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On compact trees with the coarse wedge topology
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JAacoro SOMAGLIA (Milano and Praha)

Abstract. We investigate the class of compact trees, endowed with the coarse wedge
topology, in connection with the area of non-separable Banach spaces. We describe Val-
divia compact trees in terms of inner structures and we characterize the space of contin-
uous functions on them. Moreover we prove that the space of continuous functions on an
arbitrary tree with height less than w; - wo is a Plichko space.

1. Introduction. A tree is a partially ordered set (7, <) such that the
set {s € T : s < t} of predecessors of any ¢t € T is well-ordered by <.
There are several natural topologies that can be defined by using the order
structures of trees [19]. Among them, the coarse wedge topology is a topology
for which the tree T is a compact Hausdorff space whenever T satisfies certain
structural properties.

In the present paper we investigate the relations between the coarse wedge
topology and the classes of Valdivia compacta and of Plichko Banach spaces.
Plichko spaces are a wide class of Banach spaces that extend the class of
weakly Lindelof determined (WLD) Banach spaces. They were introduced
in [20] and were studied under equivalent definitions in [7], [24] and [25]; we
refer to [I4] for a detailed survey. Plichko spaces and the related class of
compact spaces, called Valdivia compacta, appear in many different areas;
see [12] for the details and [6], [2], [3] for some recent results in Banach
spaces, C*-algebras and topology.

W. Kubis introduced the concept of projectional skeletons in [15], where
he adapted the definition of retractional skeleton (see [16], [4]) from the topo-
logical setting to Banach spaces. Roughly speaking, a projectional skeleton
decomposes the Banach space into smaller separable subspaces [5], [6], [13].
Banach spaces (resp. compact spaces) with a projectional skeleton (resp.
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a retractional skeleton) are the non-commutative counterpart of the afore-
mentioned classes, in the sense that a Banach space (resp. a compact space)
is Plichko (resp. Valdivia) if and only if it admits a commutative projec-
tional skeleton (resp. a commutative retractional skeleton). Although Plichko
spaces and Banach spaces with a projectional skeleton, as well as Valdivia
compacta and compact spaces with a retractional skeleton, share many struc-
tural and topological properties, they do not coincide. A simple example of
non-Valdivia compact space with a rectractional skeleton is the compact or-
dinal interval [0,ws] (see [16]). It is more difficult to prove that the Banach
space C([0,w2]), which has a projectional skeleton, is not Plichko [11].

In [21] we studied the class of trees endowed with the coarse wedge topol-
ogy, providing new examples of non-Valdivia compact spaces with retrac-
tional skeletons. In the same paper it was proved that every tree with height
less than or equal to w; + 1 is Valdivia, and no Valdivia tree has height
greater than wy. Moreover, an example of a non-Valdivia tree with height
w1 + 2 was given.

In the present paper we follow the same research line. In particular we
investigate the space of continuous functions on compact trees. We prove
that C(T) is Plichko whenever the height of T is less than w; - wy. Finally,
we extend Theorem 4.1 of [21], characterizing Valdivia compact trees with
height less than ws. It turns out that this characterization depends only on
the behavior of the tree on levels with uncountable cofinality.

We now outline how the paper is organized. In the remaining part of
the introductory section, notation and basic notions addressed in this paper
are given. Section 2 contains details of notation, basic definitions and some
preliminary results on trees. Section 3 is devoted to characterizing Valdivia
compact trees with height less than ws. Section 4 deals with the class of
continuous functions on a compact tree. It is shown that if C(T) is 1-Plichko,
then T is Valdivia. We also prove that if T' is an arbitrary tree with height
less than wy - wp, then C(T') is a Plichko space.

We denote by wq the set of natural numbers (including 0) with the usual
order. Given a set X we denote by |X| the cardinality of X, and by [X]=«0
the family of all countable subsets of X.

All the topological spaces considered are assumed to be Hausdorff and
completely regular. Given a topological space X we denote by A the closure
of A ¢ X. We say that A C X is countably closed if C C A for every
C € [A]=wo.

Given a topological compact space (resp. a locally compact space) K we
use C(K) (resp. Cy(K)) to denote the space of all real-valued or complex-
valued continuous functions on K (resp. all real-valued or complex-valued
continuous functions on K vanishing at infinity) with the usual norm. By
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the Riesz representation theorem the elements of C(K)* are considered as
measures. If 4 € C(K)*, we denote by ||p|| its norm. If x is a non-negative
measure, we denote by supp(u) the support of p, i.e. the set of x € K
such that each neighborhood of x has positive u-measure. The support
of a measure u € C(K)* coincides with the support of its total varia-
tion |p|.

Given a Banach space X and a subset A C X we denote by span(A)
the linear hull of A, by Bx the norm-closed unit ball of X, and by X™* the
(topological) dual space of X. A set D C X* is said to be A\-norming if

Joll < Asup{la*(2)] : o* € DN Bx-}
for every x € X, and norming if it is A-norming for some A > 1. A subspace

S C X* is called a X-subspace if there is a set M C X such that span(M)
= X and

S={feX*:{meM: f(m)#0} is countable}.

A Banach space X is called a Plichko (resp. a A\-Plichko) space if X* has
a norming (resp. A\-norming) YX-subspace.
Let I" be an arbitrary set. We put

Z‘(I’):{xGRF:\{76F:m(7)#0}| < wp}-
Let K be a compact space. We say that A C K is a X-subset of K if there
exists a homeomorphic injection h of K into some R’ such that h(A) =

h(K) N X(I'). Finally, K is a Valdivia compact space if K has a dense X-
subset.

2. Basic notions on trees. We recall that a tree is a partially ordered
set (T, <) such that the set {s € T : s < t} of predecessors of any t € T
is well-ordered by <. A tree T is said to be rooted if it has only one mini-
mal element, called the root. A totally ordered subset of T is called a chain.
A maximal chain is called a branch. The tree is called chain complete if ev-
ery chain has a supremum. For any ¢t €T, ht(¢,T) denotes the order type of
{s €T : s<t}. For any ordinal «, the set Levy(T) ={teT : ht(¢t,T)=a}
is called the ath level of T. The height of T, denoted by ht(T), is the least
a such that Lev,(T) = 0. For an element ¢ € T, cf(t) denotes the cofi-
nality of ht(¢,T"), where cf(t) = 0 when ht(¢,7") is a successor ordinal; and
ims(t) ={s €T :t<s,ht(s,T) = ht(¢t,T)+ 1} denotes the set of immediate
successors of t. Given a subset S of a tree T', and an element ¢t € S, we denote
by imsg(t) the set of immediate successors of ¢ in S with the inherited order.
In a tree T' of height «, for each 8 < a we denote T = (J, <5 Lev,(T) and
Tep = Uy Lovs (7).

Fortc Tweput V; = {s € T:s>tlandt={secT:s <t}
In the present work we consider T' endowed with the coarse wedge topology



4 J. Somaglia

(defined below). This topology coincides with the path topology on the set
of all initial chains of T', which is a tree itself when ordered by inclusion; we
refer to [23], [9] for the details.

The coarse wedge topology on a tree T is the one whose subbase is the set
of all V; and their complements, where ¢ is either minimal or on a successor
level. If ht(¢,T') is a successor or ¢ is the minimal element, a local base at ¢
is formed by all sets of the form

W =Vi\ | {Vs s e Fl,

where F is a finite set of immediate successors of . If ht(¢,T') is limit, a local
base at t is formed by all sets of the form

Wi =V\ Vs :reF},

where s < ¢, ht(s,T) is a successor and F' is a finite set of immediate suc-
cessors of t. We refer to [22] and [I9] for further information.

Since we are interested in compact spaces, we recall that, by [19, Corol-
lary 3.5], a tree T is compact Hausdorff in the coarse wedge topology if and
only if T is chain complete and has finitely many minimal elements. For this
reason, from now on we will consider only chain complete trees with a unique
minimal element. The operation ¢ A s = max( N §) is then well-defined for
all s,t e T.

Given a subset S of a tree T', there are two natural topologies on S: the
subspace topology and the coarse wedge topology generated by the inherited
order. We shall prove that these topologies sometimes coincide.

LEMMA 2.1. Let S be a closed subset of a tree T'. Suppose that S is closed
under A (i.e. if s,t € S, then s\t € S). Then the subspace topology coincides
with the coarse wedge topology on S.

Proof. We first observe that if S is a branch of T', then the two topologies
coincide with the interval topology. We shall prove that if S is endowed with
the coarse wedge topology, then it is compact. We observe that, since T is
chain complete, any chain in S has a supremum in 7. By the closedness
of S, the supremum belongs to S. Moreover, since S is closed under A and
T is rooted, we deduce that S is rooted too. Therefore, by [19, Corollary 3.5]|
the set S, endowed with the coarse wedge topology, is a compact Hausdorff
space.

We shall prove that the coarse wedge topology on S is coarser than the
subspace topology.

Let € S be on a successor level in T'. Since S is closed, z is also on a
successor level in S. Let W1 C S be an open basic neighborhood of z, where
F = {t;}"; C imsg(x). For each t; € T there exists a unique u(t;) € imsy(x)
such that t; > u(t;). Let Fy = {u(t;)}";. Then W > Wliins.
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Let = € S belong to a limit level in 7. Now two cases are possible:

e 1 is on a limit level in S. Let W/ C S be an open basic neighborhood
of x, where s < x is on a successor level in S and F' = {t;}? | C imsg(x).
Let F1 = {u(t;)}7, and {s + 1} = 2 N Levygs7)4+1(T). Then Wﬁl is an
open basic neighborhood of x in T and W5F+11 nscwk.

e 7 is on a successor level in S. Let W.X" C S be an open basic neighborhood
of x, where F' = {t;}I' ; C imsg(x). Since x is on a successor level in S, it
has a unique immediate predecessor, say x — 1. Since x is on a limit level
in T and S is closed in T', there exists s € T on a successor level such that
r—1<s<zand W¥NS = 0. Indeed, let x — 1 < s < x and suppose that
yeWfNS. Thenx—1< s <xzAy <z Since z Ay € S, this contradicts
the maximality of x — 1. Hence Wit NS C W', where F} = {u(t;)},.

Since S is a compact Hausdorff space in both topologies, we obtain the
assertion. m

As a consequence we obtain the following result.

COROLLARY 2.2. Let C be a countable subset of a tree T. Then C is a
metrizable subspace of T.

Proof. Let C, be the smallest subset of T containing C' and closed
under A. It is clear that C, is countable. We shall prove that C, is closed un-
der A. Let s,t € Cn. Suppose that s, ¢ are incomparable; otherwise sAt € Ch
follows immediately. Let {u(t)} = ims(s At) N# and {u(s)} = ims(s At) N 3.
Since s,t € Cy, there are s1,t; € C, such that s; € Vu(s) and t; € Vau(t)-
Then s At = s1 Aty € Ch.

We observe that if t € C \ Cx, then t belongs to a limit level. Indeed,
suppose that t € Cx\ Cx and t belongs to a successor level. Then there exists
an infinite set A such that for each a € A there exists t, € ims(t) satisfying
Vi, N Cp # 0. Pick sq, € Vi,, N Ca such that a; € A with ¢ = 1,2; then
Sa; N\ Say =t € Cp, a contradiction.

Thus, any t € Cx \ Cx belongs to a limit level and so any chain is at
most countable. Combining Lemma with [I8, Theorem 2.8] we find that
C, is a separable Corson compact space, hence metrizable. Since C' C Cy,
we obtain the assertion. m

Let X be a topological space. A family U of subsets of X is Ty-separating
in X if for any distinct z,y € X there is U € U satistying [{z,y} N U| = 1.
A family U is point countable on D C X if

HUeU:zecU}| <wy foreveryxzeD.

Since we are interested in compact trees, we are going to state [14, Proposi-
tion 1.9] in these terms.
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THEOREM 2.3. Let T be a tree and D = {t € T : cf(t) < wp}. Then the
following are equivalent:

(i) T is Valdivia.
(ii) D is a X-subset of T.
(iii) There is a To-separating family of basic clopen sets point-countable ex-
actly on D.

The equivalence of (i) and (ii) follows from [2I, Proposition 3.2|, while
(ii) < (iii) follows from |10, Theorem 19.11|, by observing that a tree T' endowed
with the coarse wedge topology is a zero-dimensional space.

We conclude this section with a description of Radon measures on trees,
useful to investigate the spaces of continuous functions on trees. Observe that
a chain complete and rooted tree T' endowed with the coarse wedge topology
is the Stone space of the Boolean algebra Clop(T') of clopen subsets of T
For a tree T' endowed with the coarse wedge topology, Clop(T') is generated
by the family {V; : ¢ is on a successor level}.

Combining this observation with [8, Lemma 3.2|, we will be able to prove
that every Radon measure on a tree T has metrizable support. We recall that
a partial order is o-centered if it is a countable union of centered subsets.

LEMMA 2.4 (|8, Lemma 3.2]). Suppose that a Boolean algebra U is gen-
erated by a subfamily G such that if a,b € G, thena <b, b<a ora-b=0,
and that U s not o-centered. Then U carries no strictly positive measure.

PROPOSITION 2.5. Let T be a tree and p a Radon measure on T'. Then
the support of u is metrizable.

Proof. Let S = supp(u). Then S is a compact subspace of T, and hence
a Stone space. Since the Boolean algebra Clop(S) is generated by the family
G ={ViNS :tis on a successor level}, the previous lemma implies that
Clop(S) and in particular G are o-centered.

Thus G may be written as a union of countably many chains. We claim
that all these chains are countable. If not, let {V;, NS : a < w;} be a chain
of size wy such that ¢, < tgif o < 8. Let Uy = (Vi,, \ Vin) NS for each
a < wy. Then {U,}a<w, is an uncountable family of disjoint open subsets
of S with positive measure, a contradiction. Hence G is countable, as also is
Clop(S). Therefore S is metrizable. m

As an immediate consequence, by [14, Theorem 5.3], C(T) is a WLD
Banach space if and only if T" is a Corson compact space. Moreover, from
the previous proposition we easily obtain the following result.

COROLLARY 2.6. Let T be a tree with height n + 1 where cf(n) > wi,
and i a continuous Radon measure on T'. Then there exists B < n such that

supp(u) C Tj.
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3. Characterization of Valdivia compact trees. The purpose of this
section is to describe relations between trees and Valdivia compacta. We will
characterize trees of height less than ws. We recall the following definition.

DEFINITION 3.1. Let X be a topological space. We say that a subset
A C X is wy-relatively discrete if it can be written as a union of wi-many
relatively discrete subsets of X.

The main results of this section are contained in the following theorem.

THEOREM 3.2. Let T be a tree. Let R = {t€T : cf(t) = w1 & ims(t)#0D}.
Consider the following conditions:

(i) |ims(t)] < wo for every t € R;
(ii) RN Levy(T) is wy-relatively discrete for each o < wa with cf(a) = wy.

Then the following two statements hold.

(1) If T is Valdivia, then ht(T) < wy and (i) and (ii) hold.
(2) If ht(T) < wo and (i) and (i) hold, then T is Valdivia.

The proof is split into two parts. The first statement does not require
any extra result; on the other hand, we postpone the second part to the end
of the section because two lemmata are needed.

Proof of Theorem ( 1). Let T be a Valdivia compact tree. Since T
is Valdivia, by |21, Theorem 4.1] we have ht(7T) < wy. Moreover, T has a
retractional skeleton, hence by |21, Theorem 3.1] we have |ims(t)| < wq for
every t € Levy(T') with cf(«) = wy, in particular for every ¢t € R, and (i) is
fulfilled.

To prove (ii), let @ < wo with cf(a) = wy. Since T is a Valdivia com-
pact, by Theorem the subtree T, 41 is Valdivia as well. Hence, by (iii)
of that theorem, there exists a family U, of clopen subsets of T,41 that
is Tp-separating and point countable on D, = {t € Toy1 : cf(t) < wp}.
Each U € U, is of the form WSF for some s € T,11 and some finite sub-
set F' C Tx41, whose elements are larger than s and on a successor level.
For every t € RN Levy(T) there is n(t) < a such that if U € U,, t € U,
and ht(min U, To41) > n(t), then U Nims(t) = 0. Indeed, since for every
s € ims(t) we have s € D,, it follows that s is contained in countably many
elements of U,. For this reason there are only countably many elements of
U, containing both ¢t and s. It is enough to take

n(t) = sup{ht(p, Tag1) 1 p < t, AW} € Ua)(t € W), ims(t) N W) # 0)}.
Let R, = {t € RNLevy(T) : n(t) =n}.
Let t € R,). Since t ¢ D,, there exists an unbounded subset S; of t such

that for each s € S; there exists W' € U, with t € W' In particular, since
S; is unbounded, there exists sg € Sy and an open basic subset Wslg € Uy
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with ht(so, To+1) > 7. Since F is finite and ims(p) N\ WE =0 if p € R,), we
have |W£ N R,| < wp. Therefore there exists r € T,41 on a successor level
such that so < r <t and V. N R, = {t}. Hence R, is relatively discrete for
each n < wi, which gives the assertion. m

We observe that the second statement of Theorem [3.2 cannot be reversed.
Indeed, there are several examples of Valdivia trees with height ws. Here
we provide an easy example. Let X be the topological sum of the ordinal
intervals X, = [0,a] where o < wa. Let Xo = X U {oco} be the one-point
compactification of X. By [14, Theorem 3.35], X is a Valdivia compact
space. Consider the following relation on Xj:

e oo is the least element,
e r < y in X if and only if there exists o < ws such that z,y € X, and
r <yin X,.

It is clear that (Xo, <) is a tree and, if endowed with the coarse wedge
topology, it is homeomorphic to Xy with the topology given by the com-
pactification. Therefore we have obtained the desired tree.

Much more interesting is the following problem, which seems to be open.

PROBLEM 3.3. Can the first statement of Theorem [3.2] be reversed?

In order to prove Theorem (2), we need to describe a natural way to
extend relatively open subsets to the whole tree. Let T be a tree of height «
and let 3 < a be on a successor level. Let U C Tj be a relatively open set
in Tg. We extend U to the whole tree as follows:

v=vu |J V.
x€Levg(T)NU

It is clear that U is open in T'. Given a family U3 of open subsets of T we
denote by ?;{/3 the family of the extended elements of Ug.

Given a family U of clopen subsets of T we put U(t) ={U e U : t € U}
for every t € T. If A,B C T and AN B = {t}, then by abuse of notation,
U(A N B) means U(t). We need three technical lemmata.

Let T be a tree with height < a+ 1, where « has uncountable cofinality.
Let {av}v@f(a) be a continuous increasing transfinite sequence converging
to a. Denote by I(cf(a)) the set of all successor ordinals less than cf («).

Suppose that for each v € I(cf(a)), there exists a Ty-separating family
U, in Ty 41, and that each t € T, 11 belongs to at least one element of U,.
For each v € I(cf(a)), U € Uy and t € Leva,_, 11(T) define Uy = V; N U.
Finally, we define

u= |J U0 teLeva, (D)}
yel(cf(a)) Uy

Now we can state the first lemma.
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LEMMA 3.4. Let T be a tree with height < a+1, where a has uncountable
cofinality. Let U be the family of clopen subsets of T defined as above. Then
U is Ty-separating in T .

Proof. Let s,t € T with ht(s,T) < ht(¢t,T).

o Ift € T 41\ Tu,_,, for some v € I(cf(a)), then the assertion follows
from the fact that the family U, is Ty-separating in Ty, 1.

o If t € Levy, (T) with « limit, then ht(s A ¢,7") < ht(t,T). Since ay is
limit too, there is a successor ordinal £ < v such that ht(s A t,T) < ce_.
We define {u} = &N Leva,41(T). Let us consider two cases. If {v} =
8N Leva,4+1(T), then since u,v € To, 41 and U is To-separating in T, 41,
there is U € Ug such that |[U N {u,v}| = 1. It follows that \(70 {s,t}| = 1.
Otherwise suppose that 8N Leva,11(7) = (). Similarly there exists U € U
such that |U N {u,s}| = 1. Thus |U N {s,t}| = 1.

o If t € Levy(T) we use the same argument as in the previous item.

Therefore U is a Tp-separating family in 7. =

LEMMA 3.5. Let T be a tree with height greater than n where cf(n) > w;.
Let N be a countable subset of Lev,(T). Then there exists 6 < n such that
if t1,t2 € N, then ht(t; Ato, T) < 4.

Proof. Let N = {t,, }new, where {t, }necw, is @ one-to-one sequence. Define
O = ht(ty, Atm,T). The assertion follows by taking
o= sup 9, + 1.

n,mewo, nFEmM

If NV is finite, we use the same argument as in the infinite case. =

LEMMA 3.6. Let T be a tree of height < n+2 where n<wsy and cf(n) =w;.
Suppose that:

(1) R={t € Lev,(T) : ims(t) # 0} has cardinality at most w;
(2) [ims(t)| < wo for every t € R;
(3) Ty+41 is a Valdivia compactum for every v < .

Then T s a Valdivia compact space.

Proof. We split the proof into two parts. In the first part we define a
function 6 : [0,w;) — [0,7n) satisfying certain properties; it will be defined
separately in three different cases: when R is uncountable, infinite countable,
and finite. In the second part we use 6 to define a family U of clopen subsets
of T that is Tp-separating and point-countable on D = {t € T : cf(t) < wp}.

Suppose that |R| = w1, and enumerate R as {tq }a<w, - Let {ny}y<w, be a
continuous increasing transfinite sequence converging to n. We may suppose
that 179 = 0. We define the mapping 6 by transfinite induction. Let (0) = 0
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and for each ( < w; set

Q(C) = max(nQSUP{ht(t,B A t'WT) +1: 577 < C7t,3 ?é t’}’}a
sup{0(¢) +1:& < ¢}).
Then 0 satisfies the following conditions:

o for every a <w; and B,y < a (tg #t,), ht(tg A t,,T) < 0(c),
e 0 is increasing, continuous and sup;.,, 0(¢) =n.

Let us prove that 6 is continuous; the other properties are clear. Let ¢ < w;
be a limit ordinal; we need to show that supe. 0(£) = 6(¢). We observe that
¢ = SuPgc Ne < supe(0(€) + 1), and furthermore

sup{ht(tg Aty,T)+1: 5,7 <(, tg #t,}
=supsup{ht(tg Aty,T)+1: 8,7y <& tg#t,}

£<(
< supf(&) < sup(B(§) + 1).
£<C £<C

Hence, by definition of 6((), we obtain supg.(0(§) + 1) = 6(¢). This proves
the continuity.

Suppose that |R| = wp and R = {t,}n<w,- Let {0(a)}a<w, be any con-
tinuous increasing sequence with (0) = 0 and §(n) = sup{ht(tm, Atm,,T) :
my < mg < n} for each n < wg. When R is finite one can define 6 similarly.

We observe that for every ¢ € T" on a successor level and with ht(¢,7") < n,
there exists a unique o < wj such that ht(¢,T) € [#(«),0(a + 1)), and at
most one 3 < « such that ¢ < t3.

Since Tp(q)41 is Valdivia, by Theorem there exists a family U, of
clopen subsets of Ty()41 which is Tp-separating and point-countable on
Do = {t € Thay41 : cf(t) < wo} for every a < wi. Moreover, the ele-
ments of U, are of the form W/ for every o < wy. Finally, we may suppose
that each element of Tj ()41 is contained in some element of U, (if necessary,
add TQ(a)—i—l to Uy,)-

In order to define a family U of clopen subsets of T’ which is Ty-separating
and point-countable on D, we are going to select and appropriately modify
a suitable subfamily of |J,, ., Ua-

Let a<wy be a successor ordinal and U €U, . For every t € Levgq_1)41(7T)
let Uy = UNV;. Recall that if t € Levgq—1)11(T), then [V;N{tg}p<a—1/ < 1.
Therefore if Vi N {tg}s<a—1 = 0, then we extend U; to ﬁt, while if V; N
{ts}s<a—1 = {t,} for some v < o — 1, then we extend U; to U, \ims(t,),
obtaining a clopen subset of T' that avoids Jz_,,_; ims(tg).

Define I(wq) as the set of successor ordinals less than w;. We define the
following family of clopen subsets of T
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U={{t}:t €Levy(T)}

0 U UD€ Levitaiya(T), Vi {ts}pcams = 0}
OéEI(UJl) Uely

U U U {ﬁt \ims(te) : t € Levga—1y41(T), {te} =V N {ts}s<a1}-
aEI(wl) Ueln

To prove that 7" is Valdivia, we first observe that I/ restricted to T, satisfies
the hypothesis of Lemma [3.4] Therefore combining Lemma [3.4) with the fact
that {{t} : t € Lev,1.1(T)} is contained in U we find that U/ is Tp-separating
inT.

It remains to prove that I/ is point-countable on D. Suppose that t € D,
and consider two cases.

First, suppose that ht(¢,7") < n. Noting that [{a < wy : ht(¢,T) > 6(a) }|
< wyp, define ap = sup{a < wy : ht(t,T) > O(a)}. Hence if t € U and U € U
then U is extended from an element of a family /¢ where £ < ap. Since U
is point-countable on D¢ C Tp)41 we have

U(t)] < | | Ueli N Levgigya ()| < wo.
§<ao
Now suppose that ht(¢,7) = n + 1. Then there exists tg3 € R such that
t € ims(tg) for some § < wy. Let X € U be such that ¢ € X. Then there are
the following possibilities:

o X = {t}; exactly one element of ¢/ has this form.

e There exist § € I(w1) and s € Levge_1y41(T) such that X = U, for some
U € Ue. Since Vi N {ty}y<ce—1 = 0 we obtain & < § 4+ 1, and moreover
tNLevye)41(T) C Us and [Ue(t N Levge)41(T))| < wo. Hence there are at
most countably many elements of this form.

e There are { € I(w1), s € Levge_1)41(T) and p € R such that X =
Uy \ ims(p). Since Vi N U, <¢_1ims(ty) = 0, we have § < 8+ 1 and since
(tNLevye)+1(T)) C Us and [Ue (N Levpe)11(T))| < wo, there are at most
countably many sets of this form.

Therefore U is point-countable on D, hence T is Valdivia. m

Proof of Theorem ( 2). We use transfinite induction on the height of
the tree. Let T' be a tree as in the hypothesis; by [2I, Theorem 4.1|, if
ht(T) < wy + 1, then T is Valdivia.

Suppose that the assertion is true for each tree 7' with ht(7T") < a + 2;
we will prove it for trees with height < a + 3. Let T satisfy ht(7) = a + 3.
Then, by induction hypothesis, T,+1 is a Valdivia compact space. Hence,
by Theorem there exists a family U, of clopen subsets of T, which is
To-separating and point-countable on Dy = {t € Tpy1 : cf(t) < wo}. Then
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U=uU,U {{t} : t € Leva+2(T)} is a family of clopen subsets of T" which
is clearly Tp-separating and point-countable on D = {t € T : cf(t) < wo}.
Therefore T is Valdivia.

Suppose that the assertion is true for each tree 7' with ht(7T") < « for
some limit ordinal «; we will prove it for trees with height < o+ 2. Suppose
T is such a tree. We consider two cases.

Suppose that « is a limit ordinal with countable cofinality. Then there
exists an increasing sequence {ay, fney, of ordinals converging to a. By in-
duction hypothesis the subtrees T,,,+1 are Valdivia compact spaces. Hence,
by Theorem [2.3] for each n € wy there exists a Tp-separating family U, of
clopen subsets that is point countable on D,, = {t € T, 41 : cf(t) < wo}.
Now we are going to prove that U = J,,, U, U{{t} : t € Levar (T)}
is a Tp-separating family of clopen subsets of 1" that is point countable on
D={teT:cf(t) <wp}. Let t € T, and consider three possibilities:

o if t € Leva(T), then U(t) = U, ey {U : U € Un(f N Leva,41(T))}:

o ift € Leve1(T), thenU(t) = {{t}}UU, e, 1U : U € U, (tNLeva, +1(T))};
o ift € DNU,cuy Ton+1, then U(t) = U {U :U € Uy(t)};

in all cases U(t) is countable, hence U is point-countable on D. To prove

that U is Tp-separating on T, let s,t € T, satisfy ht(s,T') < ht(¢,T). Three
cases are possible:

newo

o If ht(¢,T) < «, then s,t € Ty, 41 for some n € wy. The assertion follows
from the fact that U, is Tp-separating on Ty, 41.

o Ift € Levy(T), then ht(sAt,T) < a, hence sAt € Ty, +1 for some n € wy.
Let {t1} =t N Leva,,,+1(T) and {s1} = 8 N Leva,,,+1(7). Then there
exists U € Up41 such that |[U N {s1,t1}| = 1, and the assertion follows by
observing that U € U and |U N {s,t}| = 1.

o If t € Levy41(T), then the assertion follows since {t} € U.

Suppose that « is a limit ordinal with uncountable cofinality. Then there
exists an increasing continuous transfinite sequence {aw} <., of ordinals
converging to a. Since T satisfies (ii) we have Levo(T) N R = e, Ae
where A is relatively discrete in T' for each { < wy; we may suppose that
the family {A¢}e<., is disjoint. We observe that any relatively discrete subset
B C Leva(T) can be decomposed as B = (Jg_,,, Bg in such a way that if
s € T and ht(s,T) > agy1, then V,N Bg contains at most one point. Indeed,
since B is relatively discrete, for each t € B there exists s; < t on a successor
level such that Vi, N B = {t}. Define Bg = {t € B : ag < ht(s,T) < ag41}.
Hence B = Uy, Bg and if s € T is such that ht(s,T) > apy1, then
|Vs N Bg| < 1. Therefore, since each A¢ is a relatively discrete subset of
Levy(T), it can be decomposed into wi-many pieces as above. Hence we
may suppose that for each £ < wy there is 5(§) < « such that for any s € T
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with ht(s,T") > (§) we have |V, N A¢| < 1. Moreover we may suppose that
B is non-decreasing (replace (&) by sup{8(7) : v < &}).

First suppose that 3 is bounded by an ordinal 8y < a. Let p € Levg, 1 (7).
Since the height of p is greater than fy, we have [V, N A¢| < 1 for every
§ < wi. Hence [V, N Uey, A¢| < wi. By induction hypothesis T, 11 is
Valdivia, hence there exists a family Uy of clopen subsets of T, 1 which
is Typ-separating and point-countable on Dy = {t € Tg 4 : cf(t) < wo}.
Further, for any p € Levg,41(T), the subset V,, C T' is isomorphic to a tree
satisfying the assumptions of Lemma Hence V), is a Valdivia compact
space. Therefore there is a family U, of clopen sets that is Tp-separating and
point countable on D), = {t € V], : c¢f(t) < wp}. We may assume that V,, € U,
for every p € Levg,4+1(T). Defining U = Uy U UpELevso+1(T) U, we obtain a
family of clopen subsets of T. Let t € D = {t € T : cf(t) < wp}. We consider
two cases:

e If ht(t,T) > By + 1, take {p;} =t N Levg,+1(T). Then
U@ < [Uo(pe)| + Uy, (£)] < wo.
o If ht(t,T) < By + 1, we have |U(t)| < [Up(t)] < wo.

Hence U is point-countable on D. To prove that U is Tp-separating, let
s,t € T and suppose that ht(s,T") < ht(¢,T).

o If either s,t € T 41, or s,t € V), for some p € Levgy41(T'), then we use
the fact that Uy (resp. U,) is Typ-separating on Tg,41 (resp. V).

e If there exists p € Levg,11(T) such that t € V}, and s ¢ V},, then V, e U
and s ¢ V),.

Hence U is Tp-separating, and therefore T' is Valdivia.

Now suppose that the mapping 5 is unbounded. Recall that if ¢ € T" and
ht(t, T) > B(£) for some § < wy, then Vi N, <, Ayl < wo. We are going to
define a family {S¢}¢<, of subsets of T' with the following properties:

a) Sf C T<a;

b) Se NSy, = 0 for & # n;

o iftelU, o Sforsome£<w1,then{s€T s<t}cU
d) 1ft€T<a\U L <¢ Sy, then ht (¢, T) > B(€ + 1);

) if t € S for some § < wi, then V; NJ, ¢ Ay is at most a singleton;
) ift € T \ U, <¢ Sy, then VN U, ¢ Ay 1s at most a singleton.

7<£

(
(
(
(
(e
(f

We use transfinite induction. First we define
So={teT ht(t,T) < p(1)}.

We observe that So = Ty and 3(1) < «, hence S satisfies (a)—(f). Suppose
that for every v <, S, has been already defined so that (a)—(f) are fulfilled.
To define S, we consider two cases:
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Case 1:n=v+1. Let M; = {t € T : ¢ is minimal in T'«n, \ U<, Sc}-
Fix t € M,. Then, by induction hypothesis, ht(¢,7") > £(n). Consequently,
Vi 0 U<y, AC] < wp, so by Lemma there exists d(t) < « such that

( ) ﬁ( ) + 1 and if tg,t1 € Vi N UCSW AC then ht(to AN tl,T) < 5(t) Let
z(t) = max{d(t),B(n+ 1)} and
Sy=|J VinT.w).
te My,

We now prove that S, satisfies (a)-(f). For every t € M, we have
B(n+1) < z2(t) < a, hence (a) and (d) are satisfied. By construction
Sy C Tea \Ue<y S¢s s0 (b) is satisfied.

By definition of S, and the induction hypothesis, if ¢ € [J
{s€T:s<t} CU, 41 Sy, hence S, satisfies (c).

Let t € S,. Then t € Teo \ U¢<, S¢, hence, by induction hypothesis,
VinUee Acl = [ViN U<, Acl < 1. Thus S, satisfies (e).

Finally, we prove that S, satisfies (f). Suppose that t € To \ Uc<, S¢
and {p} = N M,. Then ht(t,T) > 2z(p) > d(p) > ht(to A t1,T) for all
to,t1 € Vp N UCSH Ac. Hence |Vt N UCSTI A4| < 1.

CASE 2: 7 is limit. The function § is not necessarily continuous, so we
define the set S;, in two steps.

Let Mg = {t € T': t is minimal in T«o \ U, ,, Sy} Suppose that ¢ € Mg.
Then by induction hypothesis, ht(¢,7") > B() for every v < n. Therefore
ViU, <, 44 < wo, so by Lemma there exists 0°(t) < a such that
50(t) > Sup,y<n(,8(’}/))+1 and if ty,t1 € VthC<q7 AC then ht(toAt1, T) < §(t).
Set 29(t) = max{d°(t), B(n)} and

= U (VN T
te My
Let M, = {t € T : t is minimal in T, \ (52 U U7<77 Sy)} and let t € M,,.
Then ht(¢,T') > B(n). Hence |V; N U, <, A¢c| < wo, therefore by Lemma
there exists 0(¢) < a such that 6(¢) > B(n) + 1 and if to,t1 € Vi N U<, A¢
then ht(tg At1,T) < (t). Set z(t) = max{d(t),5(n+ 1)} and
S, =S00 |J (BN Ty,

teM,

<nt1 S, then

Since the definition of S, is similar to the one given in the previous case,
conditions (a)—(d) are verified analogously.

Let t € S,. Then t € T \ UC<7 S¢ for each v < 7. Hence, by induction
hypothesis, [V NUJ.<., A¢| <1 for each v < . It follows that [V; N, Ac|
< 1. Therefore S, satisfies (e).

Finally, we prove that S, satisfies (f). Let t € Teo \ U, <, Sy If {p} =

tNM,,, then ht(t,T) > 2(p) > 6(p) > ht(toAt1, T) for all to, t; €V, mUCSn Ac.
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Hence |V; N U.<, A¢| < 1. The same follows in an analogous way if {p} =
En M.

By the transfinite induction hypothesis the tree Ty, 11 is a Valdivia com-
pact space, hence, by Theorem @ there is a family U, of clopen subsets
of Ty, 41 which is Ty-separating and point-countable on D, = {t To,+1:
cf(t) < wo} for every v < wyi. Moreover the elements of each U, are of the
form W'

By construction, {S¢}¢<y, is a pairwise disjoint family of subsets of T,,.
Indeed, since 8 is unbounded, for every ¢t € T., there is £ < w; with
ht(t,T) < B(§) and so by (d), t € U, ¢ Se. Thus, taking into account (b),
for every t € T, there exists a unique § < w; with t € 5.

Let ¢ : T<o — [0,w1) be such that t € Sy for every t € Teq,. Let
I(wy) be the set of successor ordinals less than wy. Let v € I(w). Define

Uy =V,NU for any U € Uy and p € Leva<771)+1(T). We observe that
min(U,) € S¢(min(UP)), hence (e) implies that ]ﬁp N Uy<¢(min(Up)) A <1
If U N Uv<¢ (min(U)) A, =0, then (7 is a clopen subset of T' that does not

intersect U, g(min(v,)) Ay~ Similarly, if U, N Uy <o(min(,)) Ay = {s}, then
U \ ims(s) is a clopen subset of T" that avoids U, g(min(t,)) Usea, ims(s).
Therefore we define a family U of clopen subsets of T" as follows:

U={{t}:teLevan(T)}
U U U {ﬁp ipE Leva(v_l)ﬂ(T), ﬁp N U A, = (Z)}

vel(wr) UeU, n<¢(min(Up))
v U {ﬁp \ims(s) : p € Leva., , 1(T), Tpn | 4, = {s}}.
~eI(w) UeUy n<¢(min(Up))

It remains to prove that U/ is a family of clopen subsets which is Ty-separating
and point-countable on D = {t € T : cf(t) < wp}. We observe that U
restricted to T}, satisfies the hypothesis of Lemma [3:4] Therefore combining
Lemma with the fact that {{t} : t € Lev,1(T")} is contained in U we
find that U is Ty-separating in T'.

To prove that U is point-countable on D, let t € D and consider two
cases.

CASE 1: ht(t,T) < a. We define 79 = min{y < wy : ht(¢,T) < a,}; such
a Yo exists since ht(¢,T") < a and {,}y<w, is a continuous increasing trans-
finite sequence converging to . Since {, },<u, is continuous and t belongs
to a successor level, we have g € I(w).

Suppose U, CT, ag+1 \ Ta , for some £€1 (wl) We consider three cases.

&> +1, thent ¢ U If £ < 50, then since Up =U, UU:L‘ELevaf_H(T)ﬂU Va,
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it follows that ¢t € ﬁp if and only if £ N LeV%H(T) C Up. Finally, if £ = o,

we have t € U, if and only if t € U,,.
Hence, since U is point-countable on D¢ C Tj, 41 for each § < o + 1,
we see that U(t) is countable as well.

CASE 2: t € Leva4+1(T'). Then there exists s € RN Lev,(T') such that
t € ims(s). There exists v < wy such that s € A,. Take any element X of U
containing ¢. Then there are two possibilities:

If X = {t} then exactly one element of ¢/ has this form.

If X # {t}, then it follows from (c) and (d) that the restriction of ¢ to
{u € T : u < s} is non-decreasing and unbounded. Let uy € T be the minimal
element u < s such that ¢(u) > 7. Let §y < w; be the minimal ordinal £ < wy
such that ug € Toet1. If n € I(w1) and p € Levy, ,+1(T) with X = U, for
some Uy, C T, +1\Ta,_; , then since UpﬂU<<¢(mm(Up)) Ac=0ands e A,, we
obtain ¢(min(U,)) < 7 and therefore ) < £+ 1. Similarly, if X = U, \ ims(u)
for some u € R, then since (Up \ ims(u)) N U<<¢(min(Up)) UreAC ims(r) = 0
and t € X, we obtain n < §p + 1. B

Since U, = U, U UxELeva£+1(T)ﬁU Vz, it follows that ¢ € U, if and only if

tNLeva,41(T) C Uy when X = U, and t € ﬁp \ ims(u) if and only if £ N

Levae+1(T) C Up when X = ﬁp \ ims(u). Hence, since U; is point-countable

on D¢ C Ty 41 for each £ < §p+1, we conclude that U(t) is countable as well.
Therefore T' is Valdivia. This concludes the proof. =

4. Banach spaces of continuous functions on trees. In this section
we deal with the space of continuous functions on a tree T. We will prove
that Valdivia compact trees can be characterized by their space of continuous
functions: T is Valdivia if and only if C(T") is 1-Plichko (7" has a retractional
skeleton if and only if C'(T") has a 1-projectional skeleton). Notice that for
general sets this is not true: there are examples of non-Valdivia compacta K
such that C(K) is 1-Plichko (see [1], [12], [17]).

In the final part of this section, we will prove that each C'(T") space, where
T is a tree with height less than w; - wy, is a Plichko space. Using this result,
we observe that the tree T defined as in |21, Example 4.3] is an example of
a compact space with retractional skeletons none of which is commutative,
but C(T') is a Plichko space, so it has a commutative projectional skeleton
(see [I5, Theorem 27]).

THEOREM 4.1. Let T be a tree. Then T is a Valdivia compact space if
and only if C(T') is a 1-Plichko space.

Proof. The “only if” part is a particular case of [14, Theorem 5.2|. Sup-
pose that C(T) is a 1-Plichko space and let S C C(T)* be a l-norming
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2/-subspace. The compact space 1" embeds canonically into Bg(r)« by iden-
tifying each ¢ € T with the Dirac measure concentrated on {¢}. This embed-
ding will be denoted by §. We are going to prove that 6(¢) = d; € S whenever
t € T is on a successor level.

Pick t € T on a successor level. If ims(t) is finite, then ¢ is isolated, and
since S is 1-norming, we obtain d; € S.

Now suppose that ims(¢) is infinite. Let {,}new, be an infinite subset
of ims(t). Since V;, is a clopen subset of T', the function f, = 1y, is con-
tinuous for every n € wyp. Since S is a 1-norming subset of C(T)*, for each
k € wp there exists puk € O(T)* with ||uf|| =1 and pf(f,) > 1 — 1/k. Since
S is a Y-subspace, by [14, Lemma 1.6] the closure of {1*}1c., is contained
in S and moreover there exist a measure u, contained in that closure and a

subsequence {uﬁj }iew, that uﬁj converges to p,. Hence i, (fn)=pn(Vi,) =1.
Observing that [[in]] = |jtn|(T) < 1 and 1 = |jin(Vi,)| < |un(Vi,), we easily
deduce that supp(un) C Vi,,.
Now, for f € C(T) and € > 0 we define
Ze(f,1) = {s € ims()  sup 7(p) — F()] > <.
peVs
By the continuity of f, the set Z.(f,t) is finite. Hence there exists ng € wo

such that
sup |f(p) — f(t)| <e for every n > ng.

If n > ng, then Pt
() = SO = | § F@ dan@) = 10| = | § (F@) = 2)) dpn(@)
Vin tn
< §1f@) = FO) dpnlz) < e,
Vin

Hence p,,(f) converges to &;(f) for every f € C(T). By the weak* countable
closedness of S it follows that d; € S.

Therefore, since by [14, Theorem 5.2|, Be(r)« is a Valdivia compact space
with By« NS being a X-subset, and SNJ(T') is dense in §(T"), we conclude
that §(7") is a Valdivia compact space. m

We observe that the same result can be proved in the non-commutative
setting. Using [4, Proposition 3.15| instead of [14, Theorem 5.2| we obtain
the following result.

THEOREM 4.2. Let T be a tree. Then T has a retractional skeleton if and
only if C(T) has a 1-projectional skeleton.

Now we are going to investigate the space of continuous functions on trees
with height less than wy - wg. It turns out that all such spaces are Plichko.

THEOREM 4.3. Let T be a tree such that ht(T) < wy - wo. Then C(T) is
a Plichko space.
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This follows immediately from the next technical proposition, where, for
every tree T of height less than w; - wp, a norming X-subspace of C(T)* is
explicitly described.

PROPOSITION 4.4. Let T be a tree and suppose that ht(T) < wy -n+1
for some n > 1. Then

A= {peCT) : (¥ € {1,...,n})(vt € Levi, 5(T)) (u(Vi) = 0)}
is a (2n — 1)-norming X-subspace of C(T)*. If ht(T') > w1 - (n — 1)+ 1, then
the norming constant is exactly 2n — 1.

LEMMA 4.5. Let T be a tree such that ht(T) <wi+1 and D ={t € T :
cf(t) <wp}. Then the set

S ={peC(T)" :supp(p) C D}
is a 1-norming X-subspace of C(T)*.

Proof. Since ht(T') < w; + 1, by |21, Theorem 4.1], T is a Valdivia com-
pact space and D is a dense Y-subspace. Hence, by [14, Proposition 5.1] the
set

S ={peC(T)" : supp(u) is a separable subset of D}
is a 1-norming X-subspace of C(7T")*. Finally, the assertion follows by Propo-
sition .

Proof of Proposition[{.4] If n =1 the assertion follows from Lemma [£.5]
Hence we assume that n > 2 and 7' is a tree with w; - (n — 1) +1 < ht(7) <
wi -n+ 1. As in Lemma[4.5| we define D = {¢t € T : cf(t) < wp}. Let Sy =0,
Si =T, for each ¢ <n —1, and S, = T. Then we obtain the following:

e S; is a closed subset of T for every i € {1,...,n}.

e 51 is isomorphic to a tree of height wy + 1, hence, by Lemma C(S1)
is a 1-Plichko space with Xy = {u € C(S1)* : supp(r) € DN St} being a
X)-subspace.

e For every i € {1,...,n — 1}, the subset S;y; \ S; is a locally compact
space and Cp(S;+1\9;) is a 1-Plichko space. Indeed, let ¢ € Levq,.j)41(7T)
and Uy = V; N S;y1. It is clear that Uy is a closed subset of T and it
is isomorphic to a tree of height < w; + 1. Hence, by Lemma [£.5] U,
is a Valdivia compact space and C(U;) is a 1-Plichko space with X;; =
{p € C(U)* : supp(p) C DNU;} being a X-subspace. Moreover Sit1 \ S;
is the topological sum of all U, so Cy(S; 41\ S;) is the cp-sum of the C(Uy)
and its dual is the ¢;-sum of the C'(U;)*. Hence, by |14, Theorem 4.31 and
Lemma 4.34], Cop(Sit+1 \ S;) is a 1-Plichko space and

Xy = {(Mt)teLeV(wl,iHl(T) € Co(Siv1\ Si)" = (Vt € Levy,.iy11(T)) (e € Xip)
& {t € Levy,.iy4+1(T) : pur # 0} is countable }

is a X-subspace.
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Suppose that ¢ <n —1 and let r; : T' — T be the continuous retraction

defined by
t iftes;,
rty=4" 1=
s if s <t and s € Levy,.i(T).
For simplicity we define r, : T — T to be the identity map. These continuous
retractions induce continuous linear projections on C(T') defined by P;(f) =

fori. Then for every f € C(T) and every i < n — 1 the following conditions
hold:

o fls, = PFifls;
o (f=Pif)ls, = Pisaf —Pif)ls,
o (f=PFif)ls,\s € Co(Sit1\ Si).

To get an isomorphism between C(T') and a 1-Plichko space we define
the following map:

G: C’(T) — 0(51) Do 00(52 \ Sl) Do " Do CO(Sn \ Snfl)y
F= (s (F = Puf)lspnsys e+ (F = Pac1f)ls08, 1)

The norm of G is clearly at most 2. Now we define the inverse of G. For
simplicity we denote

W = C(51) ®oo Co(S2\ S1) oo+ * Poo Co(Sn \ Sn—1).
Let (f1,..., fn) € W. We define its preimage f € C(T) as follows:

f(t)— fl(t) iftESl,

Fri(t) + X0, fi(ry(8) it € St \ S
It follows that the norm of the inverse of G is at most n. Therefore G is an
isomorphism. Since each component of W is a 1-Plichko space, it follows that
W is 1-Plichko, so C(T') is a Plichko space. Moreover, X' = {(u;)i"y € W*:
W € X;} € W* is a l-norming X-subspace. In order to compute the exact
value of the norming constant of the Y-subspace G*(X'), we compute the
adjoint map of G:

G*(pr, - - i) (f) = (i, - ) (G )

n—1
= m(fls) + Y mi1((f = Pif)ls,ns;)

J=1

n—1
=\ fdm +> | (/= Pif)dujn
51 J=18541\S;

n—1

= | fd(i:“i) = >\ Fdr(un),
T =1

j=1T
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hence -
G (W1, pin) = Z ZTJ (k1)
i=1 =1

where 7;(11;)(A) = pj(r;*(A)) for every measurable A C T. Now we give
a representation of the inverse of G*. Let = G*(p1,...,fn) = D iy Mi —
27:_11 ri(pj+1) and k < n — 1. Then

n n—1
rr(p) = Zrk 14:) ZTk ri(1j+1))
=1 7j=1

Further we observe that 74 (u;) = p; for i <k and

(o ) ri(piea)  if <K,
ri(ri(pg)) = {Tk(ﬂjﬂ) if j > k.

Hence
k n k—1 n—1
ZZM-F Z Tk (1) ZTJ (15+1) Zrk (j+1)

k k-1
=D i = rilur).
i=1 j=1

Now we take the restriction of p to S; \ S;—1:
pls, = p1 —ri(p2),
PSS, = Mi — ri(pip1) forie{2,...,n—1},
NrT\Sn,l = HUn-

Hence, combining these formulae with r4(u) = Zle i — 25;11 i (fj+1), we
obtain

p1 = 11(p),
pi=rilp) = pls,, - fori€{2,...,n =1},
fn = HIT\S, ;-

Therefore the inverse of G* can be represented as
o (re(p), r2(p) — plsys oo mna1(p) = pls, oo ilims,_,)-
Hence
G*(X)
={peC(T)" : (ri(u),r2(p) — plgys--srn—1(p) — pls, 5 ilms, ) € X}
={wec):(vje{1,....n)(VB C Levu,5(1)) (1 (U Vi) =0)}

teB
={neC(T)" : (Vje{l,...,n})(Vt € Levy, (T))(u(Vi) = 0)}.

Indeed, the first equality is obvious. Let us prove the second one:
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C: Let p € G*(¥) and B C Lev,, .;(T) for some j € {1,...,n — 1}. Since
(rj(n) — uls,_,) € Xj we have (rj(pn) — pulg,_,)(B) = 0. Hence 0 =
(rj(1) — uls;, )(B) = mUiep Vi) — (BN Sjo1) = ilUyep Vi) I =
we have plp\g, € Xy, hence 0 = plpg,  (B) = u(B).

D: Let p € C(T)* be such that pu(U,cz Vi) = 0 for each j € {1,...,n}
and B C Lev,, .;j(T). By Proposition the support of the measure
rj(#)—pls,_, is ametrizable subset of T' for each j € {2,...,n—1}. Hence
(rj(n) — pnls,_,) (V) = 0 for all but countably many ¢t € Lev(,,.j)41(T).
Let j € {2,...,n— 1} and let s € T be on a successor level and such
that wy - (j —1) < ht(s,T) <w; - (j+1). Then

(rj(p) = nls,_ )(Vs) = rj(p)(Vs) = u(V5)
= p(Vs N T<w1'j) + (Vs (T'\ T<w1'j))
= N(‘/:S N T<w1-j)‘
In particular, for each s € Lev(y,.(j—1))+1(T) we have (rj(n)—plg,_ ) (Vs)
= 1(VsNT<w, ), hence (rj(u) —pls, )y, C VsND. Therefore we obtain
(rj(n)—nls,_,) € Xjforeachj € {2,...,n—1}. Using asimilar argument
we obtain 71 (u) € X1 and plpg, | € Y.

Let us prove the last equality:

C: This is trivial.

D: Let p € C(T)* be such that u(V;) = 0 for any j € {1,...,n} and
t € Levy, ;j(T). Fix j € {1,...,n}. Denote by p. the continuous part
of p. By Corollary supp(pe[S;) C T, where a < wq - j. Hence we
may suppose that p(V; N.S;) = 0 whenever ht(¢,7") > «. Consequently,
p(A) = 0 for each relatively open subset A of Levy,.;(T'), and thus for
any subset by the regularity of u.

Hence A = G*(X) is a X-subspace of C'(T")*. Now we show that the norming
constant of A is 2n — 1. First we observe that if f € C(T) and t € Lev,(T)
with cf(t) = wi, then there exists s < t on a successor level such that f is
constant on Vi NT,. Indeed, since f is a continuous function on Ty, for each
n € wy there exists t, < t on a successor level such that |f(¢) — f(s)| < 1/n
for each s € V;, NT,. Then f(s) = f(t) for each s € Vi, N Ty, where
Lo = SUPyey, tn + 1.

Now, let f € C(T); without loss of generality, suppose || f|| = 1. Let
t € T be such that |f(t)| = 1. Then there exists ¢ € {0,...,n — 1} such that
wi-i <ht(¢t,T) <wi-(i+1). We will show that there exists a measure p € A
satisfying ||p|| < 2n —1 and p(f) = 1. Set

= (ki::l Oty — 5sk) + Ot
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where t; = t, {sx} = fiﬂLevwl.k(T) and ty, is such that s, <t < sgy1 (resp.
to < s1) and f(sky1) = f(tg) for k > 1 (resp. for k = 0). Such elements exist
since f is constant near points of uncountable cofinality. Therefore 2n —1 >
2i 4+ 1 = ||p|| and we easily get |u(f)] = 1. Hence the norming constant of A
is at most 2n — 1. On the other hand, suppose that ht(7) > w; - (n — 1) +1
and let t,_1 € T such that ht(¢,—1,7) > w1 - (n — 1)+ 1 and

{si} = tn_1 NLevy,.:(T) fori=1,...,n—1,

{t;} =t,1 N Levi, .41 (T) fori=1,...,n—2.
Let us consider the following continuous map:

n—2

F) =1, () +0lny, () + Y dnly v, (0,
=1

where 01 =1/(2n—1) and 9; = (20 —1)é; fori =1,...,n— 1. Let p € A be
such that pu(f) = 1. We put

w(T\ Vs,) = ao,

w(Ve, \ Vg,) = b; fori=1,...,n—1,

(Vi \ Vo) =a; fori=1,...,n—2,

/’[/(‘/;nfl) = an—1-

Since pu € A we have b; = —a; for every i = 1,...,n — 1. Therefore

1=un(f)=an1+ Z(Si(ai_l —a;

n—2

=d1a0 + (1 = Op—1)an—1 + Z a;(6i41 — 0;)
i—1

<\aor+22raz\) ma{ oy, L=t}
= (laol +;2|a,-\) ., 1

Hence ||p|| > 2n — 1. This concludes the proof. m

Combining Theorems and we obtain several examples of trees T,
also with height greater than wj - wp, such that C(7T') is a 1-Plichko space.
However, in the final part of the proof of Theorem [£.3] the norming constant
of the Y-subspace grows as 2n — 1. This means that, in general, this is not
the optimal choice, and the following question is natural:

PROBLEM 4.6. Let T be a tree with height wy - wy. Is C(T) necessarily
Plichko?
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REMARK 4.7. We have assumed that every tree was rooted, but the above
results can also be proved if the tree has finitely many minimal elements.
Indeed, it can then be viewed as the topological direct sum of rooted trees.
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