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Effects of nuclear correlations on the
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Calculations of the 16O(e, e′pN) cross sections to the ground state and first excited levels of the
14C and 14N nuclei are presented. The effects of nuclear fragmentation have been obtained in a
self-consistent approach and are accounted for in the determination of the two-nucleon removal
amplitudes. The Hilbert space is partitioned in order to compute the contribution of both long-
and short-range effects in a separate way. Both the two-proton and the proton-neutron emission
cross sections have been computed within the same models for the reaction mechanism and the
contribution from nuclear structure, with the aim of better comparing the differences between the
two physical processes. The 16O(e, e′pp) reaction is found to be sensitive to short-range correlations,
in agreement with previous results. The 16O(e, e′pn) cross section to 1+ final states is dominated
by the ∆ current and tensor correlations. For both reactions, the interplay between collective (long-
range) effects and short-range and tensor correlations plays an important role. This suggests that
the selectivity of (e, e′pN) reactions to the final state can be used to probe correlations also beyond
short-range effects.

PACS numbers: 21.10.Jx, 21.30.Fe, 21.60.-n, 25.30.Fj, 21.60.Jz.

I. INTRODUCTION

Among the various processes that characterize atomic
nuclei, short-range correlations (SRC) play a very im-
portant role in the study of nuclear structure. It is now
understood that the repulsive core of the nuclear inter-
action, at small distances, has a decisive influence on
the spectral distribution of nucleons and on the binding
properties of both finite and infinite nuclear systems [1–
4]. Photo-induced two-nucleon knockout reactions like
(γ,NN) and (e, e′NN) appear to be a powerful tool to
investigate two-body correlations in nuclei. Indeed, the
probability that a real or virtual photon is absorbed by
a pair should be a direct measure of the correlation be-
tween the two nucleons. The measurements of these cross
sections have only become possible in recent years [5] by
means of modern electron beam facilities. Studies with
a 16O target have been carried out at the AmPS-facility
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at NIKHEF-Amsterdam [5–7] and the MAMI-facility in
Mainz [8]. The comparison of the NIKHEF data with
theoretical calculations [9, 10] for the 16O(e, e′pp) re-
action has been carried out in Refs. [6, 7]. In partic-
ular, it has been demonstrated that the transition to
the ground state of 14C is dominated by the presence of
SRC whenever the two protons are emitted back-to-back
with small total momenta. Therefore, the high experi-
mental cross section observed for this transition at small
missing momenta can be considered a clear signature of
SRC [6, 7]. Further measurements have been carried out
at the MAMI-facility in Mainz for the 16O(e, e′pp) [8] re-
action and proposed for the 16O(e, e′pn) case [11]. The
resolution achieved in these new experiments allows the
separation of specific excited states in the residual nu-
cleus.

A recent (e, e′p) experiment [12, 13] performed at
JLab also was aimed at the direct observations of high-
momentum protons in the nucleus, another clear signa-
ture of SRC. These measurements are expected to pro-
duce new and detailed information on the one-body spec-
tral distribution. However, due to the high missing ener-
gies and momenta required to observe this consequence
of SRC, one is forced to work in a kinematic region where
the effects of the final-state interaction tend to overwhelm
the direct signal [12, 14]. The advantage of two-nucleon
emission lies in the possibility of ejecting the correlated
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pair as a whole, thus seeing the effects of SRC even at
small missing energies and momenta but corresponding
to large values of the relative momentum of the pair. On
the other hand, several studies [10, 15, 16] suggest that
details of the two-nucleon emission cross sections are sen-
sitive not only to SRC. Indeed long-range correlations
(LRC), at low energy, and the reaction mechanism are
also important. Moreover, which of these effects is pre-
dominant depends on the particular choice of the kine-
matics and on the final state of the residual nucleus, in
particular its angular momentum and parity. The latter
quantities therefore act as a filter for the study of var-
ious reaction processes. Clearly, while this richness of
details complicates the extraction of information related
to SRC, it also identifies two-nucleon emission reactions
as a unique tool to probe different aspects of two-body
correlations in finite systems.

The model of the reaction mechanism employed in
Ref. [10] was discussed in Ref. [17]. In this work the
excitation process includes the contribution of the usual
one-body terms as well as those two-body currents which
involve the intermediate excitation of the ∆-isobar. In
the present work the improved treatment of the nuclear
currents, given in Refs. [18–20] will be employed. The
treatment of the final-state interaction accounts for the
distorting effect of their interaction with the remaining
nucleons in terms of an optical potential. As in previous
works, the mutual interaction between the two outgoing
nucleons will be neglected here. This was argued in the
past by noting that the pair of protons will leave the
nucleus largely back to back making this type of final-
state interaction less important. However, recent pertur-
bative calculations on the (e, e′pp) process [21–23] show
that this effect can produce a significant increase of the
experimental yield. Work is in progress to include these
contributions completely [24]. This issue remains beyond
the scope of the present investigation and will not be fur-
ther discussed in the following.

An important element in the calculation of the cross
section is the two-body overlap (or removal) amplitude,
which contains the information on the correlations be-
tween the pair of nucleons inside the system. These
amplitudes were computed in Ref. [25] for two protons
by partitioning the full Hilbert space to obtain a model
space large enough to account for the most relevant LRC.
This is based on the assumption that the effects of SRC
concern high relative momentum states (at high energy)
and which are sufficiently decoupled from the collective
motion at low energy as not to be influenced by it.
The LRC were then obtained by solving the two-hole
dressed random phase approximation (hh-DRPA) inside
the model space, while the distortion due to SRC was
included by adding appropriate defect functions, com-
puted for the specifically excluded space. In doing so,
the non-locality of the Pauli operator was neglected, re-
sulting in a set of only few defect functions, essentially
independent of the center-of-mass (c.m.) motion of the
pair. The resulting two-nucleon spectral function was

then employed in the calculation of the 16O(e, e′pp) cross
section in Ref. [10]. A similar approach was followed in
Ref. [15] for the 16O(e, e′pn) case also by employing the
same model [17–19] of the reaction mechanism. In this
work the two-hole spectral function for a proton-neutron
pair was obtained by employing a coupled-cluster ap-
proach. The S2 approximation employed in Ref. [15] is
quite similar to the evaluation of the short-range part of
the two-body spectral function in terms of a Brueckner
G matrix, as employed in Ref. [25], but does not account
as well for the effects of LRC. However, a full set of de-
fect functions, including their dependence on the c.m. of
the pair, is obtained naturally in this approach. Given
the differences between the above calculations, it is in-
teresting to compare the emission of both a pp and a pn
pair by evaluating them within the same description of
the nuclear structure effects. Furthermore, the descrip-
tion of nuclear structure effects related to the descrip-
tion of the fragmentation of the single-particle strength
has been improved by applying a Faddeev technique to
the description of the internal propagators in the nucleon
self-energy [26, 27]. This development provides an addi-
tional incentive to study the resulting consequences for
the description of two-nucleon removal reactions. In the
present work we pursue these aims by employing the hh-
DRPA approach of Refs. [10, 25] while improving on the
computation of the defect functions, in order to obtain
a description of SRC comparable to the one of Ref. [15].
We then apply this model to study both the 16O(e, e′pp)
and 16O(e, e′pn) reactions.

In Sec. II of this paper the essential steps in the cal-
culation of the (e, e′pN) cross sections are summarized.
The calculation of the two-nucleon removal amplitudes,
that describe the correlations, is discussed in Sec. III.
There, the approach of separating the contributions of
long-range (LRC) and short-range correlations (SRC) in-
troduced in Ref. [28] is reviewed and the present cal-
culation of defect functions is described in some detail.
Sec. III A also summarizes the updated results for the
nuclear structure calculation. The numerical results of
16O(e, e′pp) and 16O(e, e′pn) cross sections are presented
and discussed in Sec. IV, while conclusions are drawn in
Sec. V.

II. REACTION MECHANISM OF THE (e,e′pN)
CROSS SECTIONS

The coincidence cross section for the reaction induced
by an electron with momentum p0 and energy E0, with
E0 = |p0| = p0, where two nucleons, with momenta p′

1

and p′
2 and energiesE′

1 andE
′
2, are ejected from a nucleus

is given, in the one-photon exchange approximation and
after integrating over E′

2, by [29, 30]

d8σ

dE′
0dΩdE

′
1dΩ

′
1dΩ

′
2

= KΩffrec|jµJµ|2. (1)
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In Eq. (1) E′
0 is the energy of the scattered electron with

momentum p′
0, K = e4p′0

2
/4π2Q 4 where Q2 = q 2 − ω2,

with ω = E0−E′
0 and q = p0−p′

0, is the four-momentum
transfer. The quantity Ωf = p′1E

′
1p

′
2E

′
2 is the phase-space

factor and integration over E′
2 produces the recoil factor

f−1
rec = 1− E′

2

EB

p′
2 · pB

|p′
2|2

, (2)

where EB and pB are the energy and momentum of the
residual nucleus. The cross section is given by the square
of the scalar product of the relativistic electron current
jµ and of the nuclear current Jµ, which is given by the
Fourier transform of the transition matrix elements of
the charge-current density operator between initial and
final nuclear states

Jµ(q) =

∫

〈Ψf | Ĵµ(r) |Ψi〉 e iq·rdr. (3)

If the residual nucleus is left in a discrete eigenstate
of its Hamiltonian, i.e. for an exclusive process, and un-
der the assumption of a direct knockout mechanism, the
matrix elements of Eq. (3) can be written as [17, 30]

Jµ(q) =

∫

Ψ∗
f (r1σ1, r2σ2)J

µ(r, r1σ1, r2σ2)

×Ψi(r1σ1, r2σ2)e
iq·rdrdr1dr2dσ1dσ2. (4)

Equation (4) contains three main ingredients: the final-
state wave function ψf , the nuclear current Jµ and the
two-nucleon overlap integral ψi.
The nuclear current operator is the sum of a one-body

and a two-body part. The one-body part contains the
usual charge operator and the convective and spin cur-
rents. The two-body current is derived from the effective
Lagrangian of Ref. [31], performing a non relativistic re-
duction of the lowest-order Feynman diagrams with one-
pion exchange. We therefore have currents corresponding
to the seagull and pion-in-flight diagrams and to the di-
agrams with intermediate ∆-isobar configurations [19],
i.e.

J
(2)(r, r1σ1, r2σ2) = J

sea(r, r1σ1, r2σ2)

+ Jπ(r, r1σ1, r2σ2) + J∆(r, r1σ1, r2σ2). (5)

Details of the nuclear current components and the values
of the parameters used in the calculations are given in
Refs. [18–20].
Equation (4) involves bound and scattering states, ψi

and ψf , which should consistently be obtained from an
energy–dependent non-Hermitian Feshbach-type Hamil-
tonian for the considered final state of the residual
nucleus. They are eigenfunctions of this Hamiltonian
at negative and positive energy eigenvalues, respec-
tively [29, 30]. In practice, it is not possible to achieve
this consistency and the treatment of initial and final
state correlations proceeds separately with different ap-
proximations.

The final-state wave function ψf includes the interac-
tion of each one of the two outgoing nucleons with the
residual nucleus. The mutual interaction between the two
outgoing nucleons has been studied in Ref. [21] in nuclear
matter and, more recently, in two-nucleon knockout from
16O in Refs. [22, 23] within a perturbative treatment.
This contribution is neglected in the calculation of the
present paper, which is aimed at investigating the effects
of a consistent treatment of SRC and LRC in the initial
state ψi. Therefore, the scattering state is here given
by the product of two uncoupled single-particle distorted
wave functions, eigenfunctions of a complex phenomeno-
logical optical potential [32] which contains a central, a
Coulomb and a spin-orbit term. The two-nucleon overlap
integral ψi contains the information on nuclear structure
and correlations. These have been obtained using the
same many-body approach for both pp and pn knock
out, as described in the next section.

III. STRUCTURE AMPLITUDES

Following Ref. [10], the two-nucleon overlap integral ψi

[see Eq. (4)] has been computed by solving the hh-DRPA
equation for the two-particle Green’s function. This ap-
proach allows to accurately take into account the effects
of LRC that are important at the small missing energies
considered in this work. However, the description of the
high-momentum components due to SRC requires a large
number of basis states, including configurations up to 100
h̄ω in an harmonic oscillator basis [33], which is too large
for practical applications.
The guiding principle followed in the present calcula-

tion was presented earlier in Ref. [28] and attempts to
treat LRC and SRC in a separate but consistent way.
This is done by splitting the complete Hilbert space into a
model space P , large enough to contain the relevant long-
range effects, and a complementary spaceQ = 1−P . The
general formalism of the effective interactions considers
a number of exact eigenstates of the system, |Ψi〉, that
diagonalize the complete Hamiltonian Ĥ = T̂ + V̂ with
eigenvalues Ei. One then seeks for an effective Hamil-
tonian Ĥeff that is defined in the space P and has the
same exact eigenvalues (see for example Ref. [34]),

PĤeffP |Φi〉 = Ei |Φi〉 , (6)

where P is the projection operator onto the space P and
the eigenstates given by |Φi〉 = P |Ψi〉. The complete
wave functions |Ψi〉, that belong to the full Hilbert space,
can be obtained from the latter by means of

|Ψi〉 =
(

1+ X̂
)

|Φi〉
= |Φi〉 + |Xi〉 (7)

where the correlation operator X̂ = QX̂P converts the
component inside the model space into the corresponding
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part that belongs to the space Q. The latter, |Xi〉, are
usually referred to as “defect functions”.
In the present case, the nuclear correlations that lie in

the space Q are those due to SRC. For the case of two
nucleons in free space the two-body correlations can be
accounted for completely by solving the following equa-
tion for the transition matrix R̂,

R̂(ω) = V̂ + V̂
1

ω − T̂ + iη
R̂(ω) , (8)

where V̂ and T̂ are the NN potential and the kinetic en-
ergy, respectively, and ω is the energy of the correlated
pair. A good approximation of the effective interaction,
Eq. (6), that takes into account the effects of short-range
distortion, is obtained by replacing the bare NN interac-
tion V̂ with the G matrix, obtained by solving the Bethe-
Goldstone equation

Ĝ(ω) = V̂ + V̂
Q

ω −QT̂Q+ iη
Ĝ(ω) . (9)

Equation (9) accounts for the short-range effects in a way
completely analogous to Eq. (8) except that the projec-
tion operator Q now allows the intermediate propagation
of the two particles only within the spaceQ (therefore ex-
cluding the correlations within the model space P). The
G matrix (9) plays the role of a transition matrix within
the model space:

Ĝ |Φ〉 = V̂ |Ψ〉 , (10)

where |Φ〉 represents the two-body wave function within
the space P and |Ψ > is the fully correlated one that
takes into account the distortion due to SRC. The lat-
ter regularizes the otherwise large matrix elements of V̂
that would be generated by its repulsive core at small
interparticle distances. The correlated wave function is
obtained in terms of the uncorrelated one |Φ > as

|Ψ〉 = |Φ〉 +
Q

ω −QT̂Q+ iη
Ĝ(ω) |Φ〉 , (11)

which generalizes the Lippmann-Schwinger equation for
two particles in the vacuum and gives an expression for
the correlation operator X̂ of Eq. (7).
It should be noted that the distinction between long-

range (inside the model space) and short-range correla-
tions (outside the model space) is an artificial one. How-
ever, it is important to treat those contributions consis-
tently and to avoid any kind of double counting. This
is an important merit of the present approach [28]. The
solution of the Bethe-Goldstone equation yields the resid-
ual interaction of the nucleons inside the model space as
well as the defect functions needed to obtain the complete
wave function, as in Eq. (7).

A. Two-nucleon overlap inside the space P

The effects of LRC have been determined by perform-
ing a nuclear structure calculation within the same shell-

model space as employed in Ref. [27, 35], based on har-
monic oscillator single-particle (sp) states with an oscil-
lator parameter b = 1.76 fm (corresponding to h̄ω =
13.4 MeV). The space P was chosen to contain all the first
four major shells (from 0s to 1p0f) plus the 0g9/2 orbital.
The results of Refs. [35–39], suggest that this is large
enough to properly account for the relevant low-energy
collective states. The effective interaction (G matrix)
was derived from the Bonn-C model of the NN poten-
tial V̂ [40]. Equation (9) was solved according to the
method of Ref. [33] by first computing the real reaction

matrix associated to R̂, Eq. (8), in momentum space as
a reference interaction. A correction term was then com-
puted to account for the effects of the Pauli operator,
which was treated in angle-averaged approximation.

The fragmentation of one-nucleon removal strength is
described by the coupling of the fully dressed sp propaga-
tor to both two-particle (pp), two-hole (hh) and particle-
hole (ph) excitations of the nuclear medium [27]. The
simultaneous inclusion of all these collective modes into
the nucleon self-energy Σ⋆ is computationally intensive
and requires the solution of a set of Faddeev equations
for the two-particle–one-hole and two-hole–one-particle
motions [26]. This self-energy has been used to solve the
Dyson equation for the one-body propagator

gαβ(ω) = g0αβ(ω) +
∑

γδ

g0αγ(ω)Σ
⋆
γδ(ω)gδβ(ω) (12)

to obtain the one-nucleon removal spectroscopic factors
for the low-energy final states in 15N [25, 27]. In these
works, the depletion of filled orbits by SRC is also incor-
porated in the shell-model space calculation by including
the energy dependence of the Gmatrix interaction, which
yields an energy-dependent Hartree-Fock term in the self-
energy [25]. In Ref. [27], the collective pp (hh) and ph
motion was studied at the level of the dressed RPA ap-
proximation by taking into account the fragmentation
of the one-body spectral function. The propagator re-
sulting from Eq. (12) was then substituted back into the
calculation of the collective surface modes and in the Fad-
deev equations. This whole procedure was iterated until
full self-consistency was obtained. The resulting descrip-
tion of the sp strength and corresponding two-hole states
therefore represents an improvement of the description
of LRC as compared to the work of Ref. [28]. Neverthe-
less, there are still features of the two-hole spectrum that
cannot yet be described by the present method.

For the particular case of the two-hole motion, one
solves the Bethe-Salpeter equation [41, 42] for the two-
nucleon propagator GII within the shell-model space. In
the present hh-DRPA approach this reduces to
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GII
αβ,γδ(t1, t2, t3, t4) = i [gαγ(t1 − t3)gβδ(t2 − t4)− gαδ(t1 − t4)gβγ(t2 − t3)]

−
∞
∫

−∞

dt′1dt
′
2dt

′
3dt

′
4

∑

µν,κλ

[gαµ(t1 − t′1)gβν(t2 − t′2)] 〈µν|G(t′1, t′2, t′3, t′4) |κλ〉GII
κλ,γδ(t

′
3, t

′
4, t3, t4) , (13)

where 〈µν|G(t′1, t′2, t′3, t′4) |κλ〉 denote the elements of the
G matrix interaction. From the Lehmann representation
of the two-nucleon propagator GII one obtains the re-
duced matrix elements of the two-nucleon removal tensor
operators [41, 43, 44]

X i
abJ = 〈Ψi,A−2

J ||(cβ̃cα̃)J ||ΨA
0 〉 (14)

where the latin subscripts denote the basis states without
the magnetic quantum number, a = {nα, lα, jα}, and
α̃ = {nα, lα, jα,−mα} corresponds to the time reverse of
α.
In Eq. (14), the quantities X i

abJ represent the compo-
nents of the two-nucleon overlap integral of Eq. (4) in
the basis states of the model space. These can be ex-
panded in terms of harmonic oscillator wave functions
and transformed to a representation in terms of the rel-
ative and c.m. motion. For a discrete final state i of the
(A-2)-nucleon system, with angular momentum quantum
numbers JM , one obtains

Φi(r1σ1, r2σ2) =
∑

nlSjNL

cinlSjNLRNL(R)

× φnl(r)
[

ℑj
lS(Ωr,σ1,σ2)YL(ΩR)

]JM

, (15)

where

r = r1 − r2, R =
r1 + r2

2
(16)

correspond to the relative and c.m. variables in coor-
dinate space. Note that we follow the convention that
denotes lower case for relative and upper case for c.m.
coordinate quantum numbers. The brackets in Eq. (15)
indicate angular momentum coupling of the angular and
spin wave function ℑ of relative motion with the spher-
ical harmonic of the c.m. coordinate to the total angu-
lar momentum quantum numbers JM . The radial wave
functions of the c.m. and relative motion are denoted
by RNL and φnl, respectively, and correspond to har-
monic oscillators with parameters b/

√
2 and

√
2b [45]. In

Eq. (15), the nuclear structure information represented
by the amplitudes X i

abJ has been included in the coeffi-
cients

cinlSjNL =

∑

ab∈P

∑

λ

(−)L+λ+j+S

√
2

(2λ+ 1)ĵŜĵaĵb







la lb λ
sa sb S
ja jb J







× 〈nlNLλ|nalanblbλ〉
{

L l λ
S J j

}

X i
abJ , (17)

16O(e, e′pp)14Cg.s. n N ρ Refs. [10, 28] This work

and Ref. [27]
1S0;L = 0 0 1 2 −0.416 −0.410

1 0 2 +0.415 +0.416

0 0 0 +0.057 +0.039

1 1 4 −0.069 −0.073

0 2 4 +0.049 −0.006

2 0 4 +0.050 +0.113

1 2 6 +0.016 +0.017

2 1 6 −0.017 −0.017
3P1;L = 1 0 0 2 +0.507 +0.513

0 1 4 +0.024 +0.076

1 0 4 −0.025 +0.019
1D2;L = 2 0 0 4 +0.016 +0.015

TABLE I: Two-proton removal amplitudes from 16O to the
ground state of 14C, given in terms of a c.m. and relative
motion expansion. The numbers in the left column are based
on the Dressed RPA calculations described in Ref. [28], while
those on the right account for the self-consistency in the nu-
clear self-energy obtained in Ref. [27]. The quantum number ρ
corresponds to the total number of harmonic oscillator quanta
of the pair: ρ = 2n + l + 2N + L (lower case for relative and
upper case for c.m. motion). For instance ρ = 4 indicates
contributions from two holes in the sd shell.

where the notation ĵ =
√
2j + 1 was used and the factor

1/
√
2 has been inserted to be consistent with the normal-

ization assumed in Eq. (4).

The most important amplitudes for the case of the
transition to the ground state of 14C are listed in Tab. I.
These amplitudes are compared with the numbers in the
left column, that refer to the calculation of Ref. [28]. The
inclusion of the self-consistency effects in [27] (right col-
umn) does not substantially alter the results for these
amplitudes, except for a slight enhancement of the col-
lectivity of the 1S0 contribution. Accordingly, the X i

abJ
principal components obtained for the pp case are essen-
tially the same as those of Ref. [28]. In the calculation of
Ref. [27], the spectroscopic factors for the removal of one
nucleon from the p1/2 and p3/2 orbital of 16O turned out
to be reduced respectively by a factor of 0.72 and 0.76
as compared with the independent-particle shell model.
This is still about 10% larger than the factor ∼0.65 de-
duced from the experiments [46–48]. Given the compet-
ing effects of fragmentaton and of the screening of the
nuclear interaction, it is not clear a priori whether a re-
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Jπ (0p3/2)
−2 (0p3/2, 0p1/2)

−1 (0p1/2)
−2 (0d5/2, 0d3/2)

−1

This work and Ref. [27]:

1+1 0.033 -0.347 0.699 0.067

1+2 0.264 -0.680 -0.323 0.189

Ref. [15]:

1+1 0.070 -0.455 0.607

1+2 0.271 -0.544 -0.460

TABLE II: Proton-neutron removal amplitudes Xi
abJ from

16O to the first two states of 14N. The numbers in the up-
per part of the table refer to the hh-DRPA results obtained
in this work. For comparison, we give the analogous results
obtained in the coupled cluster calculations of Ref. [15] (lower
part). The normalization of the two-hole amplitudes is higher
in the present work than what was assumed in Ref. [15].

duction of the spectroscopic factors will correspondingly
reduce the two-nucleon emission cross sections. There-
fore, as in previous work [10], we decided not to replace
the calculated spectroscopic factors by the experimental
ones in the present calculation.
The most relevant amplitudes X i

abJ obtained for the
emission of a pn pair are given in Tab. II, where they are
compared with the analogous quantities from Ref. [15].
The results indicate that the mixing of the principal
hole states is qualitatively similar in both calculations,
although the hh-DRPA approach tends to favor the
(0p1/2)

−2 and (0p3/2, 0p1/2)
−1 components in the g.s.

and first excited state of 14N, respectively. The most im-
portant difference is that the present calculation predicts
a sizable contribution for the emission of two nucleons
from particle orbitals above the Fermi level. These com-
ponents were not included in the approach of Ref. [15].
The sum of the squared amplitudes of Tab. II for the
transition to the 1+1 and 1+2 states is 0.61 and 0.67, re-
spectively, in the present approach and was 0.58 for both
states in the coupled cluster calculation. The latter num-
ber was imposed in Ref. [15] by normalizing the ampli-
tudes to the available DPRA results for the pp case [25].
The present calculation confirms this result for the pp
channel but generates a higher normalization for the pn
amplitudes. The above features introduced in the nuclear
structure calculation generate important differences be-
tween the cross sections of Ref. [15] and the results dis-
cussed in Sec. IVB.

B. Calculation of the defect functions

In Eq. (17), the first sum runs over the sp states a
and b that belong to the space P . Thus the expan-
sion in Eq. (15) is limited to configurations within this
model space of two major shells above and two major
shells below the Fermi level. The effects of correlations

on the overlap integral involving Ψi induced by the de-
grees of freedom outside the space P can be included as
in Eq. (7) [see also Eq. (11)]. The effects of SRC are due
to close encounters of two nucleons, which mainly de-
pend on the nuclear density and are not sensitive to the
details of the long-range structure. Therefore we can as-
sume that these processes are decoupled from each other.
Since short-range effects involve high-momentum compo-
nents, they pertain to the degrees of freedom in the space
Q which are described equivalently well by both the R
and G matrices (since they differ mainly for their be-
havior inside the space P). Therefore we substitute for

Ĝ in Eq. (11) the corresponding contribution generated

by the standard Lippmann-Schwinger equation for R̂ [see
Eq. (8)]. In the present work, we follow this prescription
and compute the defect functions according to

|Xi〉 = Q

{

1

ω − T̂ + iη
R̂(ω)

}

|Φi〉 , (18)

where |φi〉 is given by Eq. (15) and the operator Q en-
sures that all the correlations inside P (generated by the
term in curly brackets) are removed, thus avoiding any
double counting. The operator R in Eq. (18) acts only on
the radial part φnl of Eq. (15) leaving the contributions
from RNL untouched. The operator Q is computed ex-
actly and in general can mix the quantum numbers of the
relative and c.m. motion, however, without altering the
form of the expansion (15). Thus the two-nucleon overlap
amplitude Ψi appearing in Eq. (4) can be written as

Ψi(r1σ1, r2σ2) =
∑

lSjNL

RNL(R)Ψ
i
lSjNL(r)

×
[

ℑj
lS(Ωr,σ1,σ2)YL(ΩR)

]JM

, (19)

where the complete radial components

Ψi
lSjNL(r) =

∑

n

cinlSjNLφnl(r) + X i
lSjNL(r) (20)

now include both the effects of LRC and SRC.
The defect functions employed in Ref. [10] were ob-

tained by solving the Bethe-Goldstone only for specific
partial waves in the relative motion and disregarding the
dependence on the c.m. quantum numbers. This simpli-
fication also involves at least an angle-averaging approx-
imation of the Pauli operator Q [33]. The approach fol-
lowed here to compute exactly the operator Q in Eq. (18)
allows to keep track of the dependence of X i

lSjNL on the
c.m. degrees of freedom. Noting that the present interest
concerns the high-momentum components due to SRC,
it is natural to consider Eq. (18) as an improvement with
respect to the approach of Ref. [10].

IV. RESULTS FOR PROTON-NUCLEON
KNOCKOUT CROSS SECTIONS

In this section numerical results are presented for
the cross sections of the reactions 16O(e, e′pp)14C and
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16O(e, e′pn)14N to the lowest-lying discrete states in the
residual nucleus that are expected to be strongly pop-
ulated by direct knockout of two nucleons. The main
aim of this study is to investigate the role of correla-
tions, that are consistently included in the two-nucleon
overlap amplitudes for the proton-proton and the proton-
neutron emission processes. Of particular interest is also
the comparison with the (e, e′pp) results of Ref. [10], as
the present approach represents an improvement, and
with the (e, e′pn) results of Ref. [15], where a different de-
scription was used to calculate the proton-nucleon over-
lap amplitudes.

A. The 16O(e, e′pp)14C reaction

Calculations have been performed for three low-lying
positive parity states of 14C: the 0+ ground state, the
1+ state at 11.3 MeV, and the 2+ state at 7.67 MeV,
which corresponds to the two 2+ states at 7.01 and 8.32
in the experimental spectrum [49]. These states are of
particular interest since they can be separated in high-
resolution experiments [5–8].
As an example, we have considered the so-called super-

parallel kinematics [30], where the knocked-out nucleons
are detected parallel and antiparallel to the transferred
momentum q. In this kinematics, for a fixed value of the
energy and momentum transfer it is possible to explore,
for different values of the kinetic energies of the outgoing
nucleons, all possible values of the recoil momentum.
The super-parallel kinematics is favored by the fact

that only two structure functions, the longitudinal and
transverse ones, contribute to the cross section. These
can in principle be separated by a Rosenbluth plot in a
way analogous to the inclusive electron scattering [30].
This kinematical setting is also favorable from the ex-
perimental point of view. It has been realized in a re-
cent 16O(e, e′pp)14C experiment at MAMI [8] and has
been proposed for the first experimental study of the
16O(e, e′pn)14N reaction [11]. The choice of the same
kinematics for proton-proton and proton-neutron emis-
sion is of particular interest for the comparison of cross
sections and reaction mechanisms and for the investiga-
tion of correlations and of their contributions in the two
processes.
The calculated differential cross sections of the reac-

tion 16O(e, e′pp) to the three final states in super-parallel
kinematics are displayed in Fig. 1. The separate con-
tributions of the one-body and the two-body ∆ current
are also shown in the figure. Note that the seagull and
pion-in-flight meson-exchange currents do not contribute
in proton-proton emission, at least in the nonrelativistic
limit considered here.
It was widely discussed in previous studies [5, 10] how

resolution of discrete final states may provide a tool to
discriminate between contributions from one-body cur-
rents, due to SRC, and two-body currents. The results
in Fig. 1 confirm the selectivity of the 16O(e, e′pp)14C re-

FIG. 1: The differential cross section of the reaction
16O(e, e′pp) to the low-lying states of 14C: the 0+ ground
state, the 1+ state at 11.31 MeV, and the 2+ state at 7.67
MeV. A super-parallel kinematics is considered with E0 = 855
MeV, ω = 215 MeV q = 316 MeV/c. Different values of the
recoil momentum pB are obtained changing the kinetic en-
ergies of the outgoing protons. Positive (negative) values of
the recoil momentum refer to situations where pB is parallel
(anti-parallel) to q. Separate contributions of the one-body
and the two-body ∆ current are shown by the dotted and
dashed lines, respectively. The solid curves give the final re-
sult.
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action involving discrete final states which are differently
affected by the two reaction processes. The one-body
current represents the main contribution for the transi-
tions to the 0+ and 2+ states, while the transition to the
1+ state is dominated by the ∆ current. This result is
due to the fact that the 0+ and 2+ states are reached
predominantly by the removal of 1S0 pairs, whose wave
functions are strongly affected by SRC. In contrast, the
1+ state is reached by the removal of 3P pairs, where
SRC only have a minor effect.

The two-nucleon overlap for each transition is char-
acterized by different components of relative and c.m.
motion. The relative weights of these components de-
termine the weight of the contributions of the one-body
and two-body currents in the cross section and the shape
of the recoil-momentum distribution, which is driven by
the c.m. orbital angular momentum L of the knocked
out pair. This feature is fulfilled in a factorized ap-
proach [50], where final-state interaction is neglected and
pB is opposite to the total momentum of the initial nu-
cleon pair, and remains valid when final-state interaction
are included [10, 17].

For the transition to the 0+ state there are the follow-
ing components of relative motion: 1S0, which is com-
bined with a c.m. L = 0, 3P1, combined with L = 1, and
1D2, combined with L = 2. The contribution from 1D2

is negligible and the cross section is dominated by the
removal of a 1S0 pair, and thus by SRC, at low values of
pB. The

3P1 component and thus the ∆ current become
more important at larger values of the momentum, where
the contribution of the c.m. component L = 0 is strongly
reduced.

The 1+ state is predominantly obtained from the 3P0,
3P1, and

3P2 waves, always combined with a L = 1 c.m.
wave function. This explains the p-wave shape of the
recoil-momentum distribution and the dominant role of
the two-body ∆ current in the cross section. The com-
ponents 3P2, combined with L = 3, and 1D2, combined
with L = 2, are also included in the calculation, but they
give a negligible contribution.

For the transition to the 2+ state there are the follow-
ing components of relative motion: 1S0, which is com-
bined with a c.m. L = 2, 3P1 and 3P2, both combined
with L = 1 and L = 3, and 1D2, combined with L = 0
and L = 2. The main contribution is given by the 1S0

component, which explains the d-wave shape of the mo-
mentum distribution and the dominant role of the one-
body current in the calculated cross section.

These results do not change the qualitative features of
the cross section calculated in Ref. [10]. The quantita-
tive differences are displayed in Fig. 2. These differences
are produced by the detailed treatment of LRC in the
removal amplitudes and by the new calculation of the
defect functions, accounting for SRC, in the present ap-
proach. The substantial reduction of the cross section
for the 0+ state at low values of the recoil momentum
is produced by the new defect functions, while the in-
crease at higher momenta is the result of the combined

FIG. 2: The differential cross section of the reaction
16O(e, e′pp)14C for the same transitions and in the same kine-
matics as in Fig. 1. The solid lines are the results of the
present calculation and the dashed lines are the results of
Ref. [10].

effect of the new amplitudes and defects functions. Qual-
itatively similar but smaller effects are found for the 2+

state. Since the transition to the 1+ is not very sensitive
to SRC, the enhancement of this cross section is predom-
inantly due to the new removal amplitudes. These differ
from the ones of Ref. [10] by the contribution from the
minor cinlSjNL coefficients of Eq. (17).
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FIG. 3: The differential cross section of the reaction
16O(e, e′pp) to the 0+ ground state of 14C as a function of the
angle γ2, between q and p′

2, in a kinematics with E0 = 584
MeV, ω = 212 MeV, q = 300 MeV/c, T ′

1 = 137 MeV and
the angle γ1, between p′

1 and q, γ1 = −30o, on the opposite
side of the outgoing electron with respect to the momentum
transfer. Changing the angle γ2, different values of the re-
coil momentum pB are explored in the range between −250
and 300 MeV/c, including the zero value at γ2 ≃ 120o. Line
convention as in Fig. 2.

Another example of the comparison between the re-
sults of the present and the previous approach of Ref. [10]
is shown in Fig. 3, for the transition to the 0+ state.
Calculations have been performed in a kinematical set-
ting that was included in the experiments carried out at
NIKHEF [6, 7]. Also in this kinematics the cross sections
are dominated by the removal of a 1S0 pair, and there-
fore by the one-body current, at low momenta, whereas
the 3P1 component, and thus the ∆ current, becomes
important only at larger values of the recoil momentum.
The differences between the two results are similar to
those found for the same final state in the super-parallel
kinematics of Fig. 2: the cross section calculated in the
present approach is reduced at low values of pB, where
the cross section in Fig. 3 has the maximum, and it is
enhanced at higher values of pB. Also in this case the
reduction is produced by the new defect functions. The
effect, however, is smaller than in Fig. 2.
Although the cross sections calculated in the present

approach do not change the qualitative features of the
results obtained in Ref. [10], the numerical differences
confirm that the cross sections are very sensitive to the
treatment of correlations in the two-nucleon overlap am-
plitude. SRC, which are included in the defect functions,
predominantly affect the part involving the one-body cur-
rent. LRC are accounted for in the removal amplitudes
of Eq. (17), which determine the weight of the different
components of relative and c.m. motion. The shape and
size of the cross section as well as the role of the one-body

and two-body currents can thus be affected by both types
of correlations. Moreover, it should be noted that a con-
sistent treatment of SRC and LRC, which represents an
important merit of the present approach, entails that the
two contributions are not independent.

B. The 16O(e, e′pn)14N reaction

Calculations have been performed for the two lowest-
lying discrete states in the residual nucleus 14N, both
with positive parity and T = 0: the 1+1 ground state and
the 1+2 state at 3.95 MeV.
The differential cross sections of the reaction

16O(e, e′pn)14N to the two final states in the same super-
parallel kinematics already considered in Fig. 1 for the
reaction 16O(e, e′pp)14C are displayed in Fig. 4. Separate
contributions of the different terms of the nuclear current
are also shown in the figure. For both final states the ∆
current gives the most important contribution: it is domi-
nant over the whole momentum distribution shown in the
figure for the 1+2 state and for recoil-momentum values
up to about 100 MeV/c for the ground state. At higher
values of pB the contribution of the one-body current be-
comes for 1+1 comparable and therefore competitive with
the one of the ∆ current. The contributions of the seag-
ull and pion-in-flight terms are very small and generally
much smaller than the one of the one-body current.
The comparison with the corresponding cross sections

calculated in the approach of Ref. [15] is shown in Fig. 5.
The results of the present approach are always larger than
those of Ref. [15]. For the 1+1 state the differences are
within 20% for recoil-momentum values lower than 100
MeV/c and huge at higher values, where the cross section
calculated in the present approach overshoots by an order

FIG. 4: The differential cross section of the reaction
16O(e, e′pn) to the 1+1 ground state and the 1+2 state (at 3.95
MeV) of 14N in the same super-parallel kinematics as in Fig. 1.
The proton is emitted parallel and the neutron antiparallel to
the momentum transfer. Separate contributions of the one-
body, seagull, pion-in-flight and ∆ current are shown by the
dotted, short-dashed, dot-dashed and long-dashed lines, re-
spectively. The solid line gives the total cross section.
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FIG. 5: The differential cross section of the reaction
16O(e, e′pn)14N for the same transitions and in the same kine-
matics as in Fig. 4. The solid lines are the results of the
present calculation and the dashed lines are the results of
Ref. [15].

of magnitude the result of Ref. [15]. A different situation
is found in the 1+2 state. In this case the present result
overshoots by an order of magnitude the cross section of
Ref. [15] for values of pB up to ≃ 100 MeV/c, while the
differences are strongly reduced at higher momenta.
Therefore, the two models produce cross sections which

differ both in size and shape. Also the contributions of
the various terms in the nuclear current operator can
be different in the two calculations. In both cases the
∆ current dominates the reaction to the 1+2 state. In
contrast, for the 1+1 state the main contribution was given
in Ref. [15] by the one-body and seagull currents up to
pB ≃ 100 MeV/c and by the combined effect of these two
terms with the ∆ current at higher momenta.
The enhancement of the present cross sections is in

part understood by considering the sum of the squared
amplitudes in Tab. II, which in Ref. [15] were normalized
to the hh-DRPA results for the pp case. The difference in
the shape of the cross sections should instead be consid-
ered as a result of the different mixing of configurations
in the two cases and the fact that the hh-DRPA descrip-
tion considered here allows for pair removal also from
particle states. Moreover, the inclusion of fragmentation
generates many other coefficients besides those included
in Tab. II. We also note that somewhat different mod-
els are used to calculate the defect functions in the two
calculations, as well as different NN interactions: Bonn-
C [40] here and Argonne v14 [51] in Ref. [15].
More insight into the cross sections of Fig. 4 and the

comparison with the results of Ref. [15] can be obtained
from the separate contributions of the partial waves of
relative and c.m. motion which are contained in the two-
nucleon overlap function. For the transition to the two
1+ states there are the following relative wave functions:
3S1, combined with a c.m. L = 0 and L = 2, 1P1, com-
bined with L = 1, 3D1, combined with L = 0 and L = 2,
3D2 and 3D3, both combined with L = 2.
The separate contributions of the different partial

FIG. 6: The differential cross section of the reaction
16O(e, e′pn) to the 1+1 ground state of 14N in the same kine-
matics as in Fig. 4. Separate contributions of different par-
tial waves of relative motion are drawn: 3S1,

3D1,
1P1,

3D2,
and 3D3. The dotted lines give the separate contribution of
the one-body current, the dot-dashed lines the sum of the
one-body and seagull currents, the dashed lines the sum of
the one-body, seagull and pion-in-flight currents and the solid
lines the total result, where also the contribution of the ∆
current is added.

waves of relative motion for the transition to the ground
state of 14N are displayed in Fig. 6. These results can
be compared with those shown in Fig. 4 of Ref. [15].
Only a very small contribution is obtained from the 1P1,
3D2, and

3D3 waves. The 1P1 contribution was practi-
cally negligible also in the approach of Ref. [15], where
the 3D2 and 3D3 waves were not included in the calcula-
tion. The most important contribution is given in Fig. 6
by the 3D1 component. This partial wave is dominated
by the ∆ current, which enhances the cross section by
about an order of magnitude at low recoil-momentum
values. The one-body, and also the seagull current, play
the main role in 3S1, but the contribution of this partial
wave is significant only at large values of the recoil mo-
mentum. This explains the result in Fig. 5, where the ∆
current is dominant at low momenta and the one-body
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FIG. 7: The differential cross section of the reaction
16O(e, e′pn) to the 1+2 state of 14N in the same kinematics
as in Fig. 4. Separate contributions of the 3S1 and 3D1 par-
tial waves of relative motion are displayed. Line convention
as in Fig. 6.

current is important only above 100 MeV/c. In contrast,
in Ref. [15] the one-body and the seagull current were
the main terms at low momenta, where the contribution
of 3S1 was larger than the one of 3D1. The shape of the
final cross section in Fig. 5 is obtained from the combi-
nation of the c.m. wave functions with L = 0 and L = 2.
In the present calculation the L = 2 components turn
out to be more relevant than in Ref. [15].
For the 1+2 state only the contributions of the most im-

portant partial waves, 3S1 and 3D1, are drawn in Fig. 7.
The one-body current is dominant in 3S1 and the ∆ cur-
rent in 3D1, where it enhances the cross section by about
an order of magnitude. Therefore, the final cross section
is dominated by the ∆ current in the 3D1 component.
As regards the shape, the contribution of the L = 0 wave
functions of the c.m. motion is larger than in Ref. [15].
A crucial contribution to proton-neutron emission is

given by tensor correlations. These correlations, which
are mainly due to the strong tensor components of the
pion-exchange contribution to the NN interaction, are
very important in the wave function of a proton-neutron
pair, while they are much less important for a proton-
proton pair. Tensor correlations are accounted for in the
defect functions and produce correlated wave functions
also for channels for which the uncorrelated wave func-
tion vanishes. In Ref. [15] the effects of tensor correla-
tions were investigated comparing, for the 3D1 relative
wave function, the contribution of the components al-
ready present in the uncorrelated wave function with the
one of the components due to the coupling induced by
tensor correlations and which are not present in the un-
correlated wave function. Even if tensor correlations are
present in all the components, this was a simple way to
give an idea of the relevance of their contribution.
Likewise here we have performed a calculation of the

cross sections neglecting the defect functions produced
by tensor correlations in those channels for which the un-
correlated wave function vanishes. The results for the 1+1

FIG. 8: The differential cross section of the reaction
16O(e, e′pn)14N for the same transitions, in the same kinemat-
ics and with the same line convention as in Fig. 4. The defect
functions produced by tensor correlations in those channels
for which the uncorrelated wave function vanishes have been
switched off in the calculations.

and 1+2 states are displayed in Fig. 8. A dramatic reduc-
tion of the cross section by about one order of magnitude
is obtained, for both transitions, in comparison with the
complete calculations of Fig. 4. This result clear indicates
the dominant role of tensor correlations in (e, e′pn). The
reduction is large for all the terms of the nuclear cur-
rent, but it is huge for the ∆ current, whose contribution
is reduced by about one order of magnitude in 1+1 and
up to about two orders of magnitude in 1+2 . Therefore,
the ∆ current, which dominates the complete result of
Fig. 4, gives in Fig. 8 a contribution comparable to the
one of the seagull current and the one-body current be-
comes for both states the most important term in the
cross section. This result can be seen in more detail in
Fig. 9, where the separate contributions of the most im-
portant partial waves, 3S1 and 3D1, are displayed in the
calculation where the defect functions produced by ten-
sor correlations are neglected. The contribution of 3S1 is
practically the same as in Figs. 6 and 7, while the con-
tribution of 3D1, is dramatically reduced. The reduction
is particularly strong, of about two orders of magnitude,
for the 1+2 state. Therefore, in the calculations of Figs. 8
and 9 the most important contribution is given by 3S1

and by the one-body current.

These results indicate that tensor correlations domi-
nate the (e, e′pn) cross section. They affect all the terms
of the nuclear current, but produce a particularly strong
enhancement of the ∆- current contribution. This means
that also a situation where the cross section is dominated
by the ∆ current might provide an interesting and use-
ful tool to investigate tensor correlations. Such a situa-
tion can be realized in the (e, e′pn) reaction considered
here and can be also expected in the (γ, pn) reaction,
which therefore deserves further investigation in the fu-
ture. Naturally, the ultimate arbitration of these conjec-
tures must be given by the experimental data.



12

FIG. 9: The differential cross section of the reaction
16O(e, e′pn) the for the same transitions and in the same kine-
matics as in Fig. 4. The defect functions produced by tensor
correlations in those channels for which the uncorrelated wave
function vanishes have been switched off in the calculations.
Separate contributions of the 3S1 and 3D1 partial waves of
relative motion are displayed. Line convention as in Fig. 6.

V. CONCLUSIONS

The 16O(e, e′pN) cross sections have been computed
for the transitions to the ground state, 1+ and 2+ levels of
14C and to the lowest two isoscalar 1+ states of 14N. Both
the emissions of a pp or a pn pair have been computed
by employing the same model for the nuclear structure
and the reaction mechanism.
The overlap functions have been computed by parti-

tioning the Hilbert space, in order to determine the con-
tribution of LRC and SRC separately. The LRC, describ-
ing the collective motion at low energy, are computed
within a model space by solving the hh-DRPA equations
and the effects of fragmentation of the sp strength are
taken into account (self-consistently). The inclusion of
SRC is accomplished by determining appropriate defect
functions. The present work, improves the treatment of
the defect functions employed in the (e, e′pp) calculations
of Refs. [10, 25] and applies the same many-body ap-
proach to the pn emission.
The 16O(e, e′pp) cross sections are found to be similar

to the results of Ref. [10]. The transitions to the 0+ g.s.
and the 2+ state of 14C are shown to be sensitive to the
one-body currents and, therefore, to the effects of SRC.
This is in accordance with previous works. At small recoil

momentum, the reaction rate is found to be lower than
the one of Ref. [10]. This is due to the different treatment
of the defect functions employed in this work. At high
recoil momentum, instead, all the computed 16O(e, e′pp)
cross sections show a slight enhancement due to the inter-
ference between the LRC amplitudes and the new defect
functions. However, the main conclusions of previous
studies of this reaction are not changed, including the
sensitivity of the effects of correlations on the choice of
the final state.
In contrast, the results for the 16O(e, e′pn) reaction are

found to deviate from previous calculations [15]. This is
principally due the different many-body approach em-
ployed in this work, which accounts for the possibility
of extracting two nucleons from orbitals above the Fermi
energy (which are partially occupied in the correlated
g.s.). This results in a drastic change of the shape of
the cross section. Moreover, the normalization of the
two-hole overlap amplitude is higher in the hh-DRPA
approach for the emission of a pn pair than for a pp pair.
The present calculations suggest that both the transi-
tions to the 1+1 and 1+2 states of 14N are dominated by
the contribution from the ∆ current, except for the 1+1
at high recoil momentum where the one-body current is
also important. This situation is different from the re-
sults of Ref. [15] showing that the reaction rate depends
sensitively on the details of the LRC as well. The present
calculation of LRC effects appears to be the most com-
plete one performed for this specific transition. However,
more work on nuclear structure may be required to check
the accuracy of the results obtained. Both the results of
this work and of Ref. [15], suggest that the effect of ten-
sor correlations are important for the pn emission (even
dominant in this case) and that they influence the cross
section principally through the ∆ current. The higher
cross section obtained here is a consequence of the inter-
play between the details of LRC and the tensor correla-
tions included in the defect functions. This feature could
be used to investigate the effects of tensor correlations
by means of (e, e′pn) and (γ, pn) measurements.
In general, all the transitions studied show a strong

sensitivity to the details of nuclear structure and con-
firm that the importance of different types of correlations
and reaction mechanisms is particular to the chosen final
state. While more work can be done on the theoret-
ical side to improve the calculation of these cross sec-
tions [22, 23, 35], it appears clear that two-nucleon emis-
sion experiments should be considered as a very powerful
tool to probe various aspects of nuclear correlations, even
beyond the SRC.
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