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ABSTRACT: 

Paleozoic rocks in the Cantabrian Zone, the Variscan foreland fold-and-thrust belt on the Iberian Peninsula, have 

been affected by a sequence of diagenetic to epizonal thermal events. Late- to Post-Variscan hot fluid circulation 

caused large-scale burial dolomitization and ore mineralization, mostly in Cambrian and Lower to Middle 

Carboniferous carbonate sucessions. The goal of this study is to analyze and compare the temperatures 

experienced by the carbonate precursor rocks, as well as the under- and overlying siliciclastic ambient rocks to 

gain a better understanding of the thermicity of dolomitization. These temperatures are evaluated based on 

published paleothermal datasets combined with new data obtained from Rock-Eval pyrolysis and vitrinite 

reflectance analysis of Carboniferous rocks rich in organic matter. The overall results indicate that reworking of 

detrital sediments in synorogenic ambient siliciclastics results in an anomalously high thermal maturity recorded 

by bulk rock techniques such as illite crystallinity and Rock-Eval pyrolysis. In situ VR-derived 

paleotemperatures recorded by ambient siliciclastic rocks appear to be higher compared to CAI-derived 

temperatures for carbonate precursor rocks. This variation in thermal maturity is likely related to the analytical 

techniques used to obtain CAI and VR data and the empirical equations applied to calculate corresponding 

paleotemperatures. Conodont fragments were not as sensitive compared to vitrinite, and the color alteration 

process could have suffered from hydrothermal alteration. A secondary cause might be a different response to 

mechanical deformation between siliciclastic and carbonate units during the Variscan and post-Variscan 

geodynamic evolution of the study area. Rigid precursor carbonate units experienced fluid circulation mainly 

along distinct and spaced fractures zones, creating fracture-related dolomite geobodies and ore mineralization. 

Soft ambient siliciclastic rocks experienced more diffuse fluid circulation and heat dissipation. The different 

paleothermometry datasets compiled for the study area indicate that the fluids circulating during Late- to Post-

Variscan times, with associated fracture-related dolomitization and ore mineralization in carbonate precursors, 

are hydrothermal. The highest paleotemperatures were recorded in ambient and precursor rocks in the highly 

tectonized northern part of the study area, where several thrusts and faults allowed intense fluid circulation. 

Positive temperature anomalies within the precursor carbonates correlate well with the occurrence of dolomite 

geobodies and ore mineral deposits. Such anomalies could thus be used as an exploration tool for hydrothermal 

dolomite bodies in analogue sub-surface settings.  
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Introduction 

The Cantabrian Zone (CZ) in Northern Spain represents the Variscan foreland fold-and-thrust belt (FFTB) on the 

Iberian Peninsula. This most external zone of the Iberian Variscan Massif has been affected by several diagenetic 

to epizonal thermal events during its complex geodynamic evolution. Pre-Variscan burial metamorphism is 

responsible for the recorded thermal isograds in the northern and western CZ (Bastida et al. 1999; Brime et al. 

2001). In the southern CZ, the burial metamorphism has been overprinted by two thermal events related to Late- 

to Post-Variscan orocline formation and subsequent lithospheric delamination (Raven and van der Pluijm 1986; 

Gutiérrez-Alonso et al. 2004; Aller et al. 2005). The latter induced the circulation of hot fluids in an extensional 

setting which caused massive fracture-related dolomitization of Paleozoic limestones, creating seismic-scale 

porous dolomite geobodies (Gasparrini et al. 2006b; Lapponi et al. 2013; Muñoz Quijano 2015). These 

geobodies are now exposed and represent world class outcrop analogues for dolomitic subsurface oil and gas 

reservoirs elsewhere (Phipps 1989; Hurley and Budros 1990; Cantrell et al. 2004; Feng et al. 2016).  

A variety of paleothermometers has been applied to deduce the thermal history of the CZ, with the southern 

thrust units in particular. They include the conodont color alteration index (CAI; Raven and van der Pluijm 1986; 

Bastida et al. 1999; Brime et al. 2001; Aller et al. 2005), the Kübler Index (KI) of illite crystallinity (Brime 1981; 

Aller et al. 1987; Marschik 1992; Bastida et al. 1999; Brime et al. 2001), vitrinite reflectance analysis (VR; 

Colmenero and Prado 1993; Frings et al. 2004; Colmenero et al. 2008), fluid inclusion (FI) microthermometry 

(Paniagua et al. 1993; Ayllón et al. 2003; Gasparrini et al. 2006a; Lapponi et al. 2013; Muñoz Quijano 2015) and 

apatite fission-track (AFT) thermochronology (Carrière 2006, Botor and Anczkiewicz 2015). In the southern CZ 

fracture-related dolomites, occurring mostly in Carboniferous carbonates, formed at temperatures between 130 

and 150 °C (based on FI microthermometry; Gasparrini et al. 2006a). The dolomitization has been interpreted as 

hydrothermal (i.e. formed at temperatures at least 10 °C higher than those of the precursor carbonate rocks; sensu 

Machel and Lonnee 2002) based on CAI data from the Carboniferous precursors (Gasparrini et al. 2006b), 

indicating that they experienced maximum temperatures between 70 and 95 °C (Raven and van der Pluijm 

1986). However, the temperatures derived from CAI data do not correspond to the common occurrence of 

ordered mixed-layer illite/smectite in ambient siliciclastic rocks of the southern CZ, indicating temperatures 

above 100 °C (Eberl 1993; Brime et al. 2001; Aller et al. 2005). These observations highlight the need for a 

coherent interpretation of the paleothermal data available for the southern CZ, in order to better constrain the 

thermal conditions of dolomitization, the diagenetic process of prime importance in this area. Up to date, most of 

the paleothermometers listed above have mainly been used to map isograds in order to understand the different 

metamorphic events which affected the CZ. A more exhaustive understanding of the thermal history experienced 

by the Carboniferous precursor and ambient rocks in the southern CZ is thus necessary in order to address the 

thermal constraints of the dolomitization process in such a complex geodynamic setting.   

The present study extends the published paleothermometry database by performing Rock-Eval (RE) pyrolysis 

and VR analysis on organic-rich clay- and mudstones from the Bodón Unit, a tectonostratigraphic unit in the 

southern CZ. The samples were taken from ambient siliciclastic rocks stratigraphically under- and overlying the 

massive dolomitized carbonate units (Visean to Bashkirian) and the newly acquired data are integrated into the 

paleothermal framework of the southern CZ. The aim of this study is to deduce reliable maximum temperatures 

experienced by precursor and ambient rocks of the dolomite geobodies occurring in the study area, to improve 

the understanding of the paleothermal history of the southern CZ, as well as the thermal conditions (geothermal 

versus hydrothermal) which governed the occurrence of the massive dolomitization. Finally, the regional 

distribution of the thermal maturity of precursor and ambient rocks was compared with the regional distribution 

of hydrothermal dolomite geobodies, which allowed to correlate the spatial occurrence of dolomites with thermal 

anomalies in precursor and ambient rocks. This represents a potential new approach to detect hydrothermal 

subsurface geobodies in hydrocarbon and geothermal exploration plays.  
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Geological setting 

Geodynamic history of the Cantabrian Zone (CZ) 

The Cantabrian Mountains of Northern Spain consist of Paleozoic sedimentary rocks, locally covered by minor 

Mesozoic and Cenozoic successions. These Paleozoic rocks represent the FFTB of the Iberian Variscan Massif, 

referred to as the Cantabrian Zone (Julivert 1971; figure 1A).  

The Variscan Orogeny developed a N-S oriented east-verging thin-skinned mountain range, which evolved into a 

secondary thick-skinned orocline during the Upper Carboniferous (ca. 310-295 Ma; Guriérrez-Alonso et al. 

2004, 2012, 2015; Weil et al. 2013). The lithospheric root underneath the orocline centre, roughly corresponding 

to the CZ, thickened, became unstable and lithospheric delamination occurred (ca. 295-285 Ma; Gutiérrez-

Alonso et al. 2004, 2012). The delaminating lithosphere was replaced by upwelling asthenospheric material 

resulting in extension and increased crustal heat flow (Gutiérrez-Alonso et al. 2004; Weil et al. 2013). 

Precambrian rocks exposed in the core of the Narcea Antiform (figure 1A) separate the CZ from the 

metamorphic internal zones of the Variscan Orogen, located to the southwest. The CZ is subdivided into several 

tectonostratigraphic units (Julivert 1971; Pérez-Estaun et al. 1988; figure 1A): the Somiedo-Correcilla, La Sobia-

Bodón, Aramo, Esla, Valsurvio, Ponga, Central Coal Basin, Picos de Europa and Pisuerga-Carrión units. The 

Somiedo-Correcilla and La Sobia-Bodón units are often subdivided into the Somiedo and Correcilla units and 

the La Sobia and Bodón units, respectively. This study is focused on the Bodón Unit, located south of the León 

Fault (a major tectonic lineament that crosscuts a large part of the CZ: figure 1A and B). Recently, the classical 

subdivision of the CZ has been modified by Alonso et al. (2009), based on a new interpretation of the León 

Fault, being an out-of-sequence breaching thrust, duplicating tectonic units. However, in this contribution the 

former subdivision is used, to enable the correlation of the new thermal data obtained from this study with 

thermal data from previous studies. The Bodón Unit is subdivided into three structural nappes: the Gayo, Bodón 

and Forcada nappes (Evers 1967; Marcos 1968; figure 1B). 

During the Cretaceous, an extensional episode occurred related to the opening of the northern Atlantic Ocean 

and the Bay of Biscay located northeast of the CZ (Gong et al. 2008). Overall, the extensional tectonics affecting 

the CZ at the end of the Paleozoic and during the Mesozoic are not well constrained due to a lack of preserved 

sediments (Martín-González et al. 2012).  

The last tectonic event that affected the CZ is related to the Alpine Orogeny, leading to uplift and exhumation of 

the Variscan basement (Alonso et al. 1996; Fillon et al. 2016). This created much of the present topography (i.e. 

the Cantabrian Mountains). The Alpine Orogeny caused minor internal deformation in the CZ, except for slight 

reactivation of faults and thrusts, block tilting and some further shortening (Pulgar et al. 1999).  

Stratigraphy of the Bodón Unit 

In the Bodón Unit, as in most tectonostratigraphic units of the western and southern CZ, Paleozoic rocks were 

thrust along a décollement level located in carbonate rocks of the Lower Cambrian Láncara Fm. (Julivert 1971). 

The CZ is subdivided into a pre-orogenic (pre-Carboniferous) and a synorogenic rock succession 

(Carboniferous), developed during the Variscan Orogeny (Marcos and Pulgar 1982; figure 2). Due to the 

Variscan and Alpine compression, the rock successions in the Bodón Unit were tilted and presently dip 

subvertically, leading to excellent outcropping conditions, particularly along road cuts (figure 3).  

The Láncara Fm. consists of limestones with a lower member composed of synsedimentary to early diagenetic 

dolomite (Zamarreño 1972). Upper Cambrian to Silurian deposits are composed of siliciclastic rocks, with the 

Silurian Formigoso Fm. composed of dark shales. The Devonian is characterized by an alternation of carbonates 

and siliciclastic rocks, with the La Vid Group representing the thickest stratigraphic unit (figure 3A). The Ermita 

Fm. is a transgressive sandstone unit of a few meters thick, deposited during the Upper Devonian (figure 3A). 

The Vegamián Fm. at the base of the Lower Carboniferous is a thin succession (5 to 10 m) of black shales and 

siltstones with phosphate, manganese, markasite and chert nodules (figure 3A). Thin silt- to sandstone 
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intercalations can occur, as well as carbonate lenses of a few cm in thickness. The Vegamián Fm. was deposited 

below wave base at low sedimentation rates under anoxic conditions (Raven 1983). Seibert (1986) correlates the 

deposition of the Vegamián Fm. with eustatic sea-level rise and subsidence. The Vegamián Fm. represents the 

transition to thick carbonate successions filling the Variscan foreland basin during the Lower to Middle 

Carboniferous (Bahamonde et al. 2015). These successions are divided into three formations: the Alba, 

Barcaliente and Valdeteja fms. The Alba Fm. (Late Tournaisian to Late Serpukhovian) is usually less than 30 m 

in thickness and is composed of two nodular limestone packages, interpreted as condensed units deposited on a 

well oxygenated carbonate platform (figure 3A). A member composed of bedded cherts can be found between 

these limestone packages and represents an episode of pelagic sedimentation (Wagner et al. 1971; Sanchez de 

Posada et al. 1990). The overlying Barcaliente Fm. (Late Serpukhovian to earliest Bashkirian) is composed of 

thinly bedded dark mudstones showing a remarkable consistency in both thickness (ca. 300 m) and depositional 

facies over most of the CZ. It reflects a period of uniform carbonate sedimentation in a shallow water, low 

energy, anoxic environment (Evers 1967; Wagner et al. 1971; Dietrich 2005). The Bashkirian Valdeteja Fm. (up 

to 1500 m thick) is made of massive carbonates deposited in a shallow marine platform environment (Winkler 

Prins 1968; Wagner et al. 1971; Dietrich 2005; Chesnel et al. 2015; figure 3B), whose sedimentation is strongly 

influenced by the approaching Variscan orogenic front. The Valdeteja Fm. is diachronically overlain by 

siliciclastic rocks of the Late Bashkirian to Early Moscovian San Emiliano Fm. (Lobato et al. 1984; Alonso et al. 

1990; figure 3B), which filled up the foredeep of the Variscan Orogen (Brouwer and van Ginkel 1964). It is 

composed of claystones (figure 3C), locally with abundant sandstone and carbonate lenses, and coal seams (van 

Ginkel 1965; Wagner and Bowman 1983; Eichmüller 1985; Samankassou 2001). Unconformable Stephanian 

siliciclastic successions occur in local intramontane pull-apart basins (figure 1A), of which the Ciñera-Matallana 

(CM) and Canseco-Rucayo (CR) basins are located closest to the Bodón Unit (Colmenero et al. 2008; figure 1B). 

Permian to Cretaceous sediments are absent in the southern CZ and crop out only locally in the northern CZ 

(Dalmeyer and Martínez-García 1990; figure 1A). They might have been initially deposited and eroded later on 

(Alonso et al. 1996; Gómez-Fernández et al. 2000; Frings et al. 2004; Botor 2012). 

In the Bodón Unit, fracture-related dolomitization mostly affected the Barcaliente and Valdeteja Fms. 

(Gasparrini et al. 2006b; Muñoz Quijano 2015; figure 3D). Smaller dolomite geobodies occur in the Láncara Fm. 

(Lapponi et al. 2013) and in the top layers of the Alba Fm. (Gasparrini et al. 2006b). Detailed petrographic 

descriptions of dolomite exposed in the Bodón Unit have been made by Gasparrini et al. (2006b) and Lapponi et 

al. (2013). Both studies describe dolomite rocks with a typical succession of replacive and void-filling dolomite, 

followed by calcite cementation. Based on the work of Muñoz Quijano (2015) combined with results from aerial 

photographs and mapping, the occurrence of dolomite geobodies in Carboniferous carbonates has been indicated 

on figure 1B. Important ore mineralizations post-date dolomitization, as ore minerals occur in pores and cavities 

created by the dolomitization process (Paniagua et al. 1993; Gasparrini et al. 2006b). 

Thermal history of the CZ 

The Paleozoic rocks of the CZ have been affected by several thermal episodes related to the complex 

geodynamic history of the area (Bastida et al. 2002). Peak burial prior to the onset of Variscan thrusting was the 

most important process causing the metamorphic grades recorded by the Paleozoic rocks in most of the CZ 

(Bastida et al. 2002; Aller et al. 2005). This is indicated by the following: (1) metamorphic grades increase with 

rock age, (2) the distribution of metamorphic grades is not influenced by major thrusts and (3) metamorphic 

patterns are discontinuously inverted (i.e. rocks recording higher metamorphic grades are thrust over rocks 

recording lower metamorphic grades; Brime 1981; Bastida et al. 1999; Aller et al. 2005). Burial resulted in 

diagenetic (up to 200 °C) to locally anchizonal (200 to 300 °C) conditions. The thermal peak occurred when the 

Paleozoic successions reached their maximum thickness (Bashkirian-Moscovian), preceding the emplacement of 

the tectonostratigraphic units (Bastida et al. 2002). Based on CAI data from Devonian rocks in the Somiedo 

Unit, a paleogeothermal gradient of about 35 °C/km is estimated for this episode of peak burial (Brime et al. 

2001). 

Regional orogenic metamorphism, due to Variscan folding and thrusting, has only locally been recognized in the 

CZ (Bastida et al. 2002). It is generally recorded closer to the internal areas of the Variscan Orogeny (e.g. in the 
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northwestern part of the Somiedo Unit; Brime et al. 2001). It is of minor importance in the southern CZ and did 

not affect the Paleozoic rocks presently exposed in the Bodón Unit (Bastida et al. 2002; Aller et al. 2005). 

Lithospheric delamination, initiated after the orocline formation, led to the upwelling of the asthenosphere and to 

a concomitant increase in crustal heat flow (Gutiérrez-Alonso et al. 2004; Weil et al. 2013). The upwelling also 

caused uplift of the CZ, accompanied by near-surface extension (Muñoz-Quijano and Gutiérrez-Alonso 2007). 

Two thermal events have been recognized in the CZ, corresponding respectively to the orocline formation and 

the subsequent lithospheric delamination, both accompanied by dominant extensional tectonics (Bastida et al. 

2002; Aller et al. 2005).  

The first event, often referred to as the Late-Variscan extensional event (Bastida et al. 2002) and likely 

associated with the orocline formation, has been recorded in the southern part of the Central Coal Basin and in 

the Pisuerga-Carrión and Valsurvio units (Aller and Brime 1985; Aller et al. 1987; Bastida et al. 2002). Here, the 

Paleozoic rocks record anchizonal to locally epizonal conditions (above 300 °C) typically associated with 

subhorizontal cleavage, as a result of extensional tectonics (Aller et al. 1987; Marín 1997; García-López et al. 

1999). The distribution of both anchizonal and epizonal metamorphism (affecting pre-Permian rocks only), as 

well as the cleavage development, do not correspond to the location of the main Variscan structures. Intrusions 

of small sills and stocks, which occur mainly in the western and eastern units of the CZ (Corretgé and Suárez 

1990), accompanied this event. Close to these intrusions, contact metamorphism resulted in epizonal grades and 

the development of skarn deposits (Bastida et al. 2002 and references therein). Since subhorizontal cleavage 

associated with high metamorphic grades or intrusions has not been reported in the Bodón Unit (Aller et al. 

1987), the Late-Variscan extensional event was likely of minor importance. 

The second thermal event, referred to as the Post-Variscan thermal event (Bastida et al. 2002), was responsible 

for the widespread occurrence of fracture-related dolomitization and ore mineralization in Paleozoic successions 

(Martínez-García 1983; Gómez-Fernández et al. 2000; Crespo et al. 2000; Gasparrini et al. 2006b; Muñoz-

Quijano and Gutiérrez-Alonso 2007). Several anomalies in CAI values occur within the Bodón and Picos de 

Europa units, in areas with dense fault patterns and abundant ore mineralization, and are interpreted to be caused 

by hot fluid movements during this thermal episode (Raven and van der Pluijm 1986; Bastida et al. 2002). In the 

southern CZ, anchi- to epizonal conditions recorded in the Stephanian pull-apart basins are probably related to 

intrusions of diorite during the same thermal episode (Bastida et al. 2002). These intrusions resulted in re-

equilibration of fluid inclusions in quartz veins in the CM Basin (Ayllón et al. 2003). The Post-Variscan thermal 

event is dated at 270 Ma based on K-Ar ages from illite (Weh et al. 2001). These ages correspond with U-Pb and 

Pb-Pb absolute dating of dolomite-hosted ore minerals from the Bodón Unit (Paniagua et al. 1993). Therefore, 

the Post-Variscan thermal event correlates temporally with lithospheric delamination following the orocline 

formation. Lithospheric delamination induced the circulation of hot and hypersaline marine-derived brines, 

modified through water-rock interactions, representing the source of Mg for massive dolomitization (Gasparrini 

et al. 2006a, b; Lapponi et al. 2013). Based on AFT thermochronology, Carrière (2006) and Botor and 

Anczkiewicz (2015) concluded that although this thermal event was likely short-lived, temperatures remained 

high within Stephanian siliciclastic successions (above 60 °C), at least until the Middle Triassic. 

Materials and methods 

Published paleothermometry database 

In the following sections, the different paleothermometry datasets published for the Bodón Unit in previous 

studies are introduced. The stratigraphic intervals sampled for each paleothermometer are indicated on the 

stratigraphic column of figure 2. A brief explanation of the different paleothermometers is followed by an 

explanation on how the raw data have been converted to paleotemperatures. Most of the introduced 

paleothermometers are strongly affected by the duration of a thermal event, which has to be taken into account 

when comparing different paleothermal datasets. What also needs attention, is the fact that some datasets are 

available only from the precursor carbonate successions while others are derived from the siliciclastic ambient 
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rocks. The calculated paleotemperatures have to be handled with care, because the empirical equations used for 

the different datasets have a specific accuracy and uncertainty regarding the parameters and preconditions 

applied, which might be a source of error and inaccuracy.  

 Conodont Color Alteration Index (CAI)

The color alteration of conodonts depends on the carbonization of organic matter (OM) traces and is 

controlled by maximum temperature and heating time (Epstein et al. 1977; Rejebian et al. 1987). 

Recalculated paleotemperatures are strongly influenced by the duration of the heating event, as a relatively 

long heating time is required for the carbonization of organic matter in conodonts. Confining pressure does 

not affect the alteration process, excluding tectonics from influencing the color of conodont fragments 

(Epstein et al. 1977). Nevertheless, the presence of fluids under pressure, which is important in 

hydrothermal systems, can retard alteration. In such settings, OM carbonization is replaced by oxidation and 

volatilization of oxides, resulting in a loss of OM which affects the color alteration (Epstein et al. 1977; 

Rejebian et al. 1987).  

CAI data were obtained by Raven and van der Pluijm (1986) and Aller et al. (2005) and are derived from 

conodonts found in Devonian and Carboniferous rock successions. The data have been converted to 

temperature using the Arrhenius plot constructed by Epstein et al. (1977). A heating time of 10 Ma was used 

to convert the CAI data, based on the AFT studies of Carrière (2006) and Botor and Anczkiewicz (2015).  

 Kübler index (KI) of illite crystallinity and clay mineralogy

The KI of illite crystallinity allows the determination of the kinetic clay mineral reaction progress in pelitic 

sequences. The crystallinity of illite is determined by measuring the full width at half maximum height of 

the illite (001) X-ray diffraction peak (Kübler 1967, 1968). Measurements are performed on oriented 

mineral aggregate samples of the < 2 µm grain size fractions. Increasing crystallinity results in decreasing 

KI values. Despite the important role of temperature in the reaction process of phyllosilicates, numerous 

other factors (such as permeability, potassium availability, weathering and mechanical and hydrothermal 

alteration) affect the crystallinity of illite (e.g. Junfeng and Browne 2000; Frings and Warr 2012; Fukuchi et 

al. 2014). As a result, phyllosilicates in diagenetic conditions often reflect clay mineral reaction progress 

instead of thermodynamic equilibrium, which makes the use of the KI as a paleothermometer problematic 

(Guggenheim et al. 2002). 

Despite the many factors possibly influencing the crystallinity of illite, general correlation charts (e.g. 

Merriman and Frey 1999; Voldman et al. 2008) estimate that KI values lower than 0.42 correspond to 

temperatures above 200 °C (anchizone), whereas KI values lower than 0.25 correspond to temperatures 

above 300 °C (epizone). Marschik (1992) and Aller et al. (2005) analyzed the clay mineralogy and KI of 

clay-rich siliciclastic rocks in the Bodón and Correcilla units, ranging from Cambrian to Carboniferous in 

age. Corresponding temperatures were calculated using the empirical formula of Mukoyoshi et al. (2007). 

This equation has been established based on a correlation between VR and KI data in an accretionary 

complex in Southwest Japan, and has been applied with extreme caution.  

Eberl (1993) identified 3 reaction zones for illite formation with the third zone corresponding to 

temperatures of at least 100 °C. Clay mineralogy of samples from the Bodón Unit suggests that all mixed-

layer illite/smectite in the samples used for KI measurements appears to be ordered (e.g. Brime et al. 2001 

and Aller et al. 2005). This indicates that zone 3 of Eberl (1993) was reached (Brime et al. 2001; Aller et al. 

2005). 

 Vitrinite reflectance (VR) analysis

Due to changes in optical properties, the reflectance of vitrinite increases with increasing temperature in a 

predictable manner (Karweil 1955; Suggate 1959; Teichmüller 1982). Although suppression or retardation 

of vitrinite reflectance can occur under certain circumstances (e.g. in case of overpressure; Schito et al. 
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2016), the analysis of vitrinite reflectance is considered a reliable paleothermometry technique to assess the 

thermal maturity of sediments in diagenetic settings (Teichmüller 1987).  

Published VR data are only available for the Stephanian CM (Frings et al. 2004; Colmenero et al. 2008) and 

CR (Colmenero et al. 2008) basins. They have been converted to temperature by applying the formula 

proposed by Barker and Pawlewicz (1994) which, according to Frings et al. (2004), yields the most realistic 

temperatures for samples from the Stephanian CM Basin.  

 Fluid inclusion (FI) microthermometry

FIs are tiny vacuoles of fluid trapped in crystals during mineral precipitation (Goldstein and Reynolds 

1994). They provide information on the composition and temperature of the motherfluids through 

microthermometric measurements. Of most importance for this study is the homogenization temperature 

(Th), which gives an estimation of the minimum trapping temperature of an inclusion. By applying a 

pressure correction, the true formation temperature of crystal precipitation can be derived from Th.  

Primary FIs in fracture-related dolomites occurring in both Cambrian and Carboniferous precursors have 

been investigated in previous studies (Gasparrini et al. 2006a; Lapponi et al. 2013; Muñoz Quijano 2015), as 

well as FIs in late diagenetic calcite supposed to have precipitated from the same fluid system (Gasparrini et 

al. 2006a). FIs in quartz gangue minerals from ore deposits of the Providencia and Profunda mines (figure 

1B) have been investigated by Paniagua et al. (1993). Ayllón et al. (2003) performed a microthermometric 

study on quartz veins in the Stephanian CM Basin.  

 Apatite fission-track (AFT) thermochronology

Fission track thermochronology is a suitable technique to investigate the low-temperature thermal history of 

sedimentary rocks (Price and Walker 1963; Wagner and van den Haute 1992). The technique is based on the 

natural decay of 238U isotopes, producing radiation damage trails (so-called fission tracks) in U-bearing 

minerals. The spontaneous fission of 238U isotopes produces fission tracks at a continuous rate throughout 

geological time. Fission-track thermochronology is mostly performed on apatite crystals (AFT 

thermochronology). Apatite fission tracks can undergo partial annealing (i.e. resetting) in a temperature 

range of 60 to 110 ± 10 °C, due to a measurable shortening of the fission tracks at these temperatures 

(Gleadow and Duddy 1981). Complete annealing of fission tracks in apatite crystals occurs at temperatures 

higher than 110 ± 10 °C for 10 Ma.   

Carrière (2006) successfully deduced the thermal history for 2 Cambrian and 1 Stephanian sample in or 

close to the eastern part of the Bodón Unit. Recently, Botor and Anczkiewicz (2015) investigated the 

thermal history of the Stephanian Sabero Coalfield (located southeast of the study area) through a 

combination of AFT thermochronology and VR analysis. 

Rock-Eval (RE) pyrolysis and vitrinite reflectance (VR) analysis 

In addition to the published paleothermal datasets introduced above, the thermal maturity of a new set of samples 

was investigated through RE pyrolysis and VR analysis. A total of 78 samples of OM-rich clay- and mudstones 

from different stratigraphic levels were collected from road cuts and quarries. Most of the samples were 

collected in the Bodón Nappe (figure 1B). Other samples were collected in the Forcada and Gayo nappes, north 

of the León Fault (in the Central Coal Basin as well as in the Stephanian CR Basin) and in the northern part of 

the Correcilla Unit. Fresh material was preferentially sampled in order to minimize the influence of weathering 

(cfr. Copard et al. 2002).  

RE pyrolysis is an analytical method used to characterize source rocks and evaluate their petroleum potential. It 

is based on the relative contents of free hydrocarbons and CO2 generated during pyrolysis, which is artificial 

heating of a sample (Espitalié et al. 1977; 1985a, b, c). Pyrolysis of the collected samples was performed using 
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the Rock-Eval 6 apparatus (Lafargue et al. 1998) which employs a temperature-programmed heating of a 

powdered sample (± 100 mg) in an inert atmosphere (helium or nitrogen). The sample is first placed in a 

pyrolysis oven to measure the quantity of free hydrocarbons (revealed by the so-called S1 peak). Heating up to 

650 °C allows the determination of the amount of hydrocarbons (S2 peak) and CO2 (S3 peak) produced during 

thermal cracking of kerogen. The sample is then transferred to an oxidation oven where the residual organic 

carbon, remaining in the sample after pyrolysis, is oxidized (and revealed by the S4 peak) at temperatures up to 

850 °C. In this way, the Total Organic Carbon (TOC) content of the sample can be quantified. Of particular 

interest for this study is the Tmax parameter which corresponds to the S2 peak temperature in the pyrolysis oven, 

which is used to estimate the thermal maturity of rocks (Tissot and Welte 1978). In this study, Tmax values were 

converted to equivalent VR values (referred to as Tmax-derived VR values) using the equation of Jarvie et al. 

(2001). RE pyrolysis produced reliable results for 55 samples, which are listed in table 1. The other samples 

(including all samples from the Alba, Barcaliente and Valdeteja fms.) were excluded due to low TOC values (< 

0.3 %) which have a high risk to produce unreliable RE pyrolysis data. From the 55 productive samples, 40 are 

from OM-rich layers of the San Emiliano Fm. In the Central Coal Basin, north of the León Fault, 5 samples are 

from the Lena and Sama Groups (local equivalents of the San Emiliano Fm.) and 2 samples are from the CR 

Basin. The remaining 8 samples were collected from the Formigoso (2 samples) and Vegamián fms. (4 samples), 

from the La Vid Group (1 sample) and from the Stephanian CM Basin (Roguera Fm.; 1 sample).  

VR analysis, including specific maturity analysis of dispersed kerogen, was performed on 18 samples out of the 

55 productive RE samples of the San Emiliano (15 samples) and Vegamián fms. (3 samples; table 1) through a 

method specifically applied at the GeoResources STC lab. The samples cover a wide range of TOC and Tmax 

values to evaluate the consistency between results from RE pyrolysis and VR analysis. Most samples are located 

within the Bodón Nappe and only 1 is located in the Forcada Nappe. Kerogen was isolated by the maceration 

technique (double acid treatment with HCl and HF) and concentrated and embedded in epoxy resin blocks, 

which were polished on the surface for reflectance analysis. VR analysis is based on digital image analysis, using 

high-resolution black/white images of vitrinite, obtained with a reflected-light microscope. Grey levels of the 

digital images represent the levels of reflectance and are recalculated to real VR values by specifically modified 

image analysis software. This enables high-resolution reflectance analysis of single vitrinite grains down to 

pixel-size (< 10 μm) providing highly accurate and reliable VR data, without any correction factor needed. It 

also supports the identification of in situ versus reworked and degraded vitrinite in mixed vitrinite assemblages 

and the separation of real vitrinite from vitrinite-like particles. In each sample 50 vitrinite particles were 

measured, if available. Additionally, one kerogen slide was made from each sample for optical analysis of 

kerogen composition, particularly the composition of the vitrinite assemblage, which was included in the 

detailed interpretation of the VR data. For the calculation of exact paleotemperatures from VR data several 

equations can be used, leading to different paleotemperatures, with increasing variation towards higher 

maturation (table 2). In this study the equation of Barker and Pawlewicz (1994) was used to provide the 

maximum comparability between the new data of this study and the previous data by Frings et al. (2004).  

Results 

In the following sections the paleotemperatures obtained from literature datasets and from RE and VR 

measurements are reported. The regional distribution of paleotemperatures, calculated from each technique, is 

indicated on the geological map of the Bodón Unit (figures 4 and 5).  

Published paleothermometry database 

CAI data for Devonian and Carboniferous successions in the Bodón Unit range from 1 to 5 (Raven and van der 

Pluijm 1986; Aller et al. 2005), corresponding to a wide range of diagenetic to anchizonal temperatures. The 

temperatures average around 60 °C for the Carboniferous precursor carbonates in the eastern part of the Bodón 

Unit, whereas precursor carbonates close to the dolomitized central and western parts are characterized by higher 

temperatures (up to 203 °C; figure 4A). These higher temperatures correlate with areas intensely affected by 

fracture-related dolomitization and ore mineralization.  
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Temperatures obtained from KI data from the ambient siliciclastic rocks are remarkably high compared to CAI 

temperatures (figure 4B). In the eastern part of the Bodón Unit temperatures approach 200 °C for samples from 

the San Emiliano Fm., while in the central part all KI data indicate temperatures between 200 and 250 °C, both 

for the San Emiliano Fm. and the pre-Carboniferous ambient rocks. In the central northern part of the Bodón 

Nappe, KI-derived paleotemperatures for pre-orogenic rock successions clearly increase towards the León Fault 

(figure 4B). The western part of the Bodón Unit is characterized by slightly lower temperatures, generally 

around 150 °C, but locally up to 200 °C. The southern part of the Central Coal Basin, north of the León Fault, is 

characterized by high temperatures between 250 and 300 °C. 

VR data for both Stephanian CR and CM basins (Frings et al. 2004; Colmenero et al. 2008) correspond to 

temperatures ranging from 120 to 240 °C (figure 5A). These relatively high temperatures are believed to be 

restricted to the Stephanian pull-apart basins because of their fault-controlled settings and their association with 

intrusions of sills and dykes (Méndez 1985; Frings et al. 2004).  

FI trapping temperatures, derived from primary Th values (indicated on figure 4A), range from 130 to 150 °C for 

dolomite cement in Carboniferous rocks (Gasparrini et al. 2006a). Th values for dolomite cement in Cambrian 

rocks range between 85 and 105 °C (figure 4A) while true trapping temperatures lie approximately 5 to 10 

degrees higher (Lapponi et al. 2013). Late diagenetic calcite cement is characterized by trapping temperatures 

between 115 and 130 °C (Gasparrini et al. 2006a). Partial re-equilibration to decrepitation of FIs is described by 

Ayllón et al. (2003) for quartz veins in the Stephanian CM Basin. Here, inclusions were trapped at temperatures 

between 110 and 120 °C and re-equilibrated by a short-lived thermal event recording temperatures as high as 300 

°C. Ore mineralizations from the Bodón Unit are hosted by fracture-related dolomite and record trapping 

temperatures up to 200 °C (Paniagua et al. 1993), but did not result in reequilibration of the FIs in the dolomite 

cements.  

In one of the Cambrian AFT samples, as well as in the Stephanian AFT sample, Carrière (2006) observed partial 

annealing of fission tracks at about 270 Ma, indicating insignificant duration of peak thermal conditions to 

completely anneal the fission tracks (figure 4B). The other Cambrian AFT sample indicates complete annealing 

meaning that temperatures did exceed 110 ± 10 °C for more than 10 Ma. Most samples of the nearby Sabero 

Coalfield are completely annealed (Botor and Anczkiewicz 2015).  

RE pyrolysis and VR analysis 

Tmax values obtained from RE pyrolysis show a very wide range from 449 to 608 °C (table 1), which 

corresponds to paleotemperatures of 130 to 250 °C (table 1; figure 5B). These data fall in a slightly cooler range 

of paleotemperatures as those derived from KI data, but are significantly higher compared to paleotemperatures 

deduced from CAI data in the study area. The 4 samples from the Vegamián Fm. show relatively low Tmax 

values with less variation (corresponding paleotemperatures: 129 – 172 °C), while the many samples from the 

San Emiliano Fm. and the Lena and Sama Groups show the maximum variability (paleotemperatures: 129 – 228 

°C). The sample from the Devonian La Vid Group has a very high Tmax of 591 °C (paleotemperature: 236 °C). 

The maximum Tmax values, with very little variation, are recorded for the oldest sample, the Early Paleozoic 

Formigoso Fm. (Tmax: 602 °C; paleotemperature: 240 °C) and the youngest samples from the Stephanian CR 

Basin (Tmax: 603 – 608 °C; paleotemperature: 241 – 243 °C). Particularly the San Emiliano Fm. (and its 

equivalents) shows a very wide range of thermal maturity. Locations most intensely affected by fracture-related 

dolomitization show RE temperatures around 200°C (e.g. the central, western and southeastern parts of the 

Bodón Unit).  

Additionally to Tmax values, organic maturity was studied trough VR analysis on 18 samples. Tmax-derived VR 

values obtained for these 18 samples (cfr. Jarvie et al. 2001), show a very wide range (0.92 – 2.29 Rm%; table 

1). During VR analysis, two populations of kerogen particles were observed in the kerogen slides of all 15 

samples from the San Emiliano Fm., as well as in the distribution of measured VR values (figure 6A). The first 

population consists of less mature organic matter, identified by light to medium brown colors (figure 7A). The 

second population contains higher mature organic matter, identified by dark brown to black colors (figure 7A). 

For the current maturity analysis, only the less mature vitrinite population was analyzed. This led to a narrow 
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range of reflectance in all samples from the San Emiliano Fm. (0.61 – 0.93 Rm%; table 1), showing a much 

more homogeneous dataset compared to Tmax and Tmax-derived VR values. In the central part of the study area 

reflectance values range from 0.79 to 0.93 Rm% (corresponding paleotemperatures: 98 – 130 °C). Reflectance 

values are lower in the eastern part (0.61 – 0.72 Rm%; paleotemperatures: 96 – 109 °C). At the very western end 

of the study area, reflectance is high (0.87 Rm%; paleotemperature: 124 °C), as well as in the southeastern end, 

where reflectance increases to 0.79 Rm% (paleotemperature: 116 °C). The total vitrinite assemblage for five 

samples from the San Emiliano Fm. has been analyzed to compare with the Tmax-derived VR values (table 1). 

Reflectance data from the total vitrinite assemblages are close to the VR values calculated from Tmax. Except 

for one sample, all measured VR values are slightly lower. The difference between calculated and measured VR 

values seems to increase towards higher maturity.   

Samples from the Vegamián Fm. show strongly altered, poorly preserved organic matter (figure 7B). The 

alteration leads to lower reflectance values compared to the well preserved vitrinite in other samples. In one 

sample all organic matter, including vitrinite, is strongly altered. Therefore the reflectance value is much lower 

(0.45 %) compared to the other samples and was excluded from the maturity analysis. In the two other samples 

(underlined in blue in figure 5A) vitrinite was poorly to moderately preserved. Careful selection of the few 

relatively well preserved vitrinite particles, and avoiding the altered particles, led to usable VR values, which 

still might be slightly lower than in well preserved samples.  

The paleotemperatures calculated from VR values of the less mature vitrinite population range from 96 to 130 

°C, which is significantly lower compared to the temperatures derived from RE pyrolysis and previous VR data 

of the CM and CR basins (figure 5A; Frings et al. 2004; Colmenero et al. 2008). It has to be taken into account, 

however, that these Stephanian pull-apart basins experienced a different depositional and diagenetic history due 

to their fault-controlled setting (Méndez 1985; Frings et al. 2004; Botor and Anczkiewicz 2015). 

Discussion 

RE pyrolysis versus VR analysis 

The less mature population of kerogen particles identified through optical kerogen analysis represents in situ 

organic matter recording the in situ basin maturity, while the higher mature population represents reworked 

organic matter showing the thermal overprint of previous depositional systems. Reflectance values of the total 

vitrinite population in the 5 analyzed samples from the San Emiliano Fm. are always higher compared to values 

of the corresponding in situ vitrinite population, but the differences show a significant variation (table 1). These 

differences seem to be controlled mainly by different proportions of highly mature reworked kerogen and less 

mature in situ kerogen, as observed in the kerogen slides (figure 7A). This can also explain the difference 

between the less mature in situ VR data and the higher mature Tmax-derived VR data, as Tmax (and Tmax-

derived VR) is based on whole rock samples, including both the less mature in situ OM and the higher mature 

reworked OM. The differences between Tmax-derived VR data and in situ VR data are thus controlled by 

changes in the proportions of higher mature reworked vitrinite and less mature in situ vitrinite.  

The occurrence of highly mature reworked OM in the samples from the San Emiliano Fm. supports the 

hypothesis of reworked detrital illite influencing the KI data recorded for synorogenic successions in the CZ, 

which has been proposed in several studies (Bastida et al. 1999; Brime et al. 2001; Aller et al. 2005). Indeed, KI-

derived temperatures for the San Emiliano Fm. (figure 4B) are distinctly higher compared to the temperatures 

obtained from both in situ (VR) and bulk rock paleothermometers (RE), and are even higher compared to fluid 

inclusion trapping temperatures in dolomite and quartz gangue minerals. The KI-derived paleotemperatures 

clearly represent overestimations of the true thermal maturity, most likely due to incorporation of detrital illite. 

The synorogenic San Emiliano Fm. is composed of siliciclastic sediments filling the foredeep of the Variscan 

Orogen (Brouwer and van Ginkel 1964). The highly mature detrital illite and the reworked kerogen most likely 

represent eroded sediments, derived from the deformed and metamorphosed Variscan Orogen to the southwest 

composed of older pre-orogenic rocks (Julivert 1978; Bastida et al. 1999). The importance of sediment 



11 

reworking in pre-orogenic siliciclastic successions cannot be assessed for in this study. Nevertheless, also for 

these successions, the KI data indicate very high paleotemperatures not in agreement with the real thermal 

maturity of the sediments. Next to sediment reworking, additional causes for the anomalously high KI-derived 

temperatures are related to data measurement and processing, and to the empirical equation used for 

paleotemperature calculation. The KI data of Marschik (1992) were obtained by X-ray diffraction analysis of air-

dried samples (Aller et al. 2005). This may result in an overestimation of the KI, as the presence of mixed-layer 

illite/smectite will modify the X-ray diffractograms in air-dried samples (Junfeng & Browne 2000; Bastida et al. 

1999). Empirical equations used to calculate KI-derived temperatures are not widespread in literature, and most 

of these equations are bound by specific preconditions. The equation of Mukoyoshi et al. (2007) yields the most 

realistic paleotemperatures for the range of KI data of Marschik (1992) and Aller et al. (2005).  

The incorporation of reworked OM and detrital illite limits the interpretation of RE and KI data of the 

Carboniferous formations for paleothermometry purposes, since they represent synorogenic successions (Marcos 

and Pulgar 1982; figure 2). Maturity analyses and paleothermal studies based on bulk rock techniques such as 

RE pyrolysis and the KI of illite crystallinity have a high risk of failure and erroneous interpretations in most 

sedimentary systems due to sediment reworking. Ideally, additional data are needed to cross-check the 

consistency and reliability of these bulk rock techniques. In this study, the presence of two populations of OM 

with different maturity levels, as observed through optical kerogen analysis, identified the problematic effect of 

reworking. Next to optical analysis, reworking can also be observed in the pattern of CO2 produced during 

oxidation, following RE pyrolysis (figure 6B). Although RE pyrolysis can be used for fast screening of thermal 

maturity levels, additional maturity data are needed to verify the results from RE pyrolysis. This study indicates 

that a comparison with optical kerogen analysis of vitrinite is needed for more accurate interpretations, 

especially for the analysis of synorogenic sediments. Through VR analysis, reworked or altered vitrinite particles 

can be excluded, leading to more reliable and precise information on the thermal maturity of in situ vitrinite.  

Comparison with paleothermal data from literature 

The highest temperatures recorded for dolomitization and ore mineralization in the Variscan basement rocks of 

the Bodón Unit are derived from fluid inclusions in dolomite (130 – 150 °C: Gasparrini et al. 2006a) and in 

quartz gangue minerals in the central part of the study area (200 °C; Paniagua et al. 1993). Trapping 

temperatures of fluid inclusions indicate the maximum temperatures of hydrothermal fluid flow related to the 

Post-Variscan thermal event, as they provide a snapshot of the temperature during dolomitization and ore 

mineralization (e.g. Middleton et al. 2001). Hydrothermal fluid flow must have been most important in the 

central and western parts of the Bodón Unit, as well as in the southeastern part, given the abundance of dolomite 

and ore mineral deposits in these areas (figure 1B). The occurrence of high CAI-derived paleotemperatures in 

carbonate precursors close to dolomitized and mineralized areas (figure 4A) attests of the importance of 

hydrothermal fluid flow in these parts of the Bodón Unit. The episodes of fluid flow must have been sufficiently 

long to allow the conodont fragments to equilibrate. Likewise, RE-derived temperatures of the Early-

Carboniferous Vegamián Fm. are higher in the central part of the Bodón Unit (151 – 172 °C) compared to the 

eastern part (129 °C).  

Paleotemperatures derived from the in situ VR dataset of the Vegamián and San Emiliano fms. are significantly 

lower compared to published data for the Stephanian CM and CR basins (Frings et al. 2004; Colmenero et al. 

2008; figure 5A), highlighting their different thermal histories. They have been more intensely affected by 

hydrothermal fluid flow and volcanic intrusions due to their fault-controlled setting (Méndez 1985; Frings et al. 

2004), and due to the relatively high porosity and permeability of their sedimentary successions compared to the 

tight Paleozoic basement rocks making up the Bodón Unit (Duddy et al. 1994). Althought the RE and KI-derived 

temperatures have to be treated with caution given the possible influence of reworked sediments, they seem to 

confirm the higher thermal maturity of the Stephanian basins (figures 4B and 5B). 

Temperatures obtained from CAI data for precursor carbonates show baseline values around 60 °C in the eastern 

part of the study area, which was less affected by fracture-related hydrothermal dolomitization and ore 

mineralization (figures 1B and 4A). VR data yield temperatures around 100 °C for siliciclastics in the same area. 

This difference of approximately 40°C can have several causes related to either the alteration of conodonts or the 
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reflectance of vitrinite. The variety of empirical equations to calculate paleotemperatures from VR data yields 

divergent paleotemperatures (table 2), which results in an error range regarding VR-derived paleotemperatures. 

The possible suppression of vitrinite reflectance (Schito et al. 2016) cannot be assessed for in this study. 

Regarding the CAI data, it is known that they, compared to other paleothermometers, might be less sensitive. 

Zhang and Barnes (2007) state that CAI values changing from 1 to 1.5 (49 to 62 °C) are not as sensitive as 

corresponding VR or KI data. Moreover, Raven and van der Pluijm (1986) report a general range of uncertainty 

of ± 0.5, corresponding to a temperature range of ± 25 °C. Secondly, the applied heating time of 10 Ma might be 

an overestimation of the true time of heating. This is unlikely, given the AFT results of Carrière (2006) and 

Botor and Anckiewicz (2015) which indicate that following the Post-Variscan thermal event, temperatures 

remained high for a significant period of time. Even if the heating time is decreased to 1 Ma on the Arrhenius 

plot of Eppstein et al. (1977), temperatures around 75 °C are obtained, which are still significantly lower 

compared to VR-derived temperatures. A third cause might be retardation of the color alteration process due to 

hydrothermal alteration. Hydrothermal alteration is usually accompagnied by indicative textures and patinas 

(Voldman et al. 2008), which have indeed been observed in the CZ (Raven and van der Pluijm 1986; Bastida et 

al. 1999; Blanco-Ferrera et al. 2016).  

Next to a lower sensitivity of the CAI technique, a secondary cause which might explain the observed 

differences between CAI- and VR-derived paleotemperatures, is the influence of deformation partitioning in 

different mechanical units of the Variscan FFTB. CAI data are obtained from the thick Cambrian and 

Carboniferous carbonate successions (figure 3D) representing rigid carbonate units. Hydrothermal fluid 

circulation was likely restricted to spaced fractures in these tight units, causing fracture-related dolomitization 

and ore mineralization, and resulting in a strong thermal overprint of nearby carbonate precursors. VR data on 

the other hand, are obtained from weak siliciclastic clay-rich successions which were more intensely deformed 

and might have allowed a more wide-spread circulation of hydrothermal fluids and a more effective heat 

dissipation in respons to the Post-Variscan thermal event. 

Hydrothermal versus geothermal dolomitization 

In the field of ore geology, hydrothermal activity refers to the action of hot waters directly related to igneous 

activity, in contrast with geothermal waters which are not related with igneous intrusions (Robb 2005). In 

dolomitization studies, hydrothermal generally applies to dolomitization by fluids with temperatures at least 10 

°C higher than those experienced by the surrounding rocks, including both carbonate precursors and ambient 

siliciclastics (Stearns et al. 1935; White 1957; Machel and Lonnee 2002). The current dolomitization model for 

the dolomite geobodies in the Bodón Unit assumes that thermal convection of hydrothermal marine-derived 

brines resulted in fracture-related porous dolomites (Gasparrini et al. 2006b). This was based on the difference 

between FI trapping temperatures of 130 to 150 °C (Gasparrini et al. 2006a) and CAI-derived paleotemperatures 

of 70 to 95 °C in Carboniferous carbonate formations (Raven and van der Pluijm 1986).  

Our study indicates that in the eastern part of the study area, CAI-derived paleotemperatures of undolomitized 

precursor carbonate rocks average around 60 °C, which is likely an underestimation of their true thermal 

maturity. Siliciclastic ambient rocks are characterized by VR-derived temperatures around 100 °C. Since 

dolomitization and ore mineralization were more important in the central and western parts of the study area, one 

can assume that these lower temperatures are the result of Pre-Variscan burial and high crustal heat flow during 

the Post-Variscan thermal event. It confirms the hydrothermal nature of dolomitization (130 to 150 °C) and ore 

mineralizations (up to 200 °C) which are clearly related to positive temperature anomalies in the central and 

western parts of the study area.  

Conclusions 

The thermal maturity of Paleozoic rocks in the southern Cantabrian Zone (the Iberian Variscan foreland fold-

and-thrust belt) has been investigated to better constrain the thermal conditions of Late-Variscan fluid flow 

which caused widespread dolomitization and ore mineralization. Maximum temperatures experienced by both 
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carbonate precursor and ambient siliciclastic rocks have been assessed based on a compilation of published 

paleothermal data (CAI, KI, VR, FI) combined with newly acquired RE pyrolysis and VR analysis data. 

Both RE and KI data from synorogenic successions yield paleotemperatures that are anomalously high compared 

to in situ VR data and CAI data. Optical kerogen analysis of VR samples revealed an important amount of 

reworked highly mature kerogen, giving evidence for significant input of reworked sediments in these 

synorogenic units. The presence of reworked sediments, most likely eroded material from higher metamorphic 

zones of the Variscan Orogen, critically affects maturity analysis through bulk rock techniques like RE pyrolysis, 

KI and VR analysis of total vitrinite populations. This is a general problem in many sedimentary systems, where 

maturity analyses based on bulk rock data are limited by uncertainties and the risk of erroneous 

misinterpretations. During optical kerogen analysis, in situ and reworked kerogen populations can be identifed. 

Using only the reflectance values of in situ populations significantly increases the accuracy and reliability of the 

maturity data and minimizes the risk of failure of maturity analyses.  

CAI-derived paleotemperatures for carbonate precursor rocks not affected by intense fluid circulation average 

around 60 °C and are attributed to burial and increased crustal heat flow following lithospheric delamination. 

Paleotemperatures within these carbonate rock units increase towards dolomitized and mineralized zones, which 

formed during Post-Variscan fluid flow at temperatures up to 200 °C (Paniagua et al. 1993). Siliciclastic ambient 

rocks affected by burial and high crustal heat fluxes have a higher average thermal maturity, corresponding to 

temperatures around 100°C (based on in situ VR data). The different thermal maturity of carbonate and 

siliciclastic rocks is likely caused by a difference in analytical techniques used to obtain CAI and VR data and 

their corresponding paleotemperatures. Conodont fragments were likely not as sensitive to the thermal overprint 

compared to VR, and the color alteration process might have suffered from hydrothermal alteration. A secondary 

cause to explain the difference in thermal maturity might be a different response to Variscan compression and 

orocline formation of rigid precursor carbonates and softer ambient siliciclastics which caused the hot fluids to 

circulate in a different manner. Circulation was confined along spaced fractures through the carbonates, and was 

more widespread through the siliciclastics, resulting in more efficient heat transport.  

Massive fracture-related dolomitization of Cambrian and Carboniferous carbonates of the southern Cantabrian 

Zone occurred at temperatures between 90 and 150 °C (based on FIs). Undisturbed ambient siliciclastic rocks 

experienced temperatures around 100°C, whereas this temperature might have been lower for precursor 

carbonates. Dolomitization was thus caused by hydrothermal fluids, circulating in thermal disequilibrium with 

the precursor carbonate rocks. The positive temperature anomalies recorded in the precursor carbonate rocks by 

CAI data broadly correlate with the occurrence of dolomitization and ore mineralization. This implies that in 

similar settings, mapping the thermal maturity anomalies within carbonate precursors could be used as an 

exploration tool for porous hydrothermal dolomitic geobodies and ore mineralization.  
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FIGURE CAPTIONS 

Fig. 1 (A) Geological map of the CZ with indication of the main fault systems and tectonostratigraphic units 

(modified after Dallmeyer and Martínez-García 1990). Unconformable Stephanian and Mesozoic-Cenozoic 

successions have been indicated. The Bodón Unit is encircled in red. The León Fault is indicated with black 

arrows. (B) Geological map of the Bodón Unit modified from Lobato et al. (1984), Alonso et al. (1990), Suárez 

Rodríguez et al. (1991) and Alonso et al. (2009). The Gayo, Bodón and Forcada nappes are indicated, together 

with Carboniferous carbonate outcrops and the location of dolomite geobodies (based on Muñoz Quijano 2015) 

and ore mineralizations. 

Fig. 2 Stratigraphic column of the Bodón Unit (modified from Aller et al. (2005) and Pérez-Estaún et al. (1988)) 

showing Carboniferous precursor carbonate successions in light blue and dolomite geobodies in pink. Stephanian 

siliciclastics are indicated in purple. Pre-orogenic and synorogenic successions are distinguished, as well as what 

is here referred to as dolomite precursor carbonate rocks and ambient siliciclastic rocks. The stratigraphic intervals 

sampled for the different published paleothermometry datasets and sampled for this study are shown on the right.  

Fig. 3 (A) Exposure of Upper Devonian and Lower Carboniferous successions in the Las Chábanos quarry in the 

northern central part of the Bodón Unit. Formation boundaries are indicated with white dotted lines. Siliciclastic 

rocks of the Devonian La Vid Group are exposed on the far left, followed by brownish sandstone beds of the 

Ermita Fm. The black succession in the centre of the picture represents the Lower Carboniferous Vegamián Fm. 

which is overlain by nodular limestones of the Alba Fm. On the far right side, the central chert member of the 

Alba Fm. can be seen. Note professor for scale. (B) Diachronic contact between Valdeteja limestones (left) and 

San Emiliano clay- and sandstones (right) in the central part of the Bodón Unit. Note utility pole on top for scale. 

(C) Typical exposure of San Emiliano Fm. claystones, characterized by the occurrence of diffuse tectonic 

cleavage. Note hammer for scale. (D) Example of dolomitized limestones of the Valdeteja Fm. in the southeastern 

part of the Bodón Unit. Light gray rocks are the precursor limestones, whereas dark gray rocks are dolomites. Note 

utility poles on lower left side for scale. 

Fig. 4 Structural sketch map of the Bodón Unit with indication of (A) paleotemperatures based on conodont CAI 

data (Raven and van der Pluijm 1986; Aller at al. 2005) and FI homogenization temperatures (Gasparrini et al. 

2006a; Lapponi et al. 2013) and (B) paleotemperatures based on KI data (Marschik 1992; Aller at al. 2005) and 

locations of AFT thermochronology (Carrière 2006).  

Fig. 5 Structural sketch map of the Bodón Unit with indication of temperatures based on (A) VR analysis (Frings 

et al. 2004; Colmenero et al. 2008; this study) and (B) RE pyrolysis (this study).  

Fig. 6 (A) Histogram illustrating VR data expressed as Rm(%) for sample 46, showing a large population of in situ 

material and two groups of reworked higher mature material. (B)  CO2 oxidation pattern from RE analysis for 

sample 46, showing the occurrence of two types of OM (black arrows). The third peak to the right corresponds to 

the carbonate content of the sample. 

Fig. 7 Kerogen photomicrographs. (A) Two populations of kerogen can be recognized in this samples from the 

San Emiliano Fm. Light brown colors (white arrow) characterize the least mature population, interpreted as in situ, 

whereas dark brown to black colors (black arrow) characterize the reworked most mature population. (B) Strongly 

altered OM in a sample from the Vegamián Fm.  

TABLE CAPTIONS 

Table 1 Results from RE pyrolysis and VR analysis. RE Tmax values are indicated, as well as hydrogen and 

oxygen indices (HI and OI), TOC, Tmax-derived VR values (cfr. Jarvie et al. 2001) and corresponding 

temperatures (cfr. Barker and Pawlewicz 1994). HI and OI roughly correspond to the H/C and O/C atomic ratios 

for each sample. VR results are expressed in Rm%. The first column of VR data refers to the total vitrinite 
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assemblage. The second and third columns of VR data represent in situ kerogen and corresponding temperatures 

(cfr. Barker and Pawlewicz 1994).  

Table 2 Paleotemperatures in °C calculated with common equations for increasing vitrinite reflectance levels. The 

difference in paleotemperatures obtained from different equations increases with increasing reflectance level.   
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FIGURE 4 
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TABLE 1 

Formation Location 
Tmax 
(°C)  HI OI 

TOC 
(%) 

VR (%) 
from 
Tmax 

T (°C) 
RE 

VR total 
(Rm%) 

VR in situ 
(Rm%) 

T (°C) 
VR 

San Emiliano Gete 504 36 129 0.45 1.91 188 
San Emiliano Pedrosa 469 34 48 0.58 1.28 156 1.10 0.86 123 

San Emiliano Lavandera 464 40 32 0.57 1.19 150 0.93 130 

San Emiliano Lavandera 470 34 57 0.67 1.30 157 

San Emiliano Genicera 469 41 96 0.69 1.28 156 
San Emiliano Genicera 455 31 76 0.54 1.03 138 

San Emiliano Genicera 454 53 49 0.68 1.01 136 0.71 108 

San Emiliano Valverde d. Curueño 462 30 64 0.44 1.16 147 

San Emiliano Valverde d. Curueño 459 53 32 0.76 1.10 143 0.61 96 
San Emiliano Redilluera 486 31 79 0.87 1.59 173 

San Emiliano La Braña 460 48 48 0.66 1.12 145 0.72 109 

San Emiliano La Braña 454 27 78 0.51 1.01 136 

San Emiliano Valdecastillo 459 25 44 1.15 1.10 143 1.28 0.79 116 
San Emiliano Cármenes 473 37 25 0.71 1.35 160 

San Emiliano Cármenes 484 33 12 0.76 1.55 171 1.10 0.79 116 

San Emiliano Cármenes 525 13 61 0.31 2.29 202 0.76 113 

San Emiliano Mina Profunda 467 30 63 0.27 1.25 153 
San Emiliano Barrio de la Tercia 468 30 35 0.46 1.26 154 

San Emiliano Barrio de la Tercia 475 38 38 0.68 1.39 162 0.80 117 

San Emiliano Villanueva d. l. Tercia 512 16 91 0.44 2.06 194 

San Emiliano Villanueva d. l. Tercia 502 18 108 0.51 1.88 186 
San Emiliano Villanueva d. l. Tercia 465 27 25 0.67 1.21 151 

San Emiliano Rodiezmo d. l. Tercia 462 41 59 1.11 1.16 147 0.71 108 

San Emiliano San Martin d. l. Tercia 456 50 69 0.32 1.05 139 

San Emiliano Poladura d. l. Tercia 511 30 79 1.26 2.04 193 
San Emiliano Poladura d. l. Tercia 464 53 27 0.89 1.19 150 0.74 111 

San Emiliano Poladura d. l. Tercia 459 11 93 0.44 1.10 143 

San Emiliano Viadongos de Arbas 521 24 66 2.81 2.22 200 

San Emiliano Casares de Arbas 449 49 50 0.68 0.92 129 
San Emiliano Casares de Arbas 466 36 123 0.64 1.23 152 

San Emiliano Caldas de Luna 502 30 50 0.60 1.88 186 

San Emiliano Casares de Arbas 470 14 241 0.37 1.30 157 

San Emiliano Valdorria 573 9 98 0.65 3.15 228 
San Emiliano Villamanin d. l. Tercia 467 23 88 0.40 1.25 153 

San Emiliano Villanueva d. l. Tercia 510 39 37 3.32 2.02 192 0.63 98 

San Emiliano Villanueva d. l. Tercia 485 52 13 0.77 1.57 172 

San Emiliano Caldas de Luna 505 21 21 0.57 1.93 189 1.64 0.87 124 
San Emiliano Casares de Arbas 450 56 13 0.63 0.94 130 0.83 0.70 107 

San Emiliano Casares de Arbas 493 48 10 0.58 1.71 179 

San Emiliano San Martin d. l. Tercia 455 43 9 0.54 1.03 138 0.67 103 

Lena/Sama Valdehuesa 462 35 86 0.66 1.16 147 
Lena/Sama Valdehuesa 459 78 19 0.97 1.10 143 

Lena/Sama Rucayo 454 41 67 0.90 1.01 136 

Lena/Sama Campo 496 2 63 0.65 1.77 181 

Lena/Sama Campo 492 3 71 0.72 1.70 178 
CR Basin Canseco 603 5 7 4.20 3.69 241 

CR Basin Canseco 608 13 7 5.02 3.78 243 

Formigoso Getino 464 32 45 0.75 1.19 150 

Formigoso Aralla de Luna 602 5 33 1.28 3.68 240 
Vegamián Hoces de Curueño 449 60 32 3.52 0.92 129 (0.45) 

Vegamián Los Chábanos 465 8 56 6.07 1.21 151 0.69 106 

Vegamián Los Chábanos 471 13 81 4.65 1.32 158 

Vegamián Millaró de la Tercia 485 30 1 9.38 1.57 172 0.69 106 
La Vid Aralla de Luna 591 8 55 0.38 3.48 236 

Roguera Vegacervera 568 14 22 0.73 3.06 226 
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TABLE 2 

Equation VR 0.75 % VR 1.0 % VR 2.0 % VR 3.0 % 

Barker (1991) 118 148 220 262 

Barker and Goldstein (1990) 120 155 241 291 

Barker and Pawlewicz (1994) 112 135 189 225 

FIGURE 6 
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FIGURE 7 
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response to the remarks of reviewer #1 (Prof. Emer. Thilo Bechstädt).  

Reviewer #1: Prof. Emer. Thilo Bechstädt: 

 The vitrinite reflectance measurements performed in this study are not classical

measurements, but a method specifically applied at the GeoResources SCT lab in

Heidelberg. Can you provide citations to publications of this specific method or mention

this more clearly?

To the knowledge of the authors, there are currently no publications on this specific method

of VR analysis performed at the Georesources SCT lab, but we adapted the methodological

section of the manuscript by specifying that these measurements are measurements of

dispersed kerogen (line 339), different from classical VR analysis. We also added that the

measurements have been performed at the GeoResources SCT lab (line 341). The method

itself is extensively described in the methodology (lines 339-357).

 During VR analysis, two populations of kerogen particles were observed in the kerogen

slides. The first population is less mature and interpreted as “in situ”, while the second

population is more mature and interpreted as “reworked”. This is correct but it is an

interpretation and should be discussed in the discussion.

We fully agree with Thilo Bechstädt. The “in situ vs. reworked” hypothesis should be

introduced in the discussion section, since it is an interpretation and not a result. We have

now modified the results section where we only refer to a “less mature” and a “more

mature” kerogen population. In de discussion section, we discuss the interpretation of “in

situ vs. reworked” material (lines 443-445).

 The study indicates that a comparison with data from vitrinite reflectance analysis is

needed to verify the results from Rock-Eval pyrolysis. You should mention that it is not

classical VR analysis but optical kerogen analysis of vitrinite reflectance, in order to avoid

confusion.

This has been adapted (lines 484-486).

 Older studies reporting data on vitrinite reflectance analysis have measured real, larger

vitrinite grains in the coal basins, so an input of older material can be excluded in these

studies.

The older studies referred to (i.e. Frings et al. 2004; Colmenero et al. 2008) performed VR

analysis on samples from Stephanian coal basins. This is mentioned several times in the

manuscript (e.g. lines 280-281 & 378-379). However, based on these publications, the
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authors cannot conclude if their measurements have been performed on real and/or larger 

vitrinite grains, so we prefer not to specifically mention this in the manuscript. 

 You should absolutely mention that the occurrence of dolomite geobodies as indicated on

the figures (i.e. figures 1B, 4 & 5) is based on the work of Muñoz-Quijano (2015).

The occurrence of dolomite geobodies indicated on the figures is indeed based on the work

of Muñoz-Quijano (2015). This is mentioned in the manuscript (lines 167-169) and we have

now also added a citation in the caption of figure 1 (lines 846-848).

 Several minor grammatical errors were highlighted by Thilo Bechstaedt. These errors (on

lines 138, 197, 330, 473 and 595) have been corrected in the revised manuscript.


