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Abstract

A well-known diffuse interface model consists of the Navier-Stokes equations nonlin-
early coupled with a convective Cahn-Hilliard type equation. This system describes
the evolution of an incompressible isothermal mixture of binary fluids and it has
been investigated by many authors. Here we consider a variant of this model where
the standard Cahn-Hilliard equation is replaced by its nonlocal version. More pre-
cisely, the gradient term in the free energy functional is replaced by a spatial con-
volution operator acting on the order parameter ϕ, while the potential F may have
any polynomial growth. Therefore the coupling with the Navier-Stokes equations is
difficult to handle even in two spatial dimensions because of the lack of regularity
of ϕ. We establish the global existence of a weak solution. In the two-dimensional
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case we also prove that such a solution satisfies the energy identity and a dissipative
estimate, provided that F fulfills a suitable coercivity condition.

Keywords: Navier-Stokes equations, nonlocal Cahn-Hilliard equations, incom-
pressible binary fluids, existence of weak solutions.

AMS Subject Classification: 35Q30, 45K05, 76T99.

1 Introduction

A well-known model which describes the evolution of an incompressible isothermal mixture

of two immiscible fluids is the so-called model H (see [29, 26], cf. also [17, 35, 37] and

references therein). This is a diffuse-interface model (cf. [4]) in which the sharp interface

separating the two fluids (e.g., oil and water) is replaced by a diffuse one by introducing

an order parameter ϕ. The dynamics of ϕ, which represents the (relative) concentration

of one of the fluids (or the difference of the two concentrations), is governed by a Cahn-

Hilliard type equation with a transport term. This parameter influences the (average)

fluid velocity u through a capillarity force (called Korteweg force) proportional to µ∇ϕ,

where µ is the chemical potential (see, e.g., [30, Appendix] and references therein). Note

that this force is concentrated close to the diffuse interface.

In a simplified setting where the density % of the mixture is supposed to be constant

as well as the viscosity ν and the mobility m, the model reduces to

ϕt + u · ∇ϕ = m∆µ (1.1)

%ut − ν∆u + (u · ∇)u +∇π = κµ∇ϕ + h (1.2)

div(u) = 0 (1.3)

in Ω × (0, T ), where Ω is a domain in Rd, d = 2, 3, T > 0 is a given final time, π is

the pressure, κ is a given positive constant and h represents volume forces applied to the

binary mixture fluid. The chemical potential µ is the first variation of the free energy

functional (see [14])

E(ϕ) =

∫

Ω

(
ξ

2
|∇ϕ(x)|2 + ηF (ϕ(x))

)
dx. (1.4)

Here F represents the (density of) potential energy. This function is usually a double-

well potential whose wells are located in the pure phases, while ξ and η are given positive

constants. The potential can be defined either on the whole real line (smooth potential)

or on a bounded interval (singular potential). The latter case (in a logarithmic form) is

the most appropriate choice from the modeling viewpoint (cf. [14]), while the former can

be considered as an approximation.
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In the context of statistical mechanics, the square gradient term in (1.4) arises from

attractive long-ranged interactions between the molecules of the fluid and ξ can be related

to the pair correlation function (see, e.g., [4] and references therein). We also recall that

κ and ξ are of the same order as the interface thickness ε > 0, while η is proportional to

ε−1. On account of (1.4), the chemical potential takes the following form

µ = −ξ∆ϕ + ηF ′(ϕ). (1.5)

Systems like (1.1)-(1.5), also known as Cahn-Hilliard-Navier-Stokes systems, have been

studied from the mathematical viewpoint by several authors (see, for instance, [1, 2, 3,

11, 12, 13, 22, 23, 40, 42], cf. also [6, 18, 31, 19, 33, 39] for numerical issues).

A different form of the free energy has been proposed in [24, 25] and rigorously justified

as a macroscopic limit of microscopic phase segregation models with particle conserving

dynamics (see also [15]). In this case the gradient term is replaced by a nonlocal spatial

operator, namely,

E(ϕ) =
1

4

∫

Ω

∫

Ω

J(x− y)(ϕ(x)− ϕ(y))2dxdy + η

∫

Ω

F (ϕ(x))dx, (1.6)

where J : Rd → R is a smooth function such that J(x) = J(−x). Taking the first variation

of E we can define the chemical potential associated with the nonlocal model

µ = aϕ− J ∗ ϕ + ηF ′(ϕ) (1.7)

where

(J ∗ ϕ)(x) :=

∫

Ω

J(x− y)ϕ(y)dy, a(x) :=

∫

Ω

J(x− y)dy, x ∈ Ω. (1.8)

The corresponding nonlocal Cahn-Hilliard equation ϕt = m∆µ can be derived from ideal-

ized microscopic models through suitable limits like the diffusion equation and the Boltz-

mann equation. Moreover, the evolution in the sharp interface limits are the same as those

derived from the classical Cahn-Hilliard equation in the corresponding limits (see [25]).

However, from the mathematical viewpoint, the nonlocal Cahn-Hilliard equation, due to

its integrodifferential nature, is rather difficult to handle (see, e.g., [8, 9, 16, 20, 21, 27, 34]).

Here we consider system (1.1)-(1.3) with (1.7). More precisely, taking for simplicity all

the constants but ν equal to one, we want to study the following initial and boundary

value problem

ϕt + u · ∇ϕ = ∆µ (1.9)

µ = aϕ− J ∗ ϕ + F ′(ϕ) (1.10)

ut − ν∆u + (u · ∇)u +∇π = µ∇ϕ + h (1.11)

div(u) = 0 (1.12)
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∂µ

∂n
= 0, u = 0 on ∂Ω× (0, T ) (1.13)

u(0) = u0, ϕ(0) = ϕ0 in Ω, (1.14)

where Ω ⊂ Rd, d = 2, 3, is a bounded domain with sufficiently smooth boundary and

unit outward normal n. The no-flux boundary condition for µ is the usual one for Cahn-

Hilliard type equations (cf., e.g., [8]) and implies the conservation of mass (see Remark

5 below). The no-slip boundary condition for u is also standard especially when one

wants to investigate a new model involving Navier-Stokes equations (periodic boundary

conditions can also be considered).

In this contribution we prove the existence of a global weak solution for smooth po-

tentials F of arbitrary polynomial growth. Moreover, if F satisfies a suitable coercivity

condition then we can slightly improve the smoothness properties of the solution. In par-

ticular, we show the validity of an energy identity if d = 2. These results are a first step

towards the mathematical analysis of problem (1.9)-(1.14). However, further issues (such

as, e.g., uniqueness in two dimensions) do not seem so straightforward to prove. The main

difficulty arises from the presence of the nonlocal term which implies that ϕ is not as reg-

ular as for the standard (local) Cahn-Hilliard-Navier-Stokes system (cf. Remark 8 below).

For this reason, we have not been able even to establish uniqueness of weak solutions in

two dimensions. We conclude by mentioning that there are some related works on models

for liquid-vapor phase transitions in which nonlocal energy functionals are considered, i.e.,

the so-called nonlocal Navier-Stokes-Korteweg systems (see, for instance, [28, 38]).

2 Notation and functional setup

Let us set Vs := D(Bs/2) for every s ∈ R, where B = −∆+I with homogeneous Neumann

boundary conditions. Hence we have

V2 = D(B) =

{
v ∈ H2(Ω) :

∂v

∂n
= 0 on ∂Ω

}
.

We also define H := V0 = L2(Ω) and V := V1 = H1(Ω). Then we introduce the classical

Hilbert spaces for the Navier-Stokes equations (see, e.g., [41])

Gdiv := {u ∈ C∞
0 (Ω)d : div(u) = 0}L2(Ω)d

,

and

Vdiv := {u ∈ H1
0 (Ω)d : div(u) = 0}.

We denote by ‖ · ‖ and (·, ·) the norm and the scalar product, respectively, on both H and

Gdiv. We recall that Vdiv is endowed with the scalar product

(u, v)Vdiv
= (∇u,∇v), ∀u, v ∈ Vdiv.
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We also need to introduce the Stokes operator A : D(A) ∩ Gdiv → Gdiv. Recall that, in

the case of no-slip boundary condition (1.13)

A = −P∆, D(A) = H2(Ω)d ∩ Vdiv,

where P : L2(Ω)d → Gdiv is the Leray projector. Notice that we have

(Au, v) = (u, v)Vdiv
= (∇u,∇v), ∀u ∈ D(A), ∀v ∈ Vdiv.

We also recall that A−1 : Gdiv → Gdiv is a self-adjoint compact operator in Gdiv and by

the classical spectral theorems there exists a sequence λj with

0 < λ1 ≤ λ2 ≤ · · · , λj →∞,

and a family of wj ∈ D(A) which is orthonormal in Gdiv and such that

Awj = λjwj.

Finally, for u, v, w ∈ Vdiv we define the trilinear Vdiv−continuous form

b(u, v, w) =

∫

Ω

(u · ∇)v · w,

and the bilinear operator B from Vdiv × Vdiv into V ′
div defined by

〈B(u, v), w〉 = b(u, v, w), ∀u, v, w ∈ Vdiv.

We recall that we have

b(u,w, v) = −b(u, v, w), ∀u, v, w ∈ Vdiv, (2.1)

and that, for every u, v and w ∈ Vdiv, the following estimates hold

|b(u, v, w)| ≤ c‖u‖1/2‖∇u‖1/2‖∇v‖‖∇w‖, for d = 3, (2.2)

|b(u, v, w)| ≤ c‖u‖1/2‖∇u‖1/2‖∇v‖‖w‖1/2‖∇w‖1/2, for d = 2. (2.3)

In this paper c will stand for a nonnegative constant depending possibly only on J ,

f , Ω, ν and T . The value of c may vary even within the same line. We shall denote by

N , M or L generic nonnegative constants that depend on the initial data u0, ϕ0 and on

h and whose values will be explicitly pointed out if needed.

3 Main result

In this section we first define the notion of weak solution to problem (1.9)-(1.14) which will

be called Problem P. Then we state the main result of this paper and a related corollary.

Our assumptions on the kernel J , the potential F and the forcing term h are the

following (cf. also (1.8))
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(H1) J ∈ W 1,1(Rd), J(x) = J(−x), a(x) :=

∫

Ω

J(x− y)dy ≥ 0, a.e. x ∈ Ω.

(H2) F ∈ C2(R) and there exists c0 > 0 such that

F ′′(s) + a(x) ≥ c0, ∀s ∈ R, a.e. x ∈ Ω.

(H3) There exist c1 > 1
2
‖J‖L1(Rd) and c2 ∈ R such that

F (s) ≥ c1s
2 − c2, ∀s ∈ R.

(H4) There exist c3 > 0, c4 ≥ 0 and p ∈ (1, 2] such that

|F ′(s)|p ≤ c3|F (s)|+ c4, ∀s ∈ R.

(H5) h ∈ L2(0, T ; V ′
div) for all T > 0.

Remark 1. The requirements of assumption (H1) are standard for the nonlocal Cahn-

Hilliard equation (see, e.g., [8] for slightly stronger hypotheses).

Remark 2. Assumption (H2) implies that the potential F is a quadratic perturbation of

a (strictly) convex function. Indeed, if we set a∗ := ‖a‖∞, then F can be represented as

F (s) = G(s)− a∗

2
s2, (3.1)

with G ∈ C2(R) strictly convex, since G′′ ≥ c0 in Ω.

Remark 3. Assumption (H4) is fulfilled by a potential of arbitrary polynomial growth.

In particular, (H2)-(H4) are satisfied for the case of the physically relevant double-well

potential, i.e.

F (s) = (s2 − 1)2.

In this case we take p = 4/3 in (H4), while assumption (H2) is satisfied if and only if we

have a ≥ c0 + m0, where m0 = −mins∈R F ′′(s).

By weak solution we mean

Definition 1. Let u0 ∈ Gdiv, ϕ0 ∈ H with F (ϕ0) ∈ L1(Ω) and 0 < T < +∞ be given.

Then [u, ϕ] is a weak solution to Problem P on [0, T ] corresponding to u0 and ϕ0 if

• u, ϕ and µ satisfy

u ∈ L∞(0, T ; Gdiv) ∩ L2(0, T ; Vdiv), (3.2)

ut ∈ L4/3(0, T ; V ′
div), if d = 3, (3.3)

ut ∈ L2−γ(0, T ; V ′
div), ∀γ ∈ (0, 1), if d = 2, (3.4)
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ϕ ∈ L∞(0, T ; H) ∩ L2(0, T ; V ), (3.5)

ϕt ∈ L4/3(0, T ; V ′), if d = 3, (3.6)

ϕt ∈ L2−δ(0, T ; V ′), ∀δ ∈ (0, 1), if d = 2, (3.7)

µ = aϕ− J ∗ ϕ + F ′(ϕ) ∈ L2(0, T ; V ). (3.8)

• setting

ρ(x, ϕ) := a(x)ϕ + F ′(ϕ), (3.9)

then, for every ψ ∈ V , every v ∈ Vdiv and for almost any t ∈ (0, T ) we have

〈ϕt, ψ〉+ (∇ρ,∇ψ) =

∫

Ω

(u · ∇ψ)ϕ +

∫

Ω

(∇J ∗ ϕ) · ∇ψ, (3.10)

〈ut, v〉+ ν(∇u,∇v) + b(u, u, v) = −
∫

Ω

(v · ∇µ)ϕ + 〈h, v〉. (3.11)

• the following initial conditions hold

u(0) = u0, ϕ(0) = ϕ0. (3.12)

Remark 4. Since ρ = µ + J ∗ ϕ, from Definition 1 we have that ρ ∈ L2(0, T ; V ).

Remark 5. It is immediate to see that the total mass is conserved. Indeed, choosing

ψ = 1 in (3.10), we have 〈ϕt, 1〉 = 0 whence (ϕ(t), 1) = (ϕ0, 1) for all t ≥ 0.

Remark 6. The initial conditions (3.12) are meant in the weak sense, i.e., for every v ∈
Vdiv we have (u(t), v) → (u0, v) as t → 0, and for every χ ∈ V we have (ϕ(t), χ) → (ϕ0, χ)

as t → 0. It can be proved that u ∈ Cw([0, T ]; Gdiv) and ϕ ∈ Cw([0, T ]; H).

Theorem 1. Let u0 ∈ Gdiv, ϕ0 ∈ H such that F (ϕ0) ∈ L1(Ω) and suppose that (H1)-(H5)

are satisfied. Then, for every T > 0 there exists a weak solution [u, ϕ] to Problem P on

[0, T ] corresponding to u0, ϕ0 with ϕt satisfying

ϕt ∈ L∞(0, T ; V ′
s ), if 1 < p <

d

d− 1
, s =

(4− d)p + 2d

2p
,

ϕt ∈ L∞(0, T ; V ′
s ) ∩ Lr(0, T ; V ′

d+2
2

), if p =
d

d− 1
, s >

d + 2

2
, r ≥ 2,

ϕt ∈ L2p/(2p−3)(0, T ; V ′
s ), if d = 3, 3/2 < p ≤ 2, s =

p + 6

2p
.

Furthermore, setting

E(u(t), ϕ(t)) =
1

2
‖u(t)‖2 +

1

4

∫

Ω

∫

Ω

J(x− y)(ϕ(x, t)− ϕ(y, t))2dxdy +

∫

Ω

F (ϕ(t))

the following energy inequality holds for almost any t > 0

E(u(t), ϕ(t)) +

∫ t

0

(ν‖∇u(τ)‖2 + ‖∇µ(τ)‖2)dτ ≤ E(u0, ϕ0) +

∫ t

0

〈h(τ), u(τ)〉dτ. (3.13)
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On account of the typical examples of double-well smooth potentials (cf. Remark 3),

the following additional assumption sounds reasonable (see, e.g., [8, (A2)])

(H6) F ∈ C2(R) and there exist c5 > 0, c6 > 0 and q > 0 such that

F ′′(s) + a(x) ≥ c5|s|2q − c6, ∀s ∈ R, a.e. x ∈ Ω.

This requirement can replace (H3) in the proof of Theorem 1 (see (3.14) below). Indeed,

(H6) implies the existence of c7 > 0 and c8 > 0 such that

F (s) ≥ c7|s|2+2q − c8, ∀s ∈ R. (3.14)

Moreover, (H6) leads to establish further regularity properties for ϕ, ϕt, ut. This is stated

in the following

Corollary 1. Suppose that the assumptions of Theorem 1 with (H3) replaced by (H6).

Then, for every T > 0 there exists a weak solution [u, ϕ] to Problem P on [0, T ] corre-

sponding to [u0, ϕ0] such that

ϕ ∈ L∞(0, T ; L2+2q(Ω)), (3.15)

ϕt ∈ L2(0, T ; V ′), if d = 2 or d = 3 and q ≥ 1/2, (3.16)

ut ∈ L2(0, T ; V ′
div), if d = 2, (3.17)

and

ϕt ∈ L∞(0, T ; V ′
s ), if

{
d = 2, 3, 1 < p ≤ d

d−1
,

d = 3, 3/2 < p ≤ 2, q ≥ 2(2p−3)
6−p

,
(3.18)

ϕt ∈ Lσ(0, T ; V ′
s ), if d = 3, 3/2 < p ≤ 2, 0 < q <

2(2p− 3)

6− p
, (3.19)

where s = ((4− d)p + 2d)/2p and in (3.19) the exponent σ is given by

σ =
2p(1− q

2
)

(2p− 3)− q(3− p
2
)
.

In two dimensions, as further consequences of (H6), we can prove the energy identity

and a dissipative estimate, provided that h ∈ L2
tb(0,∞; V ′

div), that is

‖h‖2
L2

tb(0,∞;V ′div) := sup
t≥0

∫ t+1

t

‖h(τ)‖2
V ′div

dτ < ∞.

Indeed, we have
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Corollary 2. Let d = 2 and suppose that the assumptions of Theorem 1 with (H3) replaced

by (H6) hold. Then the weak solution [u, ϕ] to Problem P corresponding to [u0, ϕ0] satisfies

d

dt
E(u, ϕ) + ν‖∇u‖2 + ‖∇µ‖2 = 〈h, u〉. (3.20)

Therefore, (3.13) with the equal sign holds for every t ≥ 0. Furthermore, if in addition

h ∈ L2tb(0,∞; V ′
div), then the following dissipative estimate is satisfied

E(u(t), ϕ(t)) ≤ E(u0, ϕ0)e
−kt + F (m)|Ω|+ K, ∀t ≥ 0, (3.21)

where m = (ϕ0, 1) and k, K are two positive constants which are independent of the initial

data, with K depending on Ω, ν, J , F , ‖h‖L2
tb(0,∞;V ′div).

Remark 7. It follows from Corollary 1 that, in two dimensions, u ∈ C([0, T ]; Gdiv) and

ϕ ∈ C([0, T ]; H). This fact along with the validity of an energy identity suggests that

the generalized semiflow approach devised in [5] (see also [36]) might be applied to our

system. If so, one should be able to establish the existence of a global attractor. This is

one of the issues which will be investigated in a forthcoming paper.

4 Proof of Theorem 1

The proof will be carried out by means of a Faedo-Galerkin approximation scheme. We

will assume first that ϕ0 ∈ D(B). The existence under the stated assumption on ϕ0

will be recovered by a density argument by exploiting the form of the potential F as a

quadratic perturbation of a convex function (see Remark 2).

We introduce the family {wj}j≥1 of the eigenfunctions of the Stokes operator A as

a Galerkin base in Vdiv and the family {ψj}j≥1 of the eigenfunctions of the Neumann

operator

B = −∆ + I

as a Galerkin base in V . We define the n−dimensional subspaces Wn := 〈w1, · · · , wn〉
and Ψn := 〈ψ1, · · · , ψn〉 and consider the orthogonal projectors on these subspaces in Gdiv

and H, respectively, i.e., P̃n := PWn and Pn := PΨn . We then look for three functions of

the form

un(t) =
n∑

k=1

a
(n)
k (t)wk, ϕn(t) =

n∑

k=1

b
(n)
k (t)ψk, µn(t) =

n∑

k=1

c
(n)
k (t)ψk

which solve the following approximating problem

(ϕ′n, ψ) + (∇ρ(·, ϕn),∇ψ) =

∫

Ω

(un · ∇ψ)ϕn +

∫

Ω

(∇J ∗ ϕn) · ∇ψ (4.1)
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(u′n, w) + ν(∇un,∇w) + b(un, un, w) = −
∫

Ω

(w · ∇µn)ϕn + (hn, w) (4.2)

ρ(·, ϕn) := a(·)ϕn + F ′(ϕn) (4.3)

µn = Pn(ρ(·, ϕn)− J ∗ ϕn) (4.4)

ϕn(0) = ϕ0n, un(0) = u0n, (4.5)

for every ψ ∈ Ψn and every w ∈ Wn, where ϕ0n = Pnϕ0 and u0n = P̃nu0 (primes denote

derivatives with respect to time). In (4.2) hn ∈ C0([0, T ]; Gdiv) and, on account of (H5),

we choose the sequence of hn in such a way that hn → h in L2(0, T ; V ′
div). It is easy to see

that this approximating problem is equivalent to solving a Cauchy problem for a system

of ordinary differential equations in the 2n unknowns a
(n)
i , b

(n)
i . Since F ′ ∈ C1(R), the

Cauchy-Lipschitz theorem ensures that there exists T ∗
n ∈ (0, +∞] such that this system

has a unique maximal solution a(n) := (a
(n)
1 , · · · , a

(n)
n ), b(n) := (b

(n)
1 , · · · , b

(n)
n ) on [0, T ∗

n)

and a(n), b(n) ∈ C1([0, T ∗
n);Rn).

We now derive some a priori estimates in order to show that T ∗
n = +∞ for every

n ≥ 1 and that the sequences of ϕn, un and µn are bounded in suitable functional spaces.

By using µn as a test function in (4.1), un as a test function in (4.2) and recalling that

b(un, un, un) = 0 (see (2.1)), we obtain

(ϕ′n, µn) + (∇ρ(·, ϕn),∇µn) =

∫

Ω

(un · ∇µn)ϕn +

∫

Ω

(∇J ∗ ϕn) · ∇µn

1

2

d

dt
‖un‖2 + ν‖∇un‖2 = −

∫

Ω

(un · ∇µn)ϕn + (hn, un).

We now have

(ϕ′n, µn) = (ϕ′n, aϕn + F ′(ϕn)− J ∗ ϕn)

=
d

dt

(1

2
‖√aϕn‖2 +

∫

Ω

F (ϕn)− 1

2
(ϕn, J ∗ ϕn)

)

=
d

dt

(1

4

∫

Ω

∫

Ω

J(x− y)(ϕn(x)− ϕn(y))2dxdy +

∫

Ω

F (ϕn)
)
. (4.6)

Here we have used the fact that (φ, J ∗ψ) = (ψ, J ∗φ) since J(x) = J(−x). Furthermore,

observe that

(∇ρ(·, ϕn),∇µn) = (−ρ(·, ϕn), ∆µn) = (−ρn, ∆µn) = (∇ρn,∇µn),

where ρn := Pnρ(·, ϕn) = µn + Pn(J ∗ ϕn). Summing the first two identities and taking

the previous relations into account we get

1

2

d

dt

(
‖un‖2 +

1

2

∫

Ω

∫

Ω

J(x− y)(ϕn(x)− ϕn(y))2dxdy + 2

∫

Ω

F (ϕn)
)

+ν‖∇un‖2 + ‖∇µn‖2 + (∇(Pn(J ∗ ϕn)),∇µn)
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=

∫

Ω

(∇J ∗ ϕn) · ∇µn + (hn, un). (4.7)

Now, it is easy to see that

‖∇(Pn(J ∗ ϕn))‖ ≤ ‖B1/2Pn(J ∗ ϕn)‖
≤ ‖∇J ∗ ϕn‖+ ‖J ∗ ϕn‖ ≤ ‖J‖W 1,1‖ϕn‖, (4.8)

and that, by means of (H3), we have

1

2

∫

Ω

∫

Ω

J(x− y)(ϕn(x)− ϕn(y))2dxdy + 2

∫

Ω

F (ϕn)

= ‖√aϕn‖2 + 2

∫

Ω

F (ϕn)− (ϕn, J ∗ ϕn)

≥
∫

Ω

(a + 2c1 − ‖J‖L1)ϕ2
n − 2c2|Ω| ≥ α‖ϕn‖2 − c, (4.9)

where α = 2c1 − ‖J‖L1 > 0. Hence, integrating (4.7) with respect to time between 0 and

t ∈ (0, T ∗
n) and using (4.8), (4.9), we are led to the following integral inequality

‖un‖2 + α‖ϕn‖2 +

∫ t

0

(ν‖∇un‖2 + ‖∇µn‖2)dτ ≤ c‖J‖2
W 1,1

∫ t

0

‖ϕn‖2dτ

+‖u0n‖2 +
1

2

∫

Ω

∫

Ω

J(x− y)(ϕ0n(x)− ϕ0n(y))2dxdy

+2

∫

Ω

F (ϕ0n) +
1

2ν

∫ t

0

‖hn‖2
V ′div

dτ + c

≤ M +
1

2ν

∫ t

0

‖h‖2
V ′div

dτ + c

∫ t

0

‖ϕn‖2dτ, ∀t ∈ [0, T ∗
n), (4.10)

where c only depends on ‖J‖W 1,1 and on |Ω|, while M is given by

M = c
(
1 + ‖u0‖2 + ‖ϕ0‖2 +

∫

Ω

F (ϕ0)
)
. (4.11)

Here we have used the fact that, since ϕ0 is supposed to belong to D(B), then we have

ϕ0n → ϕ0 in H2(Ω) and hence also in L∞(Ω) (for d = 2, 3). Since we have ‖un(t)‖ =

|a(n)(t)| and ‖ϕn(t)‖ = |b(n)(t)|, by means of Gronwall lemma we deduce that T ∗
n = +∞,

for every n ≥ 1, i.e., problem (4.1)-(4.5) has a unique global in time solution, and that

(4.10) is satisfied for every t ≥ 0. Furthermore, we obtain the following estimates holding

for any given 0 < T < +∞

‖un‖L∞(0,T ;Gdiv)∩L2(0,T ;Vdiv) ≤ N, (4.12)

‖ϕn‖L∞(0,T ;H) ≤ N, (4.13)

‖∇µn‖L2(0,T ;H) ≤ N, (4.14)
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where

N = cM1/2 + c‖h‖L2(0,T ;V ′div),

with c now depending also on T and on ν. From (4.4), (4.14) and recalling (1.8) we now

deduce an estimate for ϕn in L2(0, T ; V ). We have

(µn,−∆ϕn) = (∇µn,∇ϕn) = (−∆ϕn, aϕn + F ′(ϕn)− J ∗ ϕn)

= (∇ϕn, a∇ϕn + ϕn∇a + F ′′(ϕn)∇ϕn −∇J ∗ ϕn)

≥ c0‖∇ϕn‖2 − 2‖∇J‖L1‖∇ϕn‖‖ϕn‖
≥ c0

2
‖∇ϕn‖2 − k‖ϕn‖2, (4.15)

where k = (2/c0)‖∇J‖2
L1 and where we have used (H2). Since

(∇µn,∇ϕn) ≤ c0

4
‖∇ϕn‖2 +

1

c0

‖∇µn‖2,

we get

‖∇µn‖2 ≥ c2
0

4
‖∇ϕn‖2 − c‖ϕn‖2, (4.16)

and (4.13), (4.14), (4.16) yield

‖ϕn‖L2(0,T ;V ) ≤ N. (4.17)

The next step is to deduce an estimate for the sequence of µn in L2(0, T ; V ). To this aim

we first observe that (H4) implies that |F ′(s)| ≤ c|F (s)|+ c for every s ∈ R and therefore

we have
∣∣∣
∫

Ω

µn

∣∣∣ = |(µn, 1)| = |(F ′(ϕn), 1)| ≤
∫

Ω

|F ′(ϕn)| ≤ c

∫

Ω

|F (ϕn)|+ c ≤ N,

since we have ‖F (ϕn)‖L∞(0,T ;L1(Ω)) ≤ N due to (4.7) (integrated in time between 0 and

t ∈ [0, T ]) and (4.9). We have also used the estimates (4.12)-(4.14). Hence, by means of

the Poincaré-Wirtinger inequality, from (4.14) and (4.18) we get

‖µn‖L2(0,T ;V ) ≤ N. (4.18)

We also need an estimate for the sequence {ρ(·, ϕn)}. From (H4) we immediately get

‖ρ(·, ϕn)‖Lp ≤ (c‖a‖L∞‖ϕn‖+ ‖F ′(ϕn)‖Lp) ≤ c
(( ∫

Ω

|F (ϕn)|
)1/p

+ 1
)
≤ N,

and hence we have

‖ρ(·, ϕn)‖L∞(0,T ;Lp(Ω)) ≤ N. (4.19)

The final estimates we need are for the sequences of time derivatives u′n and ϕ′n. Let

us start from the sequence of u′n. Equation (4.2) can be written as

u′n + νAun + P̃nB(un, un) = −P̃n(ϕn∇µn) + P̃nhn (4.20)
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We now have, for d = 3, by using Sobolev embeddings, interpolation between Lp spaces

and (4.13)

‖P̃n(ϕn∇µn)‖V ′div
≤ c‖ϕn‖L3‖∇µn‖ ≤ c‖ϕn‖1/2‖ϕn‖1/2

L6 ‖∇µn‖ ≤ N1/2‖ϕn‖1/2
V ‖∇µn‖.

(4.21)

Therefore, thanks to (4.14) and (4.17), we get

‖P̃n(ϕn∇µn)‖L4/3(0,T ;V ′div) ≤ N2. (4.22)

For the case d = 2, by means of Gagliardo-Nirenberg interpolation inequality in dimension

2 we have, for every 0 < γ < 1

‖P̃n(ϕn∇µn)‖V ′div
≤ c‖ϕn‖L2+γ/(1−γ)‖∇µn‖

≤ c‖ϕn‖2(1−γ)/(2−γ)‖ϕn‖γ/(2−γ)
V ‖∇µn‖

≤ N2(1−γ)/(2−γ)‖ϕn‖γ/(2−γ)
V ‖∇µn‖, (4.23)

so that (4.14) and (4.17) yield

‖P̃n(ϕn∇µn)‖L2−γ(0,T ;V ′div) ≤ N2. (4.24)

Moreover, we have ‖Aun‖V ′div
= ‖un‖Vdiv

, while the treatment of the term P̃nB(un, un) is

classical and, by means of (2.2) and (2.3) we have

‖P̃nB(un, un)‖V ′div
≤ c‖un‖1/2‖un‖3/2

Vdiv
, for d = 3, (4.25)

‖P̃nB(un, un)‖V ′div
≤ c‖un‖‖un‖Vdiv

, for d = 2. (4.26)

Hence, by using (4.22), (4.24) and (4.25), (4.26), and recalling that P̃n ∈ L(V ′
div, V

′
div),

which implies that

‖P̃nhn‖L2(0,T ;V ′div) ≤ c(1 + ‖h‖L2(0,T ;V ′div)),

from (4.20) we obtain

‖u′n‖L4/3(0,T ;V ′div) ≤ L, for d = 3, (4.27)

‖u′n‖L2−γ(0,T ;V ′div) ≤ L, ∀γ ∈ (0, 1), for d = 2, (4.28)

where L = N2 + N .

In order to derive an estimate for the sequence of ϕ′n, we aim to take the test function

ψ ∈ Vs in (4.1), where s ≥ 2 is such that ∆ψ ∈ Hs−2(Ω) ↪→ Lp′(Ω) (p′ is the conjugate

index to p). Since Hs−2 ↪→ Lp∗ , where p∗ = 2d/(d + 4 − 2s), we see that it is enough to

take

s ≥ (4− d)p + 2d

2p
. (4.29)

Let us now decompose ψ as

ψ = ψI + ψII ,
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where ψI = Pnψ =
∑n

k=1(ψ, ψk)ψk ∈ Ψn and ψII = (I − Pn)ψ =
∑∞

k=n+1(ψ, ψk)ψk ∈ Ψ⊥
n

(recall that ψI and ψII are orthogonal in all the Hilbert spaces Vr, for every 0 ≤ r ≤ s),

and notice that we have, due to (4.19)

|(∇ρ(·, ϕn),∇ψI)| = |(ρ(·, ϕn), ∆ψI)|
≤ N‖∆ψI‖Lp′ ≤ N‖ψI‖Vs

≤ N‖ψ‖Vs . (4.30)

Furthermore, it is easy to see that

∣∣∣
∫

Ω

(∇J ∗ ϕn) · ∇ψI

∣∣∣ ≤ c‖∇J‖L1‖ϕn‖‖ψ‖Vs ≤ N‖ψ‖Vs . (4.31)

As far as the first term in the right hand side of (4.1) (written with ψ = ψI) is concerned we

notice that ∇ψI ∈ Hs−1(Ω). Therefore, when 1 < p < d/(d−1) and s = ((4−d)p+2d)/2p

or p = d/(d−1) and s > ((4−d)p+2d)/2p = (d+2)/2, due to the embedding Hs−1 ↪→ L∞,

we have ∣∣∣
∫

Ω

(un · ∇ψI)ϕn

∣∣∣ ≤ c‖un‖‖ϕn‖‖ψ‖Vs ≤ N2‖ψ‖Vs . (4.32)

When p = d/(d − 1) and s = ((4 − d)p + 2d)/2p = (d + 2)/2, due to the embedding

Hs−1 ↪→ Lq for every 1 ≤ q < +∞ and interpolation in Lp spaces, we have, for every

r ≥ 2, that

∣∣∣
∫

Ω

(un · ∇ψI)ϕn

∣∣∣ ≤ c‖un‖‖ψ‖Vs‖ϕn‖L2r/(r−1)

≤ c‖un‖‖ψ‖Vs‖ϕn‖(r−2)/r‖ϕn‖2/r

L4 ≤ N2/r′‖ψ‖Vs‖ϕn‖2/r
V . (4.33)

Finally, in the case d = 3, when 3/2 < p ≤ 2 and s = ((4 − d)p + 2d)/2p = (p + 6)/2p,

due to the embedding Hs−1 ↪→ L3p/(2p−3), we obtain

∣∣∣
∫

Ω

(un · ∇ψI)ϕn

∣∣∣ ≤ c‖un‖‖ψ‖Vs‖ϕn‖L6p/(6−p)

≤ c‖un‖‖ψ‖Vs‖ϕn‖(3−p)/p‖ϕn‖(2p−3)/p

L6

≤ N3/p‖ψ‖Vs‖ϕn‖(2p−3)/p
V . (4.34)

Collecting (4.30)-(4.34), from (4.1) (written with ψ = ψI) we then get

‖ϕ′n‖L∞(0,T ;V ′s ) ≤ L if 1 < p < d′, s =
(4− d)p + 2d

2p
, (4.35)

‖ϕ′n‖L∞(0,T ;V ′s )∩Lr(0,T ;V ′d+2
2

) ≤ L if p = d′, s >
d + 2

2
, r ≥ 2, (4.36)

where d′ = d/(d− 1), while in the case d = 3, if 3/2 < p ≤ 2 we find

‖ϕ′n‖L2p/(2p−3)(0,T ;V ′s ) ≤ L, s =
p + 6

2p
, (4.37)
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where L = N + N2 in all cases.

From the estimates (4.12)-(4.14), (4.17), (4.18), (4.19), (4.27), (4.28), (4.35)-(4.37)

and on account of the compact embeddings

L2(0, T ; V ) ∩H1(0, T ; V ′
s ) ↪→↪→ L2(0, T ; H),

L2(0, T ; Vdiv) ∩W 1,q(0, T ; V ′
div) ↪→↪→ L2(0, T ; Gdiv), ∀q > 1

we deduce that there exist

u ∈ L∞(0, T ; Gdiv) ∩ L2(0, T ; Vdiv), (4.38)

ϕ ∈ L∞(0, T ; H) ∩ L2(0, T ; V ), (4.39)

µ ∈ L2(0, T ; V ), (4.40)

ρ ∈ L∞(0, T ; Lp(Ω)) (4.41)

with

ut ∈ L4/3(0, T ; V ′
div), if d = 3, (4.42)

ut ∈ L2−γ(0, T ; V ′
div), ∀γ ∈ (0, 1), if d = 2,

and

ϕt ∈ L∞(0, T ; V ′
s ), if 1 < p < d′, s =

(4− d)p + 2d

2p
, (4.43)

ϕt ∈ L∞(0, T ; V ′
s ) ∩ Lr(0, T ; V ′

d+2
2

), if p = d′, s >
d + 2

2
, r ≥ 2,

ϕt ∈ L2p/(2p−3)(0, T ; V ′
s ), if d = 3, 3/2 < p ≤ 2, s =

p + 6

2p
,

such that, for a not relabeled subsequence, we deduce

un ⇀ u weakly∗ in L∞(0, T ; Gdiv), (4.44)

un ⇀ u weakly in L2(0, T ; Vdiv), (4.45)

un → u strongly in L2(0, T ; Gdiv), a.e. in Ω× (0, T ), (4.46)

u′n ⇀ ut weakly in L4/3(0, T ; V ′
div), d = 3, (4.47)

u′n ⇀ ut weakly in L2−γ(0, T ; V ′
div), ∀γ ∈ (0, 1), d = 2, (4.48)

ϕn ⇀ ϕ weakly∗ in L∞(0, T ; H), (4.49)

ϕn ⇀ ϕ weakly in L2(0, T ; V ), (4.50)

ϕn → ϕ strongly in L2(0, T ; H), a.e. in Ω× (0, T ), (4.51)

µn ⇀ µ weakly in L2(0, T ; V ), (4.52)

ρ(·, ϕn) ⇀ ρ weakly∗ in L∞(0, T ; Lp(Ω)), (4.53)

and

ϕ′n ⇀ ϕt weakly∗ in L∞(0, T ; V ′
s ), (4.54)
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if 1 < p < d′, with s = ((4− d)p + 2d)/2p,

ϕ′n ⇀ ϕt weakly∗ in L∞(0, T ; V ′
s ), weakly in Lr(0, T ; V ′

d+2
2

), (4.55)

if p = d′, with s > (d + 2)/2 and r ≥ 2,

ϕ′n ⇀ ϕt weakly in L2p/(2p−3)(0, T ; V ′
s ), (4.56)

if d = 3 and 3/2 < p ≤ 2, with s = (p + 6)/2p.

We can now pass to the limit in (4.1)-(4.5) in order to prove that the functions u and

ϕ yield a weak solution to Problem P in the sense of Definition 1, i.e., u, ϕ, µ and ρ

satisfy (1.7), (3.9) and (3.10), (3.11), (3.12). First of all, from the pointwise convergence

(4.51) we have ρ(·, ϕn) → aϕ + F ′(ϕ) almost everywhere in Ω× (0, T ) and therefore from

(4.53) we have ρ = aϕ + F ′(ϕ), i.e. (3.9). Moreover, since µk = Pk(ρ(·, ϕk)− J ∗ ϕk), we

have, for every v ∈ Ψn and every k ≥ n (n is fixed)

∫ T

0

(µk(t), v)χ(t)dt =

∫ T

0

(ρ(·, ϕk)− J ∗ ϕk, v)χ(t)dt, ∀χ ∈ C∞
0 (0, T ).

By passing to the limit as k → ∞ in this identity and using the convergences (4.52),

(4.51) (which implies J ∗ ϕk → J ∗ ϕ strongly in L2(0, T ; V )) and (4.53), on account of

the density of {Ψn}n≥1 in H we get µ = ρ − J ∗ ϕ = aϕ + F ′(ϕ) − J ∗ ϕ, i.e. (1.7). In

particular we obtain ρ ∈ L2(0, T ; V ).

The argument used to recover (3.10) and (3.11) by passing to the limit in (4.1) and (4.2)

of the approximate problem and by exploiting the above convergences is standard and we

only limit ourselves to give a sketch of it. We multiply (4.1) by χ and (4.2) by ω, where

χ, ω ∈ C∞
0 (0, T ) and integrate in time between 0 and T . Due to the above convergences

we can pass to the limit in these equations. In particular the term (∇ρ(·, ϕn),∇ψ) can

be rewritten as (ρ(·, ϕn),−∆ψ) and (4.53) is used. We also recall that in the nonlinear

term b(un, un, w)ω we exploit the strong convergence (4.46) to pass to the limit. The

limit equations thus obtained hold for every ψ ∈ Ψn, every w ∈ Wn (where n is fixed) and

every χ, ω ∈ C∞
0 (0, T ). The density of {Ψn}n≥1 and {Wn}n≥1 in Vs and Vdiv, respectively,

allows us to conclude that u, ϕ, µ and ρ satisfy (3.10) for every ψ ∈ Vs and (3.11) for

every v ∈ Vdiv. Furthermore, observe that (3.10) can be written in the form

〈ϕt, ψ〉 = −(∇µ,∇ψ) + (u, ϕ∇ψ), (4.57)

and consider the contribution of the transport term in (4.57). In the case d = 3, by

arguing as in (4.21) we have

|(u, ϕ∇ψ)| ≤ N1/2‖∇u‖‖ϕ‖1/2
V ‖∇ψ‖, (4.58)

while, in the case d = 2, by arguing as in (4.23) we have

|(u, ϕ∇ψ)| ≤ N2(1−δ)/(2−δ)‖∇u‖‖ϕ‖δ/(2−δ)
V ‖∇ψ‖, (4.59)
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for every δ ∈ (0, 1). From (4.58) and (4.59) we deduce that ϕt(t) can be continuously

extended to V for almost any t > 0 and from these equations and (4.57) we also infer

that

ϕt ∈ L4/3(0, T ; V ′), if d = 3; ϕt ∈ L2−δ(0, T ; V ′), ∀δ ∈ (0, 1), if d = 2.

We hence get (3.6), (3.7) and furthermore, (3.10) and (4.57) hold also for every ψ ∈ V .

Finally, in order to get (3.12), it is enough to integrate (4.1), (4.2) between 0 and t

and pass to the limit for n → ∞ by using the weak convergences above. By integrat-

ing between t0 and t we prove the weak continuity of u and ϕ in Gdiv and H, respectively.

We now prove that the energy inequality (3.13) holds for the weak solution [u, ϕ]

corresponding to the initial data u0 ∈ Gdiv and ϕ0 ∈ D(B). To this aim let us first

observe that, for almost any t ∈ (0, T ) and for a not relabeled subsequence we have

un(t) → u(t) strongly in Gdiv, (4.60)

ϕn(t) → ϕ(t) strongly in H and a.e. in Ω. (4.61)

and that, by means of (H3) and of Fatou’s lemma we have

∫

Ω

F (ϕ(t)) ≤ lim inf
n→∞

∫

Ω

F (ϕn(t)). (4.62)

In addition, it is easy to see that

Pn(J ∗ ϕn) → J ∗ ϕ in L2(0, T ; V ), (4.63)

as a consequence of the convergence J ∗ ϕn → J ∗ ϕ strongly in L2(V ) and of the fact

that Pn ∈ L(V, V ). Hence, by integrating (4.7) between 0 and t, and by passing to

the limit using (4.60)-(4.63), the weak convergences (4.45), (4.52) and the weak lower

semicontinuity of the norm, we immediately get (3.13).

In order to complete the proof of the theorem we now assume that u0 ∈ Gdiv and that

ϕ0 ∈ H such that F (ϕ0) ∈ L1(Ω). For every k ∈ N let us define ϕ0k ∈ D(B) as

ϕ0k :=
(
I +

1

k
B

)−1

ϕ0.

Since B is a maximal monotone operator, we have ϕ0k → ϕ0 in H. Let [uk, ϕk] be a weak

solution corresponding to u0 and ϕ0k, satisfying (3.2)-(3.12) and constructed by the Faedo-

Galerkin scheme as in Theorem 1. We know that [uk, ϕk] satisfies the energy inequality

(3.13) for each k, on the right hand side of which we need to control the nonlinear term

that, by virtue (3.1), can be written as

∫

Ω

F (ϕ0k) =

∫

Ω

G(ϕ0k)− a∗

2
‖ϕ0k‖2. (4.64)
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To this aim we multipy the equation ϕ0k − ϕ0 = − 1
k
Bϕ0k by g(ϕ0k) in L2(Ω), where

g = G′. We obtain
∫

Ω

g(ϕ0k)(ϕ0k − ϕ0) = −1

k

∫

Ω

g(ϕ0k)Bϕ0k

= −1

k

∫

Ω

g′(ϕ0k)|∇ϕ0k|2 − 1

k

∫

Ω

g(ϕ0k)ϕ0k ≤ 0, (4.65)

since g is monotone nondecreasing and we can suppose that g(0) = 0. Therefore, due to

the convexity of G we can write
∫

Ω

G(ϕ0k) ≤
∫

Ω

G(ϕ0) +

∫

Ω

g(ϕ0k)(ϕ0k − ϕ0) ≤
∫

Ω

G(ϕ0). (4.66)

Hence, on account of (4.64) and (4.66) we get the desired control and from (3.13), written

for each weak solution [uk, ϕk], by means of (H3) and of Gronwall lemma, we deduce

the estimates (4.12), (4.13) and (4.14) for uk, ϕk and ∇µk, respectively. By taking the

gradient of µk = aϕk − J ∗ ϕk + F ′(ϕk), multiplying the resulting relation by ∇ϕk in

L2(Ω) and using (H2) we recover the control of the gradient of ϕk from the gradient of µk

(see (4.16)) and therefore, for ϕk we get the estimate (4.17). Moreover, arguing as in the

Faedo-Galerkin approximation scheme above we get (4.18) and (4.19) for µk and ρ(·, ϕk),

and (4.27), (4.28) and (4.35)-(4.37) for the time derivatives u′k and ϕ′k, respectively. By

compactness we hence deduce the existence of four functions u, ϕ, µ and ρ satisfying

(4.38)-(4.43) such that the convergences (4.44)-(4.53) hold. By passing to the limit in

the variational formulation for [uk, ϕk] it is immediate to see that [u, ϕ] is a solution

corresponding to the initial data u0 and ϕ0. This completes the proof of the existence of

a weak solution when u0 ∈ Gdiv and ϕ0 ∈ H such that F (ϕ0) ∈ L1(Ω).

Finally, the energy inequality (3.13) for the solution [u, ϕ] can be obtained by passing

to the limit in the energy inequality (3.13) written for each approximating couple [uk, ϕk],

using the weak/strong convergences (4.44)-(4.53) and Fatou’s lemma, in a similar way as

done above for the Faedo-Galerkin approximate solutions (see (4.60)-(4.62)). In partic-

ular, on account of (3.1), when we pass to the limit in the nonlinear term on the right

hand side we have, by (4.64), (4.66) we infer

lim sup
k→∞

∫

Ω

F (ϕ0k) ≤
∫

Ω

G(ϕ0)− a∗

2
‖ϕ0‖2 =

∫

Ω

F (ϕ0).

The proof of Theorem 1 is now complete.

Remark 8. If we compare estimates (4.27) and (4.28) for the time derivatives u′n in the

case d = 3 and d = 2, respectively, with the analogous estimates that hold in the case

of the local Cahn-Hilliard-Navier-Stokes system (see, e.g., [11]), we see that in the case

d = 3 we obtain the same time regularity exponent 4/3 for both the local and nonlocal

systems. However, in the local system we can estimate ϕn in L∞(0, T ; V ) so that, in two
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dimensions we easily get the exponent 2. For the nonlocal system, this possibility seems

out of reach since we can only estimate ϕn in L2(0, T ; V ). Also, for the same reason, the

transport term in the Cahn-Hilliard equation is less regular so that the bound on ϕ′n is

weaker in comparison with the analog for the local system.

Remark 9. We point out that energy inequality (3.13) can be written in an alternative

form, provided that a suitable condition holds. Indeed, suppose that
∫

Ω

ϕ0 = 0, (4.67)

and that c0 (see (H2)) and J are such that

CP <
c0

2‖∇J‖L1

, (4.68)

where CP is the Poincaré-Wirtinger constant in the inequality

‖ϕ‖ ≤ CP‖∇ϕ‖, ∀ϕ ∈ V s.t.

∫

Ω

ϕ = 0.

Then, we can get the following control of the gradient of ϕ by the gradient of µ

‖∇µ‖2 ≥ β‖∇ϕ‖2, (4.69)

where β = (c0 − 2CP‖∇J‖L1)2 (compare (4.69) with (4.16)). Indeed, by taking the

gradient of µ = aϕ − J ∗ ϕ + F ′(ϕ), multiplying the resulting relation by ∇ϕ and using

(H2) we have
√

β

2
‖∇ϕ‖2 +

1

2
√

β
‖∇µ‖2 ≥ (∇µ,∇ϕ)

≥ c0‖∇ϕ‖2 − 2‖∇J‖L1‖ϕ‖‖∇ϕ‖
≥ (c0 − 2CP‖∇J‖L1)‖∇ϕ‖2 =

√
β‖∇ϕ‖2, (4.70)

whence (4.69). Therefore, as a consequence of (3.13), for the weak solution [u, ϕ] of

Theorem 1 the following energy inequality is satisfied as well

1

2

(
‖u(t)‖2 +

1

2

∫

Ω

∫

Ω

J(x− y)(ϕ(x, t)− ϕ(y, t))2dxdy + 2

∫

Ω

F (ϕ(t))
)

+

∫ t

0

(ν‖∇u(τ)‖2 + β‖∇ϕ(τ)‖2)dτ

≤ 1

2

(
‖u0‖2 +

1

2

∫

Ω

∫

Ω

J(x− y)(ϕ0(x)− ϕ0(y))2dxdy + 2

∫

Ω

F (ϕ0)
)

+

∫ t

0

〈h(τ), u(τ)〉dτ. (4.71)

We recall that CP can be estimated for many important special classes of domains (cf.,

e.g., [32]). For example, if Ω is convex we can take CP = diam(Ω)/π and there exist

convex domains for which this constant is optimal (see [10]).
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5 Proofs of Corollaries 1 and 2

Proof of Corollary 1. Recalling (3.14) and repeating the proof of Theorem 1, in place of

(4.9) we have

1

2

∫

Ω

∫

Ω

J(x− y)(ϕn(x)− ϕn(y))2dxdy + 2

∫

Ω

F (ϕn)

= ‖√aϕn‖2 + 2

∫

Ω

F (ϕn)− (ϕn, J ∗ ϕn)

≥
∫

Ω

((a− ‖J‖L1)ϕ2
n + 2c7|ϕn|2+2q)− 2c8|Ω| ≥ c‖ϕn‖2+2q

L2+2q(Ω) − c, (5.1)

and this estimate, by integrating (4.7) as done above, allows to control the sequence of

ϕn and yields (3.15). All the other estimates for ϕn, un, µn and ρ(·, ϕn) established in the

proof of Theorem 1 still hold. The only estimates that can be improved are the ones for

u′n and ϕ′n. Indeed, for d = 2, in place of (4.23) we can write

‖P̃n(ϕn∇µn)‖V ′div
≤ c‖ϕn‖L2+2q(Ω)‖∇µn‖ ≤ N‖∇µn‖,

and hence we can control the sequence of P̃n(ϕn∇µn) in L2(0, T ; V ′
div). This control,

combined with the control for the other terms in (4.20), yields (3.17). Furthermore,

as far as the sequence of ϕ′n is concerned, we can improve estimates (4.32)-(4.34) by

arguing as in the proof of Theorem 1 and by considering the following cases. Choosing

s = ((4 − d)p + 2d)/2p (cf. (4.29) and (4.30)), when 1 < p ≤ d′ = d/(d − 1), due to the

embeddings Hs−1(Ω) ↪→ L∞(Ω) (if 1 < p < d′) or Hs−1(Ω) ↪→ Lr(Ω) for every r < ∞ (if

p = d′), we have

∣∣∣
∫

Ω

(un · ∇ψI)ϕn

∣∣∣ ≤ c‖un‖‖ϕn‖L2+2q(Ω)‖ψ‖Vs ≤ N‖ψ‖Vs . (5.2)

The same estimate also holds for the case d = 3 when 3/2 < p ≤ 2 and q ≥ 2(2p −
3)/(6− p), where here we use the embedding Hs−1(Ω) ↪→ L3p/(2p−3)(Ω) and the fact that

6p/(6− p) ≤ 2 + 2q. Finally, when d = 3, 3/2 < p ≤ 2 and 0 < q < 2(2p− 3)/(6− p) we

have
∣∣∣
∫

Ω

(un · ∇ψI)ϕn

∣∣∣ ≤ c‖un‖‖ϕn‖L6p/(6−p)(Ω)‖ψ‖Vs

≤ c‖un‖‖ϕn‖2(3−p)(1+q)/p(2−q)

L2+2q(Ω) ‖ϕn‖(4p−6q+pq−6)/p(2−q)

L6(Ω) ‖ψ‖Vs

≤ N‖ϕn‖(4p−6q+pq−6)/p(2−q)
V ‖ψ‖Vs . (5.3)

Hence, on account of (5.2) and (5.3), from (4.1) (written with ψ = ψI) we deduce (3.18)

and (3.19). The improved regularity (3.16) for ϕt can be obtained by estimating the term

(u, ϕ∇ψ) in (4.57) for the case d = 2 as

|(u, ϕ∇ψ)| ≤ c‖∇u‖‖ϕ‖L2+2q(Ω)‖∇ψ‖ ≤ N‖∇u‖‖∇ψ‖,
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and for the case d = 3 and q ≥ 1/2 as

|(u, ϕ∇ψ)| ≤ c‖u‖L2(1+1/q)(Ω)‖ϕ‖L2+2q(Ω)‖∇ψ‖ ≤ N‖∇u‖‖∇ψ‖.

Proof of Corollary 2. For d = 2 the regularity properties (3.16) and (3.17) allow us to

deduce the energy identity for the weak solution. Indeed, in this case we can take and

v = u(τ) in (3.11) and ψ = µ(τ) in (4.57), sum the resulting equations and then integrate

with respect to τ between 0 and t. When we consider the duality product 〈ϕt, µ〉, we are

led to the duality 〈ϕt, F
′(ϕ)〉 which can be rewritten by taking into account that F ′(ϕ) =

g(ϕ) − a∗ϕ, with g ∈ C1(R) monotone increasing. Now, introducing the functional G :

H → R ∪ {+∞} defined as G(ϕ) =
∫
Ω

G(ϕ) if G(ϕ) ∈ L1(Ω) and G(ϕ) = +∞ otherwise,

we have (see [7, Proposition 2.8, Chap. II]) that G is convex, lower semicontinous on

H and ξ ∈ ∂G(ϕ) if and only if ξ = G′(ϕ) = g(ϕ) almost everywhere in Ω. In view of

(3.16) and of the fact that g(ϕ) ∈ L2(0, T ; V ), we can use [16, Proposition 4.2] and get,

for almost any t ∈ (0, T )

〈ϕt, F
′(ϕ)〉 = 〈ϕt, g(ϕ)〉 − a∗〈ϕt, ϕ〉 =

d

dt

(
G(ϕ)− a∗

2
‖ϕ‖2

)
=

d

dt

∫

Ω

F (ϕ).

Therefore, on account of this identity, from (3.11) and (4.57) we obtain

1

2

d

dt

(
‖u‖2 + ‖√aϕ‖2 − (ϕ, J ∗ ϕ) + 2

∫

Ω

F (ϕ)
)

+ ν‖∇u‖2 + ‖∇µ‖2

=
1

2

d

dt

(
‖u‖2 +

1

2

∫

Ω

∫

Ω

J(x− y)(ϕ(x)− ϕ(y))2dxdy + 2

∫

Ω

F (ϕ)
)

+ν‖∇u‖2 + ‖∇µ‖2 = 〈h, u〉, (5.4)

Hence we get (3.20). Furthermore, by integrating between 0 and t we get the energy

identity in integral form, i.e, (3.13) holds with the equal sign for every t ≥ 0.

In order to obtain (3.21), let us multiply equation µ = aϕ − J ∗ ϕ + F ′(ϕ) by ϕ in

L2(Ω). We obtain

(µ, ϕ) =
1

2

∫

Ω

∫

Ω

J(x− y)(ϕ(x)− ϕ(y))2dxdy + (F ′(ϕ), ϕ). (5.5)

Now, observe that, due to (3.18) and to the convexity of G we have

F (0) ≥ F (s) +
a∗

2
s2 − (F ′(s) + a∗s)s

and hence

F ′(s)s ≥ F (s)− a∗

2
s2 − F (0).
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Therefore, from (5.5) we get

(µ, ϕ) ≥ 1

2

∫

Ω

∫

Ω

J(x− y)(ϕ(x)− ϕ(y))2dxdy +

∫

Ω

F (ϕ(t))

−a∗

2
‖ϕ‖2 − c. (5.6)

Set µ = 1
|Ω|

∫
Ω

µ and suppose (ϕ0, 1) = 0 first. Then we have

(µ, ϕ) = (µ− µ, ϕ) ≤ Cp‖∇µ‖‖ϕ‖,
and then, by means of (H6), from (5.6) we have

1

8

∫

Ω

∫

Ω

J(x− y)(ϕ(x)− ϕ(y))2dxdy +
1

2

∫

Ω

F (ϕ) +
c7

2

∫

Ω

|ϕ|2+2q − c9

−a∗

2
‖ϕ‖2 − c ≤ 3

2
‖J‖L1‖ϕ‖2 + ‖∇µ‖2 +

C2
P

2
‖ϕ‖2.

Therefore, we deduce

1

8

∫

Ω

∫

Ω

J(x− y)(ϕ(x)− ϕ(y))2dxdy +
1

2

∫

Ω

F (ϕ) ≤ ‖∇µ‖2 + c10

and hence
1

2
E(u, ϕ) ≤ c11

(ν

2
‖∇u‖2 + ‖∇µ‖2

)
+ c10, (5.7)

where c11 = max(1, 1/2λ1ν), λ1 being the lowest eigenvalue of the Stokes operator A.

We point out that all constants only depend on the parameters of the problem and are

independent of the initial data. Now, by virtue of (3.20) and (5.7) we have

d

dt
E(u, ϕ) + kE(u, ϕ) ≤ l +

1

2ν
‖h‖2

V ′div
, (5.8)

where k = 1/2c11 and l = c10/c11. By means of Gronwall lemma we hence deduce

E(u(t), ϕ(t)) ≤ E(u0, ϕ0)e
−kt + K. (5.9)

with

K =
l

k
+

1

2ν(1− e−k)
‖h‖2

L2
tb(0,∞;V ′div).

If m := (ϕ0, 1) 6= 0, observe that if [u, ϕ] is a weak solution with data [u0, ϕ0] for the

problem with potential F , then [u, ϕ̃], where ϕ̃ = ϕ − m is a weak solution with data

[u0, ϕ0 −m] for the same problem with potential F̃ given by

F̃ (s) := F (s + m)− F (m).

By relying on (5.9) satisfied by the solution [u, ϕ̃], we easily get (3.21).
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[34] S.-O. Londen, H. Petzeltová, Convergence of solutions of a non-local phase-field sys-

tem, Discrete Contin. Dyn. Syst. Ser. S 4 (2011), 653-670.

[35] J. Lowengrub, L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topo-

logical transitions, Proc. R. Soc. London A 454 (1998), 2617-2654.

[36] I. Moise, R. Rosa, X. Wang, Attractors for non-compact semigroups via energy equa-

tions, Nonlinearity 11 (1998), 1369-1393.

[37] A. Morro, Phase-field models of Cahn-Hilliard Fluids and extra fluxes, Adv. Theor.

Appl. Mech. 3 (2010), 409-424.

[38] C. Rhode, On local and non-local Navier-Stokes-Korteweg systems for liquid-vapour

phase transitions, Z. Angew. Math. Mech. 85 (2005), 839-857.

[39] J. Shen, X. Yiang, Energy stable schemes for Cahn-Hilliard phase-field model of two-

phase incompressible flows, Chinese Ann. Math. Ser. B 31 (2010), 743-758.

[40] V.N. Starovoitov, The dynamics of a two-component fluid in the presence of capillary

forces, Math. Notes 62 (1997), 244-254.

[41] R. Temam, Navier-Stokes equations and nonlinear functional analysis, Second edi-

tion, CBMS-NSF Reg. Conf. Ser. Appl. Math., 66, SIAM, Philadelphia, PA, 1995.

[42] L. Zhao, H. Wu, H. Huang, Convergence to equilibrium for a phase-field model for the

mixture of two viscous incompressible fluids, Commun. Math. Sci. 7 (2009), 939-962.

25


