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Abstract

A well-known diffuse interface model for incompressible isothermal mixtures of two

immiscible fluids consists of the Navier-Stokes system coupled with a convective

Cahn-Hilliard equation. In some recent contributions the standard Cahn-Hilliard

equation has been replaced by its nonlocal version. The corresponding system is

physically more relevant and mathematically more challenging. Indeed, the only

known results are essentially the existence of a global weak solution and the exis-

tence of a suitable notion of global attractor for the corresponding dynamical system

defined without uniqueness. In fact, even in the two-dimensional case, uniqueness
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of weak solutions is still an open problem. Here we take a step forward in the case

of regular potentials. First we prove the existence of a (unique) strong solution in

two dimensions. Then we show that any weak solution regularizes in finite time

uniformly with respect to bounded sets of initial data. This result allows us to de-

duce that the global attractor is the union of all the bounded complete trajectories

which are strong solutions. We also demonstrate that each trajectory converges to

a single equilibrium, provided that the potential is real analytic and the external

forces vanish.

Keywords: Navier-Stokes equations, nonlocal Cahn-Hilliard equations, regular

potentials, incompressible binary fluids, strong solutions, global attractors, con-

vergence to equilibrium,  Lojasiewicz-Simon inequality.
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1 Introduction

The evolution of an incompressible mixture of two immiscible fluids can be described

through a diffuse interface model (cf., e.g., [18, 20, 22, 25] and their references). Assuming

that the temperature variations are negligible, taking the density is equal to one, and

suppose the viscosity ν to be constant, the model H (see [21]) reduces to the so-called

Cahn-Hilliard-Navier-Stokes system

ϕt + u · ∇ϕ = ∇ · (κ∇µ),

µ = −∆ϕ+ F ′(ϕ),

ut − ν∆u+ (u · ∇)u+∇π = µ∇ϕ+ h(t),

div(u) = 0,

in Ω×(0,∞), where Ω ⊂ Rd, d = 2, 3, is a bounded domain. Here u denotes the (average)

velocity and ϕ is the difference of the two fluid concentrations. Moreover, κ > 0 is the

mobility coefficient, F is a suitable double well potential density, π the pressure and h a

given external (non-gradient) force.

The existing theoretical literature (see, for instance, [1, 2, 5, 12, 13, 14, 26, 29]) can

be summarized by saying that all the results known for the Navier-Stokes system can be

extended to the Cahn-Hilliard-Navier-Stokes one, with some additional technical difficul-

ties when, for instance, F is a singular (i.e. logarithmic) potential and/or the mobility κ

depends on ϕ and vanishes at pure phases (cf. [1, 5]). However, we recall that the Cahn-

Hilliard equation has a phenomenological nature (cf. [6]). Instead, a rigorous derivation
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from a microscopic model yields a nonlocal equation (see [16, 17]). In this case the chem-

ical potential µ has the following form

µ = aϕ− J ∗ ϕ+ F ′(ϕ),

where ∗ denotes the convolution product over Ω, J : Rd → R is a sufficiently smooth

interaction kernel such that J(x) = J(−x) and a(x) =

∫
Ω

k(x− y)dy. Motivated by this

fact, in [7] we have introduced and analyzed the following nonlocal Cahn-Hilliard-Navier-

Stokes system

ϕt + u · ∇ϕ = ∆µ, (1.1)

µ = aϕ− J ∗ ϕ+ F ′(ϕ), (1.2)

ut − ν∆u+ (u · ∇)u+∇π = µ∇ϕ+ h(t), (1.3)

div(u) = 0, (1.4)

endowed with boundary and initial conditions

∂µ

∂n
= 0, u = 0 on ∂Ω× (0, T ) (1.5)

u(0) = u0, ϕ(0) = ϕ0 in Ω. (1.6)

For such a problem we have proven first the existence of a global weak solution satisfying

an energy inequality (equality in dimension two) for a regular potential F (see [7]). Then

in [9] we have established the existence of a global attractor for the generalized semiflow

(d = 2) and a trajectory attractor (d = 3). Similar results have recently been extended

to singular potentials of logarithmic type (cf. [10]). However, an important issue has

been left open: the uniqueness of weak solutions in dimension two. This is well known

for the standard local models and it suggests that the present model is more difficult

to handle. The main reason seems to be the poorer regularity of ϕ which makes the

capillarity term (i.e. the Korteweg force) µ∇ϕ difficult to handle (see [7]). Here we are

not able to address this issue but we come close. More precisely, we prove the existence of

a (unique) strong solution and the regularization in finite time of any weak solution. The

latter is uniform with respect to bounded set of initial data so that, as a by-product, we

deduce that the global attractor we found in [9] is smooth. More precisely, it is the union

of all the bounded complete trajectories which are strong solutions to (1.1)-(1.6). Finally,

taking advantage of the regularization property, we show that any weak trajectory does

converge to a unique equilibrium (cf. [15, 23, 24] for nonlocal Cahn-Hilliard equations).
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2 Notation and known results

We set H := L2(Ω) and V := H1(Ω). For every f ∈ V ′ we denote by f the average of f

over Ω, i.e., f := |Ω|−1〈f, 1〉. Here |Ω| is the Lebesgue measure of Ω. We assume that ∂Ω

is smooth enough.

Then we introduce the Hilbert spaces

V0 := {v ∈ V : v = 0}, V ′0 := {f ∈ V ′ : f = 0},

and the operator A : V → V ′, A ∈ L(V, V ′), defined by

〈Au, v〉 :=

∫
Ω

∇u · ∇v ∀u, v ∈ V.

We recall that A maps V onto V ′0 and the restriction of A to V0 maps V0 onto V ′0 isomor-

phically. Further, we denote by N : V ′0 → V0 the inverse map defined by

AN f = f, ∀f ∈ V ′0 and NAu = u, ∀u ∈ V0.

As is well known, for every f ∈ V ′0 , N f is the unique solution with zero mean value of

the Neumann problem {
−∆u = f, in Ω
∂u
∂n

= 0, on ∂Ω.

In addition, we have

〈Au,N f〉 = 〈f, u〉, ∀u ∈ V, ∀f ∈ V ′0 , (2.1)

〈f,N g〉 = 〈g,N f〉 =

∫
Ω

∇(N f) · ∇(N g), ∀f, g ∈ V ′0 . (2.2)

We consider the canonical Hilbert spaces for the Navier-Stokes equations with no-slip

boundary condition (see, e.g., [28])

Gdiv := {u ∈ C∞0 (Ω)d : div(u) = 0}
L2(Ω)d

, Vdiv := {u ∈ H1
0 (Ω)d : div(u) = 0}.

We denote by ‖ · ‖ and (·, ·) the norm and the scalar product on both H and Gdiv,

respectively. Instead, Vdiv is endowed with the scalar product

(u, v)Vdiv = (∇u,∇v), ∀u, v ∈ Vdiv.

We shall also need to introduce the Stokes operator S with no-slip boundary condition.

More precisely, S : D(S) ⊂ Gdiv → Gdiv is defined as S := −P∆ with domain D(S) =

H2(Ω)d ∩ Vdiv, where P : L2(Ω)d → Gdiv is the Leray projector. Notice that we have

(Su, v) = (u, v)Vdiv = (∇u,∇v), ∀u ∈ D(S), ∀v ∈ Vdiv,
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and S−1 : Gdiv → Gdiv is a self-adjoint compact operator in Gdiv. Thus, according with

classical results, S possesses a sequence of eigenvalues {λj} with 0 < λ1 ≤ λ2 ≤ · · · and

λj →∞, and a family {wj} ⊂ D(S) of eigenfunctions which is orthonormal in Gdiv. Let

us also recall Poincaré’s inequality

λ1‖u‖2 ≤ ‖∇u‖2, ∀u ∈ Vdiv.

The trilinear form b which appears in the weak formulation of the Navier-Stokes equa-

tions is defined as follows

b(u, v, w) =

∫
Ω

(u · ∇)v · w, ∀u, v, w ∈ Vdiv,

and the associated bilinear operator B from Vdiv × Vdiv into V ′div is defined by

〈B(u, v), w〉 := b(u, v, w), ∀u, v, w ∈ Vdiv.

We shall set B(u, u) := Bu, for all u ∈ Vdiv. We recall that we have

b(u,w, v) = −b(u, v, w), ∀u, v, w ∈ Vdiv, (2.3)

and that the following estimates hold in dimension two

|b(u, v, w)| ≤ c‖u‖1/2‖∇u‖1/2‖∇v‖‖w‖1/2‖∇w‖1/2, ∀u, v, w ∈ Vdiv, (2.4)

|b(u, v, w)| ≤ c‖u‖1/2‖∇u‖1/2‖∇v‖1/2‖Sv‖1/2‖w‖, ∀u ∈ Vdiv, v ∈ D(S), w ∈ Gdiv.

(2.5)

If X is a Banach space and τ ∈ R, we shall denote by Lptb(τ,∞;X), 1 ≤ p < ∞, the

space of functions f ∈ Lploc([τ,∞);X) that are translation bounded in Lploc([τ,∞);X), i.e.

such that

‖f‖p
Lptb(τ,∞;X)

:= sup
t≥τ

∫ t+1

t

‖f(s)‖pXds <∞. (2.6)

We shall use the following lemma. Its simple proof is given below for the reader’s

convenience.

Lemma 1. Let f ∈ Lp1(τ,∞;X) with ft ∈ Lp2tb (τ,∞;X), where 1 ≤ p1 <∞, 1 < p2 ≤ ∞,

τ ∈ R and X is a reflexive Banach space. Then f(t)→ 0 in X as t→∞.

Proof. We argue by contradiction. Suppose there exist a sequence {tn} with tn → ∞
and a constant σ > 0 such that ‖f(tn)‖X ≥ σ, for all n. Set τn := tn + 1/n. Since

f ∈ Lp1(τ,∞;X) with 1 ≤ p1 <∞, then, by possibly extracting a subsequence, for every

n there exists t′n ∈ [tn, τn] such that ‖f(t′n)‖X ≤ σ/2. We therefore get a contradiction,

since, denoting by p′2 ∈ [1,∞) the conjugate of p2,

0 <
σ

2
≤ ‖f(t′n)− f(tn)‖X ≤

∫ t′n

tn

‖ft(s)‖Xds ≤ ‖ft‖Lp2tb (τ,∞;X)

1

np
′
2
→ 0.
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We also report the uniform Gronwall lemma which will be useful in the sequel (see,

e.g., [27]).

Lemma 2. Let Φ be an absolutely continuous nonnegative function on [τ,∞) and ω1, ω2

two nonnegative locally summable functions on [τ,∞) satisfying

d

dt
Φ(t) ≤ ω1(t)Φ(t) + ω2(t), for a.e. t ∈ [τ,∞), (2.7)

and such that ∫ t+1

t

ωi(s)ds ≤ ai, i = 1, 2,

∫ t+1

t

Φ(s)ds ≤ a3, (2.8)

for all t ≥ τ , where a1, a2, a3 are some nonnegative constants. Then

Φ(t+ 1) ≤ (a2 + a3)ea1 , ∀t ≥ τ. (2.9)

We now summarize the main results of [7]. They are concerned with the existence

of dissipative weak solutions and the validity of the energy identity and of a dissipative

estimate in dimension two.

The assumptions on J and F are listed below

(H1) J ∈ W 1,1(Rd), J(x) = J(−x), a ≥ 0 a.e. in Ω.

(H2) F ∈ C2,1
loc (R) and there exists c0 > 0 such that

F ′′(s) + a(x) ≥ c0, ∀s ∈ R, a.e. x ∈ Ω.

(H3) F ∈ C2(R) and there exist c1 > 0, c2 > 0 and q > 0 such that

F ′′(s) + a(x) ≥ c1|s|2q − c2, ∀s ∈ R, a.e. x ∈ Ω.

(H4) There exist c3 > 0, c4 ≥ 0 and r ∈ (1, 2] such that

|F ′(s)|r ≤ c3|F (s)|+ c4, ∀s ∈ R.

Remark 1. Assumption J ∈ W 1,1(Rd) can be weakened. Indeed, it can be replaced by

J ∈ W 1,1(Bδ), where Bδ := {z ∈ Rd : |z| < δ} with δ := diam(Ω), or also by (see, e.g.,

[4])

sup
x∈Ω

∫
Ω

(
|J(x− y)|+ |∇J(x− y)|

)
dy <∞.

The above assumptions allow to prove the following result (see [7])
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Theorem 1. Let h ∈ L2
loc([0,∞);V ′div), u0 ∈ Gdiv, ϕ0 ∈ H such that F (ϕ0) ∈ L1(Ω) and

suppose that (H1)-(H4) are satisfied. Then, for every given T > 0, there exists a weak

solution [u, ϕ] to (1.1)–(1.6) such that

u ∈ L∞(0, T ;Gdiv) ∩ L2(0, T ;Vdiv), ϕ ∈ L∞(0, T ;L2+2q(Ω)) ∩ L2(0, T ;V ), (2.10)

ut ∈ L4/3(0, T ;V ′div), ϕt ∈ L4/3(0, T ;V ′), d = 3, (2.11)

ut ∈ L2(0, T ;V ′div), d = 2, (2.12)

ϕt ∈ L2(0, T ;V ′), d = 2 or d = 3 and q ≥ 1/2, (2.13)

and satisfying the energy inequality

E(u(t), ϕ(t)) +

∫ t

0

(
ν‖∇u‖2 + ‖∇µ‖2

)
dτ ≤ E(u0, ϕ0) +

∫ t

0

〈h(τ), u〉dτ, (2.14)

for every t > 0, where we have set

E(u(t), ϕ(t)) =
1

2
‖u(t)‖2 +

1

4

∫
Ω

∫
Ω

J(x− y)(ϕ(x, t)− ϕ(y, t))2dxdy +

∫
Ω

F (ϕ(t)).

If d = 2, then any weak solution satisfies the energy identity

d

dt
E(u, ϕ) + ν‖∇u‖2 + ‖∇µ‖2 = 〈h(t), u〉, (2.15)

In particular we have u ∈ C([0,∞);Gdiv), ϕ ∈ C([0,∞);H) and
∫

Ω
F (ϕ) ∈ C([0,∞)).

Furthermore, if d = 2 and h ∈ L2
tb(0,∞;V ′div), then any weak solution satisfies also the

dissipative estimate

E(u(t), ϕ(t)) ≤ E(u0, ϕ0)e−kt + F (m0)|Ω|+K, ∀t ≥ 0, (2.16)

where m0 = (ϕ0, 1) and k, K are two positive constants which are independent of the

initial data, with K depending on Ω, ν, J , F and ‖h‖L2
tb(0,∞;V ′div).

Remark 2. All the previous results hold for a viscosity ν depending on φ which is

sufficiently smooth and bounded from above and from below (see [7], cf. also [9, 10]).

Here we assume ν to be constant just to avoid further technicalities in the sequel.

3 Strong solutions in two dimensions

In this section we state and prove our main result, namely the existence of a (global)

strong solution to (1.1)–(1.6) and its uniqueness. More precisely, we have
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Theorem 2. Let h ∈ L2
loc([0,∞);Gdiv), u0 ∈ Vdiv, ϕ0 ∈ V ∩ L∞(Ω) and suppose that

(H1)-(H4) are satisfied. Then, for every given T > 0, there exists a weak solution [u, ϕ]

such that

u ∈ L∞(0, T ;Vdiv) ∩ L2(0, T ;H2(Ω)2), ϕ ∈ L∞(Ω× (0, T )) ∩ L∞(0, T ;V ), (3.1)

ut ∈ L2(0, T ;Gdiv), ϕt ∈ L2(0, T ;H). (3.2)

Furthermore, suppose in addition that F ∈ C3(R) and that ϕ0 ∈ H2(Ω). Then, system

(1.1)–(1.4) admits a unique strong solution on [0, T ] satisfying (3.1), (3.2) and also

ϕ ∈ L∞(0, T ;W 1,p(Ω)), 2 ≤ p <∞, (3.3)

ϕt ∈ L∞(0, T ;H) ∩ L2(0, T ;V ). (3.4)

If J ∈ W 2,1(R2), we have in addition

ϕ ∈ L∞(0, T ;H2(Ω)). (3.5)

Moreover, let [u0i, ϕ0i, hi] ∈ Vdiv ×H2(Ω)×L2
loc([0,∞);Gdiv), i = 1, 2, be two sets of data

and denote by [ui, ϕi] the corresponding solutions. Then, there exists a positive constant

Λ which is a continuous and increasing function of the norms of the data of two solutions

and which also depends on T , F , J , Ω, ν, such that the following continuous dependence

estimate holds

‖u2(t)− u1(t)‖2 + ‖ϕ2(t)− ϕ1(t)‖2
V ′0

+

∫ t

0

‖∇u2(τ)−∇u1(τ)‖2dτ +

∫ t

0

‖ϕ2(τ)− ϕ1(τ)‖2dτ

≤ Λ
(
‖u02 − u01‖2 + ‖ϕ02 − ϕ01‖2

V ′0
+ ‖h2 − h1‖2

L2(0,T ;Gdiv)

)
, (3.6)

for every t ∈ [0, T ].

Remark 3. The regularity properties (3.1)–(3.5) imply that

u ∈ C([0,∞);Vdiv), ϕ ∈ C([0, T ];V ) ∩ Cw([0, T ];H2(Ω))

Actually, we have also ϕ ∈ C([0, T ];Hδ(Ω)) for every δ ∈ [0, 2). Recall that the time con-

tinuity of the velocity field into Vdiv is a consequence of the fact that u ∈ Cw([0,∞);Vdiv)

and of the following differential identity

1

2

d

dt
‖∇u‖2 + ν‖Su‖2 + (Bu, Su) = (µ∇ϕ, Su) + (h, Su), (3.7)

which is deduced by testing equation (1.3) by Su.
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Remark 4. If the condition ϕ0 ∈ L∞(Ω) in the first part of Theorem 2 is removed, a

boundedness estimate for the order parameter ϕ can still be recovered. In particular,

it can be proved (see [15, Lemma 2.10]) that for every t0 > 0 there exists a constant

Cm,t0 > 0, where m is such that |ϕ0| ≤ m, such that

sup
t≥2t0

‖ϕ(t)‖L∞(Ω) ≤ Cm,t0 .

Moreover, (3.1)–(3.4) still hold provided the time interval (0, T ) is replaced by (2t0, T ),

for every T > 2t0.

Remark 5. In Theorem 2 condition J ∈ W 2,1(R2) is actually needed to ensure the

regularity property ϕ ∈ L∞(0, T ;H2(Ω)) only.

Proof. We shall carry out the proof by providing some formal regularization estimates.

The argument can be made rigorous by means, e.g., of a Faedo-Galerkin approximation

technique (see [7] for details).

We first observe that the property ϕ ∈ L∞(Ω× (0, T )) can be obtained by exploiting

the same argument used in [4, Theorem 2.1]. Indeed, by multiplying (1.1) by ϕ|ϕ|p−1 and

integrating on Ω the resulting equation, the contribution of the convective term vanishes

due to the incompressibility condition (1.4) and the proof of [4, Theorem 2.1] entails

sup
t∈(0,T )

‖ϕ(t)‖L∞(Ω) ≤ C, (3.8)

where the constant C depends on the initial conditions, in particular on ‖u0‖, on ‖ϕ0‖L∞(Ω)

and on T (see [4, Estimate (2.28)]). Furthermore, if h ∈ L2
tb(0,∞;Gdiv) then, thanks to

the dissipative estimate (2.16), we have supt≥0 ‖ϕ(t)‖L2+2q(Ω) ≤ C, the constant C being

dependent on the initial data and on h only. Hence, due to [4, Estimate (2.28)], the

constant C in (3.8) does not depend on T .

As far as the regularity of the velocity u is concerned, notice that, since the Korteweg-

force term µ∇ϕ ∈ L2(0, T ;L2(Ω)2), then by applying [28, Theorem 3.10], we immediately

obtain (3.1)1 and (3.2)2.

Henceforth we shall denote by c a positive constant which depends only on J , F and

Ω, while c will denote a positive constant depending on J , F , Ω and also on the initial

conditions u0 and ϕ0 (in particular on ‖∇u0‖ and on ‖ϕ0‖L∞(Ω)). The values of both c

and c may possibly vary from line to line, even within the same estimate. We shall divide

the proof into three main steps.

Step 1. Estimate of ϕt in L2(0, T ;H)

We multiply (1.1) by µt in H and get∫
Ω

ϕtµt +

∫
Ω

(u · ∇ϕ)µt +
1

2

d

dt
‖∇µ‖2
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=

∫
Ω

(a+ F ′′(ϕ))ϕ2
t − (ϕt, J ∗ ϕt) +

∫
Ω

(u · ∇ϕ)µt +
1

2

d

dt
‖∇µ‖2 = 0. (3.9)

Now, we have ∣∣∣ ∫
Ω

(u · ∇ϕ)µt

∣∣∣ =
∣∣∣ ∫

Ω

(u · ∇ϕ)(aϕt − J ∗ ϕt + F ′′(ϕ)ϕt)
∣∣∣

≤ c0

4
‖ϕt‖2 + c‖u‖2

H2‖∇ϕ‖2, (3.10)

and

|(ϕt, J ∗ ϕt)| = |(−u · ∇ϕ+ ∆µ, J ∗ ϕt)|
≤ |(u · ∇ϕ, J ∗ ϕt)|+ |(∇µ,∇J ∗ ϕt)|

≤ c0

4
‖ϕt‖2 + c‖u‖2

H2‖∇ϕ‖2 + c‖∇µ‖2. (3.11)

Plugging (3.10) and (3.11) into (3.9), using assumption (H2) and integrating the re-

sulting estimate in time between 0 and t, we obtain

1

2
‖∇µ‖2 +

c0

2

∫ t

0

‖ϕt‖2dτ ≤ 1

2
‖∇µ0‖2 +

∫ t

0

c‖u‖2
H2‖∇ϕ‖2dτ + c

∫ t

0

‖∇µ‖2dτ, (3.12)

and on account of the following

‖∇µ‖2 ≥ c2
0

4
‖∇ϕ‖2 − c‖ϕ‖2, (3.13)

from (3.12) we are led to the differential inequality

‖∇µ‖2 ≤ ‖∇µ0‖2 + cT +

∫ t

0

m(τ)‖∇µ(τ)‖2dτ, ∀t ∈ [0, T ], (3.14)

where m := c
(
‖u‖2

H2 + 1
)
∈ L1(0, T ), for all T > 0. Thus the standard Gronwall lemma

gives

∇µ ∈ L∞(0, T ;H), ∀T > 0, (3.15)

so that, using also (3.12), we infer

ϕ ∈ L∞(0, T ;V ), ϕt ∈ L2(0, T ;H), ∀T > 0. (3.16)

This concludes the proof of (3.1) and (3.2).

Step 2. Estimate of ϕt in L∞(0, T ;H)

We differentiate (1.1) with respect to time and multiply the resulting identity in H by µt.

This yields ∫
Ω

ϕttµt +

∫
Ω

µtut · ∇ϕ+

∫
Ω

µtu · ∇ϕt + ‖∇µt‖2 = 0, (3.17)
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and, due to (1.4), we obtain∫
Ω

ϕttµt + ‖∇µt‖2 =

∫
Ω

ϕtu · ∇µt +

∫
Ω

ϕut · ∇µt, (3.18)

which entails ∫
Ω

ϕttµt +
1

2
‖∇µt‖2 ≤

∫
Ω

(ϕ2
tu

2 + ϕ2u2
t ). (3.19)

Observe now that∫
Ω

ϕttµt =

∫
Ω

ϕtt(aϕt − J ∗ ϕt + F ′′(ϕ)ϕt)

=
1

2

d

dt

∫
Ω

aϕ2
t − (J ∗ ϕt,−ut · ∇ϕ− u · ∇ϕt + ∆µt) +

∫
Ω

F ′′(ϕ)ϕtϕtt

=
1

2

d

dt

∫
Ω

(a+ F ′′(ϕ))ϕ2
t − (∇J ∗ ϕt, utϕ)− (∇J ∗ ϕt, uϕt)

+ (∇J ∗ ϕt,∇µt)−
1

2

∫
Ω

F ′′′(ϕ)ϕ3
t . (3.20)

On the other hand we have

|(∇J ∗ ϕt, utϕ)| ≤ ‖∇J‖L1‖ut‖‖ϕ‖L∞‖ϕt‖ ≤
1

2
‖ut‖2‖ϕt‖2 + c,

|(∇J ∗ ϕt, uϕt)| ≤ ‖∇J‖L1‖u‖L∞‖ϕt‖2 ≤ c‖u‖H2‖ϕt‖2,

|(∇J ∗ ϕt,∇µt)| ≤
1

4
‖∇µt‖2 + ‖∇J‖2

L1‖ϕt‖2.

Therefore from (3.19) we get

1

2

d

dt

∫
Ω

(a+ F ′′(ϕ))ϕ2
t +

1

4
‖∇µt‖2 ≤ c(‖u‖2

H2 + ‖u‖H2 + ‖ut‖2 + 1)‖ϕt‖2

+ ‖ϕ‖2
L∞‖ut‖2 +

1

2

∫
Ω

F ′′′(ϕ)ϕ3
t + c. (3.21)

The integral term containing ϕ3
t can be estimated by means of Gagliardo-Nirenberg in-

equality in dimension two, that is,∣∣∣1
2

∫
Ω

F ′′′(ϕ)ϕ3
t

∣∣∣ ≤ c‖ϕt‖3
L3 ≤ c(‖ϕt‖3 + ‖ϕt‖2‖∇ϕt‖) ≤

c2
0

32
‖∇ϕt‖2 + c‖ϕt‖4 + c. (3.22)

We now need to estimate ∇ϕt in terms of ∇µt. In order to do that, let us first control

∇ϕ in terms of ∇µ in Lp, for every 2 ≤ p < ∞. We then take the gradient of µ =

aϕ− J ∗ ϕ+ F ′(ϕ), multiply it by ∇ϕ|∇ϕ|p−2 and integrate the resulting identity on Ω.

We get∫
Ω

∇ϕ|∇ϕ|p−2 · ∇µ =

∫
Ω

(a+ F ′′(ϕ))|∇ϕ|p +

∫
Ω

(ϕ∇a−∇J ∗ ϕ) · ∇ϕ|∇ϕ|p−2,
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and so, by (H2), we find

c0‖∇ϕ‖pLp ≤ ‖∇ϕ‖
p−1
Lp ‖∇µ‖Lp + (‖∇a‖L∞ + ‖∇J‖L1)‖ϕ‖Lp‖∇ϕ‖p−1

Lp

≤ c0

2
‖∇ϕ‖pLp + c‖∇µ‖pLp + c(‖∇a‖L∞ + ‖∇J‖L1)p‖ϕ‖pLp .

We therefore obtain

‖∇ϕ‖Lp ≤ c‖∇µ‖Lp + c, (3.23)

with c depending also on p. We now see that the Lp−norm of ∇µ can be estimated in

terms of the L2−norm of ϕt. Indeed, using once more the two dimensional Gagliardo-

Nirenberg inequality, we infer

‖∇µ‖Lp ≤ c‖∇µ‖2/p‖∇µ‖1−2/p

H1

≤ c‖∇µ‖2/p‖µ‖1−2/p

H2 ≤ c‖∇µ‖2/p(‖∆µ‖1−2/p + ‖µ‖1−2/p)

≤ c(‖ϕt‖1−2/p + ‖u · ∇ϕ‖1−2/p + 1)

≤ c(‖ϕt‖1−2/p + ‖u‖1−2/p
Lq ‖∇ϕ‖1−2/p

Lp + 1),

where p−1 + q−1 = 1/2 and where we have taken into account (3.15) and the fact that the

H2−norm of µ is equivalent to the L2− norm of −∆µ + µ, due to (1.5). By (3.23) we

therefore deduce the desired estimate

‖∇µ‖Lp ≤ c(1 + ‖ϕt‖1−2/p). (3.24)

We now take the gradient of µt and multiply it in L2 by ∇ϕt. We get∫
Ω

∇µt · ∇ϕt =

∫
Ω

(a+ F ′′(ϕ))|∇ϕt|2

+

∫
Ω

(∇aϕt −∇J ∗ ϕt) · ∇ϕt +

∫
Ω

F ′′′(ϕ)ϕt∇ϕ · ∇ϕt. (3.25)

Observe that we have∣∣∣ ∫
Ω

F ′′′(ϕ)ϕt∇ϕ · ∇ϕt
∣∣∣ ≤ c‖ϕt‖L3‖∇ϕ‖L6‖∇ϕt‖

≤ c
(
‖ϕt‖+ ‖ϕt‖2/3‖∇ϕt‖1/3

)(
1 + ‖ϕt‖2/3

)
‖∇ϕt‖

≤ c
(
‖ϕt‖5/3‖∇ϕt‖+ ‖ϕt‖4/3‖∇ϕt‖4/3 + ‖ϕt‖2/3‖∇ϕt‖4/3 + ‖ϕt‖‖∇ϕt‖

)
≤ c0

4
‖∇ϕt‖2 + c‖ϕt‖4 + c, (3.26)

Thus from (3.25) and (3.26) and using also (H2), we deduce

1

c0

‖∇µt‖2 +
c0

4
‖∇ϕt‖2 ≥ ‖∇µt‖‖∇ϕt‖ ≥ c0‖∇ϕt‖2 − c0

4
‖∇ϕt‖2 − c‖ϕt‖2
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− c0

4
‖∇ϕt‖2 − c‖ϕt‖4 − c,

so that

4

c2
0

‖∇µt‖2 ≥ ‖∇ϕt‖2 − c‖ϕt‖4 − c. (3.27)

We now go back to (3.21). By combining (3.22) and (3.27) we obtain

1

2

d

dt

∫
Ω

(a+ F ′′(ϕ))ϕ2
t +

1

8
‖∇µt‖2 ≤ α(t)‖ϕt‖2 + c‖ϕt‖4 + β(t) + c, (3.28)

where α := c(‖u‖2
H2 +‖u‖H2 +‖ut‖2 + 1) and β := ‖ϕ‖2

L∞‖ut‖2. We have α, β ∈ L1(0, T ).

From (3.28) we can easily infer the desired estimate. Indeed, let us multiply (3.28) by

(1 +
∫

Ω
(a+ F ′′(ϕ))ϕ2

t )
−1 and get

1

2

d

dt
log
(

1 +

∫
Ω

(a+ F ′′(ϕ))ϕ2
t

)
≤ 1

c0

α(t) +
c
( ∫

Ω
ϕ2
t

)2

1 +
∫

Ω
(a+ F ′′(ϕ))ϕ2

t

+ β(t) + c

≤ 1

c0

α(t) + β(t) + c‖ϕt‖2 + c.

Integrating this last inequality between 0 and t ∈ (0, T ) and using the second of (3.16)

and the fact that ϕt(0) ∈ H (since ϕ0 ∈ H2(Ω)) we therefore deduce that

ϕt ∈ L∞(0, T ;H), ∀T > 0. (3.29)

In particular, on account of (3.23) and (3.24), we also have

∇µ,∇ϕ ∈ L∞(0, T ;Lp(Ω)), ∀T > 0, 2 ≤ p <∞. (3.30)

Furthermore, by integrating (3.28) between 0 and t ∈ [0, T ] and using (3.27) and (3.29),

we also get

ϕt ∈ L2(0, T ;V ). (3.31)

By comparison in (1.1) we can finally obtain estimates for µ and ϕ in L∞(0, T ;H2(Ω)).

Indeed, we have

‖∆µ‖ ≤ ‖ϕt‖+ c‖∇u‖‖∇ϕ‖Lp , (3.32)

which implies that ∆µ ∈ L∞(0, T ;L2(Ω)), thanks to (3.29) and (3.30). Recalling (1.5)

and the smoothness of ∂Ω, we also have

µ ∈ L∞(0, T ;H2(Ω)). (3.33)
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Apply now the second derivative operator ∂2
ij := ∂2

∂xi∂xj
to (1.2), multiply the resulting

identity by ∂2
ijϕ and integrate on Ω. Using the assumption J ∈ W 2,1(R2), we get∫

Ω

∂2
ijµ∂

2
ijϕ =

∫
Ω

(a+ F ′′(ϕ))(∂2
ijϕ)2 +

∫
Ω

(∂ia∂jϕ+ ∂ja∂iϕ)∂2
ijϕ

+

∫
Ω

(ϕ∂2
ija− ∂2

ijJ ∗ ϕ)∂2
ijϕ+

∫
Ω

F ′′′(ϕ)∂iϕ∂jϕ∂
2
ijϕ.

From this identity, by means of (H2) and (3.30) it is easy to obtain

‖∂2
ijµ‖2 ≥ c2

0

4
‖∂2

ijϕ‖2 − c. (3.34)

Such estimate together with (3.33) entail

ϕ ∈ L∞(0, T ;H2(Ω)). (3.35)

Step 3. Continuous dependence and uniqueness of strong solutions

Let us consider two strong solutions z1 := [u1, ϕ1] and z2 := [u2, ϕ2] corresponding to initial

data z01 := [u01, ϕ01] and z02 := [u02, ϕ02] and to external forces h1 and h2, respectively.

Taking the difference between the variational formulation of (1.1) and (1.2) written for

each solution and setting u := u2 − u1, ϕ := ϕ2 − ϕ1, µ := µ2 − µ1 and h := h2 − h1, we

have

〈ut, v〉+ ν(∇u,∇v) + b(u2, u2, v)− b(u1, u1, v) = −(ϕ2∇µ2, v) + (ϕ1∇µ1, v) + (h, v)

(3.36)

〈ϕt, ψ〉+ (∇µ,∇ψ) = (u2ϕ2,∇ψ)− (u1ϕ1,∇ψ), (3.37)

for every v ∈ Vdiv and every ψ ∈ V . Let us choose v = u and ψ = Nϕ and sum the first

resulting identity to the second one multiplied by γ, where the positive constant γ will be

suitably chosen. After some easy calculations we obtain

1

2

d

dt
‖u‖2 + ν‖∇u‖2 + b(u2, u2, u)− b(u1, u1, u) +

γ

2

d

dt
‖ϕ‖2

V ′0
+ γ(ϕ, µ)

= −(ϕ∇µ2, u)− (ϕ1∇µ, u) + γ(u2, ϕ∇Nϕ) + γ(u, ϕ1∇Nϕ) + (h, u). (3.38)

Notice that

γ(ϕ, µ) = γ(ϕ, aϕ− J ∗ ϕ+ F ′(ϕ2)− F ′(ϕ1)) ≥ c0γ‖ϕ‖2 − γ(ϕ, J ∗ ϕ)

≥ c0γ‖ϕ‖2 − γ‖ϕ‖V ′0‖J‖V ‖ϕ‖ ≥ c0γ‖ϕ‖2 − ‖ϕ‖2 − cγ2‖ϕ‖2
V ′0
. (3.39)

Furthermore, as far as the first two terms on the right hand side of (3.38) are concerned,

we have

|(ϕ∇µ2, u)| ≤ ‖ϕ‖‖∇µ2‖L4‖u‖L4 ≤ ν

4
‖∇u‖2 + c‖∇µ2‖2

L4‖ϕ‖2, (3.40)
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|(ϕ1∇µ, u)| = |(µ∇ϕ1, u)| ≤ ‖µ‖‖∇ϕ1‖L4‖u‖L4 ≤ ν

4
‖∇u‖2 + c‖∇ϕ1‖2

L4‖ϕ‖2, (3.41)

where we have used the bound

‖µ‖ = ‖aϕ− J ∗ ϕ+ F ′(ϕ2)− F ′(ϕ1)‖ ≤ 2‖a‖L∞‖ϕ‖+ c‖ϕ‖ ≤ c‖ϕ‖.

The last two terms on the right hand side of (3.38) can be estimated as follows

|γ(u2, ϕ∇Nϕ)| ≤ γ‖u2‖L∞‖ϕ‖‖∇Nϕ‖ ≤ cγ‖u2‖H2‖ϕ‖‖ϕ‖V ′0
≤ ‖ϕ‖2 + cγ2‖u2‖2

H2‖ϕ‖2
V ′0
, (3.42)

|γ(u, ϕ1∇Nϕ)| ≤ γ

2
‖u‖2 +

γ

2
‖ϕ1‖2

L∞‖ϕ‖2
V ′0
. (3.43)

Consider the trilinear forms on the left hand side of (3.38). By (2.4) we have

b(u2, u2, u)− b(u1, u1, u) = b(u, u1, u) ≤ c‖u‖‖∇u1‖‖∇u‖

≤ ν

4
‖∇u‖2 + c‖∇u1‖2‖u‖2 (3.44)

Plugging (3.39)–(3.44) into (3.38) we get

1

2

d

dt

(
‖u‖2 + γ‖ϕ‖2

V ′0

)
+
ν

8
‖∇u‖2 + γc0‖ϕ‖2 ≤ c(1 + ‖∇ϕ1‖2

L4 + ‖∇µ2‖2
L4)‖ϕ‖2

+ cγ(γ‖u2‖2
H2 + ‖ϕ1‖2

L∞ + γ)‖ϕ‖2
V ′0

+ c(γ + ‖∇u1‖2)‖u‖2 +
2

νλ1

‖h‖2. (3.45)

Thanks to (3.30), we can now choose γ = γ∗ such that

Γ∗ := c0γ∗ − c(1 + ‖∇ϕ1‖2
L∞(0,T ;L4(Ω)) + ‖∇µ2‖2

L∞(0,T ;L4(Ω))) > 0.

Hence from (3.45) we deduce

1

2

d

dt

(
‖u‖2 + γ∗‖ϕ‖2

V ′0

)
+
ν

8
‖∇u‖2 + Γ∗‖ϕ‖2 ≤ η(t)

(
‖u‖2 + γ∗‖ϕ‖2

V ′0

)
+

2

νλ1

‖h‖2, (3.46)

where

η := c(‖∇u1‖2 + γ∗‖u2‖2
H2 + ‖ϕ1‖2

L∞ + γ∗) ∈ L1(0, T ), ∀T > 0.

The standard Gronwall lemma then yields

‖u(t)‖2 + γ∗‖ϕ(t)‖2
V ′0
≤ e2

∫ t
0 η(s)ds

(
‖u0‖2 + γ∗‖ϕ0‖2

V ′0
+

4

νλ1

‖h‖2
L2(0,t;Gdiv)

)
, (3.47)

for every t ∈ [0, T ], where we have set u0 := u02−u01 and ϕ0 := ϕ02−ϕ01. By integrating

(3.46) between 0 and t and taking (3.47) into account, we also get

ν

4

∫ t

0

‖∇u‖2dτ + 2Γ∗

∫ t

0

‖ϕ‖2dτ

≤
(
‖u0‖2 + γ∗‖ϕ0‖2

V ′0
+

4

νλ1

‖h‖2
L2(0,t;Gdiv)

)(
1 + 2e2

∫ t
0 η(s)ds

∫ t

0

η(s)ds
)
, (3.48)

for every t ∈ [0, T ]. Finally, by combining (3.47) and (3.48), we obtain (3.6).
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Remark 6. It is not difficult to see that the ϕ component of the strong solution to system

(1.1)–(1.5) satisfies

ϕ ∈ C([0,∞);H2(Ω)). (3.49)

Indeed, by combining (3.17)–(3.20) and taking into account the regularity properties

of the strong solution, we can see that
∫

Ω

(
a + F ′′(ϕ)

)
ϕ2
t is absolutely continuous on

[0,∞). Using (H2) and the fact that ϕ ∈ C([0,∞);C(Ω)) (see Remark 3) we get ‖ϕt‖2 ∈
C([0,∞)). Now, (3.33) and µt ∈ L2

loc([0,∞);V ) imply that µ ∈ C([0,∞);V ) and, by

using (3.33) again, we also have µ ∈ Cw([0,∞);H2(Ω)) so that ∆µ ∈ Cw([0,∞);H).

Moreover, since u ∈ C([0,∞);L4(Ω)) and ∇ϕ ∈ Cw([0,∞);L4(Ω)) (cf. Remark 3), then

we have u · ∇ϕ ∈ Cw([0,∞);H). Thus from (1.1) we deduce that ϕt ∈ Cw([0,∞);H)

and, on account of the continuity of t 7→ ‖ϕt(t)‖, then ϕt ∈ C([0,∞);H). Recall now

that ∇ϕ ∈ C([0,∞);Hε(Ω)2), for every ε ∈ [0, 1) (cf. Remark 3). Then, choosing

ε ∈ [1/2, 1), we have ∇ϕ ∈ C([0,∞);L4(Ω)2). Thus u · ∇ϕ ∈ C([0,∞);H) and so (1.1)

yields ∆µ ∈ C([0,∞);H) which entails µ ∈ C([0,∞);H2(Ω)). This and the assumption

J ∈ W 2,1(R2) allow us to deduce (3.49).

4 Uniform estimates and the global attractor

In this section we establish some uniform in time regularization estimates by exploiting the

results proved in the previous section. As a consequence we deduce a regularity property

for the global attractor of the dynamical system generated by (1.1)–(1.5) whose existence

has been shown in [9].

Proposition 1. Let h ∈ L2
tb(0,∞;Gdiv), u0 ∈ Vdiv, ϕ0 ∈ V ∩ L∞(Ω) and suppose that

(H1)-(H4) are satisfied. Then, the weak solution [u, ϕ] of Theorem 2 satisfies

u ∈ L∞(0,∞;Vdiv) ∩ L2
tb(0,∞;H2(Ω)2), ϕ ∈ L∞(Ω× (0,∞)) ∩ L∞(0,∞;V ), (4.1)

ut ∈ L2
tb(0,∞;Gdiv), ϕt ∈ L2

tb(0,∞;H). (4.2)

Furthermore, suppose in addition that F ∈ C3(R) and that ϕ0 ∈ H2(Ω). Then, the unique

strong solution of Theorem 2 satisfies (4.1), (4.2) and, in addition,

ϕ ∈ L∞(0,∞;W 1,p(Ω)), 2 ≤ p <∞, (4.3)

ϕt ∈ L∞(0,∞;H) ∩ L2
tb(0,∞;V ). (4.4)

If J ∈ W 2,1(R2), we also have

ϕ ∈ L∞(0,∞;H2(Ω)). (4.5)
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Moreover, there exists a constant Λ1 = Λ1(m), depending on m (and on F , J , Ω, ν), such

that, for every initial data z0 := [u0, ϕ0] ∈ Vdiv × H2(Ω), with |ϕ0| ≤ m, there exists a

time t∗ := t∗(E(z0)) ≥ 0 such that the strong solution corresponding to z0 satisfies

‖∇u(t)‖+ ‖ϕ(t)‖H2(Ω) +

∫ t+1

t

‖u(s)‖H2(Ω)2 ≤ Λ1(m), ∀t ≥ t∗. (4.6)

Proof. Let us first notice that, setting z(t) := [u(t), ϕ(t)] and z0 := [u0, ϕ0], by integrating

the energy identity (2.15) between t and t+ 1 we have

E(z(t+ 1)) +

∫ t+1

t

(ν
2
‖∇u‖2 + ‖∇µ‖2

)
dτ ≤ E(z(t)) +

1

2νλ1

∫ t+1

t

‖h‖2dτ. (4.7)

Therefore, using also the dissipative estimate (2.16), we get∫ t+1

t

(ν
2
‖∇u‖2 + ‖∇µ‖2

)
dτ ≤ E(z0)e−kt + F (m)|Ω|+K (4.8)

where the constant K depends on ‖h‖L2
tb(0,∞;Gdiv) and on F , J , Ω, ν. Notice that the

initial energy E(z0) can be estimated as

E(z0) ≤ 1

2
‖u0‖2 +M‖ϕ0‖2 +

∫
Ω

F (ϕ0), M := sup
x∈Ω

∫
Ω

|J(x− y)|dy.

From (4.8), setting Λ0(m) := F (m)|Ω| + K + 1, we deduce that there exists a time

t0 = t0(E(z0)) > 0, given e.g. by t0 = 1
k

log(E(z0) + c), where E(z0) + c > 1, such that∫ t+1

t

(ν
2
‖∇u‖2 + ‖∇µ‖2

)
dτ ≤ Λ0(m), ∀t ≥ t0. (4.9)

We now establish the uniform in time version of estimates (3.1)1 and (3.2)1 for the

velocity field. To this aim, notice first that (2.5) implies (see also [28, Lemma 3.8])

‖Bu‖ ≤ c‖u‖1/2‖∇u‖‖Su‖1/2, ∀u ∈ D(S) = H2(Ω)2 ∩ Vdiv.

Therefore, by splitting the term (Bu, Su) on the left hand side of (3.7) and using the

estimate above, we get the following differential inequality

d

dt
‖∇u‖2 + ν‖Su‖2 ≤ 3

ν
‖µ∇ϕ‖2 +

3

ν
‖h‖2 + σ‖∇u‖2, (4.10)

where σ(t) := cν‖u‖2‖∇u‖2. Now, recalling Remark 4 (see also the proof of [15, Lemma

2.10]), the assumption h ∈ L2
tb(0,∞;Gdiv) and the dissipative estimate (2.16), we know

that there exists a constant C0(m) > 0 depending on m, and a time t1 = t1(E(z0))

depending on E(z0) such that

sup
t≥t1
‖ϕ(t)‖L∞(Ω) ≤ C0(m). (4.11)
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Therefore we have supt≥t1 ‖µ(t)‖L∞(Ω) ≤ C1(m). Then, using also (4.9) and (3.13), we get∫ t+1

t

‖µ(τ)∇ϕ(τ)‖2dτ ≤ C2(m),

∫ t+1

t

σ(τ)dτ ≤ C3(m), (4.12)

for all t ≥ t2 := max{t0, t1}. Therefore, (4.8) and (4.12) allow us to apply Lemma 2 to

the differential inequality (4.10) and we deduce that

‖∇u(t)‖2 ≤ C4(m) :=
2

ν

(
2C2(m) + 2‖h‖2

L2
tb(0,∞;Gdiv) + Λ0(m)

)
eC3(m), (4.13)

for all t ≥ t3 := t2 + 1. Furthermore, by integrating (4.10) between t and t+ 1, for t ≥ t3,

we obtain

cν

∫ t+1

t

‖u(s)‖2
H2(Ω)ds ≤ C5(m) := (1 + C3(m))C4(m) +

4

ν

(
C2(m) + ‖h‖2

L2
tb(0,∞;Gdiv)

)
,

(4.14)

for all t ≥ t3, where we have also used [28, Lemma 3.7]. Estimates (4.13) and (4.14) in

particular imply (4.1)1.

Now, let us write (1.3) in the form ut = −Bu − νSu + µ∇ϕ + h and observe that,

owing to [28, Lemma 3.8] (or (2.5)), we have∫ t+1

t

‖Bu(s)‖4ds ≤
∫ t+1

t

‖u(s)‖2‖∇u(s)‖4‖Su(s)‖2ds ≤ C6(m) :=
c

νλ1

C3
4(m)C5(m),

for all t ≥ t3, and hence∫ t+1

t

‖ut(s)‖2ds ≤ C7(m) := c
(
C

1/2
6 (m) + νC5(m) + C2(m) + ‖h‖2

L2
tb(0,∞;Gdiv)

)
, (4.15)

for all t ≥ t3. Note that (4.15) entails (4.2)1.

We are now in a position to get uniform in time regularization estimates for ϕt first

in L2
tb(τ,∞;H) and then in L∞(τ,∞;H), for some τ > 0.

Let us note first that, by combining (3.9)–(3.11) and taking (4.11) into account, we

obtain the following differential inequality, for all t > t1,

d

dt
‖∇µ‖2 + c0‖ϕt‖2 ≤ (C8(m)‖u‖2

H2 + c)‖∇µ‖2 + C9(m)‖u‖2
H2‖ϕ‖2. (4.16)

Observe that (cf. (4.14))∫ t+1

t

(C8(m)‖u(s)‖2
H2 + c)ds ≤ C10(m) :=

1

cν
C5(m)C8(m) + c, (4.17)∫ t+1

t

C9(m)‖u(s)‖2
H2‖ϕ(s)‖2ds ≤ C11(m) :=

|Ω|
cν
C2

0(m)C5(m)C9(m), (4.18)
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for all t ≥ t3. Then, using (4.9) and (4.17), (4.18), we can apply the uniform Gronwall

lemma to (4.16) in [t3,∞) and get

‖∇µ(t)‖2 ≤ C12(m) := (C11(m) + Λ0(m))eC10(m), ∀t ≥ t4 := t3 + 1. (4.19)

Now, by integrating (4.16) between t and t+ 1, for t ≥ t4, we also deduce

c0

∫ t+1

t

‖ϕt(s)‖2ds ≤ C13(m) := (1 + C10(m))C12(m) + C11(m), ∀t ≥ t4. (4.20)

Estimates (4.19) and (4.20) imply, in particular, (4.1)2 and (4.2)2, respectively.

Let us now consider estimate (3.28). Set

Φ(t) :=
1

2

∫
Ω

(a+ F ′′(ϕ(t)))ϕ2
t (t),

and notice that, on account of (4.11), we have

c0

2
‖ϕt(t)‖2 ≤ Φ(t) ≤ C14(m)‖ϕt(t)‖2, ∀t ≥ t1. (4.21)

Then, by arguing as in the previous section and taking (4.11) into account, we easily see

that (3.28) can be rewritten as follows

d

dt
Φ(t) +

1

8
‖∇µt‖2 ≤ ω(t)Φ(t) + β(t) + C15(m), ∀t ≥ t1, (4.22)

where ω(t) := α(t) + C16(m)Φ(t), and α, β the same as in (3.28). Then, by using (4.21),

(4.20), (4.14) and (4.15), we have∫ t+1

t

Φ(s)ds ≤ C17(m) :=
1

c0

C13(m)C14(m), (4.23)∫ t+1

t

ω(s)ds ≤ C18(m) := c
(1

ν
C5(m) + C7(m) + C16(m)C17(m) + 1

)
, (4.24)∫ t+1

t

β(s)ds ≤ C19(m) := C2
0(m)C7(m), (4.25)

for all t ≥ t4. By applying once more the uniform Gronwall lemma to (4.22) in the interval

[t4,∞), we deduce

‖ϕt(t)‖2 ≤ C20(m) :=
2

c0

(
C15(m) + C17(m) + C19(m)

)
eC18(m), (4.26)

for all t ≥ t5 := t4 + 1. Then, by integrating (4.22) between t and t + 1, for t ≥ t5, and

using (4.21), (4.26) and (3.27) (written with a constant C21(m) in place of c, for t ≥ t1,

due to (4.11)), we also find∫ t+1

t

‖∇ϕt(s)‖2ds ≤ C22(m) :=
32

c0

(
C14C20C18 + C19 + C15

)
+
(
1 + C2

20

)
C21, (4.27)
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for all t ≥ t5, where all Ci depend on m. Observe that estimates (4.26) and (4.27) yield

(4.4).

Furthermore, owing to (3.23) and (3.24), we also have

‖∇ϕ(t)‖Lp(Ω)2 ≤ C23(m), ∀t ≥ t5, 2 ≤ p <∞ (4.28)

Finally, on account of (3.32), (4.26) and (4.13), we obtain

‖µ(t)‖H2 ≤ c‖ −∆µ(t) + µ(t)‖ ≤ C24(m) := c
(
C1(m) + C

1/2
20 (m) + C

1/2
4 (m)C23(m)

)
,

(4.29)

for all t ≥ t5, and recalling (3.34), provided that J ∈ W 2,1(R2), we get

‖ϕ(t)‖H2 ≤ C25(m), ∀t ≥ t5. (4.30)

Estimates (4.28) and (4.30) yield (4.3).

Let us now recall the main result about the existence of the global attractor for weak

solutions to system (1.1)–(1.5) in the autonomous case (cf. [9]). Since the weak solutions

to system (1.1)–(1.5) are not known to be unique but the energy identity holds, the

existence of the global attractor is achieved by using J.M. Ball’s approach based on the

notion of generalized semiflows (cf. [3], to which we refer for the main definitions and

results).

We assume that h is time independent, i.e., h ∈ Gdiv, and, for m ≥ 0 fixed, we

introduce the metric space

Xm := Gdiv × Ym, (4.31)

where

Ym := {ϕ ∈ H : F (ϕ) ∈ L1(Ω), |(ϕ, 1)| ≤ m}, (4.32)

The space Xm is endowed with the metric

d(z2, z1) = ‖u2 − u1‖+ ‖ϕ2 − ϕ1‖+
∣∣∣ ∫

Ω

F (ϕ2)−
∫

Ω

F (ϕ1)
∣∣∣1/2, ∀z1, z2 ∈ Xm,

where z1 := [u1, ϕ1] and z2 := [u2, ϕ2].

Suppose that (H1)–(H4) are satisfied and that h ∈ Gdiv. Let Gm be the set of all weak

solutions to system (1.1)–(1.6) from [0,∞) to Xm given by Theorem 1 and corresponding

to all initial data z0 ∈ Xm. Then, in [9, Prop. 3 and Thm. 3] it is proved that Gm is a

generalized semiflow on Xm (i.e., Gm satisfies conditions (H1)–(H4) from [3] in the space

Xm) which possesses a (unique) global attractor Am.

Take z0 ∈ Xm and consider a weak solution z := [u, ϕ] ∈ C([0,∞);Xm) corresponding

to z0. From (2.14), written with t = τ , we know that for every τ > 0 there exists tτ ∈ (0, τ ]
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such that z(tτ ) ∈ Vdiv×V . Thanks to Remark 4, we can also assume that ϕ(tτ ) ∈ L∞(Ω).

We can therefore write the differential inequality (4.16) in [tτ ,∞) and, by integrating

(4.16) between tτ and t > tτ , we can see that there exists sτ ∈ (tτ , t] such that ϕt(sτ ) ∈ H
and hence ϕ(sτ ) ∈ H2(Ω). Summing up, introducing the (complete) metric space

X 1
m := Vdiv × Y1

m, Y1
m := {ϕ ∈ H2(Ω) : |(ϕ, 1)| ≤ m}, (4.33)

endowed with the metric

d1(z2, z1) = ‖∇u2 −∇u1‖+ ‖ϕ2 − ϕ1‖H2(Ω), ∀z1, z2 ∈ X 1
m,

then, for every τ > 0, there exists sτ ∈ (0, τ ] such that z(sτ ) ∈ X 1
m and starting from

the time sτ the weak solution corresponding to z0 becomes a (unique) strong solution

z ∈ C([sτ ,∞);X 1
m) (cf. Remarks 3 and 6). Such a solution satisfies the dissipative

estimate (4.6) in [sτ ,∞). Let us consider a bounded in Xm subset B ⊂ Xm. Choosing

τ = 1 for every z0 ∈ B, then every weak solution z starting from z0 ∈ B becomes (at a

certain time s1 ∈ (0, 1] depending on z0 and on the weak solution considered from z0) a

strong solution satisfying (4.6) in [1,∞). We therefore deduce that there exists a time

t∗ = t∗(B) ≥ 1 such that

z(t) ∈ B1(Λ1(m)), ∀t ≥ t∗, (4.34)

where B1(Λ1(m)) is the closed ball in X 1
m given by

B1(Λ1(m)) := {w ∈ X 1
m : d1(w, 0) ≤ Λ1(m)}.

This fact immediately implies that Am ⊂ B1. Indeed, we have distX 1
m

(T (t)Am,B1) =

distX 1
m

(Am,B1) = 0, which implies Am ⊂ B1
X 1
m = B1. We recall that the multivalued

evolution map T (t) is defined, for every t ≥ 0 and every subset E ⊂ Xm, as (cf. [3])

T (t)E := {z(t) : z ∈ Gm, z(0) ∈ E}. (4.35)

Summing up we have just proven the following regularity result for the global attractor

Theorem 3. Let (H1)–(H4) be satisfied and assume that h ∈ Gdiv is independent of

time. Then the global attractor Am of the generalized semiflow Gm associated with system

(1.1)–(1.5) is such that

Am ⊂ B1(Λ1(m)).

Thus the global attractor is the union of all the bounded complete trajectories which

are strong solutions to (1.1)-(1.6).
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5 Convergence to equilibria

In this section we shall prove that every weak solution to system (1.1)–(1.6) converges to

a stationary solution as t→∞, provided that F is real analytic and h ≡ 0.

Let us first consider the set of all stationary solutions z∞ to system (1.1)–(1.5), namely

the set of pairs z∞ := [0, ϕ∞] ∈ Xm (for some m ≥ 0), where ϕ∞ solves the integral

equation

aϕ∞ − J ∗ ϕ∞ + F ′(ϕ∞) = µ∞, (5.1)

with some constant µ∞ ∈ R given necessarily by µ∞ = F ′(ϕ∞). Therefore we introduce

Em =
{
z∞ = [0, ϕ∞] : ϕ∞ ∈ H, F (ϕ∞) ∈ L1(Ω), |ϕ∞| ≤ m,

aϕ∞ − J ∗ ϕ∞ + F ′(ϕ∞)− F ′(ϕ∞) = 0 a.e. in Ω
}
. (5.2)

We point out that, by using an easy iteration argument from (5.1), on account that F ′ has

polynomial growth, we can deduce that ϕ∞ ∈ L∞(Ω). The structure of the stationary set

is rather complicated. In particular, such a set may be a continuum (see [8] for an example

and [19] where the author proves the existence of solutions ϕ∞ to (5.7) with ϕ∞ = 0 in

cylindrical bounded domains). It is also worth observing that to every stationary solution

z∞ = [0, ϕ∞] there corresponds a stationary pressure π∞ given by π∞ = F ′(ϕ∞)ϕ∞ + c,

where c ∈ R is an arbitrary constant (cf. (1.3)).

We begin with the following preliminary but crucial result.

Lemma 3. Assume that (H1)–(H4) are satisfied. Take z0 ∈ Xm and let z ∈ C([0,∞);Xm)

be a weak solution corresponding to z0. Then, we have

∅ 6= ω(z) ⊂ Em (5.3)

and

u(t)→ 0 in Gdiv, as t→∞. (5.4)

Furthermore, there exists a time t∗ = t∗(z0) depending on z0 such that the trajectory⋃
t≥t∗{z(t)} is precompact in Xm.

Proof. From (2.14), by letting t→∞, we obtain that

u ∈ L2(0,∞;Vdiv). (5.5)

On the other hand, from (1.3), written as ut = −Bu− νSu+ µ∇ϕ, we get

‖ut‖V ′div ≤ ν‖∇u‖+ c‖u‖‖∇u‖+ ‖ϕ‖L∞(Ω)‖∇µ‖.
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Now, (2.14) also implies that u ∈ L∞(0,∞;Gdiv) and that ∇µ ∈ L2(0,∞;H). Hence, on

account of (4.11) as well, from the previous estimate we infer that

ut ∈ L2(τ,∞;V ′div), (5.6)

for some τ > 0. From (5.5) and (5.6) we deduce (5.4). Let us now take z̃ ∈ ω(z0) arbitrary,

with z̃ := [ũ, ϕ̃]. Then, there exists a sequence {tn} with tn →∞ such that u(tn)→ ũ in

Gdiv and ϕ(tn)→ ϕ̃ in H. We get ũ = 0 and, up to a subsequence,

µ(tn)→ µ̃, a.e. in Ω, (5.7)

where µ̃ := aϕ̃−J ∗ ϕ̃+F ′(ϕ̃). By integrating (4.22) between t and t+1 we easily deduce

that ∇µt ∈ L2
tb(τ,∞;H) for some τ > 0. Since we also have ∇µ ∈ L2(0,∞;H), then

Lemma 1 yields

∇µ(t)→ 0 in H, as t→∞. (5.8)

From (5.7) and (5.8) we easily deduce that µ̃=const almost everywhere in Ω, where

the constant is necessarily given by F ′(ϕ̃). Therefore z̃ = [ũ, ϕ̃] = [0, ϕ̃] ∈ Em (note

that F (ϕ̃) ∈ L1(Ω) is ensured by Fatou’s lemma), and (5.3) is proven. Finally, the

precompactness of the trajectory is an immediate consequence of (4.34).

Remark 7. Lemma 3 yields in particular an existence result for equation (5.1).

We now recall the generalized  Lojasiewicz-Simon inequality established in [11] which

is the main tool for proving our convergence result.

Let V and W be Banach spaces embedded into a Hilbert space H and its dual H ′,

respectively, with dense and continuous injections. Assume that the restriction of the

Riesz map R ∈ L(H,H ′) to V is an isomorphism from V onto W = R(V ). Moreover, let

H = H0 + H1, where H1 ⊂ V is a finite-dimensional subspace and H0 is its orthogonal

complement in H. Introduce the subspace of H ′

H0
0 :=

{
g ∈ H ′ : 〈g, ϕ〉 = 0 for all ϕ ∈ H0

}
.

Then let

F := G1 + G2,

where the functionals G1 and G2 satisfy the following conditions

• G1 : U ⊂ V → R is Fréchet differentiable on an open set U such that the Fréchet

derivative DG1 : U → W is a real analytic operator which satisfies

〈DG1(ϕ2)−DG1(ϕ1), ϕ2 − ϕ1〉 ≥ α1‖ϕ2 − ϕ1‖2
H , (5.9)
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‖DG1(ϕ2)−DG1(ϕ1)‖H′ ≤ α2‖ϕ2 − ϕ1‖H , (5.10)

for all ϕ1, ϕ2 ∈ U and for some constants α1, α2 > 0. Furthermore, the second

Fréchet derivative D2G1(ϕ) ∈ L(V,W ) is assumed to be an isomorphism for all

ϕ ∈ U .

• G2 : H → R is assumed to be in the form

G2(ϕ) =
1

2
〈Kϕ, ϕ〉+ 〈l, ϕ〉+ ρ, ∀ϕ ∈ H,

where K ∈ L(H,H ′) is a self-adjoint compact operator such that its restriction to

V is a compact operator in L(V,W ) and l ∈ W , ρ ∈ R are given.

The inequality we need is given by

Lemma 4 ([11]). Let the previous assumptions be satisfied for the spaces V,W,H,H ′ and

for the functional F . Let [ϕ∞, µ∞] ∈ U × H0
0 satisfy DF(ϕ∞) = µ∞. Then, there exist

σ, λ > 0 and θ ∈ (0, 1/2] such that the following inequality holds

|F(ϕ)−F(ϕ∞)|1−θ ≤ λ inf
{
‖DF(ϕ)− µ‖H′ , µ ∈ H0

0

}
, (5.11)

for all ϕ ∈ U satisfying ϕ− ϕ∞ ∈ H0 and ‖ϕ− ϕ∞‖H ≤ σ.

We can now state the main result of this section.

Theorem 4. Assume that (H1)–(H4) are satisfied with F real analytic. Take z0 ∈ Xm
and let z ∈ C([0,∞);Xm) be a weak solution corresponding to z0. Then, there exists

z∞ := [0, ϕ∞] ∈ Em with ϕ∞ = ϕ0 such that

z(t)→ z∞ in Xm, as t→∞. (5.12)

Moreover, there exist some constants γ ≥ 0, θ ∈ [0, 1/2) and a time t > 0 which depend

on z0 and z∞ (and on the weak solution z originated from z0) such that

‖u(t)‖V ′div + ‖ϕ(t)− ϕ∞‖V ′ ≤ γ t−
θ

1−2θ , ∀t > t. (5.13)

Proof. Our aim is to prove that ϕt ∈ L1(τ,∞;V ′), for some τ > 0. This, together with

(5.4) and with the precompactness of the trajectory in Gdiv × H, will allow to deduce

the convergence in Gdiv × H of a whole trajectory z = [u, ϕ] originating from an initial

datum z0 = [u0, ϕ0] ∈ Xm to a stationary solution z∞ ∈ Em with ϕ∞ = ϕ0. Observe that

if z : [0,∞)→ Xm is a weak solution, then the convergence condition z(t)→ z∞ in Xm is

equivalent to the condition z(t) → z∞ in Gdiv ×H, since the convergence
∫

Ω
F (ϕ(t)) →∫

Ω
F (ϕ∞) is ensured by (4.11) and Lebesgue’s dominated convergence theorem.
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The key point is the application of Lemma 4 to a suitable functional F which is, in our

case, the energy functional E associated with the ϕ component of the solution, namely,

E(ϕ) =
1

2
‖
√
aϕ‖2 − 1

2
(ϕ, J ∗ ϕ) +

∫
Ω

F (ϕ). (5.14)

More precisely, we set (cf. Lemma 4)

H := H ′ = L2(Ω), H0 := {ψ ∈ H : ψ = 0}, H0
0 = {ψ = const},

V = L∞(Ω), W := R(V ), ‖f‖W := ‖R−1f‖V ,

G1(ψ) :=

∫
Ω

(
F (ψ) +

1

2
aψ2
)
, U = Um := {ψ ∈ V : |ψ(x)| < C0(m), a.e. x ∈ Ω},

K(ψ) := −J ∗ ψ, l = ρ = 0, (5.15)

where the positive constant C0(m) is the same as in (4.11).

All the assumptions of Lemma 4 are fulfilled. Indeed, G1 is Fréchet differentiable on

the whole V with DG1(ϕ) ∈ W , for all ϕ ∈ V given by

〈DG1(ϕ), h〉 =

∫
Ω

(
F ′(ϕ) + aϕ

)
h, ∀h ∈ V.

Furthermore, DG1 is a real analytic operator, since F is assumed real analytic, and we

have

〈DG1(ϕ2)−DG1(ϕ1), ϕ2 − ϕ1〉 =

∫
Ω

(
F ′′(ηϕ2 + (1− η)ϕ1) + a

)
|ϕ2 − ϕ1|2

≥ c0‖ϕ2 − ϕ1‖2, ∀ϕ1, ϕ2 ∈ V,

thanks to (H2), where η = η(x) ∈ (0, 1). Hence (5.9) is satisfied (with α1 = c0). As far as

(5.10) is concerned, observe that DG1 is locally Lipschitz from V to H ′. Indeed, we have

‖DG1(ϕ2)−DG1(ϕ1)‖H′ ≤ ‖F ′(ϕ2)− F ′(ϕ1)‖+ a∞‖ϕ2 − ϕ1‖ ≤ Γm‖ϕ2 − ϕ1‖2,

for all ϕ1, ϕ2 ∈ Um, which yields (5.10) (with α2 = Γm). Moreover, the second Fréchet

derivative is given by

〈D2G1(ϕ)h1, h2〉 =

∫
Ω

(
F ′′(ϕ) + a

)
h1h2, ∀h1, h2 ∈ V,

for all ϕ ∈ V . Hence D2G1(ϕ) ∈ L(V,W ) is an isomorphism for all ϕ ∈ Um. Finally,

thanks to (H1), the convolution operator K is compact from H to H and also from V

to W (due to the compact embedding W 1,∞(Ω) ↪→↪→ C(Ω)). The Fréchet derivative of

F = E is given by

DE(ϕ) = F ′(ϕ) + aϕ− J ∗ ϕ = µ, (5.16)
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and we have that [ϕ∞, µ∞] ∈ Um × H0
0 satisfy DE(ϕ∞) = µ∞ iff z∞ := [0, ϕ∞] ∈ Em

with ϕ∞ ∈ Um and µ∞ = F ′(ϕ∞). Therefore, taking [ϕ∞, µ∞] ∈ Um × H0
0 such that

DE(ϕ∞) = µ∞, Lemma 4 entails the existence of σ, λ > 0 and θ ∈ (0, 1/2] such that

|E(ϕ)− E(ϕ∞)|1−θ ≤ λ inf
{
‖µ− µ̃‖, µ̃ = const

}
= λ‖µ− µ‖ ≤ λcp‖∇µ‖, (5.17)

for all ϕ ∈ Um satisfying ϕ = ϕ∞ (i.e. ϕ − ϕ∞ ∈ H0) and ‖ϕ − ϕ∞‖H ≤ σ, where cp is

the Poincaré-Wirtinger constant.

Now, let z0 ∈ Xm and z be a weak solution corresponding to z0. Take z∞ ∈ ω(z) and

let {tn} be a sequence such that tn →∞ and z(tn)→ z∞ in Xm. Consider the function

Φ(t) := E(z(t))− E(z∞).

We have

Φ′(t) = −ν‖∇u‖2 − ‖∇µ‖2 ≤ −cν(‖∇u‖+ ‖∇µ‖)2 ≤ 0, for a.a. t > 0, (5.18)

where cν = min{1, ν}/2. Since Φ(tn)→ 0 and Φ is non-increasing in (0,∞), then Φ(t)→
0, as t → ∞ and Φ ≥ 0. Now, due to (5.4) and to (5.17) (notice that 2(1 − θ) > 1), we

have

Φ1−θ(t) =
(1

2
‖u(t)‖2 + E(ϕ(t))− E(ϕ∞)

)1−θ

≤ ‖u(t)‖2(1−θ) + |E(ϕ(t))− E(ϕ∞)|1−θ

≤ cλ

(
‖∇u‖+ ‖∇µ‖

)
, (5.19)

for all t ≥ t0, for some t0 > 0, provided that ‖ϕ(t)−ϕ∞‖ < σ, where cλ = max{1/
√
λ1, λcp}.

Therefore, by combining (5.18) and (5.19) we get

− d

dt
Φθ(t) = −θΦθ−1(t)Φ′(t) ≥ θcν

cλ

(
‖∇u(t)‖+ ‖∇µ(t)‖

)
, (5.20)

provided that ϕ(t) ∈ Um with ‖ϕ(t) − ϕ∞‖ < σ and ϕ(t) = ϕ∞ = ϕ0. By means of

a classical argument, together with equations (1.1) and (1.2), we can now deduce that

ϕt ∈ L1(τ,∞;V ′). Indeed, for every δ ∈ (0, 1) there exists N = Nδ such that for all

n ≥ Nδ we have ‖u(tn)‖ < δ and ‖ϕ(tn)− ϕ∞‖ < δ. Set

t∗ = t∗(δ) := sup
{
t ≥ tN : ‖u(s)‖ < 1, ‖ϕ(s)− ϕ∞‖ < σ, ∀s ∈ [tN , t]

}
. (5.21)

Then, estimate (5.20) holds for all t ∈ [tN , t
∗]. By integrating it between tN and t∗ and

possibly choosing a larger N we have∫ t∗

tN

(
‖∇u(τ)‖+ ‖∇µ(τ)‖

)
dτ ≤ cλ

θcν
Φθ(tN) < δ. (5.22)
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We now claim that there exists δ∗ > 0 such that t∗(δ∗) =∞. Indeed, suppose this is not

true, i.e. t∗(δ) <∞ for all δ > 0. Then, we have∫ t∗

tN

‖ut(τ)‖V ′divdτ ≤
∫ t∗

tN

(
ν‖∇u(τ)‖+ c‖u(τ)‖‖∇u(τ)‖+ ‖ϕ(τ)‖L∞(Ω)‖∇µ(τ)‖

)
dτ

≤ b1

∫ t∗

tN

(
‖∇u(τ)‖+ ‖∇µ(τ)‖

)
dτ ≤ b1δ, (5.23)

where b1 = max
{
ν + cΛ1(m)/

√
λ1, C0(m)

}
, and where Nδ is assumed large enough, i.e.,

such that tNδ ≥ t1(E(z0)) (see (4.11)). Furthermore, we have∫ t∗

tN

‖ϕt(τ)‖V ′dτ ≤
∫ t∗

tN

(
‖∇µ(τ)‖+ ‖ϕ(τ)‖L∞‖u(τ)‖

)
dτ

≤ b2

∫ t∗

tN

(
‖∇u(τ)‖+ ‖∇µ(τ)‖

)
dτ ≤ b2δ, (5.24)

where b2 = max
{

1, C0(m)/
√
λ1

}
. Therefore, we deduce

‖u(t∗)‖V ′div ≤ ‖u(tN)‖V ′div +

∫ t∗

tN

‖ut(τ)‖V ′divdτ ≤ b3δ, (5.25)

‖ϕ(t∗)− ϕ∞‖V ′ ≤ ‖ϕ(tN)− ϕ∞‖V ′ +
∫ t∗

tN

‖ϕt(τ)‖V ′dτ ≤ b4δ, (5.26)

where b3 = 1/
√
λ1 +b1 and b4 = 1+b2. Let us now take a sequence {δn} such that δn → 0.

Then, from definition (5.21), for every n at least one of the following two conditions holds

‖u(t∗(δn))‖ = 1, ‖ϕ(t∗(δn))− ϕ∞‖ = σ. (5.27)

By possibly extracting a subsequence we have, e.g., ‖ϕ(t∗(δn))−ϕ∞‖ = σ. Writing (5.26)

with δ = δn and taking into account the precompactness of the trajectory in Gdiv ×H we

get a contradiction. Thus, for some δ∗ > 0 we have (setting t := tNδ∗ )∫ ∞
t

(
‖∇u(τ)‖+ ‖∇µ(τ)‖

)
dτ < δ∗ <∞, (5.28)

so that

u ∈ L1(t,∞;Vdiv), ∇µ ∈ L1(t,∞;H). (5.29)

This implies that ϕt ∈ L1(t,∞;V ′), due (4.1)2 and to the estimate

‖ϕt‖V ′ ≤ ‖∇µ‖+ c‖ϕ‖V ‖∇u‖.
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By using the precompactness of the trajectory in Gdiv ×H again, we deduce that ϕ(t)→
ϕ∞ in H as t→∞. Therefore we have z(t)→ z∞ in Xm as t→∞. We now provide an

estimate for the convergence rate in V ′div × V ′. Indeed, from (5.18) and (5.19) we deduce

Φ′(t) ≤ −cν
c2
λ

Φ2(1−θ)(t), ∀t > t

which yields by integration

Φ(t) ≤ Φ(0)
{

1 + b5Φ1−2θ(0)t
}− 1

1−2θ , ∀t > t, (5.30)

where b5 = cν(1 − 2θ)/c2
λ. On the other hand, by integrating (5.20) from t ≥ t to ∞ we

get ∫ ∞
t

(
‖∇u(τ)‖+ ‖∇µ(τ)‖

)
dτ =

cλ
θcν

Φθ(t), ∀t > t. (5.31)

Finally, we obtain

‖u(t)‖V ′div ≤
∫ ∞
t

‖ut(τ)‖V ′divdτ ≤ b1

∫ ∞
t

(
‖∇u(τ)‖+ ‖∇µ(τ)‖

)
dτ, (5.32)

‖ϕ(t)− ϕ∞‖V ′ ≤
∫ ∞
t

‖ϕt(τ)‖V ′dτ ≤ b2

∫ ∞
t

(
‖∇u(τ)‖+ ‖∇µ(τ)‖

)
dτ. (5.33)

By combining (5.30)–(5.33) we deduce the convergence rate estimate (5.13) with γ =

(b1 + b2)cλθ
−1c−1

ν b
−θ/(1−2θ)
5 .

Remark 8. By using standard interpolation inequalities one can deduce from (5.13)

convergence rate estimates in stronger norms. Of course, the convergence exponent dete-

riorates.
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