functions, respectively. To describe a finer scale of fractional time regularity, we
work with the so-called Nikolskii spaces. For u : I → X, where I ⊂ R is an arbitrary
time interval, and h > 0, we set

Ih := {t ∈ I; t+ h ∈ I}
τhu(t) := u(t+ h), t ∈ Ih
dhu(t) := u(t+ h)− u(t), t ∈ Ih .

For p ∈ [1,∞] and s ∈ (0, 1), the Nikolskii space N s,p(I;X) is defined through the norm

‖u‖Lp(I;X) + sup
h>0

h−s‖dhu‖Lp(Ih;X) .

It is not difficult to see that for s = 1, the above norm is equivalent to W 1,p(I;X). For
a general σ = k + s, where k ∈ N and s ∈ (0, 1), one defines Nσ,p(I;X) as the space of
functions such that ( d

dt
)ju ∈ Lp(I,X) for j = 0, . . . , k and, moreover, ( d

dt
)ku ∈ N s,p(I;X).

Nikolskii spaces are fractional regularity spaces. In particular, we recall the identity
N s,p(I;X) = Bs,p

∞ (I;X), where the latter is a Besov space. The corresponding theory
is treated in several texts (see, e.g., [3] or [6]). Relatively elementary treatment can be
found in [33]. The following embeddings are standard (cf., for instance, [33, Corollary 26
and 33])

N s,p(I;X) ↪→ C0,λ(I;X) if λ = s− 1

p
> 0(2.7)

N s,p(I;X) ↪→ Lq(I;X) if q < p̃s ,
1

p̃s
:=

1

p
− s ≥ 0 .(2.8)

Nikolskii spaces are not the best choice in view of interpolation or embedding results; note
the strict condition on q in (2.8). Their relative advantage lies in the simplicity of their



6 S. FRIGERI, M. GRASSELLI, D. PRAŽÁK

definition. Indeed, we will see that it is rather straightforward to obtain estimates of the
N s,p-norm. The following special interpolation result will be useful (see [10, Lemma 2.3]
for a simple proof).

Lemma 1. Let X ↪→ H, where H is a Hilbert space and X is separable and dense in H.
Then

Nα,p(I;X) ∩Nβ,p′(I;X ′) ↪→ N
α+β
2
,2(I;H)

for any α, β ≥ 0.

Concerning the boundary regularity, we take ∂Ω of class C2,1 for the sake of simplicity.
However, a careful look at the approximation scheme used for the existence (see Section
4) shows that a Lipschitz boundary would suffice. This holds true for the time regularity
as well.

3. Main results

Here we introduce the weak formulation of problem (1.15)-(1.18) and we state our main
results.

First, let us introduce the following bilinear and trilinear forms

〈N(uuu),v〉Vp =

∫
Ω

S(Du) : Dv dx(3.1)

〈K0(uuu),v〉Vp =

∫
Ω

(
uuu⊗ uuu

)
: ∇v dx(3.2)

〈K1(ϕ),v〉Vp = −1
2

∫
Ω

ϕ2∇a · v dx+

∫
Ω

(∇J ∗ ϕ)ϕ · v dx(3.3)

〈K2(uuu, ϕ), ψ〉H1 =

∫
Ω

ϕuuu · ∇ψ dx ,(3.4)

which are well defined for all u,v ∈ Vp and for all ϕ ∈ L2q+2(Ω) and ψ ∈ H1(Ω), where p
and q are chosen as in Theorem 1 below.

Definition 1. A pair [uuu, ϕ] will be called weak solution to (1.13)-(1.17), if

uuu ∈ L∞(0, T ;G) ∩ Lp(0, T ;Vp)(3.5)

ϕ ∈ L∞(0, T ;L2q+2(Ω)) ∩ L2(0, T ;H1(Ω))(3.6)

aϕ− J ∗ ϕ+ F ′(ϕ) ∈ L2(0, T ;H1(Ω))(3.7)

and

d

dt
uuu+N(uuu) = K0(u) +K1(ϕ) + hhh(t) in V ′p , a.e. in (0, T )(3.8)

d

dt
ϕ = ∆µ+K2(uuu, ϕ) in (H1)′, a.e. in (0, T )(3.9)

µ = aϕ− J ∗ ϕ+ F ′(ϕ) a.e. in Ω× (0, T )(3.10)

Remark 2. The pressure is excluded from (3.8) as usual; in fact, one (formally) has

(3.11) µ∇ϕ = ∇
(
F (ϕ) +

a

2
ϕ2 − (J ∗ ϕ)ϕ

)
− ∇a

2
ϕ2 + (∇J ∗ ϕ)ϕ .
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This explains that µ∇ϕ = K1(ϕ) in V ′p . Moreover, we recall that the conservation of mass
holds, namely

(3.12) (ϕ, 1) = (ϕ0, 1), ∀ t ∈ [0, T ] .

Let us state first the existence of a weak solution.

Theorem 1. Let p ≥ 11/5 and q ≥ qp where qp is given by

qp :=
2(3− p)
5p− 6

, if p < 3 ,(3.13)

qp > 0 arbitrary if p = 3, and qp = 0 if p > 3. If hhh ∈ Lp′(0, T ;V ′p), uuu0 ∈ G, ϕ0 ∈ L2(Ω)

with
∫

Ω
F (ϕ0) dx < ∞, then there exists a weak solution in the sense of Definition 1

satisfying the energy identity

Etot(u(t), ϕ(t)) +

∫ t

0

(S(Du), Du) dτ +

∫ t

0

‖∇µ‖2 dτ = Etot(u0, ϕ0) +

∫ t

0

〈h,u〉Vpdτ ,

for all t ∈ [0, T ], where Etot(u, ϕ) := 1
2
‖u‖2 + E(ϕ), and E is given by (1.7).

The time regularity of a weak solution is given by

Theorem 2. Let p > 11/5, q ≥ qp and hhh ∈ Nκ,p′(0, T ;V ′p), κ > δuniq, where

(3.14) δuniq = max

{
0, (p− 1)

(
5

2p
− 1

)}
.

Let [uuu, ϕ] be an arbitrary weak solution. Then uuu ∈ Lpuniq(t0, T ;Vp), whenever t0 ∈ [0, T ) be

such that uuu(t0) ∈ Vp and t0 be a Lebesgue point of the function t 7→ ‖hhh(t)‖p
′

V ′p
. In particular,

for any weak solution, one has uuu ∈ Lpuniqloc (0, T ;Vp).

Two consequences of Theorem 2 are the following

Corollary 1. Let the assumptions of Theorem 2 hold with q > 1/2. Consider two weak
solutions [uuu1, ϕ1], [uuu2, ϕ2] and suppose that they coincide on some interval [t0, t0 + τ ] ⊂
[0, T ), τ ∈ (0, T − t0). Then the solutions coincide on [t0, T ].

Corollary 2. Let the assumptions of Theorem 2 hold with q > 1/2. Consider an arbitrary
weak solution [uuu, ϕ]. Suppose there exists t0 ∈ [0, T ) such that uuu(t0) ∈ Vp, ϕ(t0) ∈ L∞(Ω)
and hhh ∈ N δ/p′,p′(t0, T ;V ′p), where δ/p′ ≥ δuniq. Suppose, in addition, that t0 is a Lebesgue

point of the function t 7→ ‖hhh(t)‖p
′

V ′p
. Then

uuu ∈ N
δ
2
,∞(t0, T ;G) ∩N

δ
p
,p(t0, T ;Vp) ∩N

δ
2
,2(t0, T ;V2)(3.15)

ϕ ∈ N
δ

2q+q
,2q+2(t0, T ;L2q+2(Ω)) ∩N

δ
2
,2(t0, T ;L2(Ω)) ∩ L∞(Ω× (0, T )) .(3.16)

Theorem 2 and the related corollaries will be proven in Section 6, taking advantage
of some auxiliary estimates derived in Section 5. In the next section a detailed proof of
Theorem 1 is given.
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4. Proof of Theorem 1

The proof will be carried out by means of a Faedo-Galerkin approximation procedure,
assuming at first that ϕ0 ∈ D(B) = {v ∈ H2(Ω) : ∂n v = 0 on ∂Ω}, where B = −∆ + I.
The general case ϕ0 ∈ L2(Ω) with F (ϕ0) ∈ L1(Ω) can be dealt in the same fashion as in
[11], by means of a density argument and by relying on the form of the potential F as a
quadratic perturbation of a convex function.

In order to implement the approximation scheme we introduce the auxiliary Hilbert
space Ws defined by (cf. [29])

Ws := VH
s(Ω)3

,

where s ≥ 0 is fixed. In particular, we shall assume s ≥ sp, where sp = 5/2 − 3/p. This
choice ensures that the following embeddings hold

Ws ↪→ Vp ↪→ G ↪→ V ′p ↪→ W ′
s .

As a Galerkin base in Vp we employ the family {wj}j≥1, where each wj solves

(wj,v)Ws = µj(wj,v) , ∀v ∈ Ws .

In V we choose as Galerkin base the family {ψj}j≥1, where ψj are the eigenfunctions of the
operator B. LetWn := 〈w1, · · · ,wn〉 and Ψn := 〈ψ1, · · · , ψn〉 be the n−dimensional sub-

spaces spanned by the first n vectors of each base and let P̃n and Pn be the corresponding
orthogonal projectors in G and in L2(Ω), respectively.

We look for three functions of the form

un(t) =
n∑
k=1

a
(n)
k (t)wk , ϕn(t) =

n∑
k=1

b
(n)
k (t)ψk , µn(t) =

n∑
k=1

c
(n)
k (t)ψk

which solve the following approximate problem

(u′n,w) + (S(Dun), Dw) + b(un,un,w) = −(ϕn∇µn,w) + (hn,w)(4.1)

(ϕ′n, ψ) + (∇µn,∇ψ) = (unϕn,∇ψ)(4.2)

µn = Pn(aϕn − J ∗ ϕn + F ′(ϕn))(4.3)

un(0) = u0n , ϕn(0) = ϕ0n ,(4.4)

for every w ∈ Wn and every ψ ∈ Ψn, where u0n ∈ Wn are such that u0n → u0 in G and
ϕ0n = Pnϕ0 (primes denote classical derivatives with respect to time). In (4.1) hn denotes
a sequence in C0([0, T ];G) such that hn → h in Lp

′
(0, T ;V ′p). Here, we have denoted by

b(·, ·, ·) the usual trilinear form which is employed in the theory of the incompressible
Navier-Stokes system (cf. [35]), namely

b(u, z,v) :=

∫
Ω

(u · ∇)z · v ∀u, z,v ∈ Vp.

In particular, we have b(u,u,v) = −〈K0(u),v〉. It is easy to see that this approximate
problem can be solved by solving a Cauchy problem for a system of ordinary differential

equations in the 2n unknowns a
(n)
i , b

(n)
i , i = 1, · · · , n. Recalling that F ∈ C1(R) and

S ∈ C0(R3×3)3×3, Peano’s theorem ensures that there exists T ∗n ∈ (0,+∞] such that

this system admits a maximal solution a(n) := (a
(n)
1 , · · · , a(n)

n ), b(n) := (b
(n)
1 , · · · , b(n)

n ) on

[0, T ∗n) satisfying a(n), b(n) ∈ C1([0, T ∗n);Rn). Notice that, at this stage, the smoothness

of F and S are enough to guarantee the existence of a maximal solution a(n),b(n).
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A priori estimates

We now derive some basic energy estimates for the sequence of the approximate solutions
un, ϕn and for the sequence of µn.

We take un as test function in (4.1), µn as test function in (4.2) and we recall that
b(un,un,un) = 0. By summing the ensuing identities we get

d

dt

(1

2
‖un‖2 + E(ϕn)

)
+ (S(Dun), Dun) + ‖∇µn‖2 = (hn,un) ,(4.5)

where the functional E is given by (1.7). By arguing as in [11] once more and using the
coercivity assumption on the nonlinear function S (cf. (2.1)), the conditions on F , and
the fact that, since ϕ0 ∈ D(B), we have ϕ0n → ϕ0 in H2(Ω) and hence also in L∞(Ω),
we first deduce that T ∗n = +∞ for every n, i.e., each approximate problem has a global
in time solution, and furthermore we obtain the following estimates which hold for every
T ∈ (0,+∞)

‖un‖L∞(0,T ;G)∩Lp(0,T ;Vp) ≤ N(4.6)

‖ϕn‖L∞(0,T ;L2q+2(Ω))∩L2(0,T ;H1(Ω)) ≤ N(4.7)

‖µn‖L2(0,T ;H1(Ω)) ≤ N(4.8)

‖F (ϕn)‖L∞(0,T ;L1(Ω)) ≤ N ,(4.9)

where we have set N = cM1/2 + c‖h‖Lp′ (0,T ;V ′p), with M given by

M = c
(

1 + ‖u0‖2 + ‖ϕ0‖2 +

∫
Ω

F (ϕ0)
)
.

The growth condition on the nonlinear function S (see (2.1)) as well as estimate (4.6)
also provide a bound for the sequence of the nonlinear terms S(Dun). Indeed, we have

‖S(Dun)‖Lp′ (0,T ;Lp′ (Ω)3×3) ≤ C ,(4.10)

where, here and henceforth, C will denote a positive constant depending on the norms of
u0, ϕ0 and h (cf. the constant N in (4.6)–(4.8)). As far as the bound for the nonlinear
terms F ′(ϕn) in (4.3) is concerned, on account of (2.2) and (4.9), we immediately get

‖F ′(ϕn)‖L∞(0,T ;Lr(Ω)) ≤ C .(4.11)

The last estimates we need are for the sequences of the time derivatives u′n, ϕ′n. Let
us begin with the former one. Let us take w ∈ Ws, and decompose it as w = wI +wII ,
where wI ∈ Wn and wII ∈ W⊥n , and notice that wI and wII are orthogonal also in Ws.
Then, from (4.1) we can write

〈u′n,w〉Ws = 〈u′n,wI〉Ws = −(S(Dun), DwI)− b(un,un,wI)(4.12)

− (ϕn∇µn,wI) + (hn,wI) .

Let us now estimate each of the four terms on the right hand side. As far as the first term
is concerned, we have

|(S(Dun), DwI)| ≤ ‖(S(Dun)‖(Lp′ )3×3‖wI‖Vp(4.13)

≤ c
(
1 + ‖Dun‖p−1

(Lp)3×3

)
‖wI‖Ws ≤ c

(
1 + ‖Dun‖p−1

(Lp)3×3

)
‖w‖Ws .

Concerning the convective term on the right hand side of (4.12), the simplest way to esti-
mate it, which is enough for our purposes, is the following. Take s > 5/2. This condition,
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which will be assumed henceforth, ensures that ∇w ∈ Hs−1(Ω)3×3 ↪→ L∞(Ω)3×3 (notice
that the Hilbert space Ws has just the role of an auxiliary space; hence s can be suitably
chosen). Thus we find

|b(un,un,wI)| = |b(un,wI ,un)| ≤ ‖un‖2‖∇wI‖(L∞)3×3(4.14)

≤ c‖un‖2‖wI‖Ws ≤ c‖un‖2‖w‖Ws .

Next, the contributions arising from the Korteweg and from the external force terms on
the right hand side of (4.12) can be estimated as follows

|(ϕn∇µn,wI)| ≤ ‖ϕn‖‖∇µn‖‖wI‖(L∞)3 ≤ c‖ϕn‖‖∇µn‖‖w‖Ws(4.15)

|〈hn,wI〉Ws| ≤ ‖hn‖V ′p‖wI‖Vp ≤ c‖hn‖V ′p‖w‖Ws .(4.16)

Inserting estimates (4.13)–(4.16) into (4.12) we get

‖u′n‖W ′s ≤ c
(
1 + ‖Dun‖p−1

(Lp)3×3 + ‖un‖2 + ‖ϕn‖‖∇µn‖+ ‖hn‖V ′p
)
,

and therefore, on account of the basic estimates (4.6)–(4.8) and of the fact that hn → h
in Lp

′
(0, T ;V ′p), we immediately obtain the following bound for the sequence u′n

‖u′n‖Lp′ (0,T ;W ′s)
≤ C .(4.17)

In order to derive an estimate for the sequence of ϕ′n, take ψ ∈ V and decompose it as
ψ = ψI + ψII , where ψI ∈ Ψn and ψII ∈ Ψ⊥n . Recall that ψI and ψII are orthogonal also
in H1(Ω). Then, from (4.2) we deduce

〈ϕ′n, ψ〉H1 = 〈ϕ′n, ψI〉H1 = −(∇µn,∇ψI) + (unϕn,∇ψI) ,
and the only term here which requires some care is the last one on the right hand side.
This can be estimated as

|(unϕn,∇ψI)| ≤ ‖un‖(L2(1+1/q))3‖ϕn‖L2q+2‖ψI‖H1(4.18)

≤ c‖un‖Vp‖ϕn‖L2q+2‖ψ‖H1 ,

where we have used condition q ≥ qp (cf. (3.13)), which ensures that 2(1 + 1/q) ≤
3p/(3− p), and the Sobolev embedding W 1,p(Ω) ↪→ L3p/(3−p)(Ω) (let us assume, here and
henceforth, to be in the worst case p < 3). Hence, we deduce

‖ϕ′n‖(H1)′ ≤ c
(
‖∇µn‖+ ‖un‖Vp‖ϕn‖L2q+2

)
,

which, on account of (4.6)–(4.8) again, entails the following estimate for the sequence of
the time derivatives ϕ′n

‖ϕ′n‖L2(0,T ;H1(Ω)′) ≤ C .(4.19)

Passage to the limit by compactness

On account of estimates (4.6)-(4.8), (4.10), (4.11), (4.17), (4.19), and owing to the Aubin-
Lions Lemma, we deduce that there exist

u ∈ L∞(0, T ;G) ∩ Lp(0, T ;Vp)(4.20)

ϕ ∈ L∞(0, T ;L2q+2(Ω)) ∩ L2(0, T ;H1(Ω))(4.21)

µ ∈ L2(0, T ;H1(Ω))(4.22)

χ ∈ Lp′(0, T ;Lp
′
(Ω)3×3)(4.23)
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with

d

dt
u ∈ Lp′(0, T ;W ′

s)(4.24)

d

dt
ϕ ∈ L2(0, T ;H1(Ω)′) ,(4.25)

such that, for a not relabeled subsequence, we have

un ⇀ u weakly∗ in L∞(0, T ;G)(4.26)

un ⇀ u weakly in Lp(0, T ;Vp)(4.27)

un → u strongly in Lp(0, T ;G) and a.e. in Ω× (0, T )(4.28)

S(Dun) ⇀ χ weakly in Lp
′
(0, T ;Lp

′
(Ω)3×3)(4.29)

u′n ⇀
d

dt
u weakly in Lp

′
(0, T ;W ′

s)(4.30)

ϕn ⇀ ϕ weakly∗ in L∞(0, T ;L2q+2(Ω))(4.31)

ϕn ⇀ ϕ weakly in L2(0, T ;H1(Ω))(4.32)

ϕn → ϕ strongly in L2(0, T ;L2(Ω)) and a.e. in Ω× (0, T )(4.33)

ϕ′n ⇀
d

dt
ϕ weakly in L2(0, T ;H1(Ω)′)(4.34)

µn ⇀ µ weakly in L2(0, T ;H1(Ω))(4.35)

F ′(ϕn) ⇀ F ′(ϕ) weakly∗ in L∞(0, T ;Lr(Ω)) .(4.36)

By means of a standard argument, (4.26)–(4.35) allow to pass to the limit in (4.1)-(4.2),
to deduce that the following weak formulation holds〈 d

dt
u,w

〉
Ws

+ (χ, Dw) + b(u,u,w) = −(ϕ∇µ,w) + 〈h,w〉Ws(4.37) 〈 d
dt
ϕ, ψ

〉
H1

+ (∇µ,∇ψ) = (uϕ,∇ψ) ,(4.38)

for every w ∈ Ws and every ψ ∈ H1(Ω). In particular, we have used the convergence
b(un,un,w)→ b(u,u,w) in D′(0, T ) as n→∞ for every w ∈ Wm, which can be easily
proved from (4.28) (see [29]). Moreover, we claim that µ = aϕ− J ∗ ϕ + F ′(ϕ). Indeed,
from (4.3), for every v ∈ Ψn and every k ≥ n (n is fixed), we have∫ T

0

(µk(t), v)χ(t)dt =

∫ T

0

(aϕk − J ∗ ϕk + F ′(ϕk), v)χ(t)dt , ∀χ ∈ D(0, T ) .

By passing to the limit as k → ∞ in this identity and using the convergences (4.35),
(4.33) (which implies J ∗ ϕk → J ∗ ϕ strongly in L2(0, T ;H1(Ω))) and (4.36), on account
of the density of {Ψn}n≥1 in L2(Ω) we get the desired claim.

By means of a comparison argument in (4.37), we now show that the regularity for
the time derivative d

dt
u is actually better than (4.24). Indeed, notice first that, by using

Sobolev embedding, the Korteweg force term can be estimated, for every w ∈ Vp, as

|(ϕ∇µ,w)| ≤ ‖ϕ‖L6p/(5p−6)‖∇µ‖‖w‖(L3p/(3−p))3(4.39)

≤ C‖∇µ‖‖w‖Vp ,



12 S. FRIGERI, M. GRASSELLI, D. PRAŽÁK

where we have used the fact that, since q ≥ qp, then ϕ ∈ L∞(0, T ;L6p/(5p−6)(Ω)), thanks
to the regularity (4.21). Moreover, the kinetic term in (4.37) is estimated as usual, by
means of Gagliardo-Nirenberg inequality, to give

|b(u,u,w)| ≤ c‖u‖(L3p/(4p−6))3‖u‖Vp‖w‖(L3p/(3−p))3

≤ c‖u‖6/(5p−6)
Vp

‖w‖Vp .

By comparison in (4.37) we therefore get∣∣∣〈 d
dt
u,w

〉
Vp

∣∣∣ ≤ c
(
‖χ‖(Lp′ )3×3 + ‖u‖6/(5p−6)

Vp
+ ‖∇µ‖+ ‖h‖V ′p

)
‖w‖Vp ,(4.40)

for all w ∈ Ws. This allows to conclude that d
dt
u(t) can be continuously extended to Vp,

for almost every t > 0, and, since we have p ≥ 11/5, that there holds

d

dt
u ∈ Lp′(0, T ;V ′p) .(4.41)

Moreover, the weak formulation (4.37) holds also for every w ∈ Vp.
To complete the proof, there remains to prove that (χ, Dw) = (S(Du), Dw), for all

w ∈ Vp, or, equivalently that divχ = divS(Du) in D′(Ω)3. This identification will be
achieved by means of a monotonicity argument.

Identification divχ = divS(Du) by monotonicity

We first see that the following energy identity holds

1

2
‖u(t)‖2 + E(ϕ(t)) +

∫ t

0

(χ, Du) dτ +

∫ t

0

‖∇µ‖2 dτ(4.42)

=
1

2
‖u0‖2 + E(ϕ0) +

∫ t

0

〈h,u〉Vpdτ , ∀t ∈ [0, T ] .

Indeed, we can take w = u(τ) as test function in (4.37) and ψ = µ(τ) as test function in
(4.38). Notice that this is allowed, on account of (4.41) and of (4.25), respectively. We
then employ [12, Proposition 4.2.] in order to rewrite the term 〈 d

dt
ϕ, F ′(ϕ)〉H1 , as well as

the standard identity 〈 d
dt
u,u〉Vp = 1

2
d
dt
‖u‖2 (see, e.g., [35, Lemma 1.3, Chapter III]).

By adding and integrating the resulting identities between 0 and t, we get (4.42).
Take now an arbitrary v ∈ Lp(0, T ;Vp) and set, for all t ∈ [0, T ],

Zn(t) :=
1

2
‖un(t)‖2 +

∫ t

0

(S(Dun)− S(Dv), Dun −Dv)dτ(4.43)

+

∫ t

0

‖∇(µn − µ)‖2dτ + E(ϕn(t)) .

Using the energy identity for the approximate solutions obtained by integrating (4.5)
between 0 and t, we immediately see that Zn(t) can be rewritten in the form

Zn(t) =
1

2
‖u0n‖2 + E(ϕ0n) +

∫ t

0

〈hn,un〉Vp dτ −
∫ t

0

(S(Dun), Dv) dτ

−
∫ t

0

(S(Dv), Du−Dv) dτ +

∫ t

0

‖∇µ‖2 dτ − 2

∫ t

0

(∇µn,∇µ) dτ .
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By employing the convergences above, we get

Zn(t)→ 1

2
‖u0‖2 + E(ϕ0) +

∫ t

0

〈h,u〉Vp dτ −
∫ t

0

(χ, Dv) dτ(4.44)

−
∫ t

0

(S(Dv), Du−Dv) dτ −
∫ t

0

‖∇µ‖2d τ .

On the other hand, thanks to the monotonicity of the map S : R3×3 → R3×3 (see (2.1)),
to the lower semicontinuity of the norms and to Fatou’s Lemma, we have

lim inf
n→∞

Zn(t) ≥ 1

2
‖u(t)‖2 + E(ϕ(t)) .

Hence, we obtain

1

2
‖u(t)‖2 + E(ϕ(t)) ≤ 1

2
‖u0‖2 + E(ϕ0) +

∫ t

0

〈h,u〉Vp dτ −
∫ t

0

(χ, Dv) dτ

−
∫ t

0

(S(Dv), Du−Dv) dτ −
∫ t

0

‖∇µ‖2d τ ,

which, combined with (4.42), yields the variational inequality∫ t

0

(
χ− S(Dv), Du−Dv

)
dτ ≥ 0 ∀v ∈ Lp(0, T ;Vp) .

The well-known Minty trick (take v = u+ εz, with z ∈ Lp(0, T ;Vp) arbitrary and pass to
the limit as ε→ 0), taking also into account the continuity of S, combined with a density
argument (take z = ηw, where w ∈ Vp and η ∈ D(0, T ) are arbitrary) allow us to deduce
that (χ, Dw) = (S(Du), Dw), for all w ∈ Vp, i.e., the required identification.

5. Preliminary estimates

We will henceforth assume that the assumptions of Theorem 1 are satisfied so that we
can consider a weak solution [uuu, ϕ].

Lemma 2. Let p ≥ 11/5, q ≥ qp. Then any weak solution [uuu, ϕ] satisfies∥∥∥∥ ddtuuu(t)

∥∥∥∥
V ′p

≤ C
(
1 + ‖uuu(t)‖p−1

Vp
+ ‖hhh(t)‖V ′p

)
(5.1) ∥∥∥∥ ddtϕ(t)

∥∥∥∥
(H1)′

≤ C
(
‖µ(t)‖H1 + ‖u(t)‖Vp

)
(5.2)

where C > 0 depends on the initial data (in particular, on ‖u0‖, ‖ϕ0‖ and on
∫

Ω
F (ϕ0)),

on ‖hhh‖Lp′ (0,T ;V ′p) and on other known quantities. Here we take advantage of the energy

identity (see (4.5)) to bound the L∞-norms of ‖uuu(t)‖, ‖ϕ(t)‖L2q+2.

Proof. Estimate (5.2) can be immediately obtained from the variational formulation (4.38)
by arguing as in (4.18) in order to control the term on the right hand side. The regularity
(4.21) is taken into account as well.

As far as (5.1) is concerned, instead of using (4.37), we can argue from the variational
formulation (3.8), which is obtained by eliminating the chemical potential µ in the Kor-
teweg force term. Notice that in the proof of Theorem 1 we employed a weak formulation
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of (1.13) with µ appearing explicitly in the Korteweg force. However, since F is regular,
it easy to see that this formulation is equivalent to (3.8).

Omitting the variable t for simplicity, we take v ∈ Vp with ‖v‖Vp ≤ 1 and estimate〈
d

dt
uuu,v

〉
Vp

= −〈N(uuu),v〉Vp + 〈K0(uuu),v〉Vp + 〈K1(ϕ),v〉Vp + 〈h,v〉Vp(5.3)

= D1 +D2 +D3 + 〈h,v〉Vp .

Clearly |D1| ≤ C(1 + ‖uuu‖p−1
Vp

) (cf. (3.1) and (4.13)). Using the interpolation

(5.4) ‖v‖
L2p′ ≤ ‖v‖1−γ‖v‖γ

Lp∗
γ =

3

5p− 6
, 1− γ =

5p− 9

5p− 6
,

we have (cf. (3.2))

|D2| ≤
∫

Ω

|uuu|2|∇v| dx ≤ ‖uuu‖2
L2p′‖∇v‖Lp ≤ ‖uuu‖2(1−γ)‖uuu‖2γ

Vp
‖v‖Vp ≤ C

(
1 + ‖uuu‖p−1

Vp

)
.

Here we have used that 2γ ≤ p− 1, which is just p ≥ 11/5. Finally, on account of (3.3),
in order to estimate D3 we just need to observe that

(5.5)

∫
Ω

|∇J ∗ ϕ||ϕ||v| dx ≤ ‖∇J ∗ ϕ‖
L2(p∗)′‖ϕ‖L2(p∗)′‖v‖Lp∗ ≤ C ,

since we have 2(p∗)′ = 6p/(4p−3) ≤ 2q+ 2, as a consequence of the condition q ≥ qp. �

The following lemma is concerned with the estimates of the time differences.

Lemma 3. Let p ≥ 11/5, q ≥ qp and let [uuu, ϕ] be an arbitrary weak solution.

(1) Let t0 ∈ [0, T ) be such that uuu(t0) ∈ Vp, and t = t0 be a Lebesgue point of the

function t 7→ ‖hhh(t)‖p
′

V ′p
. Then

(5.6) ‖uuu(t0 + h)− uuu(t0)‖2 + ‖ϕ(t0 + h)− ϕ(t0)‖2
(H1)′ ≤ ch, h ∈ (0, h0)

for some c, h0 > 0 depending on hhh and t0.
(2) Estimate (5.6) holds for almost every t0 ∈ (0, T ).

Proof. (1) We can write

‖uuu(t0 + h)− uuu(t0)‖2(5.7)

=
(
‖uuu(t0 + h)‖2 − ‖uuu(t0)‖2

)
+ 2(uuu(t0)− uuu(t0 + h),uuu(t0)) = E1 + E2 .

To estimate E1, we test (3.8) by 2uuu and integrate over t ∈ (0, h). Observing that
〈N(uuu),uuu〉Vp ≥ c2‖uuu‖pVp , 〈K0(uuu),uuu〉Vp = 0 and recalling (3.11), we get

(5.8)
| 〈K1(ϕ),uuu〉Vp | ≤ c‖ϕ‖2

L2(p∗)′‖uuu‖Vp ≤ c‖ϕ‖2
L2q+2‖uuu‖Vp ≤

c2

4
‖uuu‖pVp + c

| 〈hhh,uuu〉Vp | ≤ ‖hhh‖V ′p‖uuu‖Vp ≤
c2

4
‖uuu‖pVp + c‖hhh‖p

′

V ′p
.

Here p∗ = 3p/(3− p) (recall that we are working in the worst case p < 3). This yields

(5.9) E1 ≤ −c2

∫ t0+h

t0

‖uuu(t)‖pVp dt+ c

∫ t0+h

t0

‖hhh(t)‖p
′

Vp
dt+O(h) .
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Here c > 0 depends on the initial data, on ‖hhh‖Lp′ (0,T ;V ′p) and on other known quantities

through the energy estimate (see (4.5)). To estimate E2, we write

|(uuu(t0)− uuu(t0 + h),uuu(t0))| ≤
∫ t0+h

t0

∣∣∣∣∣
〈
d

dt
uuu(t),uuu(t0)

〉
Vp

∣∣∣∣∣ dt
≤
∫ t0+h

t0

∥∥∥∥ ddtuuu(t)

∥∥∥∥
V ′p

‖uuu(t0)‖Vp dt

≤ c

∫ t0+h

t0

(
1 + ‖uuu(t)‖p−1

Vp
+ ‖hhh(t)‖V ′p

)
dt

employing (5.1). This yields

(5.10) E2 ≤ c2

∫ t0+h

t0

‖uuu(t)‖pVp dt+ c

∫ t0+h

t0

(
1 + ‖hhh(t)‖p

′

Vp

)
dt

with c also depending on ‖uuu(t0)‖Vp . Combining (5.9) with (5.10) we get

(5.11) ‖uuu(t0 + h)− uuu(t0)‖2 ≤ c

∫ t0+h

t0

(
1 + ‖hhh(t)‖p

′

Vp

)
dt.

Therefore uuu satisfies an estimate of the form (5.6) recalling that

lim sup
h→0+

1

h

∫ t0+h

t0−h
‖hhh(t)‖p

′

Vp
dt <∞

at the Lebesgue point t = t0. A similar estimate holds for ‖ϕ(t0 + h)− ϕ(t0)‖2
(H1)′ for any

t0 since ϕ ∈ W 1,2(0, T ;H1(Ω)′) ↪→ C0,1/2(0, T ;H1(Ω)′).
(2) It follows immediately as almost every t0 ∈ (0, T ) is a Lebesgue point (see the

assumptions of (1)). �

We can now evaluate the difference of two weak solutions as follows

Lemma 4. Let p ≥ 11/5, q ≥ qp. Suppose that [u1, ϕ1], [u2, ϕ2] are two weak solutions.
Also, assume the additional regularity

uuu2 ∈ Lpuniq(0, T ;Vp), puniq =
2p

2p− 3
(5.12)

ϕ1, ϕ2 ∈ LP (0, T ;LQ(Ω)), P =
2Q

Q− 3
, Q > 3 .(5.13)

Then the following inequality holds

d

dt

(
‖uuu1 − uuu2‖2 + ‖ϕ1 − ϕ2‖2

(H1)′ + |ϕ1 − ϕ2|
)

(5.14)

+ c
(
‖uuu1 − uuu2‖2

V2
+ ‖uuu1 − uuu2‖pVp + ‖ϕ1 − ϕ2‖2 + ‖ϕ1 − ϕ2‖2q+2

L2q+2

)
≤ m(t)

(
‖uuu1 − uuu2‖2 + ‖ϕ1 − ϕ2‖2

(H1)′ + |ϕ1 − ϕ2|
)

where m ∈ L1(0, T ) only depends on the norms of [uuuj, ϕj], j = 1, 2, related to (3.5)–(3.7)
and on the norms of ϕ1, [uuu2, ϕ2] related to (5.12)-(5.13).
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Proof. Observe that

1

2

d

dt
‖uuu1 − uuu2‖2 =

〈
d

dt
(uuu1 − uuu2),uuu1 − uuu2

〉
Vp

(5.15)

= −〈N(uuu1)−N(uuu2),uuu1 − uuu2〉Vp + 〈K0(uuu1)−K0(uuu2),uuu1 − uuu2〉Vp
+ 〈K1(ϕ1)−K1(ϕ2),uuu1 − uuu2〉Vp = D1 +D2 +D3 .

Recalling (2.1), we have

D1 ≤ −c
(
‖uuu1 − uuu2‖2

V2
+ ‖uuu1 − uuu2‖pVp

)
.(5.16)

Then, using the interpolation

(5.17) ‖v‖Lρ ≤ ‖v‖θ‖v‖1−θ
L6 , θ =

2p− 3

p
, ρ =

6p

5p− 6
,

we find

|D2| ≤
∫

Ω

|uuu2||uuu1 − uuu2||∇(uuu1 − uuu2)| dx ≤ ‖uuu2‖(Lp∗ )3‖uuu1 − uuu2‖(Lρ)3‖uuu1 − uuu2‖V2(5.18)

≤ ‖uuu2‖Vp‖uuu1 − uuu2‖θ‖uuu1 − uuu2‖2−θ
V2
≤ δ‖uuu1 − uuu2‖2

V2
+ Cδ‖uuu2‖

puniq
Vp
‖uuu1 − uuu2‖2.

Concerning D3, one writes

|D3| ≤
∫

Ω

( |∇a|
2

(
|ϕ1|+ |ϕ2|

)
|ϕ1 − ϕ2|+ |ϕ1||∇J ∗ (ϕ1 − ϕ2)|

)
|u1 − u2| dx(5.19)

+

∫
Ω

|∇J ∗ ϕ2||ϕ1 − ϕ2||uuu1 − uuu2| dx

≤ 3b

2

(
‖ϕ1‖L3+ε + ‖ϕ2‖L3+ε

)
‖ϕ1 − ϕ2‖‖uuu1 − uuu2‖(L6−ε̃)3

≤ c
(
‖ϕ1‖L3+ε + ‖ϕ2‖L3+ε

)
‖ϕ1 − ϕ2‖‖uuu1 − uuu2‖γ‖uuu1 − uuu2‖1−γ

V2

≤ δ
(
‖ϕ1 − ϕ2‖2 + ‖uuu1 − uuu2‖2

V2

)
+ Cδ

(
‖ϕ1‖PL3+ε + ‖ϕ2‖PL3+ε

)
‖uuu1 − uuu2‖2 .

In the second inequality we have used the fact that ‖∇J∗ψ‖Lp ≤ b‖ψ‖Lp , for all ψ ∈ Lp(Ω)
and for every 1 ≤ p ≤ ∞. Morover, ε > 0 is fixed arbitrary, ε̃ > 0 is such that
(3 + ε)−1 + (6− ε̃)−1 = 1/2, γ := ε/(3 + ε), P := 2(3 + ε)/ε, and δ > 0 will be fixed later.
Let us consider now equation (3.10) written for the difference of the solutions. In this case

we consider B−1
N ϕ̃(t) as test function, where ϕ̃(t) = (ϕ1 − ϕ2)(t) − (ϕ1 − ϕ2) ∈ H1

(0)(Ω),

for almost any t ∈ (0, T ). Recalling (2.5) and (3.12), we have

1

2

d

dt
‖ϕ1 − ϕ2‖2

(H1)′ =

〈
d

dt

(
ϕ1 − ϕ2

)
, B−1

N ϕ̃

〉
H1

(5.20)

= −(µ1 − µ2, ϕ̃) +
〈
K2(uuu1, ϕ1)−K2(uuu2, ϕ2), B−1

N ϕ̃
〉
H1

= D̃1 + D̃2 .

As far as D̃1 is concerned, notice that it can be written as

D̃1 = −
(
M(·, ϕ1)−M(·, ϕ2), ϕ1 − ϕ2

)
+
(
J ∗ (ϕ1 − ϕ2), ϕ1 − ϕ2

)
(5.21)

+
(
F ′(ϕ1)− F ′(ϕ2), ϕ1 − ϕ2

)
,
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where we have set M(x, s) := a(x)s + F ′(s). Observe that (2.3) implies Ms(x, ϕ) ≥
(c5/2)|ϕ|2q + c5/2 for all s ∈ R and for almost any x ∈ Ω. Arguing as, e.g., in [31, Lemma
1.19, Chapter 5], we deduce that

(M(·, ϕ1)−M(·, ϕ2), ϕ1 − ϕ2) ≥ c‖ϕ1 − ϕ2‖2q+2
L2q+2 + c‖ϕ1 − ϕ2‖2 .

Moreover, the third term on the right hand side of (5.21) can be estimated as∣∣(F ′(ϕ1)− F ′(ϕ2), ϕ1 − ϕ2

)∣∣ ≤ (‖F ′(ϕ1)‖L1 + ‖F ′(ϕ2)‖L1

)∣∣ϕ1 − ϕ2

∣∣
≤ c
(
1 + ‖F (ϕ1)‖L1 + ‖F (ϕ2)‖L1

)∣∣ϕ1 − ϕ2

∣∣
≤ Γ

∣∣ϕ1 − ϕ2

∣∣ ,
where we have used the growth condition of F , which implies that |F ′(s)| ≤ c|F (s)| + c,
for all s ∈ R. We shall henceforth denote by Γ a positive constant which depends on
the data, more precisely on ‖u0i‖, ‖ϕ0i‖, ‖F (ϕ0i)‖L1 , i = 1, 2, and on ‖h‖Lp′ (0,T ;V ′p) (cf.

(4.6)–(4.9)).
Thus we have

D̃1 ≤ −c‖ϕ1 − ϕ2‖2 − c‖ϕ1 − ϕ2‖2q+2
L2q+2 +

(
J ∗ (ϕ1 − ϕ2), ϕ1 − ϕ2

)
+ Γ

∣∣ϕ1 − ϕ2

∣∣ .(5.22)

The third term on the right hand side of (5.22) is easily estimated as usual, on account
of the smoothing effect of the convolution, namely∣∣(J ∗ (ϕ1 − ϕ2), ϕ1 − ϕ2

)∣∣ ≤ ‖J ∗ (ϕ1 − ϕ2)‖H1‖ϕ1 − ϕ2‖(H1)′(5.23)

≤ (a∗ + b)‖ϕ1 − ϕ2‖‖ϕ1 − ϕ2‖(H1)′

≤ δ‖ϕ1 − ϕ2‖2 + Cδ‖ϕ1 − ϕ2‖2
(H1)′ .

Finally, let us set

D̃2 = D̃2a + D̃2b =
〈
K2(uuu1, ϕ1)−K2(uuu2, ϕ1), B−1

N ϕ̃
〉
H1

+
〈
K2(uuu2, ϕ1)−K2(uuu2, ϕ2), B−1

N ϕ̃
〉
H1 .

Then observe that

|D̃2a| ≤
∫

Ω

|ϕ1||uuu1 − uuu2||∇B−1
N ϕ̃| dx ≤ ‖ϕ1‖L3‖uuu1 − uuu2‖‖ϕ̃‖(5.24)

≤ δ‖ϕ1 − ϕ2‖2 + Cδ‖ϕ1‖2
L3+ε‖uuu1 − uuu2‖2 + c

∣∣ϕ1 − ϕ2

∣∣2 ,
and

|D̃2b| ≤
∫

Ω

|ϕ1 − ϕ2||uuu2||∇B−1
N ϕ̃| dx ≤ ‖ϕ1 − ϕ2‖‖uuu2‖Lp∗‖∇B

−1
N ϕ̃‖Lρ

(5.25)

≤ c ‖ϕ1 − ϕ2‖‖u2‖Lp∗
(
‖ϕ1 − ϕ2‖θ(H1)′ + |ϕ1 − ϕ2

∣∣θ)(‖ϕ1 − ϕ2‖1−θ + |ϕ1 − ϕ2

∣∣1−θ)
≤ δ‖ϕ1 − ϕ2‖2 + Cδ‖u2‖

puniq
Vp
‖ϕ1 − ϕ2‖2

(H1)′ + Cδ (1 + ‖u2‖
puniq
Vp

)|ϕ1 − ϕ2

∣∣2 .
Here θ and ρ are as in (5.17), and we have interpolated the estimates (2.6).

We now sum (5.15), (5.20) and insert estimates (5.16), (5.18)-(5.19), (5.22)–(5.25) into
the ensuing identity. Choosing δ > 0 small enough we are finally led to (5.14). Setting
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Q = 3 + ε, the function m can be given by

m(t) := Γ
(
1 + ‖u2(t)‖puniqVp

+ ‖ϕ1(t)‖PLQ + ‖ϕ2(t)‖PLQ
)
,(5.26)

which belongs to L1(0, T ) thanks to assumptions (5.12)-(5.13). �

6. Proof of Theorem 2

The proof is based on two lemmas. The first (see Lemma 5) shows a time regularity in
Nikolskii space for an evolutionary Stokes-Ladyzhenskaya system with a given source. It
can be seen as a generalization of the well-known fact that the Lp(0, T ;Vp) norm of the
solution is estimated by the Lp

′
(0, T ;V ′p) norm of the right-hand side.

The second lemma (see Lemma 6) deals with the convective term K0(uuu), which is the
critical one. It shows that if uuu ∈ Nσ,p(0, T ;Vp), then K0(u) ∈ N δ,p′(0, T ;V ′p) for suitable
δ = δ(σ), provided that p ≥ 11/5. This generalizes another well-known fact, namely that
K0(·) is bounded from Lp(0, T ;Vp) into its dual if p ≥ 11/5.

Lemma 5. Let p ≥ 11/5 and suppose that uuu ∈ Lp(t0, T ;Vp) satisfies d
dt
uuu+N(uuu) = H(t),

where H ∈ N δ,p′(t0, T ;V ′p) and δp′ ≤ 1, δ ∈ (0, 1). In addition, assume that t0 is such that

(6.1) ‖uuu(t0 + h)− uuu(t0)‖2 ≤ ch for h ∈ (0, h0) and for some c > 0.

Then uuu ∈ Nσ,p(t0, T ;Vp), where σ = δ/(p− 1).

Proof. Applying dh to the equation and testing by dhuuu, one obtains

1

2

d

dt
‖dhuuu‖2 +

〈
dhN(uuu), dhuuu

〉
Vp

=
〈
dhH(t), dhuuu

〉
Vp
.

Here, on account of (2.1), we have〈
dhN(uuu), dhuuu

〉
Vp
≥ c2

(
‖dhuuu‖pVp + ‖dhuuu‖2

V2

)
.

Further, observe that〈
dhH(t), dhuuu

〉
Vp
≤ ‖dhH(t)‖V ′p‖d

huuu‖Vp ≤
c2

2
‖dhuuu‖pVp + C‖dhH(t)‖p

′

V ′p
.

Thus we eventually get

(6.2) sup
t0≤t≤T−h

‖dhuuu(t)‖2+c

∫ T−h

t0

(
‖dhuuu‖pVp+‖dhuuu‖2

V2

)
dt ≤ c1h+C

∫ T−h

t0

‖dhH(t)‖p
′

V ′p
dt .

The last term is estimated by c2h
δp′ and therefore we get

1

hδ/(p−1)
‖dhu‖Lp(t0,T−h;Vp) ≤ C(h

1
p
− δ
p−1 + 1) .

Taking the sup for h > 0 the conclusion follows, since we have δp′ ≤ 1. �

Because the embedding theorem for Nikolskii spaces is not sharp (cf. (2.8)), we will
repeatedly write γ + ε or γ − ε for some number strictly larger or smaller than a, respec-
tively; the value ε > 0 will be arbitrarily small and its values can change from line to line.
Hence we have N s,p(I;X) ↪→ Lp̃s−ε(I;X), where 1/p̃s = 1/p− s.
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Lemma 6. Let uuu ∈ Nσ,p(t0, T ;Vp) ∩ L∞(t0, T ;G) with σ ∈ [0, 1) and p ≥ 11/5. In
addition, assume that (6.1) holds. Then, we have

(6.3) K0(uuu) ∈ N δ,p′(t0, T ;V ′p),

where

δ =

{
5p−9

2(5p−6)
+ 3σ

5p−6
, if p ≥ 13

5
or if p < 13

5
and σp < σ < 1

5p−11
5p−6

+ 6σ
5p−6

, if p < 13
5

and 0 ≤ σ ≤ σp .

with σp := 13−5p
6

.

Proof. Let v ∈ Lp(t0, T − h;Vp) with ‖v‖Lp(t0;T−h;Vp) ≤ 1. Observe that

|
〈
dhK0(uuu),v

〉
Lp(t0;T−h;Vp)

|(6.4)

≤
∫

Ω×(t0,T−h)

|dhuuu|
(
|uuu|+ |τhu|

)
|∇v| dxdt

≤
∫ T−h

t0

‖dhuuu‖L2p′
(
‖uuu‖L2p′ + ‖τhuuu‖L2p′

)
‖∇v‖Lp dt

≤ C

∫ T−h

t0

‖dhuuu‖1−γ‖dhuuu‖γVp
(
‖u‖γVp + ‖τhu‖γVp

)
‖v‖Vp dt .

In the last inequality we have used the interpolation (5.4), as well as the regularity
u ∈ L∞(t0, T ;G) and the embedding Vp ↪→ Lp

∗
(Ω).

Let us first consider the case σ ∈ (0, 1). In this case we estimate the last term of (6.4)
by means of Hölder’s inequality with exponents rσ + ε′, p/γ, (p̃σ − ε)/γ and p, where p̃σ
is given by (2.8), rσ is computed by Hölder’s condition, namely

1

rσ
=

5p− 11

5p− 6
+ σγ ,

and ε, ε′ > 0 are such that 1/(rσ + ε′) + γ/p+ γ/(p̃σ − ε) + 1/p = 1. Therefore, we get

|
〈
dhK0(uuu),v

〉
Lp(t0;T−h;Vp)

| ≤ C‖dhuuu‖1−γ
L(1−γ)(rσ+ε′)(t0,T−h;G)

‖dhuuu‖γLp(t0,T−h;Vp)(6.5)

·
(
‖u‖γ

Lp̃σ−ε(t0,T ;Vp)
+ ‖τhu‖γ

Lp̃σ−ε(t0,T−h;Vp)

)
.

Let us begin to estimate the first factor on the right hand side of the first inequality
in (6.5). Observe first that, on account of (3.5), (4.41) and employing Lemma 1 with
X = Vp, H = G, α = 0 and β = 1, we obtain uuu ∈ N1/2,2(0, T ;G), which implies that

(6.6) ‖dhuuu‖L2(t0,T−h;G) ≤ c h1/2 .

Next, we observe that we have

(1− γ)rσ > 2⇐⇒ 2(5p− 11)

5p− 9
+

6σ

5p− 9
< 1 .(6.7)

Therefore, since 2(5p− 11)/(5p− 9) > 1 iff p > 13/5 (recall that p ≥ 11/5), then we have
(1 − γ)rσ < 2 for p ≥ 13/5 and for all σ ∈ (0, 1) (recall that we are considering the case
σ ∈ (0, 1)). In this case, taking ε (and hence ε′) small enough, by (6.6) we have

‖dhuuu‖1−γ
L(1−γ)(rσ+ε′)(t0,T−h;G)

≤ c‖dhuuu‖1−γ
L2(t0,T−h;G) ≤ c h

1−γ
2 .(6.8)
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On the other hand, if 11/5 ≤ p < 13/5 and σ ∈ (0, 1) is such that (1 − γ)rσ ≥ 2, then,
using interpolation, the fact that u ∈ L∞(0, T ;G), and (6.6) again, we have

‖dhuuu‖1−γ
L(1−γ)(rσ+ε′)(t0,T−h;G)

≤ ‖dhuuu‖
1−γ− 2

rσ+ε′

L∞(t0,T−h;G)‖d
huuu‖

2
rσ+ε′

L2(t0,T−h;G)(6.9)

≤ C‖dhuuu‖
2
rσ

L2(t0,T−h;G) ≤ C h
1
rσ .

We can easily check that the condition (1− γ)rσ ≥ 2 is satisfied if and only if we have

2(5p− 11)

5p− 9
+

6σ

5p− 9
≤ 1 ,

namely, if and only if σ ≤ σp, where σp := (13− 5p)/6.
Moreover, if 11/5 ≤ p < 13/5 and σ ∈ (0, 1) is such that (1 − γ)rσ < 2 (namely

σp < σ < 1), then we argue again as in (6.8).
The second and the third factors on the right hand side of the first inequality in

(6.5) are estimated by using, respectively, the fact that u ∈ Nσ,p(t0, T ;Vp), which im-
plies that ‖dhuuu‖Lp(t0,T−h;Vp) ≤ Chσ for all h > 0, and the embedding Nσ,p(t0, T ;Vp) ↪→
Lp̃σ−ε(t0, T ;Vp) (cf. (2.8)). Let us now take the sup in (6.5) over all v ∈ Lp(t0, T − h;Vp)
with ‖v‖Lp(t0;T−h;Vp) ≤ 1 and use (6.8)-(6.9). In the case p ≥ 13/5 and all σ ∈ (0, 1) or in
the case 11/5 ≤ p < 13/5 and σ ∈ (0, 1) such that (1− γ)rσ < 2, we get

‖dhK0(uuu)‖Lp′ (t0,T−h;V ′p) ≤ C h
1−γ
2

+σγ ,

which implies that K0(uuu) ∈ N δ,p′(t0, T ;V ′p), with δ := (1 − γ)/2 + σγ. In the case
11/5 ≤ p < 13/5 and σ ∈ (0, 1) such that (1− γ)rσ ≥ 2 we get

‖dhK0(uuu)‖Lp′ (t0,T−h;V ′p) ≤ C h
1
rσ

+σγ ,

which implies that K0(uuu) ∈ N δ,p′(t0, T ;V ′p), with δ := 1/rσ + σγ.
Let us now consider the case σ = 0 (this case is crucial, since it will be the starting

point of the iteration procedure in the proof of Theorem 2). The last term in (6.4) has
to be estimated a bit differently. However, we can see that (6.3) still holds (hence, we
have δ = (5p − 9)/2(5p − 6)). Indeed, we now use Hölder’s inequality with exponents
r0 = (5p − 6)/(5p − 11), p/γ, p/γ, and p. Notice that p = 11/5 is allowed (in this case
r0 =∞). Hence, instead of (6.5), we simply write

|
〈
dhK0(uuu),v

〉
Lp(t0;T−h;Vp)

| ≤ C‖dhuuu‖1−γ
L(1−γ)r0 (t0,T−h;G)

‖u‖2γ
Lp(t0,T ;Vp) ,

and then we argue as above, by using, respectively, (6.8) and (6.9). �

Proof of Theorem 2. If p ≥ 5/2, then puniq ≤ p and there is nothing to prove; hence we
will assume that 11/5 < p < 5/2. By the embedding properties of Nikolskii spaces, it is
enough to establish that uuu ∈ Nσuniq+ε,p(t0, T ;Vp), where σuniq = 5/2p − 1. By Lemma 3,
we can assume that (6.1) holds true. Thus, in virtue of (3.8) and of Lemma 5, it will be
enough to prove that

(6.10) K0(uuu) +K1(ϕ) + hhh ∈ N δuniq+ε,p′(t0, T ;V ′p) δuniq = (p− 1)

(
5

2p
− 1

)
.

For hhh this is just our assumption. Concerning K1(ϕ), we have

dhK1(ϕ) = −1

2
dhϕ2∇a+

(
∇J ∗ dhϕ

)
ϕ+ τh

(
∇J ∗ ϕ

)
dhϕ .



NONLOCAL CHNS SYSTEMS WITH SHEAR DEPENDENT VISCOSITY 21

We will only estimate the second term, others being similar or even simpler. For v ∈
Lp(t0, T − h;Vp), with ‖v‖Lp(t0;T−h;Vp) ≤ 1, we write∣∣∣〈(∇J ∗ dhϕ)ϕ,v

〉
Lp(t0,T−h;Vp)

∣∣∣ ≤ ∫
Ω×(t0,T−h)

|∇J ∗ dhϕ||ϕ||v|(6.11)

≤ b

∫ T−h

t0

‖dhϕ‖‖ϕ‖L2q+2‖v‖(L2(1+1/q))3 dt

≤ C

∫ T−h

t0

‖dhϕ‖‖v‖Vp dt

≤ C ‖dhϕ‖L2(t0,T−h;L2(Ω)) ≤ Ch1/2 .

We have used (3.9) and the fact that we have Vp ↪→ Lp
∗
(Ω)3 ↪→ L2(1+1/q)(Ω)3, where the

last embedding holds thanks to the condition q ≥ qp (cf. (4.18)). Moreover, the last
estimate in (6.11) is due to the fact that ϕ ∈ N1/2,2(0, T ;L2(Ω)) as follows from Lemma 1
and (3.6), (4.25). Estimate (6.11) implies that

‖(∇J ∗ dhϕ)ϕ‖Lp′ (t0,T−h;V ′p) ≤ C h1/2 ,

and hence we get K1(ϕ) ∈ N1/2,p′(t0, T ;V ′p). Observe that δuniq < 1/2. It remains to
consider the convective term K0(uuu), which is the most delicate.

For this term we can employ an iterative scheme. More precisely, if uuu ∈ Nσ,p(t0, T ;Vp),
it follows from Lemmas 5 and 6 that uuu ∈ N σ̃,p(t0, T ;Vp), where

σ̃ = Ψ(σ) Ψ(σ) :=

{
5p−11

(5p−6)(p−1)
+ 6σ

(5p−6)(p−1)
, if 0 ≤ σ ≤ σp

5p−9
2(5p−6)(p−1)

+ 3σ
(5p−6)(p−1)

, if σp < σ < 1 .

Hence, starting from σ = 0, on account of the fact that p > 11/5, we can arrive
arbitrarily close to the fixed point σmax which is the solution of

5p− 9

2(5p− 6)(p− 1)
+

3σ

(5p− 6)(p− 1)
= σ ,

namely

σmax =
5p− 9

2(5p2 − 11p+ 3)
.

We can now see that, if 11/5 < p < 5/2, then we have σmax > σuniq. Indeed, we have
σmax > (5p − 9)/2p(5p − 8) > σuniq = (5 − 2p)/2p, since 10p2 − 36p + 31 > 0 when

p > 11/5 > (18 +
√

14)/10.
Moreover, we can check that the condition δp′ ≤ 1 of Lemma 5 is satisfied at every step

of the iteration. Let us check it, e.g., for σp < σ < σmax. For these values of σ we have

δp′ =
( 5p− 9

2(5p− 6)
+

3σ

(5p− 6)

) p

p− 1
≤
( 5p− 9

2(5p− 6)
+

3σmax

(5p− 6)

) p

p− 1
= pσmax

=
(5p− 9)p

2(5p2 − 11p+ 3)
<

(5p− 9)p

2(5p2 − 11p+ p)
=

(5p− 9)

2(5p− 10)
< 1 .

In the last two inequalities we have used the fact that p < 5/2 and p > 11/5, respectively.
Therefore, the proof is concluded after finitely many steps.

To prove the second part of the theorem, namely that uuu ∈ Lpuniqloc (0, T ;Vp) for any weak
solution, it is enough to note that almost every t0 ∈ (0, T ) satisfies the assumption of the
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initial regularity: uuu(t0) ∈ Vp, and t = t0 is a Lebesgue point of the (integrable) function

t 7→ ‖hhh(t)‖p
′

V ′p
.

Proof of Corollary 1. Let the weak solutions [uuu1, ϕ1], [uuu2, ϕ2] coincide on [t0, t0 + τ ], where
τ ∈ (0, T − t0]. Take t̃0 ∈ [t0, t0 + τ ] such that uuu1(t̃0) ∈ Vp, and t = t̃0 is a Lebesgue

point of t 7→ ‖hhh(t)‖p
′

V ′p
. By Theorem 2, solution uuu1 has the regularity u1 ∈ Lpuniq(t̃0, T ;Vp).

Moreover, the regularity (5.13) is provided by (3.6) and by the condition q > 1/2. By ap-
plying Lemma 4 and Gronwall’s lemma we therefore deduce that [uuu1, ϕ1], [uuu2, ϕ2] coincide
on [t̃0, T ], and hence also on [t0, T ] (on [t0, t̃0] they coincide by assumption).

Proof of Corollary 2. By the above we know that uuu ∈ Lpuniq(t0, T ;Vp). We apply Lemma 4
with uuu1 = τhuuu, uuu2 = uuu, ϕ1 = τhϕ and ϕ2 = ϕ. There appears an additional term on the
right-hand side due to the time difference of the external force hhh, which is estimated as
follows:

|
〈
dhhhh(t), dhuuu

〉
| ≤ ‖dhhhh(t)‖V ′p‖uuu‖Vp ≤ ε‖dhuuu‖pVp + Cε‖hhh(t)‖p

′

V ′p

and the first term is absorbed in the left-hand side. We can now apply Gronwall’s lemma.
Note that ϕ1 − ϕ2 = 0. The difference of initial conditions is estimated by ch (see (5.6)).

Finally, the integral term with ‖hhh‖p
′

V ′p
is controlled by chδ, from which the conclusion

follows immediately, but for the L∞(Ω× (0, T )) bound on ϕ.
This is proved from the fact that ϕ(t0) ∈ L∞(Ω), by means of the so-called Alikakos’s

iteration argument (see, e.g., [5, Theorem 2.1]). The technique employs |ϕ|r−2ϕ as a
test function in (1.15), with r arbitrarily large. This is not possible in the class of weak
solutions in general. However, the weak solutions are unique in the given situation. Hence
they can be obtained as limit of smooth solutions of a suitably formulated approximating
problem, for which the L∞ bound can be proved rigorously. This bound is then preserved
by the lower-semicontinuity of L∞ norm in the weak∗-limit (cf., for instance, the truncation
argument used in [18, Proof of Theorem 3]).
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[30] C. Liu and J. Shen. A phase field model for the mixture of two incompressible fluids and its approx-

imation by a Fourier-spectral method. Phys. D, 179(3-4):211–228, 2003.
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