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Abstract

Given a graded group G and commuting, formally self-adjoint, left-invariant, homogeneous differential operators
L1,...,L, on G, one of which is Rockland, we study the convolution operators m(L1,...,L,) and their con-
volution kernels, with particular reference to the case in which G is abelian and n = 1, and the case in which
G is a 2-step stratified group which satisfies a slight strenghtening of the Moore-Wolf condition and L1,..., L,
are either sub-Laplacians or central elements of the Lie algebra of G. Under suitable conditions, we prove that:
i) if the convolution kernel of the operator m(L1,...,L,) belongs to L', then m equals almost everywhere a
continuous function vanishing at co (‘Riemann-Lebesgue lemma’); ii) if the convolution kernel of the operator

m(L,...,Ls) is a Schwartz function, then m equals almost everywhere a Schwartz function.

1 Introduction

Given a Rockland family! (£1,...,£,) on a homogeneous group G, following [32, 39] (see also [15]) we
define a ‘kernel transform’ K which to every measurable function m: R™ — C such that m(L4,..., L)

is defined on D(G) associates a unique distribution K(m) such that
m(Ly, ..., Ln)p=p*xK(m)
for every ¢ € D(G). The so-defined kernel transform K enjoys some relevant properties, which we list

below; see [32, 39] for their proofs and further information.

e there is a unique positive Radon measure 3 on R™ such that K(m) € L?(G) if and only if m € L?(3),

and K induces an isometry of L?(3) into L?(G);

e there is a unique x € L*(R"™ x G, 8 ® v), where v denotes a Haar measure on G, such that for

every m € L*(53)

n

K(m)(g) = / m(\)x(h ) dB)

for almost every g € G;

Isee Section 2 for precise definitions



e I maps S(R™) into S(G).
We consider also some additional properties of particular interest, such as:
(RL) if K(m) € L*(G), then we can take m so as to belong to Co(R™);
(S) if £(m) € S(G), then we can take m so as to belong to S(R™).

In this paper, we shall investigate the validity of properties (RL) and (5) in two particular cases:
that of a Rockland operator on an abelian group, and that of homogeneous sub-Laplacians and elements
of the centre on an MW group (cf. Definition 4.1).

Here is a plan of the following sections. In Section 2 we recall the basic definitions and notation,
as well as some relevant results proved in [15]. In Section 3, we then consider abelian groups, and
characterize the Rockland operators which satisfy property (S) thereon. In Section 4 we prepare the
machinery for the study of homogeneous sub-Laplacians and elements of the centre on MW T groups,
referring to [15] for the proof of analogous statements when necessary. In contrast with the situation
considered in [15], the structure of MW™ groups will allow us to treat more than one homogeneous
sub-Laplacian at a time. In Sections 5 and 6, then, we prove some sufficient conditions for properties
(RL) and (S) in this context.

In Section 7 we present a particularly elegant result where all the good properties we consider are
proved to be equivalent for the families which are invariant (in some sense) under the action of suitable
groups of isometries. In particular, this result covers the case of Heisenberg groups, thanks to the
results of Section 3. Finally, in Section 8 we consider products of Heisenberg groups and ‘decomposable’
homogeneous sub-Laplacian thereon. In addition, we exhibit a Rockland family which is ‘functionally

complete’ (cf. Definition 2.11) but does not satisfy property (.5).

2 Preliminaries

In this section we recall some basic results and definitions from [15]. We shall then prove some useful

results that were not considered therein.

2.1 General Definitions and Notation

We adopt Schwartz’s notation for the spaces of smooth functions and distributions. So, if €2 is an open
subset of some euclidean space, r € INU {oo}, and F' is a Fréchet space, then we denote by £7(£2; F') the
space of F-valued functions of class C" on the open set €2, endowed with the topology of locally uniform
convergence of all derivative up to the order r; we simply write £(€; F) instead of £%°(Q; F'), and we
omit to write F explicitly when it is C. We denote by £'"(£2) the dual of £7(Q2), endowed with the strong

topology, and we denote by £/7(2) the dual of £7(2), endowed with the topology of uniform convergence



on the compact subsets of £7(Q2). The spaces D" (; F), D'"(Q) and DI () are defined analogously;
for example, D" (£2; F') denotes the space of compactly supported F-valued functions of class C” on €,
endowed with the usual inductive limit topology. See [38] for more details.

Given a metric space (X,d) and k € R, we denote by H* the k-th dimensional Hausdorff measure
on X, that is

k
7t

H*(E) sup inf Zdiam(Ej)k: EC U E;, VjeN diam(E;) <4

~okD (£+1) 550 SN JeN
for every E C X (cf., for instance, [2, Definition 2.46]).

As in [15], a Rockland family on a homogeneous group G (cf. [22]) is a jointly hypoelliptic,? com-
mutative, finite family £4 = (L4)aca of formally self-adjoint, homogeneous, left-invariant differential
operators without constant terms. In this case, the £, are essentially self-adjoint on D(G) (as unbounded
operators of L?(G)), and their closures commute. In addition, £, is a weighted subcoercive system of

operators (cf. [32, Proposition 3.6.3]), so that the theory developed in [32] applies.

Definition 2.1. To every (Borel, say) measurable function m: R4 — C such that m(L£,) is defined (at

least) on D(G), we associate a unique distribution K., (m) (its ‘kernel’) on G such that

m(La)(p) = ¢ xKe,(m)

for every ¢ € D(G).

We denote by E., the space R* endowed with the dilations defined by
r(Aa) = (r‘s")\a)

for every r > 0 and for every (\,) € R*, where 6, is the homogeneous degree of £,. We shall often
employ the following short-hand notation: L} (G) and Sg,(G) will denote K., (L>(8)) N L(G) and
K, (L®(8)) NS(G), respectively, while S(G, L£4) will denote Kz, (S(Ez,)).

Now, by [32, Theorem 3.2.7] there is a unique positive Radon measure 8., on E., such that a Borel

function m: Ez, — C is square-integrable if and only if K., (m) € L?(G) and such that, in this case,

Il L2 s, ) = 1Kea(m)ll L2 (-

The measure ., is then equivalent to the spectral measure associated with £4. Using the existence of

B, and the fact that K., maps S(Ez,) in S(G) (cf. [32, Proposition 4.2.1]), it is not hard to prove

2That is, it T is a distribution on G and LT has a density of class C> on some open set Q for every o € A, then T'
has a density of class C*° on Q.



that a . ,-measurable function admits a kernel in the sense of Definition 2.1 if and only if there is a
positive polynomial P on E¢, such that {5 € L*(Bc.,)-
Now, Kz, can be extended to a continuous linear mapping from L'(B.,) into Co(G) (cf. [32, Propo-

sition 3.2.12]), and there is a unique x.z, € L>(8z, ® vg), where v denotes a fixed Haar measure on

G, such that
Kea(m)(g) = /E MmN xer(hg) dBer (V)

LA
for every m € L'(8¢,) and for almost every g € G.2

Further, we denote by M, : L*(G) — L*®(G) the transpose of the mapping m + K, (m)", so that

Me, (£ = /G F(9)xX2r(n ) dg

for every f € L'(G) and for B ,-almost every A € E.,. Observing that M/, equals the adjoint of the
isometry Kz, : L2(B2,) — L*(G) on L*(G)N L?(G), one may then prove that K, o M., is the identity
on Ly (G).

Observe that, if Card(A) = 1, then x ., has a bounded continuous representative (cf. [15, Proposition

3.14 and Theorem 3.17]), so that £, satisfies property (RL).

2.2 Products

Assume that we are given two Rockland families £4 and £y, on two homogeneous groups G and G,
respectively. Denote by L'}, the family whose elements are the operators on G x G’ induced by the

elements of £4 and £/;,, and observe that £/}, is a Rockland family.

Theorem 2.2 ([15], Theorems 4.5 and 4.10). The families L4 and L', satisfy property (RL) (resp. (S))
if and only if L'}, does.

2.3 Composite Functions

Assume that we are given a Rockland family £4 and a polynomial mapping P on E., such that P(L4)
is still a Rockland family (this is equivalent to saying that P is proper and that its components are
homogeneous with respect to the dilations of Er ,). Then, for every bounded measurable function m we
have Kp(z,)(m) = Kz, (m o P). As a consequence, if we want to establish properties (RL) or (S) for
P(L4) on the base of our knowledge of L4, it is of importance to infer some properties of m from the
properties of m o P. The results of this section address this problem.

We begin with a definition.

Definition 2.3. Let X be a locally compact space, Y a set, u a positive Radon measure on X, and 7 a

3The existence of Xc 4 is basically a consequence of the Dunford-Pettis theorem, cf. [39].



mapping from X into Y. We say that two points x, 2’ of Supp (u) are (u, w)-connected if 7(z) = m(a’)
and there are * = z1,...,2, = 2/ € 7 }(m(z)) N Supp (n) such that, for every j = 1,...,k, for every
neighbourhood U; of x; in Supp (1), and for every neighbourhood Uji1 of ;11 in Supp (1), the set
7 (7(U;) N 7w(Uj41)) is not p-negligible. We say that u is m-connected if every pair of elements of

Supp (1) having the same image under 7 are (u, 7)-connected.

Proposition 2.4. Let Eq, Es be two finite-dimensional affine spaces, L: E1 — FEs an affine mapping
and p a positive Radon measure on Ey. Assume that the support of w is either a conver set and that
L is proper on it, or that the support of u is the boundary of a convex polyhedron on which L is proper

Then, p is L-connected.

Proof. 0. The assertion is a consequence of [15, Proposition 6.3] when the support of 4 is convex. Then,
assume that the support of u is the boundary of a convex polyhedron C, and that L is proper on C.

1. Consider first the case in which C is has non-empty interior, F; = R", Fy = R""! and
L(z1,...,2z,) = (21,...,25-1) for every (z1,...,2,) € R". Define C' := L(C), so that C’ is a con-
vex polyhedron of E5. Let F be the (finite) set of (n — 1)-dimensional facets of C', and observe that
0C = Upe 5 F since C' is a convex polyhedron. Now, since L is proper on C, for every x’ € L(C) the set
L=Y(L(2"))NC is convex and compact, hence a closed segment, whose end-points must belong to C. By
the arbitrariness of 2, it follows that L(C') = L(0C'). In addition, let Fy be the set of F' € F such that L
is one-to-one on F, and observe that C' :== L(C') = L(9C) is a closed convex set with non-empty interior,
which differs from the closed set |y, L(F) by an H" " L-negligible set (contained in Urer\z, L))
Since the support of yo:H" ! is C’, this implies that C’ = Uper, L(F).

Now, observe that the functions
fo:C' 22 »min{yeR: («/,y) €eC} and  fi:C' 32— max{y e R: (z/,y) € C}

are well-defined by the preceding remarks; in addition, f_ is convex and f; is concave; let I'y be the
graph of fi. By convexity, f_ and f are continuous on C?’ by [13, Corollary to Proposition 21 of Chapter
I1, § 2, No. 10]. Now, f_ < f4 by definition; if f_(2') = fi (') for some 2’ € 5’, then f_ = fL on C’
by convexity, and this contradicts the assumption that C' has non-empty interior. Therefore, f_ — f, is
nowhere zero on CS’ and {(z',y): 2’ € Cs’, f-(@") <y < fi(2')} is the interior of C. Now, take F € Fy
and let F’ be the interior of F' in the affine space generated by F’; observe that L(F’) is an open set
contained in C’. Since F' C 9C, the preceding remarks imply that F’ is either contained in I'_ or in T'y;
assume, for the sake of definiteness, that F/ C I'_. Let A be the affine function on R*~! such that F is
the graph of the restriction of A to L(F'). Then, A = f_ on L(F"), so that, by convexity, f_ > A on the
closure L(F) of L(F’). On the other hand, f_ < A on L(F) since F C C. It then follows that f_ = A

on L(F), so that FF CT'_. Let F4 be the set of F' € Fj such that FF C I'y. Then, the preceding remarks



show that (F_, F,) form a partition of Fy, so that f_ and f; are continuous and piecewise linear on C’,
and I'y = UFefi F.* Since L induces a homeomorphism of I'_ and I'; onto C”, it is easily seen that u
is L-connected.

2. Now, consider the general case. Observe first that we may assume that C' has non-empty interior.
Take z1,29 € OC such that x1 # 29 and L(x1) = L(x2). Let L’ be an affine mapping defined on E}
such that L'(xz1) = L'(x2) and such that the fibres of L’ have dimension 1. Then, we may apply 1 above
and deduce that z1,x9 are (u, L')-connected. It is then easily seen that x1, x5 are also (i, L)-connected,

whence the result. O

Remark 2.5. Notice that Proposition 2.4 is false when the support of u is the boundary of a more

general convex set (on which L is proper). Indeed, choose E; = R?, Ey = R?, L = pr,; 5 and
Cy = {(x,y,2) € Ey: 2yz > 2%, 2 € [0,1],y = 0}.

Define C' as the union of C; and 7(C}), where 7 is the reflection along the plane prz'(1). Then, dC is
the union of

C1 = {(z,y,2) € B1: 2yz = 2%, 2 € [0,1],y > 0}

and 7(C}). Choose any continuous function m;: C; — C, and define m: 9C — C so that it equals m;
on Cf and my om on w(C). Then, m is clearly continuous. In addition, it is clear that Cf intersects the
fibres of L at one point at most, except for L=1(0,0). Since m can be chosen so that it is not constant

on {(0,0)} x [0,2], Proposition 2.6 below shows that xsc - H? cannot be L-connected.

Proposition 2.6 ([15], Proposition 6.2). Let X,Y,Z be three locally compact spaces, m: X — Y a
u-measurable mapping, and p a m-connected positive Radon measure on X. Assume that m.(p) is a
Radon measure and that there is a disintegration (Ay)yey of p relative to m such that Supp (Ay) 2
Supp (1) N7~ (y) for m.(u)-almost every y € Y.

Take a continuous mapping mo: X — Z such that there is mapping m1: Y — Z such that mg(x) =
(myom)(x) for p-almost every x € X. Then, there is a m.(p)-measurable mapping ma: Y — Z such that
mo = mg o m pointwise on Supp (u).

If, in addition, 7 is proper on Supp (), Y is metrizable, and Z = C, then mq can be chosen so as to

be continuous.

Notice that the last assertion is an almost immediate consequence of [12, Corollary to Theorem 2 of
Chapter IX, § 4, No. 2].
Concerning the assumption on the disintegration, we shall often make use of a general result by Federer

(cf. [20, Theorem 3.2.22]), which basically provides the disintegration of a wide family of measures. We

4Indeed, UFEF:E F is a closed set contained in I't, and its image under L contains the interior of C”.



shall also derive Lemma 5.6 from it.

For what concerns the composition of Schwartz functions, the techniques employed to prove [5,
Theorem 6.1] can be effectively used to derive from [7, Theorem 0.2] and [9, Theorem 0.2.1] the following

result:

Theorem 2.7 ([15], Theorem 7.2). Let P: R™ — R™ be a polynomial mapping, and assume that R"
and R™ are endowed with dilations such that P(r - x) = r - P(x) for every r > 0 and for every x € R™.
Let C be a dilation-invariant subanalytic closed subset of R™, and assume that P is proper on C and that

P(C) is Nash subanalytic. Then, the canonical mapping
O:S(R™) s> pr—=poP eSpn(C)

has a closed range and admits a continuous linear section defined on ®(S(R™)). In addition, v € Sgn(C)
belongs to the image of ® if and only if it is a ‘formal composite’ of P, that is, for every y € R™ there
is py € E(R™) such that, for every x € C N P~(y), the Taylor series of v, o P and v at x differ by the

Taylor series of a function of class C* which vanishes on C.

In the statement, we denoted by Sg-(C) the quotient of S(R™) by the space of f € S(R™) which
vanish on the closed set C. We refer the reader to [7, 8, 9] for the notion of (Nash) subanalytic sets;
as a matter of fact, in the applications we shall only need to know that any convex subanalytic set is
automatically Nash subanalytic, since it is contained in an affine space of the same dimension, and that
semianalytic sets are Nash subanalytic (cf. [7, Proposition 2.3]).

With similar techniques one may prove the following result.

Theorem 2.8. Let P: R” — R™ be a polynomial mapping, and assume that R™ and R™ are endowed
with dilations such that P(r - x) = r - P(x) for every r > 0 and for every x € R™. Let C be a dilation-
invariant closed subanalytic subset of R™\ {0}, and assume that P is proper on C' and that P(C) is Nash

subanalytic in R™ \ {0}. Then, the canonical mapping
O: So(R™) 39— @poP € Spnoo(C)
has a closed range and admits a continuous linear section defined on ®(Soo(R™)). In addition, ¢ €
Skr,00(C) belongs to the image of ® if and only if it is a ‘formal composite’ of P.
In the statement, we denoted by Soo(IR™) the space of Schwartz functions on R™ which vanish of

order oo at 0, endowed with the semi-norms ¢ — sup max(|y| ™", |y|)* > la<kl0%p(y)| for k € N, and
yER™ =

by Sk» 0o (C) the quotient of S (R™) by the space( of f € S(R™) which vanish on the closed set C.

Proof. Take 7 € CX(R™ \ {0}) such that 3., 7(27 - y)* = 1 for every y € R™ \ {0}; define 7 €



C°(R™\ {0}) in such a way that 7 o P = 7 on a dilation-invariant neighbourhood U of C'\ {0}, so that
7;0 P =nj on U for every j € Z, where 7; = 7(27-) and n; = 1(27 - ); observe that djez n? is of class
C* on R™\ {0}, and equals 1 on U.

Now, by [7, Theorem 0.2] and [9, Theorem 0.2.1] there is a continuous linear section ¥ of the
continuous linear mapping £(R™ \ {0}) 3 ¢ — @ o P € Egn\10}(C'\ {0}). Then, for every 1 € Sgn o (C)
define

V() = SrU R )2,

JEZ
so that clearly V() o P =37, 4 773»1/) = 1 on C, since ¥(0) = 0. It only remains to prove that ¥’
induces a continuous mapping S (R"™) — So(R™).

Observe first that for every k € IN there are hy € IN and a constant Cy > 0 such that

D17 )l < Crsup Y 27909277 - )|

| <k €K oI<he
for every ¢ € Soo(R™) and for every j € Z, where K is a compact neighbourhood of the support of 7 in
R™\ {0}, while d,, is the homogeneous degree of 9* (assuming that homogeneous coordinates have been
chosen on R™ and R™).

Notice that we may assume that the support of 7 is contained in {y € R™: 3 < |y| < 2}. Therefore,

log2(|y|
max(Jy|, [y~ H)* Y [0V () (y)| < Cr max(Jyl, [y ) Z Z > 29darde) gup 97y,
la’|<k =—log, (ly))~1 |a’|<k [a|<hr 2K

Now, let right-hand side of the preceding expression is a continuous semi-norm of Sy, (R™) computed at
1), so that ¥’ is well defined and continuous.

The second assertion is clear when 1) € Sgn o (C) is supported in a compact subset of C'\ {0}, thanks
o [7, Theorem 0.2] and [9, Theorem 0.2.1], so that it follows by continuity in the general case, since

Zf__k 3% converges to ¢ in Sgr o0 (C) as k — oo. O

Corollary 2.9 ([15], Corollary 7.3). Let V and W be two finite-dimensional vector spaces, C a subana-
lytic closed convex cone in'V, and L a linear mapping of V' into W which is proper on C. Take m; € S(V)
and assume that there is mo: W — C such that m; = mgo L on C. Then, there is mz € S(W) such

that my = mso L on C.

We now present a useful consequence of the preceding results with the purpose of showing how one
may apply the preceding techniques to deduce properties (RL) and (.5) for ‘image families.” The notation

is the same as in the beginning of this subsection.

Proposition 2.10. Assume that P is linear and that o(L4) is convex. Then, the following hold:



1. if L4 satisfies property (RL) and B, is equivalent to Xo(z ,) “H*, where k is the dimension of the

convex set o(L4), then P(L4) satisfies property (RL);

2. if L4 satisfies property (S), P(La) satisfies property (RL), and o(L4) is subanalytic, then P(L4)

satisfies property (S).

Proof. 1. Take ¢ € L}D(LA)(G) and let m be a representative of Mp(,,)(¢). Since L4 satisfies property
(RL), there is mg € Co(o(L4)) such that ¢ = K., (mg), so that mg = m o P H¥-almost everywhere
thanks to the assumptions. Write ¥ := (L 4) to simplify the notation, and let V' be the vector space
generated by . Define ¥/ := P(X) and V' := P(V). Now, observe that xx - H¥ is P-connected thanks
to Proposition 2.4. In addition, by means of Tonelli’s theorem we see that Pi(xs - H*) is equivalent to
xsv - H¥' | where k' is the dimension of V’, and that xs - #* has a disintegration (B\)aesy relative to P,
with 8} equivalent to x-1(x)nx “HF'=F for HM -almost every A € ¥'. Now, let U be the interior of ¥ in V,
and let U’ be the interior of X’ in V’; observe that P(U) = U’ since P is linear and ¥ convex.® Now, for
every A € U’, L~1(\)NX is then the closure of the convex set L=1(A\)NU (cf. Lemma 5.10 below), which
has non-empty interior in L=1(\). Since the boundary of L=*(A\) N U in L=1(\) is H*¥ ~*-negligible, the
support of By is L~H(A)NY. In addition, X'\ U’ is #* -negligible, so that Proposition 2.6 can be applied.
Hence, there is m; € EO(EP(LA)) such that my o P = mqg on o(L4), so that m; = m Bp(c4)-almost
everywhere. The assertion follows.

2. Take ¢ € Sp(£,)(G) and let m be a representative of Mp,)(p). Notice that we may assume
that m is continuous, since P(L4) satisfies property (RL). Since L, satisfies property (S), there is
mo € S(E¢,) such that ¢ = Kz, (mg), so that mo = moP on o(L4). Notice that o(L4) is a subanalytic
convex cone since it is dilation-invariant and P is linear and homogeneous. Then, Corollary 2.9 implies
that there is m; € S(Ep(,,)) such that m; o P = mg on o(L4), so that m; = m on o(P(L4)). The

assertion follows. O

2.4 Equivalence and Completeness

Let us now add some definitions to those presented in [15].

Definition 2.11. We say that two Rockland families £4, and L4, are functionally equivalent if there
are two Borel functions mq: E¢, — Ec,, and me: Eg, — Er, such that mi(La,) = L4, and
ma(La,) = La,.

We shall say that a Rockland family £4 is functionally complete if every (. ,-measurable function

m: Er, — C such that m(L4) is a differential operator equals a polynomial 3 ,-almost everywhere.

5Indeed, U’ is clearly an open convex subset of ¥'; in addition, ¥ is the closure of U, so that ¥/ = P(X) C U’ C ¥/;
since U’ is open and convex, it equals the interior of its closure by [13, Corollary 1 to Proposition 16 of Chapter II, § 2,
No. 6].



Notice that there exist Rockland families which are not functionally complete; for example, if £ is a
positive Rockland operator, then (£2) is a Rockland family which is not functionally complete. Further,
observe that we cannot talk of a ‘completion’ of £, unless we know that the algebra of differential
operators arising as functions of £4 is (algebraically) finitely generated.

The main point for considering functional completeness is the following result, which shows that prop-

erty (S) implies functional completeness; nevertheless, the converse fails in general (cf. Proposition 8.5).

Proposition 2.12. Let L4 be a Rockland family on a homogeneous group G. If L satisfies property

(S), then it is functionally complete.

Proof. Take a function of £ 4 which is a homogeneous left-invariant differential operator of homogeneous
degree ¢, and let T be its convolution kernel; assume that £4 satisfies property (S). Take 7 € S(E.,)
such that 7()\) # 0 for every A € E¢,; then K., (1) « T € S(G), so that there is m; € S(E,,) such
that Kr,(m1) = Kz, (1) * T. If we define m = =2, then m € £(E,) and Kz, (m) = T. By means
of [22, Theorem 1.37], we see that there are a family with finite support (Ps )o<s’<s of homogeneous

polynomials, where Py has homogeneous degree ¢’ for every ¢’ € [0, 4], and a function w, such that

m(A) = > Py(A)+w)

0<6'<S

for every A € E.,, and such that

im —= = 0.
A—=0 ‘)\|

Now, m(r-\) = r®m(\) for every r > 0 and for every A € o(£4) since T is homogeneous of homogeneous

degree §; fix a non-zero A € 0(L4). Then,

Pm\) =m(r-\) = Z Psi(r-A)4w(r-X)= Z " Py/(A) + o (r%)
0<6'<6 0<6'<6
for 7 — 07, so that Ps/(\) = 0 for every § € [0,5] and Ps(\) = m(\). Hence, m = Ps on o(L4), so that

m = Py B ,-almost everywhere. By the arbitrariness of T', the assertion follows (cf. [36]). O

3 Abelian Groups

In this section, G denotes a homogeneous abelian group. In other words, G is the euclidean space R"

dng,) forr >0, 2 = (21,...,2,) € R", and some

endowed with dilations of the form r-z = (rdizy,...,r
fixed di,...,d,, > 0. Then, 9 = (01,...,0,) is a homogeneous basis of the Lie algebra of G. We shall
consequently put a scalar product and the associated Hausdorff measures on GG, and identify the Fourier

transform F with a mapping from S'(G) onto §'(E_;5).

10



Proposition 3.1. Let P be a polynomial mapping with homogeneous components from E_;5 into R4
for some finite set A. Then, L4 = P(—i0) is a Rockland family if and only if P is proper. In this case,
the following hold:

1. 0(La) = P(E_i5);
2. a B ,-measurable function m admits a kernel in the sense of Definition 2.1 if and only if mo P is

a polynomial times an element of L*>(E_;5); in this case,

Kea(m)=F "' (moP).

Proof. Since o(—i0) = E_;5 and —id is Rockland, the assertions follow easily

from the properties of the Fourier transform. O

By means of [20, Theorem 3.2.22], one may obtain some relatively explicit formulae for 8., and x.,.

In the following result, we give complete answers to our main questions in the case of one operator.

Theorem 3.2. Let L be a positive Rockland operator on G.% Then, x- has a continuous representative
which is of class C* on RY x G; in particular, property (RL) holds.
In addition, take m € Cy(Bc), and let k be the greatest k' € IN* such that P¥ isa polynomial. Then,

the following conditions are equivalent:

1. Ke(m) € S(G);

2. there are mo,...,mi_1 € S(R) such that m(\) = ]Z;(l) XEmp(X) for every A > 0.
In particular, property (S) holds if and only if k = 1.

Before we prove the preceding result, we need to establish a lemma.

Lemma 3.3. Let A be a non-empty finite set and endow R* with a family of (not-necessarily isotropic)
dilations. Take a positive, non-constant, homogeneous polynomial P in R[A] and assume that there is a

homogeneous element x of R4 such that P(x) # 0. Then, the following statements are equivalent:

1. there are no positive homogeneous polynomials Q@ € R[A] and no k € N such that k > 2 and
P = Qk;

2. if m is a complex-valued function defined on Ry such that m o P is of class C>® on R4, then m

may be extended to an element of E(R).

6Notice that £ = P(—i0) where P is a proper polynomial; unless G = R, in which case our analysis is trivial, P must
have a constant sign, so that we may assume that £ is positive without loss of generality.
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Proof. 1 = 2. Take m: R, — C and assume that m o P is of class C> on R*. Notice that there is
a homogeneous polynomial P, € R[X] such that P(Az) = P,()) for every A € R.” In particular, mo P,
is of class C'*°. In addition, P,(X) = a, X% for some a, # 0 and d, € IN*; we may assume that a, = 1.
It is then clear that m is of class C* on R7; further, m o P, admits a Taylor series ZjG]N az ;X7 at
0. Therefore, m admits the asymptotic development jeN amyj)\d% for A — 07. Suppose that there are
some j € IN\ (d;IN) such that a, ; # 0, and let j, be the least of them. Let g,,r, be the quotient and
the remainder, respectively, of the division of j, by d,.

Define m == m — Z;z:%” a“()dJT Then, m o P, is of class C* and (m o P;)(\) = o (|)\\jxdz).8

Hence, it is not hard to see that m may be extended to an element of £7=(R). Let us then prove that

Gz Jadz
Uy j,00 Pte = 0)r(mo P) =Y 44,000 PP = > a,;00 Pl — 0 (o P)
j=0 J=Ja+1

extends to a continuous function on E = {2’ € R*: P(2') # 0} U {0}. Indeed, this is clear for the first
two terms, and follows from the above remarks for the fourth one. Let us then consider the third term.
Notice that both 9, and P are homogeneous, and that 97z P s homogeneous of homogeneous degree

0 on the  axis, hence on RA. Hence, dJ* must be homogeneous of homogeneous degree dZ=, where d is
.

the homogeneous degree of P. Then, dJ= P 7 is homogeneous of homogeneous degree dZ ;j’” > 0, so that
it may be extended by continuity at 0.
Therefore, 5‘§;IPfJTfn is a continuous function on F which is homogeneous of degree 0; hence, it is

constant, and its constant value must be j,! # 0. Now, Faa di Bruno’s formula shows that

. B Be
_ Tz 1 _rz g Jx 1 ¥l _ J GKP
P4 = —plTw 0)* Pds = E — <I> plta=—IB] | | (I> ,
: B\ de 18l =1 ¢!

I 0Be=jx

where (ji)\ﬁ\ = Iz (j—’ — ) (571 — 18] + 1) is the Pochhammer symbol. Then, P!~ 4 is a rational
function, so that there are N, D € R[A], with D # 0, such that P = %. Hence, P%~ "= = ]I\;—Z;, S0
that D4 divides N% in R[A]. Since R[A] is factorial, it follows that D divides N, so that P'~ @ is a

(positive) polynomial. Next, let g be the greatest common divisor of d, and d, —r,, and take d’,r’ € IN*

so that d, = gd’ and d, — r,, = gr'. Then,
T, d/ ’
(Pl—Ti) - p.

Since R[A] is factorial, this proves that there is a polynomial @ € R[A] such that Q' =P ~ % and

QY = P. Now, d’ > 2 since d, does not divide d, — r,; in addition, Q is positive since both P~ and

"Notice that Az denotes the scalar multiplication of « by X, not the dilate A -  of & by A, which is meaningful only for
A> 0.
8Here, || denotes the usual absolute value of A € R.
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P are positive and d',r’ are coprime: contradiction. Therefore, a, ; = 0 for every j & d,IN, so that the
conclusion follows easily.

2 — 1. Suppose by contradiction that there are a positive homogeneous polynomial @ € R[A]
and k > 2 such that P = Q*. Define m: A — A% on R. Then, m is not right-differentiable at 0;

nevertheless, m o P = @ since (@ is positive, so that m o P is of class C*°: contradiction. O

Proof of Theorem 3.2. Notice that x()\, ) is an eigenfunction of positive type and of class C* of L,
with eigenvalue A, and that xc(r - X, g) = xz(A,r - g) for every » > 0 and for (8, ® vg)-almost every
(A, g) (cf. [39]). It is then easily seen that x, has a continuous representative which is of class C* on
R* x G.

Now, take m € Cy(8.) such that K (m) € S(G). Then, Proposition 3.1 implies that moP € S(E_;5).
Take a positive polynomial Q on E_;5 such that P = Q*. Since [mo(-)*]oQ = mo P, Lemma 3.3 implies
that we may take m € £(R) so that m o (-)¥ = m on R. In addition, it is clear that we may assume
that m € S(R). Now, let ", agA’ be the Taylor development of m at 0. Take, for h = 1,...,k — 1,
my € D(R) so that its Taylor development at 0 is ), antpe)’ (cf. [26, Theorem 1.2.6]), and define
mg == m — ZZ;}( )Emyp, on Ry. Since clearly mg has the asymptotic development > e @re’ for

A — 0, and since mg o (- )* equals a Schwartz function on R, it is easily seen that mo may be extended

to an element of S(R). Therefore, m(\) = ﬁ;é AEmy,(X) for every A > 0.

Conversely, suppose that there are myg, ..., mg_1 € S(R) such that m(\) = Z;(l) AEmy,(X) for every
A > 0. Then, mo P € S(E_;5), so that Kz(m) € S(G) by Proposition 3.1. O
Corollary 3.4. Let L: R™ — R™ be a linear mapping which is proper on R} . Then, L(-0%,...,-0?%)

satisfies properties (RL) and (S).

Proof. This is a consequence of Theorems 2.2 and 3.2 when L is the identity. The general case then

follows by means of Proposition 2.10. O

4 MWT Groups

Definition 4.1. Let G be a 2-step stratified group, that is, a simply connected Lie group whose Lie

algebra is decomposed as g = g1 @ gz, where go = [g, g] and [g, g2] = 0. For every w € g5, define
B,:gi X912 (X)Y) = (w,[X,Y]).

We say that G is an MW ™ group if B, is non-degenerate for some w # 0. A Heisenberg group is an

MW group with one-dimensional centre.

Notice that a 2-step stratified group satisfies property MW T if and only if it satisfies the Moore-Wolf

condition (cf. [35]) and [g, g] is the centre of g.
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We shall endow a 2-step stratified group with the canonical dilations, so that
r- (X 4+Y)=rX +r%Y

for every r > 0, for every X € gy and for every Y € gs. Since expgy: g — G is a diffeomorphism, these
dilations transfer to G.

Now, to every symmetric bilinear form ) on g we associate a differential operator on G as follows:

L= QX7 X)X Xy,
YN

where (X)) is a basis of g; with dual basis (X;). As the reader may verify, £ does not depend on the
choice of (Xp); actually, one may prove that —L is the symmetrization of the quadratic form induced by
Q on g* (cf. [24, Theorem 4.3]).

By a ‘sum of squares’ we mean a differential operator of the form £ = — Z?Zl Yj2, where Y7,..., Y%
are elements of g. If, in addition, Yi,...,Y% generate g as a Lie algebra, then we say that £ is a

sub-Laplacian. Thanks to [25], this is equivalent to saying that £ is hypoelliptic.

Lemma 4.2. Let QQ be a symmetric bilinear form on g, and let L be the associated operator. Then, L
is formally self-adjoint if and only if Q is real. In addition, L is formally self-adjoint and hypoelliptic if

and only if Q is non-degenerate and either positive or negative.

Definition 4.3. Let V be a finite-dimensional vector space and ¢ a bilinear form on V. Then, define
se: Vovm ®v,-)eV” and de: Vov— ®(-,v) e V™
Recall that, if ® is non-degenerate, then its inverse ® is the bilinear form ® o (s3',dg!) on V* (cf. [10,

Definition 8 of Chapter IX, §1, No. 7]).

Definition 4.4. G is a group of Heisenberg type, or an H-type group, if go # 0, g is endowed with a
scalar product for which g; and go are orthogonal, and, denoting by @ the scalar product induced on

g7, we have (dg odp,)? = —\w|21dgl for every w € g3.

Proposition 4.5. Let Q1 and Q2 be two symmetric bilinear forms on g7, and let L1 and Lo be the

associated operators. Then, L1 and Lo commute if and only if
dQl odp, © sz = sz odp, o dQl

for every w € g;.

Proof. Choose a basis (X;)jes of g1 and a basis (Ti)rex of g2. Let (X7)jes and (T})rex be the
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corresponding dual bases. Define ap j, j, == Qn(X7,, X7,) for h = 1,2 and for every ji,j2 € J, so that
dg, is identified with the matrix Ap = (an,j,,j,)j1,jaes for b = 1,2. Analogously, define by j, ;, =
Br:(Xj,, Xj,) for every k € K and for every ji,j2 € J, so that dBT; is identified with the matrix
Bi = (bk,jy,js)jr.jscs for every k € K. Now, define Y}, j, = (X}, X, + X;,X;,) for every ji,jo € J.

Then,

Ly = § : ah7j17j2Y—leQ

Ji,d2€J

since @y, is symmetric. In addition, for every ji, jo, j3,j4 € J,
[Y}17j2’ ijs,j4] - 1/j27j4 [le ’ st} + ijzyjs [le ) Xj4] + }/j17j4 [Xan st] + Y}17j3 [Xjé? Xj4]
since the elements of g2 = [g1, g1] lie in the centre of £(g). Next, observe that, for every ji,j2 € J,

(X0, X = beju o T

keK
Therefore,
L1, Lo = ) Y " 0141.3202,5.5 [k 1 s Yiada + Ok a Yiags koo s Yirga + kojoa Yir g T
J1,G20G8,ja€J KEK
=2 E E Chj1yj2 Vi iz Thes
J1,d2€J keEK
where
Chjrge = D (0151j502.50 ja + 01 502,51 a )k js s
J3,Ja€J

for every k € K and for every ji,j2 € J. Now, the distinct monomials in the family of the Y}, ;, Tk,

as j1,j2 € J and k € K, are linearly independent (cf., for example, [14, Corollary 4 to Theorem 1 of
Chapter I, § 2, No. 7]). In addition, denote by C} the matrix (ck. j, j,)j1.j.cs for every k € K. Since A,

and A, are symmetric and since By is skew-symmetric, we have
Cr = A1ByAs + A" ByAy = A1 By As — Ao B Ay

for every k € K. The assertion follows easily. O

Now we shall present some results which will enable us to put our homogeneous sub-Laplacians in a

particularly convenient form. We state them in terms of the associated quadratic forms.

Proposition 4.6. Let (V,0) be a finite-dimensional symplectic vector space over R. Let (Q,).cr be
a family of positive, non-degenerate bilinear forms on V' such that the dc_ng ody, as ¢ runs through I,

commute.

15



Then, there is a finite family (Py)~ycr of projectors of V' such that the following hold:

o P, is o- and Q,-self-adjoint for every v € I and for every v € I';

o idy =) Py and PPy =0 for v,y €T, v #7/;

e the bilinear forms Q,(Py-,Py-), as ¢ € I, are all multiples of one another for every v € T

For the proof, basically follow that of [28, Theorem 3.1 (c)] using commutativity in order to get
simultaneous diagonalizations. Applying [28, Theorem 3.1 (c)] (or simply [1, Corollary 5.6.3]) to the

range of each P,, we may find a symplectic basis of V' which is ),-orthogonal for every ¢ € I.

Notation 4.7. From now on, G will denote an MW group, (Q,).c; a family of positive symmetric
bilinear forms on g%, and (71,...,T,,) a basis of g2. Notice that, since G is an MW™ group, there is
n; € IN* such that dimg; = 2n,. We shall denote by £, the sum of squares induced by @,, and we
shall assume that L4 = ((£,).er, (—iTk)k=1,...n,) is & Rockland family. Observe that this condition
is equivalent to the fact that the sum of the £, is hypoelliptic.” We may therefore assume that Q, is
non-degenerate for every ¢ € I, in which case each £, is a (homogeneous) sub-Laplacian.

We shall also endow g with a scalar product which turns g; and go into orthogonal subspaces, and
which induces @LU on gy for some fized 1o € I. Up to a normalization, we may then assume that
(expe)«(H™) is the chosen Haar measure on G, where n is the dimension of G. We endow g5 with the

scalar product induced by that of go, and then with the corresponding Lebesgue measure, that is, 7H"™2.

Proposition 4.8. There is a finite family (Py)yer of non-zero projectors of g1 such that the following

hold:
o idy, = nyer P, and P,, P,, =0 for every v1,v2 € I' such that y1 # 7v2;
e P, is B,- and @L—self—adjoint for every v € T', for every w € g5, and for every ¢ € I;
o for every vy € ', the bilinear forms @, (tP7 -, tPA, . ), as v runs through I, are mutually proportional.

Proof. Fix wy € g5 such that B, is non-degenerate. Then, Proposition 4.6 and the remarks which follow
its statement imply that there is a basis X1, ..., X9,, of g; such that dp,, and dg, are represented by

the matrices

0 I, D, 0
and ,

~I,, 0 0 D,

1

respectively, for some diagonal matrix D, (¢ € I). Here, I,,, denotes the identity matrix of order n;.

Denote by d, 1,...,d, n, the diagonal elements of D,, and denote by (a., ;) the matrix associated with

9Indeed, if mo is the projection of G onto its abelianization, then dmo(L£4) is a Rockland family, so that F(dmo(La4))
vanishes only at 0. Since F(dmo(£,)) = 0 and dmo(T)) = 0 for every ¢ € I and for every k = 1,...,n2, this implies that
> er F(dmo(L,)) vanishes only at 0, so that > -; Q, is positive and non-degenerate and ), .; £, is hypoelliptic.
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dp,, for every non-zero w € g5. Assume that I has exactly two elements ¢1, t2, and define

d, .
F:—{dl’{:ye{l,...,nl}};

L2,7

for every v € I, let V, be the vector subspace of g; generated by the set

dy, j
{Xj,anJ,-j: dh]_ :7}
L2,]

Next, take j,k € {1,...,n1} such that ZL# #* Z"%. Apply Proposition 4.5, and observe that the (j, k)-th
2,7 L2,
components of (the matrices representing) the equality
dg,, 0dp, 0dq,, =dg,, °dp, °dg,,

Ly

give the equality

d, ,jaw7j7kdbzak = db27jawaj7de1 ko

whence a,, ;r = 0. Considering the components (n1 + j, k), (j,n1 + k), and (n1 + j,n1 + k), we see that
Qomy ik = Gw,jni+k = Quwni+jni+k = 0. Therefore, B, (V,,,V,,) = {0} for every non-zero w € g5 and
for every v1,7v2 € I' such that v, # 2. Then, it suffices to define P, as the projector of g; onto V, with

kernel V.. The general case follows easily. O

Y #Ey
Definition 4.9. Define

Jg,w =dq,odp,: g1 = 01

for every ¢ € I and for every w € g5.
We shall denote by W the set of w € g5 such that B, is degenerate, that is, the set where the

polynomial mapping w — det J,, ., vanishes. As a consequence, W is an algebraic variety.

Definition 4.10. Given two non-empty finite sets H;, Ho, we shall often identify (R1)#2 with R72*H1
so that, for S € (R1)H2, h; € Hy and hy € Ha, we shall denote by Sy, 5, the hi-th component of the
ho-component Sy, of S; thus, Sy, n, is an abuse of notation for (Sp,)s,. Hence, we shall identify the
elements S of (R1)H2 with the corresponding matrices (Sh,.n, ) of type Ha x Hy; we shall then let them
act on elements of R** in the usual way, so that S(v) = (3, cp, Sh?7h1vh1)h2€H2 for every S € (RH1)Hz
and for every v € R¥1. Notice that this notation is self-consistent: if S € (R**)#2, then S is identified
with the linear mapping Rt — R2 whose ho-th component is Sh, for every hy € Hs.

If H is a finite set, then we denote by 1 the element of R whose components are all 1.

Proposition 4.11. There are a non-empty finite set H, a non-empty Zariski open subset Q of g5 \ W,
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and two mappings

B I
p: g5 — (RY) and  P:Q— L(g)"
such that the following hold:
o Q) is dilation-invariant, i is homogeneous of degree 1, and P is homogeneous of degree 0;

e 1 is continuous on g5 and analytic on Q; in addition, p(w) € ((Ri)H)I for every w € Q;

P, is analytic and Tr Py, is non-zero and constant on Q for every h € H;

for every h € H and for every w € Q, Py(w) is a B,- and @I—self—adjoint projector of g1;

Py, Py, =0 for every hi,ha € H such that h1 # hs;
> hen Pu(w) =idg, and Y,y e n(w)Pr(w) = |Jg, | for every w € Q and for every v € 1.

Notice that, for the sake of simplicity, we do not assume that (g, 5).er # (to,n)cr for h, b’ € H such

that h # h'; besides that, this condition is completely irrelevant for our purposes.

Proof. The assertion follows from [33, Lemmas 4 and 5] when Card(I) = 1. Assume that Card(l) > 1
and apply Proposition 4.8. Then, there is a finite family (P;),er of commuting projectors of g; which

are B,- and @L-self-adjoint for every w € g4 and for ever ¢ € I; in addition, Zwel“ P =idy,, and, for

every v € I' and for every ¢ € I, there is ¢, > 0 such that Q, = ¢,,Q,, on tPé(g’{)z.

Then, apply the case Card(I) = 1 to the MW™ group expg (P, (g1) @ g2) and to the operator £EZ)

associated with the restriction of @,, to tPjY (g7)2, for every v € I'. We then find two mappings MEZ) D gs —

]wa and PO : Q) — £(P§(gl))Hm with the properties of the statement. Observe that, if we define
MEV) = cmbufg), then ,uEW) and P(") satisfy the properties of the statement for the operator EEV) associated
with the restriction of @, to *P/(g})?. Now, define Q := (" . Q) and H := U, . ({7} x H). Then,
we may define (11,)(y.p) = (up))h for every v € I and for every (v, h) € H. In addition, we may define

Py py(w) as the composition of P,E?Y)(w)P:/ with the canonical inclusion of P (g1) in g1, for every w €

and for every (v, h) € H. The assertion follows. O

Definition 4.12. We define ), H, p and P as in Proposition 4.11. In addition, we define n; =

(n1n)herr € (IN*)H in such a way that nyp is the constant value of Tr P, on (2, for every h € H.

I

Furthermore, denote by zi: g5 — (R’}")" a continuous mapping which is analytic on € and such that, for

every w € g5, £i(f,,1)u - - - » £i(fu,n, ), are the joint eigenvalues of (Jg, )., for every w € g3.*°

10The existence of a mapping & with the required properties follows from the existence of u and the fact that Tr Py, is
constant on 2 for every h € H. Even though 11 and p are essentially the same thing, in some situations it will be convenient
to work with & instead of p.
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By an abuse of notation, we shall denote by (z,t) the elements of G, where x € g1 and t € g, thus

identifying (z,t) with expgs(z,t). For every x € g;, for every w € , and for every h € H, define

(W) = 3/ o, h (W) Pr(w)(2).

We shall then define @ (w) == 32, . Tn(w), s0 that [z(w)|* = 3, ylon(w)? = (IJq,, . |(@)|2).
The following two results are easy and their proof is omitted.

Proposition 4.13. The function w +— p,(w)(n1) = fi,(w)(1n,) = %[|Jo, wll; is @ norm on g3 which is

analytic on g5 \ W for every 1 € I.11

Proposition 4.14. The mapping

g1 X 23 (z,w) = z(w) = ,H—J%me(x)

extends uniquely to a continuous function on g1 X gs which is analytic on g1 x (g5 \ W).

Definition 4.15. Define G, for every w € g5, as the quotient of G by its normal subgroup exp (kerw);
we denote by 7, the canonical projection of G onto G,,,.
Then, Gy is the abelianization of G, and we identify it with g;. If w # 0, then we shall identify G,

with g1 @& R, endowed with the product

1
($17t1>($2,t2) = <.’L‘1 + x9,t1 +to + 2Bw(x1,x2)>

for every z1,z2 € g and for every t1,t; € R. Hence,
Tw(®,t) = (z,w(t))

for every (z,t) € G.

Proposition 4.16. Define

7 (w} x Go) 3 (w, (x,1) = w € Q,
weN
and identify the domain of T with Q x (g1 ® R) as an analytic manifold, so that T becomes an analytic
submersion.
Then, 7 defines a fibre bundle with base ) and fibres isomorphic to H™ .12 More precisely, for every

wo € Q, there is an analytic trivialization (U,v) of T such that the following hold:

"Here, ||Jg, wl|l; denotes the trace-norm of the endomorphism Jg, ., that is, Tr|Jg, w|-
12We denote by H™ the (2n1 + 1)-dimensional Heisenberg group, identified with R?™ x R with product (z,t)(z’,t') ==

(24 b+ + 5 7L (@500, 4y — Tny450) )
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e U is an open neighbourhood of wy in Q;

o : 7 L(U) = U x H™ is an analytic diffeomorphism such that pry o) = 7 and such that pry ot

induces a group isomorphism v, : 71 (w) — H™ for every w € U;

o if (X1,...,Xon,,T) is a basis of left-invariant vector fields on ™ which induce the partial deriva-

tives along the coordinate axes at the origin, then

d(Yy o7y ) (L)) = — ZﬁL’k(W)(Xlg + X§1+k)
k=1

and

d(Yw 0 7 )(T}) = w(T;)T
for every v € I, for every j =1,...,ns, and for every w € U.

The proof is omitted. It basically consists in using the projectors P; to propagate locally a given

basis of eigenvectors and then in ‘symplectifying’ the new basis in order to meet the requirements.

Definition 4.17. For every w € g5 \ W, define the Pfaffian of w as follows (cf. [3]):

Pt@)] = [T mon(@)™® = T fuo(w)
k=1

heH

Furthermore, take m,y € IN. Then, denote by A’ the v-th Laguerre polynomial of order m. In other

_ +my (=X)7
words, AT'(X) = ;7:0 (’YY*J)T

Proposition 4.18. Define ¥, = p(w) (n1 + 2]NH) for every w € Q; then, for every ¢ € D°(Er,),

1
| et = g [ 3 et P) o,

LA YEX,

where

, ng +9 —1pg
D Y G

~ eNH v
pw(w)(n1+2v")=y

for every w € Q and for every v € ¥,.

In addition, for (Br, ® va)-almost every ((v,w(T)), (z,t)),

Ve ((1,(T)), (2,1)) = —— o englr@Pme@ TT AT (;xh(w)F).

I w) (mrt20) = hen
Proof. We follow the construction of the Plancherel measure of [3] as in [32, 4.4.1]. Observe first that, for
every w € g5\ W there is (up to unitary equivalence) a unique irreducible unitary representation c,, of G

iw(t)

in a hilbertian space H,, such that 7,(0,t) = e idp,,: indeed, any such representation must be of the
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form @, o, for some irreducible unitary representation of the Heisenberg group G, (cf. Definition 4.15),
so that the assertion follows from the Stone—Von Neumann theorem (cf. [21, (6.49)]). Then, [3, Section

2] implies that, for every f € L'(G) N L?*(G),'

1
11 = s [ I (DIEIPEG) do

In particular, the Plancherel measure of G is concentrated on the set of (equivalence classes of) the
representations w,,, as w runs through €.

Now, fix w € 0, and let us describe a little further a w,, as above. Observe first that we may find a
B,-symplectic basis (Xy 1, ..., Xunys Yo1s-- -5 Yan,) of g1 such that £, = —=>"71, ﬁhk(w)(ijyk + ij)
(cf. Proposition 4.16). Then, we may choose H,, as the space of holomorphic functions in L?(C™,v),

where v = e—2I" I’ -#H?™  and define w,, so that

dw, (Xwk + 1Yo r) f(2) =22, f(2) and dwy, (X — 1Yo i) f(2) = =0, f(2)

for every f € C*°(w,,) and for every z € C™* (this is a version of the ‘Bargmann(—Fock)’ representation,

cf. [29]). Then,
Az (L)F(2) = 3 Fik(@) (220020 f(2) + £(2))
k=1

for every f € C*(w,), for every z € C", and for every ¢« € I. Now, define w,(z) = ,/2:;1,:27‘!7%7
for every z € C™ and for every v € IN"', and observe that (w,)yen~1 is an orthonormal basis of H.,

(cf. [29]), and that

dm(L)wy = fi(w)(1n, +27)wy

for every v € IN™. Therefore, for every ¢ € D(E.,),

1Kea (@) = 3 (“1+’*1H)| (1) (01 + 29), 0(T))2[PE) | v,

(27-(- nl +n2
92 ~ENH

whence the stated formula for g, ,.
Next, observe that, from the stated Plancherel formula for G, we deduce the following inversion

formula:
1
(27‘1’)”1 +na

flat) = [ (@l m ()P do
92

for every f € S(G) and for almost every (z,t) € G. If ¢ € D(E,,), then

iccA<so><x7t>=m / S @ (iu(ng +29),0(T)) (@2, 1) w, w,) [PEw)| d

95 ~yEN™1

13Here, ||T'||, denotes the Hilbert-Schmidt norm of the endomorphism 7' of H.,.
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for almost every (z,t) € G. In addition, for every (z,t) € G, for every w € Q, and for every v € IN"1, [29

Proposition 2] implies that
2n 2
(o (2, 1) wy|wy) = €1 ¢ Zusilel i H AO ( xk’x"1+k)|2>

for every x = 22;1(kaw,k + Zn +kYu k) € g1 and for every ¢t € go. Now, observe that |Xw7k\2 =

|Yw,k|2 = @LO (X X k) = m for every k =1,...,n1, so that, for every = € g1,
2'!7,1
= Z|xk|2 and |xp (w Z EN
k=1 keKy

where (Kj)pen is a suitable partition of {1,...,n1} such that i, , = p, 5 and Card(K},) = nq , for every
v € I, for every k € K}, and for every h € H. In addition, observe that [19, Formula (41) of p. 192]

implies that
m—+1

PG+t zm) = 3 [ A% ()
[v'|=y j=1
for every m,y € IN, and for every z1,...,zn+1 € C. Hence, the asserted formula for x ., follows. O

Corollary 4.19. Every m € L®(8¢,) such that K. ,(m) € L*(G) has a representative which is contin-

wous on {(p(w)(ny),w(T)): w € gi}.

Proof. Simply define

m(p(w)(ng /’CcA (2, t)e il =i 4, 1)

for every w € g5, and observe that m is continuous on C = {(u(w)(n1),w(T)): w € g5} thanks to
Propositions 4.13 and 4.14; in addition, Proposition 4.18 implies that m = m (. ,-almost everywhere on

C, whence the result. O

Corollary 4.20. Take a bounded Borel function m: E¢, — C such that K., (m) € L*(G). Then, there

is a dilation-invariant negligible subset N of g5 such that, for every w € g5 \ N (cf. Definition 4.15),

() (Ka (m) = Kar, (£.4) (M)

Proof. Keep the notation of the proof of Proposition 4.18. Notice first that, up to replace m with
7(277 - )m for some 7 € D(E,,) which equals 1 at 0, we may assume that m is compactly supported.
Therefore, for every w € g3 we have (at least) Kar, () (m) € L*(G.).

Now, by [34, Proposition 5.4] there is a negligible subset N’ of g3 such that W C N’ and such that,
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for every w € g5 \ N’,
/G’CLA (m) (2, )y (z,1)" d(2, 1) = @ (Ke, (m)) = m(dwe,(La))-

Now, there is a negligible subset N” of the unit sphere S of g such that N’ N Rw is a negligible subset
of Rw for every w € S\ N”; fix w € g5 \ Ry N”. Then, for every p € R* there is a unique representation
@y, of Gy, into Hy, such that!®

Wpw = We,p O M-

Therefore, the preceding remarks imply that

@50 (M)« (K4 (m))) = m(dwy, p(dmu (L))

for every p € R* such that pw ¢ N’. Now, arguing as in the proof of [34, Proposition 5.4], we see that

there is a negligible subset N/, of R* such that, for every p € R*\ N/, we have pw ¢ N’ and

F(Kary(c.a)(m))(@e,p) = m(dw, ,(dr,(L£a))),

where F(Kqr, (c4)(m)) is (a fixed representative of) the Fourier transform of Ky (z,)(m).'® Since the
(equivalence classes of the) representations tw,, ,, as p runs through R*\ N/, form a co-negligible subset
of the dual of G, (cf., for instance, [3, Section 2]), it follows that (my,)«(Kz,(m)) = Kar, (£, (m). It
then suffices to define N := R, N". O

5 Property (RL)

In this section we keep the setting of Section 4; we shall present several sufficient conditions for the
validity of property (RL). Unlike in the cases considered in [15], we are able to prove continuity results
for xr,, even though under rather strong assumptions (cf. Theorem 5.3); we then deduce property (RL)
under slightly weaker assumptions (cf. Theorem 5.4). Let us comment a little more on the assumptions
of Theorem 5.4. Besides the condition that u is constant where the norm w — p,,(w)(n1) is constant,
we need to add the condition that dimg pu(w)(R¥) = dimg p(w)(Q*) for every w € Q. Even though
this condition may appear peculiar, we cannot get rid of it without running into counterexamples, as
Theorem 7.4 shows. Furthermore, observe that, even though Theorem 7.4 is the main application of
Theorems 5.3 and 5.4, the latter result can be applied to more general homogeneous sub-Laplacians

on MW groups. For example, consider the complexified Heisenberg group H¢, whose Lie algebra

14With the notation of the proof of Proposition 4.18, Ww,1 = Ww-
5Define (Ff)(ww,p) = w*(f) for every f € L'(G.,) N L?(G.) and for every p # 0; then, F extends to an isometry of
L2%(G.,) onto f]ga* Hpw clp|™* dp for some ¢ > 0; cf., for instance, [3, Section 2].
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is endowed with an orthonormal basis X1, Xo, X3, X4,T1,T> such that [X7, X3] = [X4, Xo] = T and
(X2, X3] = [X1, X4] = Ty, while the other commutators vanish. If Card(I) = 1 and £ = —(aX? + bX3 +
cX? + dX3) with a,b,c,d > 0, \/%7 \/g € Q, and either a = b or ¢ = d, then Theorem 5.4 applies, but
Theorem 7.4 does not unless a = b and ¢ = d. We are not aware of any applications of Theorem 5.3
besides Theorem 7.4.

The next results concern families of the form (£, (—iTh,...,—iT,;)) for ny < ny. Notice that, in
this case, we do not only reduce the number of elements of go, but we restrict to the case in which
Card(I) = 1. In this case, indeed, the spectrum of (£, (—iT1, ..., —iT,;)) is no longer a countable union
of closures of analytic submanifolds, but a convex cone, so that things are somewhat easier and we can
prove more general results than for the ‘full family’ £4. In Theorem 5.8, we show that property (RL)
holds if W = {0}. With reference to the above example in the complexified Heisenberg group, this is the
case when ac # bd and ad # be.

Our last result concerns the case of general MW groups (cf. Theorem 5.9); even though its hy-
potheses are more restrictive than in the preceding one, it nonetheless applies when G is a product of

Heisenberg groups and £ is a sum of homogeneous sub-Laplacians on each factor (cf. Proposition 8.3).

5.1 The Case n), = ny

We begin with some technical lemmas.

Lemma 5.1. Let V and V be two finite-dimensional vector spaces over R, L a discrete subgroup of V,

and p: V. — V an R-linear mapping. Then, the following conditions are equivalent:
1. (L) is a discrete subgroup of V;

2. LNkerp generates (L) Nker p as a vector space over R, where (L)y denotes the vector subspace

of V over R generated by L;
3. dimp p((L)g) = dimq u((L)q), where (L), denotes the vector subspace of V' over Q generated by L.

Proof. The equivalence between 1 and 2 follows from [31, Theorem 1.1.2 and Proposition 1.1.4]. The
equivalence between 2 and 3 follows from the fact that dimqu((L)q) = dimgq (L)q — dimg (L)q N
ker p, which equals dimp (L) — dimg (L Nker p1) since (L)g Nkerp = (QL) Nker p = Q(L Nkerp) =

(L Nker p)q and since L Nker y is a discrete subgroup of ker p by [31, Proposition 1.1.3]. O

Lemma 5.2. Let V and V be two finite-dimensional vector spaces over R, L a discrete subgroup of V., C

the convex cone (with vertex 0) generated by some finite subset of L which generates V, and p: V. — Va
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linear mapping which is proper on C. Assume that L Nker u generates ker i, and take & € u(C). Define

Ve =il (6) Sei=VenC

ng == dlm]R Sg Vg = ’HT(S'g)Xsﬁ CHTE

Take xo € C and define, for every X € RY. and for every v € u(xo + LN C),

1
Vxy = — Z 5)\(xo+'y’)a

~'eLnC
y=p(zo+7")

where ¢, = Card (=" (v) N (zo + LN C)). Then,

lim Uny = Vg
A7, )—=(£,0)
yEu(zo+LNC)

in EX(V).

Proof. 1. Define ¥ := pu(xo + L N C), and define §¢ as the filter ‘(A,v) € RY x X, (Ay,A) = (£,0).
Observe that it will suffice to prove that vy , converges vaguely to v¢ along §¢. Indeed, the vy, are
probability measures supported in

Syy CONp H(K) (1)

eventually along §¢, where K is any compact neighbourhood of ¢ in V. Since w is proper on C', the
assertion follows.

Now, let us prove that we may reduce to the case in which xy = 0. Indeed, define

~'eLnC
y=p(zo+7")

It will then suffice to prove that vy, — z/g,ﬂY converges vaguely to 0 along §¢. However, take ¢ € DO(V)
and € > 0. Then, there is a neighbourhood U of 0 in V such that |¢(z1) —p(x2)| < € for every x1,22 € V

such that 1 — zo € U. Therefore,

<V/\,’y - z/gﬂ, <p>‘ < e as long as Axg € U, hence eventually along §¢.
The assertion follows.

2. Observe that C' is a polyhedral convex cone. In addition, let n be the dimension of V', and let
(F¢)cez be the (finite) family of (n — 1)-dimensional facets of C; observe that F is a convex cone for
every ( € Z, so that 0 € F;. Take, for every ( € Z, some p; € V* such that Fy = kerp, N C and
pc(C) C Ry. Then, C is the set of x € V such that p;(z) > 0 for every ¢ € Z, and L Nkerp, generates
ker p¢ for every ¢ € Z.

In addition, let Z¢ be the set of { € Z such that p;(S¢) = {0}, and let Zé be its complement in Z. We
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shall write pz, and Pz instead of (p¢)cez, and (pc)cezg, respectively. Define VE/ = Ve Nkerpz,. Then,
%4 ﬂpgg ((]Ri)zé) is the interior of S¢ in V{; since, by convexity, V/ ﬂpgg ((Ri)zé) is not empty, V/
is the affine space generated by Se.

3. Define W = Vg’ — Vg’, and observe that L N W, generates W,. Indeed, the linear mapping
(tspze): V — V xRZ maps L into the discrete subgroup (L) XHCEZE pe(L) of V xR (cf. Lemma 5.1),
and W¢ is the kernel of (u,pz,), whence the assertion by Lemma 5.1.

Therefore, there are two subspaces Wé and Wé’ of V such that the following hold (cf. [12, Exercises
2 and 3 of Chapter VII, § 1] or [31, Proposition 1.1.3]):

° Wg@Wé’:VO:ker,u andVQEBWE”:V;
o LNW{and LN W, generate W; and W', respectively, over R;
o (LNWe)@® (LNW¢)@ (LNW{) =L as abelian groups.

Therefore, we may endow V and V with two scalar products such that We, W{, and W[ are or-
thogonal, and g induces an isometry of Wé’ into V. We may further assume that ||pc|| < 1 for every
ez

4. Define, for A > 0 and v € %,

Te Ny = inf{r > 0: S)\'y - B(Sg,’l")} + )\7

so that Syy € B(S¢,re n). Here (and later in the proof), we denote by B(K,r) the r-dilate of the set
K, that is, {J,cx B(x,7). Let us prove that r¢ x , converges to 0 along Fe.

Indeed, let 4 be an ultrafilter finer than §¢. Denote by K the space of non-empty compact subsets of
V', endowed with the Hausdorff distance dp, defined by dg (K7, K3) = inf{r > 0: K; C B(Ks,r), K3 C
B(Ki,r)} for every K1, Ko € K. By (1), [11, Proposition 10 of Chapter I, § 6, No. 6], and [2, Theorem
6.1], it follows that Sy, has a (unique) limit S in K along 4. Now, for every closed neighbourhood K of
¢ in ‘N/,

Sxy € Cnu ' (K)

as long as Ay € K, so that, by passing to the limit along 4,
ScCnu K).
By the arbitrariness of K, it follows that S C S¢. Therefore,

Te Ny < dH(S7 S)\’Y) + )\7
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so that re », converges to 0 along il. Thanks to [11, Proposition 2 of Chapter I, § 7, No. 1], the
arbitrariness of 4l implies that r¢ 4 converges to 0 along §e.

Now, if ng = 0, then 1 and the preceding arguments show that vy, has a limit in ENV(V) along Se,
and this limit is necessarily a probability measure supported on S¢. Since, in this case, Card(Se) = 1,
this measure must be vg, so that the arbitrariness of 4 and [11, Proposition 2 of Chapter I, § 7, No. 1]
show that vy , converges to v¢ in £2(V) along §¢, whence the result when ng = 0.

5. Now, let ¢ be the affine projection of V' onto V with fibres parallel to W{ & W/'. Arguing as in 1
and taking 4 into account, we see that vy , — (m¢)«(va,4) converges vaguely to 0 along §¢, so that it will
suffice to prove that (m¢). (v ) converges vaguely to vg along Fe. Observe, in addition, that from now
on we may assume that ne > 0, thanks to 4.

Take e > 0, x € m¢(AL), and y € Sg x5 = Supp ((m¢)«(vx,4)). Assume that B(z, 5)ﬁp§£1 (Rié) cae,
and that r¢ ), < e. Take ¢y’ € Supp (v,) such that m¢(y') = y, and let us prove that v’ + z —y €
Supp (Vx,). Indeed, it is clear that x —y € AL N W, so that y' + 2 —y € AL. Hence, it will suffice to
prove that y' +x —y € C. Now, since 3y’ € Sxy C B(Sg, ¢) by 4, there is 2’ € S¢ such that |y —2'| <,
so that

2>y -2 =y +ly -y

since y — 2’ € We and y' —y € W, @ W{'. Therefore, |y’ —y| < &; since, in addition, p¢(y' + 2 —y) =
pc(y') = 0 for every ¢ € Z, it follows that ¢/ +z —y € B(z,¢) ﬂpz (Rig) C C. In particular, it follows
that = 7¢(y + 2 — y) € Se x4

6. By the arguments of 5 above, we see that there is a function c¢ . on S¢ x , such that

(Te)«(an) = D cenny(®)da,

1265’5_’,\1.Y

and such that c¢ x4 (2) > cex~(y) = 1 whenever z,y € S¢ 5 4, B(z,¢€) ﬂp}gl (]Rf&) CC,and regpy <€
for some fixed € > 0. In particular, the function c¢  , is constant on the set of x € S¢ . such that
B(z,¢) ﬂpgg (Rig> C C, aslong as ¢\ < €.

Now, take ¢ > 0 and x € Vg’; let us prove that, if pc(z) > € for every ¢ € Z{, then B(z,e) N
pggl (]RJZrﬁ) C C. Indeed, take y € B(z,¢), and assume that pc(y) > 0 for every ¢ € Z¢. Take ¢ € Z,
and observe that [pc(y — )| < |y — 2| < ¢, so that pc(y) = pe(x) + pe(y — x) = pe(x) —e > 0 by our
choice of . By the arbitrariness of (, it follows that y € C.

7. Now, take a fundamental parallelotope P of L N W, and extend c¢ .~ to a function on V'
which is constant on x + AP for every « € m¢(AL), and vanishes outside S¢ . + AP:. Then, vg » , =
W}J@)C&AW -1 is a probability measure; in addition, as in 1 we see that (7¢).(va ) — Ve, x4 cOnVerges

vaguely to 0 along F¢, so that it will suffice to show that v¢ 4 converges vaguely to v¢ along F¢. Let us
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prove that, if Sé denotes the boundary of S¢ in Vgﬂ then mc& A, is uniformly bounded eventually
along §¢, and converges on V' \ Sé to the function HH%(SE)XS&: this will complete the proof.

Indeed, for every € > 0 define V{ _ as the set of x € V{ such that p¢(x) > ¢ for every ¢ € Z;. Observe
that the union of the decreasing family (Vég)e is clearly Vg’ N pgél ((Ri)%), which in turn equals the
interior of S¢ in Vg’ by 2 above. In addition, 5 and 6 above imply that Vée Nme(AL) C Sex~ as long as
T¢ay < €. In particular, take eg > 0 so that Vgl,ag has non-empty interior in Vg; then, for every ¢ €]0, o],
Vf’) . contains at least an element of Sg¢ » 4, eventually along §¢. Next, for every A > 0, define Vf’)& \ as
the union of the sets © + AP, as @ € m¢(AL) and (z + APg) NV{ _ # (. Then, V{_ , is contained in V/ . ,
for A sufficiently small, so that 5, 6 and the above remarks imply that the function c¢ » , is constantly
equal to maxceg », on V¢ _, eventually along §¢ (¢ €]0, £o)).

Now, 4 above shows that S¢ x v € B(Se,7e,x,4) N Vg’, since ¢ is an orthogonal projection. Therefore,
Supp (Ve ay) = Seay + AP € B(Se,e) N VE’7 eventually along §¢, for every fixed € > 0. Now, vg » ~ is a

probability measure, so that
A" (V¢ )maxeeny < / dvg sy =1 < H"(B(Se, ) N V) maxee x4
1%

eventually along §¢ (¢ €]0,e0]). As a consequence,

1 1
< <
He(B(Se,e) V) R

< -
Hre (‘/51’5)

eventually along §¢ (¢ €]0,¢¢]); in particular, c¢ » , is uniformly bounded eventually along §¢. Now, the
intersection of the increasing family (B(Sg,€) NV{).>0 of H"¢-integrable sets is the closed set S¢, so that
lim H"¢(B(Se,e) NV{) = H"¢(S¢); analogously, since S¢ is H"-negligible, we have lim H"¢(V{ ) =
e—0t e—0t ’

H"e(Se). It is then clear that

1
im_  cenqy(2) = o

(A7) 8¢ H™¢(Se)

for every z € Vég and for every € €]0, g, hence for every = € S¢ '\ Sé. On the other hand,

lim ¢ xz)=0
ol ey (2)

for every z € V' \ (B(S¢,¢) N V() and for every € > 0, hence for every z € V' \ S¢. Then, by means
of the dominated convergence theorem we see that v¢ ) 4 converges vaguely to v along §¢, whence the

result. O

Theorem 5.3. Assume that dimg pu(w)(Q) = dimg p(w)(RH) for some non-zero w € g3, that u is
constant where the mapping w — p,,(w)(ny) is constant, and that P is constant. Then, xr, has a

continuous representative.

28



Proof. 1. By an abuse of notation, we shall confuse P, with its constant value for every h € H. In
addition, we denote by N the norm w — i, (w)(1,,), and by S” the corresponding unit sphere; fix
wo € S’. Then, i is constant on S’, so that u(w) = N(w)i(wo) by homogeneity for every w € g5. Define
Y = f(wo)(1p, + 2IN™1).

For every & € fi(wo)(RY'), let ¢ denote the filter ‘(X,7) € R% x X, (Ay,A) — (£,0).” In addition,

define, for every A € R% and for every v € X,

VS\KY = Z 5A(1n1 +27')»
Y=H(wo)(1ny +27")
and vy , = W - V), S0 that vy - is a probability measure. Then, Lemma 5.2 implies that vy ,

converges to some probability measure v¢ in £°(R™) along Fe.
2. Recall that A" denotes the y-th Laguerre polynomial of order m, and denote by Jy the Bessel

function (of the first kind) of order 0. Define, for every (z,t) € R™ x R,
. 1
XoA Ly +29), Az, 1) = - PNl ix H A% (3l

for every A € R% and for every v/ € IN™, and

xo(€',0,2,1) HJ()(\fm)

for every ¢ € R''. We claim that yo extends to a continuous function on R™ x R x R" x R. To
prove the continuity of xg, one may argue directly, making use of the well-known series expansion of Jy;
nonetheless, our assertion follows from the fact that x is closely related with the spherical functions of a
suitable Gelfand pair; see, for example, [4, Sections 1 and 2], and also [6, Lemma 3.1] for a quite explicit
analytic extension of (a function closely related to) xo.

ni+y' —1g

Now, define ¢y == 3°. 0 my 12+ ( o ), and

(N (@), (T), (2,1)) = — > i | A ( fiug,h (W )IPh(:v)|2>

Cry
y=H(wo)(n1 +2“/) heH

1 N(w) 2 0 ny N(w
_ 1 3 (o) | —icw (1) HA =t <é)uLo,h(wo)Ph($)|2)

C.
7 y=p(wo)(n1+27) heH

for every non-zero w € g, for every v € X, and for every (z,t) € G, so that x; induces a representative
of xr, thanks to Proposition 4.18. In addition, x; is clearly continuous on its domain. Let us prove
that x1 extends by continuity to o(L£4) X G.

Indeed, fix a B,,-symplectic basis (Xuwy 15> Xwo,nas Ywo,ls - - -5 Ywg,my) Of g1 such that X, , and

Y.,k are joint eigenvectors of (|Jg, w,|). With joint eigenvalue (i, x(wo)),, for every k =1,...,ny. Then,
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for every x € g1, we denote by Z1,...,T2,, the coordinates of z with respect to such basis. As in the

proof of Proposition 4.18, we then see that

X (N (@)7,0(T)), @,0) = () X0 (- N @), (@rsFs ) ity 505 ) )+

for every non-zero w € g3, for every v € ¥, and for every (z,t) € G. Now, fix { € i(wo)(R"}"), and

observe that

()\}’iyr)f’lggXl((/\’Ya)‘w(T))v (1)) = (e, xo( 0, 1k, Zny ) )2y, @ (1))

uniformly as w runs through S’, and as (z,t) runs through a compact subset of G. Since the function
Ve, x0(+5 0, (|(Zn, Ty 41)|) oy w(t))) does not depend on w € S, it follows that x; is continuous at &.

The assertion follows. O

Theorem 5.4. Assume that dimgq p(w)(QY) = dimg p(w)(RH) for some non-zero w € g5, and that p

is constant where the mapping w — p,,(w)(ny) s constant. Then, L4 satisfies property (RL).
Observe that, in this situation, W = {0}.

Proof. Take ¢ € Ly (G), and let S’ be the unit sphere associated with the norm N: w = i, (w)(1n,).
Corollary 4.20 implies that there is a negligible subset N7 of S’ such that (7, ).(¢) € Lém(l:A)(Gw) for

every w € S"\ Ny (cf. Definition 4.15). Observe, in addition, that the mapping
w i (m)(p) € L (g1 ® R)

is continuous on g5 \ {0}, hence on S’. Now, fix wy € S’, and take (U, 1)) as in Proposition 4.16. Then,

it is easily seen that the mapping
UNS' 3w (Y, 0my)«(p) € LY (H™)

is continuous. Furthermore, observe that, with the notation of Proposition 4.16,

T i=d(, o) (Lr) = ( D kW) (XF + X72L1+k)>
k=1

el
does not depend on w € U NS’ since pt is constant on S’, while
d(¢, o m,)(T) = w(T)T.

Observe that (£, —iT') satisfies property (RL) by Theorem 5.3, and that (¢, 07y )«(¢) € L%L:}77iT) (H")
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for every w € S’ \ Ny. Therefore, the mapping
Uns swe M(,C},—iT)(('d]w © '/Tw)*(sp)) € CO(U(‘C/Ia _ZT))

is continuous. In addition, if w € UNS"\ Ny, then [32, Proposition 3.2.4], applied to the right quasi-regular

representation of H™ in L?(Gy), implies that

My, —im) (Yo © T0)(9))(A; 0) = Manmy (£, ((m0)+(9)) (A)

for every A € R such that (\,0) € o(L}, —iT), that is, for every A € o(dm(L;)). By continuity,
this proves that the mapping U NS 3 w = Mz i) ((Yw © 7)< (¢))(A,0) is constant for every A €
o(dmo(Lr)). Taking into account the arbitrariness of U, we infer that there is a unique m € Cy(c(L4))

such that

m(A,w(T)) = Mzy —im) (Y0 /) © Tepwn)(9)) (A, N (w))

for every (A\,w(T)) € o(L4) such that w # 0 and ~y €UN S’, where U runs through a finite
open covering of S’ and vy is the associated local trivialization as above. Finally, observe that either

Proposition 4.18, applied to G and the G, or Corollary 4.20 implies that
m()‘7w(T)) =M, (90)()‘7"‘}(’1‘))

for B ,-almost every (A, w(T)), so that ¢ = K, (m) and the assertion follows. O
Here we prove a negative result.

Proposition 5.5. Assume that G is the product of k = 2 MW™ groups G}, ...,G), and assume that
each G; is endowed with a homogeneous sub-Laplacian L}. Assume that Card(I) = 1 and that L =
L4+ L. Then, L4 does not satisfy properties (RL) and (S).

Proof. Take, for every j = 1,...,k, a basis T, of the centre g’ , of the Lie algebra of G’;. By an abuse of
notation, we may assume that £4 = (£, —iT},..., —iT}); define £, == (L},..., L}, —iT},...,—iT}).
Then, there is a unique linear mapping L: E[;/A, — Er, such that £4 = L(L';,). Forevery j € {1,...,k},
define Q;, Hj, pj, ny ; as the objects defined in Definition 4.12 starting with the family (ﬁ;, —iT}) on
G;-. Now, take j € {1,...,k} and v € N5 and define

Ciy = {(p (@) (1,5 +27), w(TH)): w € Q;}.
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Define

k
= U H Cjﬁw

JelTi, WY 31
and observe that BL/A/ is equivalent to x¢ - H™2 thanks to Proposition 4.18 (up to a re-ordering of the

coordinates). Next, define Z as the set of non-zero v € H?Zl ZHi such that v, p,vjn, = 0 for every

j=1,...,k and for every hy, hy € H;.'6 Then, define

k k

N =TRF x U w(T):wEHQj, Zuj(wj)(’yj):() ,
ez j=1 j=1

and observe that L is one-to-one on C'\ N. Let us prove that N is BLIA -negligible. Indeed, for every

j=1,...,k, let U; be a component of §}; and fix v € Z. Observe that U; is dilation-invariant. In

addition, observe that either

k k
Nupy=w@:we [[U;, D nw)(y) =0
j=1 j=1

is an analytic set of dimension at most ny — 1, or the mapping

k
(wj) = Y (w;)(7;) =0
j=1
vanishes identically on H?zl U,. Now, there is jo € {1, ..., k} such that v;, # 0. By the definition of Z,
it follows that either ,, or —v;, is an element of IN*io | so that we may choose (w;) € Hf=1 Uj in such
a way that p;, (wj,)(vj,) # 0. Now, for every r > 0 define (wy)) so that w!"”

. J
J
Wit = rwj,; observe that (wl(.r)) € H§:1 U,. In addition, the mapping

= wj for j # jo, while

Jo J

k
T (W]('T)) (07) = Thgo (Wio) (o) + D 15 (w5) ()
Jj=1 J#Jo

is strictly monotone, so that it cannot be identically zero. As a consequence, the preceding remarks
imply that R* x Nwjy~ is 5£;‘,-negligible. By the arbitrariness of the U; and v, it follows that N is
ﬁgA/—negligible.

Therefore, there is a unique m: E., — E[;/A/ such that mo L is the identity on C'\ N, while m equals
0 on the complement of L(C' \ N). Then, m is 8. ,-measurable, and K., (m) = £/,,d.. Now, let us
prove that m is not equal . ,-almost everywhere to any continuous functions. Assume by contradiction
that £4,0. = K, (m’) for some continuous function m’, and let mp be the projection of G onto its

abelianization Gg. Then, [32, Proposition 3.2.4], applied (arguing by approximation) to the right quasi-

16Here, v;,n denotes the h-th component of the j-th component ; of «y, for every j =1,...,k and for every h € Hj.
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regular representation of G in L?*(Gy), implies that the operators dmy(L}),...,dmo(L}) belong to the
functional calculus of dmy(L), which is absurd.

To conclude, simply take 7 € S(E.,) such that 7(A) # 0 for every A € E.,, and observe that
Ke,(mr) =LKz, (7) is a family of elements of S(G), while m7 is not equal S ,-almost everywhere

to any continuous functions. O

5.2 The Case n), < ny

Before we state our main results, let us consider some technical lemmas.

Lemma 5.6. Let M be a separable analytic manifold of dimension n endowed with a positive Radon
measure [ which is equivalent to Lebesque measure on every local chart. In addition, take k,h € N and
a analytic mapping P: M — RF with generic rank h such that P,(u) is a Radon measure. Then, the
following hold:

1. P(M) is H"-measurable and countably H"-rectifiable;

2. P.(p) is equivalent to X p(ary - H";

3. Supp (Pu(p)) = P(M);

4. if (By)yerr is a disintegration of p relative to P, then Supp (8,) = P~'(y) for H"-almost every
y € P(M).

Notice that it is worthwhile for our analysis to consider the case in which M is possibly disconnected.

Proof. Observe first that M may be embedded as a closed submanifold of class C*° of R?"*! by Whitney
embedding theorem (cf. [18, Theorem 5 of Chapter 1]). We may therefore assume that p = f - H"™ for
some f € L{ (xar-H™). Now, [37] implies that the set where P has rank < h, which is H"-negligible by
analyticity, has H"-negligible image under P. Since the image under P of the set where P has rank h is
a countable union of analytic submanifolds of R¥ of dimension h, we see that P(M) is H"-measurable
and countably H"-rectifiable. Therefore, we may make use of [20, Theorem 3.2.22], and infer that P, (u)
is equivalent to the restriction of #" to the set of y such that H"~"*(P~1(y)) > 0, and that we may find a
disintegration (3,) of p relative to P such that 3, is equivalent to x p-1(y) ~H"~" for P,(u)-almost every
y € R*. Now, the preceding arguments show that P~!(y) is an analytic submanifold of dimension n — h
of M for H"-almost every y € P(M). As a consequence, Supp (3,) = Supp (Xp—l(y) ~’H”’h) =P (y)
for H"-almost every y € P(M); for the same reason, we also see that P,(u) is equivalent to XP(M) -HP.

Finally, Supp (P.(p)) = P(M) since P is continuous and Supp (u) = M. O

Lemma 5.7. Let E1, Ey be two finite-dimensional vector spaces, C a convexr subset of Fq with non-

empty interior, and L: E1 — Ey a linear mapping which is proper on 0C. Assume that for every x € 0C
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either L~Y(L(x))NOC = {z} or OC is an analytic hypersurface of Ey in a neighbourhood of . Then, L

induces an open mapping L': 0C — L(0C).

Proof. Take x € OC, and assume that L=1(L(z)) N dC = {z}. Define U, ) == L=Y(B(L(z),27%)) n dC
for every k € IN. Since L is proper on 9C, U, is a compact neighbourhood of = for every £ € IN. In
addition, (), Us,k = {7}; hence, [11, Proposition 1 of Chapter 1, § 9, No. 2] implies that (U, ) is a
fundamental system of neighbourhoods of z in C, so that L’ is open at x.

Now, assume that L=1(L(z)) N dC # {x}. Then, the hypotheses imply that there is an open neigh-
bourhood U of L=(L(x)) N AC such that C N U is an analytic hypersurface of E;. Observe that,
if (U;) is a decreasing fundamental system of relatively compact open convex neighbourhoods of L(x)
in Es, then (L7Y(U;) N AC) is a decreasing sequence of compact neighbourhoods of L=!(L(x)) N C
whose intersection is L=1(L(x)) N dC. By compactness, we then see that there is j € IN such that
L=YU;) N dC C U, so that L='(U;) is an open conver neighbourhood of L~'(L(x)) N dC such that
OC N L™Y(U;) is an analytic hypersurface of E;. Hence, we may assume that U is convex. Assume by
contradiction that ker L C T,,(0C NU), and take 2’ € dC such that L(z') = L(z) but 2’ # x. Since C
is convex, we have [z,2'] C 9C} let £ be the line passing through x and z’. Since dC N U is an analytic
hypersurface, and since £ N U is convex, it follows that £NU C 9C. Then, f NU =4NICNU =£NIC,
so that £NU is non-empty, compact, and open in £: contradiction. Therefore, ker L € T,,(0C NU). Now,
this implies that L: 0C N U — L(E;) is a submersion at z, since T, (0C NU) is a hyperplane. Hence,

L:9CNU — L(E,) is open at x; a fortiori, L' is open at x. The assertion follows. O

Theorem 5.8. Assume that Card(I) = 1 and that W = {0}; take a positive integer n < ng. Then, the

family (L, (—iT});j=1,... ny) satisfies property (RL).

Proof. 1. Define L: Ez, — B (i) ,y as the unique linear mapping such that L(La) =
32

j=1,...,

(L, (=iT})j=1,..ny). Define, in addition, L' in such a way that L = idg x L', and identify g5 with

RR™ by means of the mapping w +— w(T). Define, for every v € IN™ |

8 DBey) 30> [ ()L, +2). ) PEW)| dw

95

so that 6., = m nye]N“l By by Proposition 4.18. Now, arguing as in the proof of Proposition 2.4,
we see that Cy == L(Supp (8o)) = L(c(L4)) is a closed convex cone.

2. Observe that Proposition 4.13 implies that Supp (8p) \ {0} is an analytic submanifold of E.,. In
addition, Lemma 5.6 implies that L. (8o) is equivalent to x¢, “H">*1 and that, if (Bo,x) is a disintegration
of By relative to L, then Supp (8o.x) = L~1(\) N Supp (By) for L.(Bp)-almost every A € Cp. In addition,
Lemma 5.7 implies that the mapping L: Supp (8p) — Cj is open, so that, in particular, 5y is L-connected.
If we prove that L, (8,) is absolutely continuous with respect to Hm2t for every v € IN™ | the assertion

will then follow from Corollary 4.19 and Proposition 2.6.
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Then, let us prove that L.(8,) is absolutely continuous with respect to Hm2tL for every v € IN™.
Notice that this will be the case if we prove that the analytic mapping Q 3 w — (Z(w)(1,, +27), L' (w))
is generically a submersion for every v € IN"* (cf. Lemma 5.6). Assume by contradiction that this is not
the case, so that there are v € N™ and a component U of Q such that -L7i(w)(1,, + 2v) vanishes on
ker L' for every w € U. As a consequence, there are (r,w’) € R x R™ such that L~ (r,w’) N Supp (53,)
contains an open segment. Then, there is a line ¢ in L'~!(w’) such that ({r} x ¢) N Supp (3,) contains
an open segment; observe that 0 ¢ ¢ since the mapping w — (w)(1,, + 27v) is homogeneous and proper.
Then, [30, Theorem 6.1 of Chapter II] implies that there is an analytic function f: £ — R"™ such that f(w)
is a reordering of fi(w) for every w € ¢. As a consequence, for every 7' € IN"! the set of w € ¢ such that
fw)(1,, +29') = r is compact, hence discrete by analyticity. Therefore, ({r} x £)No(L4) is countable,

so that it cannot contain any open segments: contradiction. The proof is therefore complete. O

Theorem 5.9. Assume that Card(I) = 1 and define C,, = {(n(w)(n1 +27),w(T)): w € g5} for every

v € N, In addition, take nly < ny and define L = idg x Pry ., on Ec,. Assume that the following

n.

hold:
1. xc, - Br, s L-connected

2. for every f € Ly (G) and for every v € INT My, (f) equals B, -almost everywhere a continuous

function on C,.
Then, L(L4) satisfies property (RL).

Observe that condition 1 holds if Cj is the boundary of a polyhedron (cf. Proposition 2.4) and if
W = {0} (cf. Lemma 5.7). With a little effort, one may prove that condition 1 holds if n}, = 1.

We shall prepare the proof of Theorem 5.9 through several lemmas.

Lemma 5.10. Let V be a topological vector space, C a convex subset of V with non-empty interior, and

W an affine subspace of V' such that W N CO' # 0. Then, W N OC is the boundary of WNC in W.

Proof. Indeed, take xg € W N C, and take x in the interior of W NC in W. Then, there isy € WNC
such that x € [z, y[, so that [13, Proposition 16 of Chapter II, § 2, No. 6] implies that z € C. By the
arbitrariness of z, this proves that W N C is the interior of W N C in W. Analogously, one proves that

W N C is the closure of W N C in W, whence the result. O

Lemma 5.11. Let f: R™ — R be a convex function which is differentiable on an open subset U of R™.
Let L be a linear mapping of R™ onto R¥ for some k < n, and assume that (f,L) has rank k on U.

Then, for every y € (f, L)(U), the fibre (f,L)"(y) is a closed convex set which contains L= (y2) N U.

Proof. We may assume that U is not empty. Define 7 := (f,L): R® — R x RF, and observe that

ker L C ker f/(z) for every x € U since 7 has rank k on U. Consequently, if y € w(U), then f is locally

35



constant on L~ (y2)NU. Now, take two components C; and Cy of L~ (y2)NU, and observe that they are
open in L™1(y;). Take x1 € C; and x5 € Ca. Then [z1,22] C L™1(y2), so that there are x, 25 €]xq, 22|
such that f is constant on [z, 2]] and on [z, x2]. By convexity, f must be constant on [z, z2], hence
on C7 U Cy. By the arbitrariness of C; and Cy, we infer that 7=1(y) D L™ (y2) N U.

Now, consider the convex set C :== {(A,z): x € R", A > f(x)}, and observe that C' is closed and that
C={N\z):zeR", x> f(z)}

since f is continuous, so that AC is the graph of f. Next, define W = (idg x L)"'(y) = {y1} x
L=1(ys), and observe that W NaC = {y;} x 7~ *(y). Assume by contradiction that W N c # (). Then,
Lemma 5.10 implies that W N dC is the boundary of W N C in W, so that 7=1(y) has empty interior in
L~1(ys). However, 7~ 1(y) contains L= (y2)NU, which is non-empty and open in L=1(ys): contradiction.

Therefore, {1} x 77 1(y) = W N C is a closed convex set, whence the result. O

Lemma 5.12. Let f: R™ — R be a convexr function which is analytic on some open subset ) of R™
whose complement is H™-negligible. Let L be a linear mapping of R"™ onto R* for some k < n, and let

U be the union of the components of Q where (f, L) has rank k. Then,
(f,L) "M y) = L7Hy2) NU

for H*-almost every y € (f,L)(U).

Proof. We may assume that U is not empty; define 7 := (f, L). Since the complement of Q is H"-
negligible, there is an H*-negligible subset N; of R* such that L=1(y) \ Q is H" *-negligible for every
y € R¥ \ Ny (cf. [20, Theorem 3.2.22]). In addition, observe that the set Ry of x € Q\ U such that
ker L C ker f/(z), that is, such that 7/(x) has rank k, is H"-negligible by the analyticity of f. Then, there
is an H"-negligible subset Ny of R¥ such that L~ (y) N Ry is H" *-negligible for every y € R¥ \ Ny (loc.
cit.). Now, observe that there is a continuous nowhere vanishing function ¢ on R™ such that (xye) - H"™
is a bounded measure (for example, take a Gaussian). Then, Lemma 5.6 implies that the measure
Xr(U) -HF is equivalent to the measure 7, ((xp¢)-H"), which is in turn equivalent to the (not necessarily
Radon) measure 7, (xy - H"). Next, define N := R x (N; U Ny); since U N7~ (N) =UNL(N;UN>)
is H"-negligible, it follows that m(U) N N is HF-negligible.

Now, take y € 7(U)\ N. Then, Lemma 5.11 implies that m~!(y) is a closed convex set which contains
L= (y2) N U, so that its interior in L~!(y2) is not empty. Let U’ be a component of € which is not
contained in U, and assume that 7=*(y) N U’ # 0. Since f is analytic on U’, and since 7~ !(y) is a convex
set with non-empty interior in L~!(y), we see that a component C of L™!(y) N U’ is contained in Ry.

By the choice of Ny, this implies that C is H"*-negligible; since C' is non-empty and open in L~ (ys),
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this leads to a contradiction. Therefore,
L y2) NU Ca ' (y) C L™ (y2) N[U U (R™\ Q).

By our choice of Ny, the set L™ (y2) \ © is H"*-negligible; on the other hand, the support of Xr—1(y) -

H" % is 771 (y) by convexity. Hence, L™!(y2) N U is dense in 7~ (y), whence the result. O

Lemma 5.13. Keep hypotheses and notation of Lemma 5.12. Assume, in addition, that lim f(x) = 400
Tr—00
and that H™ is (f,L)-connected. Then, for every m € E°(R™) such that m = m’ o (f,L) H"-almost

everywhere for some m’: R x R¥ — C, there is m"” € E°(R x R¥) such that m = m" o (f, L) pointwise.

Proof. Define 7 := (f, L), and observe that  is proper. Let (f1,y)yerxr+ be a disintegration of xy - H™
relative to 7 and let (f2,4),erxr+ be a disintegration of o\ - H™ relative to . Then, Lemma 5.6

implies that:
o m.(xu - H") is equivalent to x, () - HF;
o m.(xa\v - H™) is equivalent to xro\u) - HFTh
e Supp (B1,y) = 7=1(y) N U for H*-almost every y € n(U);
o Supp (B2,) = 7 L(y) NQ\ U for H*+1-almost every y € 7(Q\ U).

In addition, 7(U) (if non-empty) has Hausdorff dimension k, so that H**1(7(U)) = 0; in particular,
T (xv - H") and m.(xo\v - H") are alien measures. If we define 3, = f1, for every y € 7(U) and
By = Ba,y for every y € (R x R¥) \ 7(U), then (B,) is a disintegration of H" relative to .

Now, Lemma 5.12 implies that 7=1(y) N U = 7~ !(y) for #*-almost every y € w(U). Next, let us
prove that 7= (y) = 7—1(y) N Q\ U for HF*'-almost every y ¢ n(U). To this end, we may assume that
Q) # U, so that k+ 1 < n. Let us first prove that 7=!(y) is the boundary of a compact convex set with
non-empty interior in L~!(yz) for H**1-almost every y € 7(Q2\ U).

Indeed, by [37] there is an H**!-negligible subset N of 7(Q2\ U) such that 7/(z) has rank k + 1 for
every x € 7 (y)NQ\U and for every y € 7(Q\U)\N. Now, define C := {(\,z): z € R", A > f(z)}, and
observe that idg X L is proper on C since m11)1&01O f(x) = +00. Therefore, {y1 }x7~1(y) = (idg x L) "1 (y)NOC
is compact for every y € R x R*. In addition, if y € 7(Q\ U) \ N, then (idg x L)~ *(y) N c # 0, so
that Lemma 5.10 implies that 7=!(y) is the boundary of a compact convex set with non-empty interior
in L™ (ys).

Therefore, m~!(y) is bi-Lipschitz homeomorphic to $"*~!, so that the support of Xr=1(y) * Hr kL
is 7~ (y) for such y. In addition, since R™ \ Q is H"-negligible, [20, Theorem 3.2.22] implies that
7= 1(y) \ Q is H** L negligible for H*'-almost every y € R x R*. Hence, 7-1(y) NQ\ U = 7~ (y) for

HEF L almost every y & 7(U).
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Then, Proposition 2.6 implies that there is m”’: 7(R™) — C such that m = m'” o; since 7 is proper,
this implies that m’ is continuous on w(R™). Finally, since 7 is proper, 7(R™) is closed, so that the

assertion follows from [12, Corollary to Theorem 2 of Chapter IX, § 4, No. 2]. O

Proof of Theorem 5.9. Until the end of this proof, we shall identify R"? and g5 by means of the bijection

w — w(T); L" will denote pry . so that L = idg x L. In addition, for every v € INH | define
Ty R™ 3w (u(w)(ng +27),w), so that 7, is continuous and C,, is the graph of .

Take f € LlL(EA)(G) and let m be a representative of My z,)(f). Take, for every v € N, a
continuous function m., on C, such that m, = M, (f) xc, - Bc,-almost everywhere. Then, Lemma 5.13
implies that there is a continuous function mg: Ep () — € such that mg = mgo L on Cy. Since S, ,)
need not be equivalent to L.(xc, - B, ), though, this is not sufficient to conclude.

For every v € INH | define By = Xc, " Bra, and let U, 1 be the union of the components C' of €2 such
that <L /u(w)(ny + 2v) does not vanish on ker L’ for some w € C. Let U, » be the complement of U, ; in
Q. Notice that (3, is equivalent to (7m4).(H"?) by Proposition 4.18. In addition, Lemma 5.6 implies that

the following hold:
i L*(X]RXU,YJ . B'y) is equivalent to XL(T‘-'y(U“/,l)) . HnIZJ'_l;
o L.(XrxU,, ' By) is equivalent to X1 (r. (v, .)) 2

® XRxU, ' By has a disintegration (8,,2)xep, . ,, relative to L such that LY\ Nmy(Uy2) C

Supp (B4,2,1) and 3,2 is equivalent to the measure Xr-1(x)nr, (U, .) - H"2m2 for HM™-almost

every A € L(m,(Uy.2)).

In particular, 81 ,) is equivalent to Xo(r(£,4)) Hratl 4 1, where u is a measure alien to Hm2 1 and
absolutely continuous with respect to Hmo, Now, observe that L.(xrxuv, , - By) is absolutely continuous
with respect to L.(8p); since (m — mg) o L is Bp-negligible, there is an L. (8p)-negligible subset N of
Er(c,) such that m = mg on Ep .,y \ N. Since N is then L,(xrxv, , - By)-negligible, this implies that
(m—mg) oL vanishes xrxuv, , - By-almost everywhere. Since mo L = m., 3 -almost everywhere, it follows

that m{ o L = my Xrxu,, - fy-almost everywhere, hence on

Supp (Xmxu, 1 * By) = Supp ((my)«(xv,., - H™)) = 7y (Us 1),

since my o L and m., are continuous, while ., is proper.

Next, consider xrxu, , - 8. Tonelli’s theorem implies that L'~*(X2) \ Q is H"2 =2 negligible for H"2-
almost every \» € R™2. Now, if N is an H2-negligible subset of R x R"2, then pry (]\7) is H"2-negligible
since pry: R X R"2 — R" is Lipschitz. Therefore, there is an H”g—negligible subset N’ of R such that,
for every A € L(my(Uy,2)) \ (R x N'),

e moL =m, 3,2 -almost everywhere;
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o L7H(A) N7y (Uy2) € Supp (By,2,0);
o I/"1(X\y)\ Q is H"> "2-negligible.

Consequently, if A € L(m, (U, 2)) \ (R x N’), then m., is constant on L=*(\) N7, (U,2). In addition, fix
A€ L(my(Uy,2)) \ (R x N'); then,

L/_l()\g) = L/_l(/\g) n Ury)l U L/_l()\g) N U%Q,

so that either L'~1(A2) N U, 1 N L'~1(A2) N U, 2 # 0 or L1 (A2) N U1 = 0 by connectedness.

Now, let C be the set of components of L' ™! (A2) N U, 2; observe that C is finite since L'~!(\3) N is
semi-algebraic (cf. [16, Proposition 4.13]) and since L'~*(A2) N U, 2 is open and closed in L'~!(A3) N Q.
In addition, observe that pr; om, is constant on each C' € C; let A1 ¢ be its constant value. In particular,
since pry o, is proper and since C is finite, this implies that L'"*(A2) N U,1 # 0. Further, m, is
constant on 7, (C) C L7Y(A1,c,A2) N7y (U, 2) for every C € C. Now, there is C; € C such that
L'=Y(\3)NU, 1N Cy # 0 since m., o, =mfoLom., on U, 1, and since m., is continuous, it follows that
m~ omy =mgyoLom, on C'. Iterating this procedure, we eventually see that m~ omy =mgyoLom, on
L'=Y()3). Therefore, m, =m{ o L on L~*(\) N C, for every A € L(m,(U,2))\ (R x N').

Now, observe that L= (R x N’) N7, (U, 1) is H">-negligible since pryoL o, = L/ and since H"2 is
equivalent to the (non-Radon) measure L), (#"?). Therefore, m., = mg o L 3,-almost everywhere, hence
on C, by continuity. By the arbitrariness of +, this implies that m( o L is a representative of M., (f),

so that myg is a continuous representative of My ,)(f). The assertion follows. O

6 Property (95)

In this section we keep the setting of Section 4; our techniques are basically a generalization of those
employed in [4, 5]. The first result has very restrictive hypotheses, for the same reasons explained while
discussing property (RL), but holds for the ‘full family’ £ 4 (cf. Theorem 6.2); on the contrary, the second
one holds under more general assumptions, but only for families of the form (£, (=iT1, ..., —iTy;)) with
ny < na (cf. Theorem 6.5).

Notice that, even though Theorem 7.4 is the main application of Theorem 6.2, there are other families
to which it applies as well. This happens for the family we considered while discussing property (RL) in
the case of Theorem 5.4 (notice that Theorems 5.4 and 6.2 have the same assumptions).

Observe that in all the results of this section we impose the condition W = {0}; this is unavoidable
(with our methods), since on W we cannot infer any kind of regularity from the ‘inversion formulae’
employed. Indeed, our auxiliary function \x(w)|2 is not differentiable on W, in general. Nevertheless,

this does not mean that property (S) cannot hold when W # {0}, as Theorem 8.3 shows.
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Before stating our first result, let us recall a lemma based on some techniques developed in [23] and

then in [4].

Lemma 6.1 ([15], Lemma 11.1). Let L'y, be a Rockland family on a homogeneous group G', and let
T = (11,...,T),) be a free family of elements of the centre of the Lie algebra g’ of G'. Let m1 be the
canonical projection of G' onto its quotient by the normal subgroup expq (RTY), and assume that the

following hold:

o (L'y,iTY,...,iT),) satisfies property (RL);

n

o dmy (L., iT, ..., iT},) satisfies property (S).

n

Take ¢ € S(Eg,,iT{,---,iT’,)(GI)' Then, there are two families (P~),cnn' and (¢x),cnn of elements of

S(G, L) and S(£i4/7iT{7---aiT;,)(Gl) (cf. Section 2), respectively, such that

o= TG+ ) Ty,

lvI<h lv|=h
for every h € IN.

Theorem 6.2. Assume that dimg u(w)(QY) = dimg p(w)(RH) for some non-zero w € g5, and that p

is constant where the mapping w — p,,(w)(n1) is constant. Then, L4 satisfies property (S).

Proof. We proceed by induction on ny > 1.

1. Observe that £, satisfies property (RL) by Theorem 5.4, and that the hypotheses imply that
W = {0}; fix ¢ € Sz, (G). Notice that the inductive hypothesis, Corollary 3.4, and Lemma 6.1 imply
that we may find a family (@) of elements of S(G, £L;), and a family (¢,) of elements of S;, (G) such
that

= (—T)3 + Y (~iT) 0,

lyI<h [vI=h
for every h € IN.

Define m :== Mg, (¢,) € S(o(Lr)) and m., = M, () € Co(c(L4)) for every . Then,

mo(\,w) = Z Wy (A) + Z wYm., (A, w)
IvI<h [vI=h
for every h € IN and for every (A\,w) € 0(La4).
2. Assume that m., = 0 for every v € IN"?. Define N(w) = p,,(w)(n1) for every w € g3, so that
N is a norm on g5 which is analytic on g3 \ {0} thanks to Proposition 4.13. Define, in addition, ¥ =
p(wo)(ny +2IN) for some (hence every) wg € g3 such that N(wp) = 1. Then, set d == 7irelgd(ﬂy, 2\ {7}),

and observe that d > 0 since dimg p1(wp)(QY) = dimpg p(wo)(R¥) (cf. Lemma 5.1). Finally, identify g3
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with R™2 by means of the mapping w — w(T), take r € ]0, minliffw‘ [, and choose 7 € D(R') so that

XB(0,r) < T < XB(0,2r)- Define

> e mo(N(w)y,w)T (é ( o 7)) if w#0

0 ifw=0

for every (A\,w) € E,. Proceeding as in the proof of [4, Lemma 3.1], one sees that m € S(E., ), so that
p € S(G,La).

3. Now, consider the general case. By a vector-valued version of Borel’s lemma (cf. [26, Theorem
1.2.6] for the scalar, one-dimensional case), there is m € D(g3; S(R)) such that 97m(0) = m. for every
v € IN"2. Interpret m as an element of S(E.,). Then, 2 implies that mo — m induces an element of

S(0(L4)). The assertion follows. O

Now we consider the case in which Card(I) = 1, and n < ny. We begin with a suitable version of

Morse lemma, which is an easy consequence of [27, Lemma C.6.1].

Lemma 6.3. Let U be an open subset of R¥ x R™, and ¢ a mapping of class C>® of U into R. Assume
that 01¢0(x0) = 0 and that 8?¢(x0) is positive and non-degenerate for some xo € U.17
Then, there are an open neighbourhood Vi of 0 in R*, an open neighbourhood Vy of 20,2 n R™, and

a C*°-diffeomorphism ¢ from Vi x Va onto an open subset of U such that (0, x0.2) = xo, P2 = pry, and

P () = (0, 2)) + [y

for every y € Vi x Va.

Corollary 6.4. Keep the hypotheses and the notation of Lemma 6.5. Take a function f € E(P(Vy x

V2) x R) and a function g: Va2 x R — C so that

fx,p(x)) = g(x2, 0(2))

for every x € (Vi x Va). Then, g can be modified so as to be of class C* in a neighbourhood of

(z0,2, ¢(70))-

Proof. Indeed, the assumption means that

7 (9n,92), 0@0,32)) + ln*) = 9 (2 0(0,2)) + I )

17Here, 81 denotes the differential along the factor RF of R* x R™.
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for every (y1,y2) € Vi x Vi. Define, for every ys € Vs,

Jo:Vidyi = f (w(yl,yz), (1 (0,y2)) + ||y1||2) and gyt RSt = g(y2, (¥(0,92)) +1).

Then, the mapping V2 3 yo — ny belongs to £(V2; £(V1)), and

Foa () = s (I 1?)

for every y1 € V1 and for every ys € Va.

Now, [40] and the open mapping theorem easily imply that the mapping!'®
®1: Er(Ry) 3 h holl-|° € EMRF)

is an isomorphism onto the set of radial functions of class C*™ on RF. Since there is a continuous linear
extension operator Eg(R4) — E(R) (cf., for instance, [7, Corollary 0.3]), we find a continuous linear

mapping ®o: ®1(Er(R4)) — E(R) such that
2
Dy(h)ol-[I" = h

for every radial function h € £(R¥). Then, take 7 € D(V;) so that 7 is radial and equals 1 on a
neighbourhood V{ of 0 in Vi, and define éyz = @2(7]};2). Then, (N;yQ <||y1\|2> = Gys (||y1||2) for every
y1 € V{ and for every y, € V,. In addition, the mapping yo — éw belongs to £(Va2; E(R)), so that there

is G € £(Vy x R) such that G(y,t) = éw (t) for every yo € V5 and for every ¢t € R. Then,

9 (420200, 92)) + 1) = G (1 ln )

for every yo € Vo and for every y; € V/. Define

G:Va xR 3 (y2,t) = Glyz,t — 0(4(0,2))),
so that G € £(V2 x R) and
for every = € (VY x V3), whence the result. O

Theorem 6.5. Assume that Card(I) = 1 and that W = {0}, and let S’ be the analytic hypersurface

{w € g5: p(w)(ny) = 1}. Take nhy, € {0,...,n2 — 1} and assume that, for every w € S’ such that

8We denote by Er(R+) the quotient of £(R) by the set of ¢ € £(R) which vanish on Ry.
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(Tn,... 7Tn/2>o C T,(5"), the normal curvatures of S at w along the one-dimensional vector subspaces of

) are all non-zero. Then, the family Lar = (L, (—iTy, ..., —iT,,)) satisfies property ().

The condition on S’ is satisfied, for example, if w — p(w)(ny) is a hilbertian norm. In addition, since
S’ is the boundary of a convex set, the condition on S’ is satisfied also if, for every w € S’ such that

Ty,..., T, ) C T,(5"), the Gaussian curvature of S’ at w is not zero.
2

Proof. 1. We proceed by induction on nj. The assertion follows from [34, Corollary 1.3 and Theorem
1.4] when nf, = 0. Then, assume that nf, > 0, so that the inductive assumption and Corollary 3.4 imply
that dm(La/) satisfies property (5), where 71 is the canonical projection of G onto G/eXpG(]RTl)'
In addition, Theorem 5.8 implies that L4 satisfies property (RL). To simplify the notation, we shall
identify g3 with R™? by means of the mapping w — w(T).

Take ¢ € S¢,,(G). Then, Lemma 6.1 implies that we may find a family (¢,) . of elements of

~EN"2

S(G, L), and a family ((,ony)ﬂyeﬂ\ln/2 of elements of S ,, (G) such that'?

Y= Z (—iT)"¢y + Z (—iT) 7y
[vI<h [v[=h
for every h € IN.
Define m., == Mc(@,) € S(0(L£)) and m, = M ,,(¢y) € Co(o(Lar)) for every . Then,

mo(\,w') = Z W, (N) + Z wm, (A w')
IvI<h [vI=h
for every h € IN and for every (A, w’) € o(L4).
2. As in the proof of Theorem 6.2, we may reduce to the case in which m, = 0 for every v. Let
L: E;, — E,, be the unique linear mapping such that L(£4) = La; then, <T1, e ,Tn/2>O is identified
with ker L. In addition, if L’: R"2 — R" is the projection onto the first n), components of R"2, then
L = idgr x L'. Now, define

M(w) — /Gso(x,t)e*ﬂx(w)IZfiw(t) d(x,t)

for every w € R™2. Let us prove that MeS (R™2) and that M vanishes of order oo at 0.

Indeed, define N(w) = p(w)(ny), for every w € R™2, and choose p1,pa, p3 € IN; observe that, for

19By an abuse of notation, identify IN"2 with IN"2 x {O}n?_"é7 and define T? for v € IN"2 accordingly.
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every w € R"?,

NP IT(@) = [ (27 ) t)e e 0 da,

Z /((—iT)”ﬁ’%w)(w,t)e‘%‘m(”)'2‘i”(t)d(%t)
ly|=ps> * ¢

- Z aﬂ/(£p3<pv)(x,t)e‘ilm(”)‘z—iw(t) d(z,t).
G

[v|=p2

Therefore, by means of Leibniz’s rule and Faa di Bruno’s formula, we see that

~ I dn w? 1 2
(p1) - p1 : —lz ()" —iw(t)
M= Y Y B (i) @ x

|[v|=p2 ©1+a2=pP1 3772 | ls;=q

T (G (G -wm)) aeo

{=1

for every non-zero w € R™2, where the last product must be interpreted as the symmetrized product
of symmetric multilinear forms. Now, taking into account the fact that |z(w)|* = (|Jgw|z|z) for every
w € R™ and for every x € g1, and arguing by homogeneity, we see that there is a constant Cp, p, p, > 0

such that

dq1 w? o
‘dwa (]\f(w)l)s)‘ < Cpy o ps N(w)2 7771

and such that

11 (e (e o))

(=1

Is]
2 s|—
< Cprpun ([ 1) N

for every non-zero w € R"2, for every (z,t) € G, for every v € IN*2 such that |y| = pa, for every q1, g2 € N
such that ¢ + go = p1, and for every s € IN2 such that > 1>, sy = go.

. y
Therefore, there is a constant C}, , > 0, such that

(1+ N@))" N7

P1,P2,P3

‘M(l)l)(w)‘ <

for every non-zero w € R"2.

Now, choosing ps = 0 and ps > p;, we see that M®V) can be extended by continuity at 0, and that
M(pl)(O) = 0. By the arbitrariness of p;, we then see that M € E(R™?) and that M vanishes of order oo
at 0. In addition, taking po = 0 and p3 arbitrarily large, we see that M®D) decays at oo faster than any
polynomial. Hence, M € S(R"2).

3. Now, let ¥ be the graph of N, so that X equals Ry ({1} x ') and X\ {0} is a closed analytic
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subset of E, \ {0}. Take 7 € D(RY ) such that 7(1) = 1, and define

m: Ep, 3 (A w) — M(w)r <N?w)) €,

with the convention that m(X,0) = 0 for every A € R. Then, by means of 2 we see that m is an element
of S(E.,) and vanishes of order infinity at 0; in addition, m(N(w),w) = M(w) for every w € R™, so
that m equals a representative of M, () on ¥ thanks to Proposition 4.18.

Now, observe that

mogoL =m

on ¥. In addition, L is proper on the convex envelope of X, so that L(X \ {0}) = o(L4/) \ {0} is a
subanalytic closed convex cone in E.,, \ {0}, hence Nash subanalytic in E.,, \ {0}. Using the fact
that m vanishes of order oo at 0 and applying Theorem 2.8, in order to prove that mg € SELA/ (c(Lar))
it suffices to show that m is a formal composite of L (on X). Then, take w € S’, and observe that
ker ! = ker L = <T1,...,Tn/2>o. If ker L' € T,,(5"), then the restriction of L’ to S’ is a submersion
at w, so that the assertion follows in this case. Otherwise, as in the proof of Lemma 5.7 we see that
L'7Y(L'(w)) = {w}. Then, observe that, since N is convex and S’ = N~1({1}), S’ is the boundary
of a convex set; thus, in the vicinity of w S’ equals the ‘graph’ {w + x + ¥(z)v: = € U}, for some
neighbourhood U of 0 in T,,(S"), and for some convex analytic function ¥: U — R; here, v denotes
the inward-pointing normal unit vector of S’ (oriented as the boundary of N=1([0,1])) at w. Then, the
hypotheses and the convexity of ¢ imply that 92, ;,1(w) is positive and non-degenerate. Consequently,
we are able to apply Corollary 6.4, where ¢ corresponds to 1, R¥ corresponds to ker L', R™ corresponds
to T,,(S") Nker L'+, xy corresponds to 0, f corresponds m, and g corresponds to mg (under suitable
identifications). Then, our assertion holds also in this case. By homogeneity, the assertion follows for

every w # 0. Then, mg € Sg, , (0(L4)), whence the result. O

7 Examples: H-Type Groups

In this section we shall deal with the following situation: G is an H-type group and there is a finite

family (v,),er of subspaces of g1 such that gy = €, ; v,, such that v, @ go, with the induced structure, is

el
an H-type Lie algebra for every ¢ € I, and such that v,, and v,, commute and are orthogonal for every
1,2 € I such that 1 # 5. We shall define n; = (% dim UL)LEI'

We shall then consider, for every ¢ € I, the group of linear isometries O(b,) of v,, and define a canonical

action of O = [],.; O(v,) on the vector space subjacent to g as follows: (L,)((v.),t) == ((L.(v.)),t) for

every (L,) € O and for every ((v,),t) € g1 ® go.
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A projector of D'(G) is then canonically defined as follows:

n ()= [ (Lo)D)dvo(L)

for every T € D’'(G); here, vo denotes the normalized Haar measure on O.
Proposition 7.1. The following hold:

1. m induces a continuous projection on D' (G), §'(G), £ (G), E"(G), S(G), D"(G) and LP(G) for

every r € INU {oo} and for every p € [1, o0];

2. if v1,¢02 € D(G), then
(Ta(p1), p2) = (1, T (2)) and  (m(p1)|p2) = (P1lma(02));

3. if p is a positive measure on G, then also (1) is a positive measure; in addition, 7.(vg) = vg;
4. if T € D'(G) is O-invariant, then also T is O-invariant;
5. if T is supported at e, then m.(T) is supported at e;

6. if 1,2 € D(G) and either @1 or py is O-invariant, then
Ta(P1 % 2) = Tu(p1) % Tu(p2) = Tu(p2) * Tu (1) = a2 * P1).-

The proof is based on [17] and is omitted.

Now, let £, be the differential operator corresponding to the restriction of the scalar product to v};
in other words, £, is minus the sum of the squares of the elements of any orthonormal basis of v,. Let
Ti,...,Ty, be an orthonormal basis of ga, and define L4 = ((£,).er, (—iT1, ..., —iTy,)).

Recall (cf. [17]) that a left-invariant differential operator X is m-radial if and only if 7.(X.) = X,

that is, if and only if X, is O-invariant. Nevertheless, this does mot imply that X is O-invariant.

Proposition 7.2. L4 is a Rockland family and generates (algebraically) the unital algebra of left-

inwvariant differential operators which are m-radial.

Proof. Observe first that 11, ...,T,, are clearly m-radial. On the other hand, a direct computation shows
that, for every ¢ € I, (L,)e = —>_ cp, 02, where B, is any orthonormal basis of v,. Hence, (£,), is
O-invariant. Consequently, Proposition 7.1 implies that the family £, is commutative; since ), _; £, is

the operator associated with the scalar product of g}, it is then clear that £4 is a Rockland family.
Now, take an O-invariant distribution S on G which is supported at e. Let p: G — G/[G a be

the canonical projection. Then, p,(S) is O-invariant and supported at p(e). By means of the Fourier
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transform, we then see that there is a unique polynomial Py € R[I] such that p.(S) = Py(p«(Lr))e.
Therefore, there are Si,...,S,, € D'(G) such that Supp (Si) C {e} for every k = 1,...,n9, and such

that

no

S=Po(Lr)e+ Y _(Tk)e * Sk.

k=1
Then, Proposition 7.1 implies that
no
S =m(S) =Po(Lr)e + > _(Tk)e * m(Sk),
k=1
so that we may assume that Si,..., Sy are O-invariant. Arguing by induction, it then follows that S
belongs to the unital algebra (algebraically) generated by (L£4)e- O

Now, we shall consider some image families of £4. More precisely, we shall fix a non-empty finite
set I’ and p € (RY)! " so that the induced linear mapping from R’ into R!" is proper on ]Ri. Then, we
shall define L: Ez, 3 (\,w) — (u()\),w) € R” x R" and consider the family L(£4). Then, L(£4) is a

Rockland family since L is proper on o(L4) by construction.

Proposition 7.3. Set d = dimq w(QF). Then, there are a Br(c 4)-measurable function m: Ep ) — c?

and a linear mapping L': R* — R such that the following hold:

e there is ' € (Q1)? such that the associated linear mapping 1’ : RY — R? is proper on lRi, and

such that m(L(L4)) = 1/ (Lr);
o (L'(m(L(La)), (=iT});2,) = L(La);
e m equals Brc ,)-almost everywhere a continuous function if and only if d = dimg wu(RE).

Proof. Notice first that there are d linearly independent Q-linear functionals py,...,pq on u(Q?); define
i € (Q1)? so that W, = Pu(()ver) for every h =1,...,d and for every ¢ € I. In addition, define
b= (L) = >, ey Lo for every h = 1,...,d. Next, take h € {1,...,d}, and observe that, if

w € R™ \ {0} and 71,72 € IN! are such that

(lolpa(ng +291),0) = (kolu(ng +292),w),
then p(y1 —y2) = 0, so that u/(y1 —v2) = 0, and then

(lwlp’ (1 +2m1),w) = (Jw|p' (01 + 292), w).
Hence, there is a 3. ,-measurable function m: Ep ;) — R? such that

ma(L(A,w)) = 1, (A)
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for every (A\,w) € o(L4) N (RY x (R™\ {0})) (cf. Proposition 4.18). Then, £},0. = K1 ,)(ms) for ev-
ery h = 1,...,d (cf. Proposition 4.18). Next, observe that the mapping p = (p1,...,pa): u(QY) —
Q% is an isomorphism; let L': Q? — R/ " be the composite of the inverse of p with the canonical
inclusion p(QF) C RI. 1If (L!,)er are the components of L', then 22:1 L:’,h“;l = p,, whence
(L' (m(L(£4))), (=iT})j2,) = L(La).

If d = dimg p(RY), then the mapping (A, w) + (m(\,w),w) induces a homeomorphism of (L(L£4))
onto o(LY,..., L, (—iTy);?,). Conversely, assume that m can be taken so as to be continuous, and
denote by M the continuous mapping (A, w) — (m(A,w),w). Then, the preceding arguments show
that M o (L' x idgr2) = idgaxgee and (L' X idgee) 0 M = idgs ygns By, . oo (—im,)r2,)-almost
everywhere and fr ,)-almost everywhere, respectively; by continuity, the same equalities hold on
o(LY,..., L4, (=iTy)y2,) and o(L(L4)), respectively. Consequently, L’ x idg=. induces a homeomor-
phism of p/(R%Y) x {0} onto u(RL) x {0}"*, so that these two convex cones must have the same

dimension. Hence, d = dimg (u(R1)). O
Theorem 7.4. The following conditions are equivalent:

(i) XL(ca) has a continuous representative;

(i) L(L4) satisfies property (RL);

(iii) for every ¢ € Spr,)(G) there is m € Co(o(L(La))) such that ¢ = Kz ,)(m);

(iv) L(LA) satisfies property (S);

(v) L(La) is functionally complete;

(vi) dimq u(Q") = dimg, p(RY).

Proof. (i) = (ii). Obvious.

(ii) = (iii). Obvious.

(ili) = (vi). Assume, on the contrary, that dimgq (Q) > dimg p(R?), and keep the notation
of Proposition 7.3. Then, m) cannot be taken so as to be continuous for some h € {1,...,d}. Take

o € S(Erz,)) so that p(X) # 0 for every A € E,. Then,

Kricay(mne) = i (L1)Krc (@) € S(G),

but mpp is not equal B, ,)-almost everywhere to any continuous functions, whence the result.
(vi) = (iv). This follows from Theorem 6.2.
(iv) = (v). This follows from Proposition 2.12.
(v) = (vi). This follows from Proposition 7.3.

(vi) = (i). This follows from Theorem 5.3. O

48



8 Examples: Products of Heisenberg Groups

In this section, (G4 )aca will be a family of Heisenberg groups each of which is endowed with a homoge-
neous sub-Laplacian L. Define £ := ) ., L4, and denote by 7 a finite family of elements of go, which
is the centre of the Lie algebra of G := [[,c 4 Ga-

Before we proceed to the main results of these section, let us introduce some more notation. For
every o € A, we shall denote by T, a non-zero element of the centre of the Lie algebra of G, so that we
may identify go with P, 4 RT,. Then, Proposition 4.6 and the remarks following its statement imply
that there is a basis (Xa.1,...,Xa,2n, ., Ta) of the Lie algebra of G, such that [Xo x, Xan, o4k = Ta
for every k =1,...,n1 o, while the other commutators vanish, and such that there is o, € (R% )™ such

that

N1, a

Lo=— Z po k(X35 + Xo2¢,n1,a+k)'
k=1

We shall denote by g1, the vector space generated by Xa1,-..,Xa,2n,., and we shall define n; =

(nl,a)a€A~

Proposition 8.1. Assume that Card(A) > 2. If T generates go, then the families (£, —iT) and

(La,—iT) are functionally equivalent. In addition, (L, —iT) does not satisfy properties (RL) and (S).
Proof. See Theorem 5.5 and its proof. O

Lemma 8.2. Let 1/ be a linear mapping of R™ onto R™ which is proper on R . Define Xy := p/(R'}) x
{0}, and
8= {(M (1, +27),A): A > 0,7 € N}

If ¢ € E(R™ x R) wvanishes on X, then ¢ vanishes of order oo on Y. In particular, the closure of ¥ in

the Zariski topology is R™ x R.

Proof. Take x = (Ap/(1,, + 27v),0) for some A > 0 and some vy € IN". Then, for every k € IN,

A o A
(engs) = (gt 2k 04610 g ) 3

Therefore, it is easily seen that 9%¢(x) = 0 for every h € N. Since the set
{(MW/(1n +27),0): A> 0,7 € N"}

is dense in Y, it follows that 0% vanishes on % for every h € IN. Now, since i/ (R") = R™, the closed
convex cone ¥, generates R™ x {0}, so that ¥ is the closure of its interior in R™ x {0}. The assertion

follows easily. O
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Theorem 8.3. Assume that Card(A) > 2. If T does not generate ga, then the family (L, —iT) satisfies
properties (RL) and (5).

Proof. 1. Let us prove that (£, —iT) satisfies property (RL). Consider the Rockland family (£, —iT4),
where Ty = (To)aca, and define

C, = { <Z|Wa|ﬂa(1m,a —|—270),w> TwE ]RA}

acA

for every v € IN™1, so that Cy is the boundary of a convex polyhedron which contains C, for every
ye N If L: Bz _ir,) — E(z,—i7) is the unique linear mapping such that L(L, —iTa) = (£, —iT),
then L is proper on the convex envelope of Cy, so that xc, - B(z,—ir,) is L-connected by Proposition 2.4.
In addition, o(L, —iT) = L(o(L, —iTa)) = L(C)) is a convex polyhedron. Now, define £, = ((-X2 , —
Xi,nl,a-pk)k:l,wm,aa —iTw)aca, so that £',, satisfies properties (RL) and (S) by Theorems 2.2 and 7.4.
Take f € L(lz:,fiT)(G)v and define m = My (f) € Co(o (L)) Then,

my: Cy 3 <Z|wa|ﬂa(1n1,a + 2’Ya)vw> = m((|wal(Ln,. +2%), Wa)aca)
acA

is a continuous function on C, which equals Mz _i1,)(f) xc, Bz, —iT,)-almost everywhere.?® Therefore,
the assertion follows from Theorem 5.9.
2. Assume that 7 generates a hyperplane of go, and let us prove that (£, —iT) satisfies property

(S). Take m € Co(E(z,—i1)) such that Kz _i7)(m) € S(G), and consider the (unique) linear mapping
L' Eg/A/ — E(L,fiT)

such that L'(Ly,) = (£,—iT). Since L, satisfies property (), there is mo € S(E.,) such that

mo L =mgon o(L). Next, define, for every e € {—1, 1}A and for every v € IN™1,

Sy = {(wa(lmﬁa + 2"ya),€awa)aeA Tw e ]Rﬁ} ,

so that S.  is a closed convex semi-algebraic set of dimension Card(A).

Now, let L” be the unique linear mapping such that L"”(L’,,) = (£, —iT4), so that Lo L"” = L. If we
define Sy == Uee{ilﬁl}A Se.0, then L” induces a homeomorphism of Sy onto Cy, which is the boundary of
a convex polyhedron on which L is proper (cf. 1). Therefore, arguing as in the proof of Proposition 2.4, we

see that there is a finite subset E of {—1, l}A such that L induces a homeomorphism of | L"(Sc0)

ecE

onto o(L,—iT). Hence, L' induces a homeomorphism of Se,0 onto o(L, —iT).

ecE

20Indeed, m~ o L = m on C, = {((|Jwal(lni o + 2Ya),Wa)aca): w € R4}, where L (A, w) = (X oca Aa,w) for every
A\ w) € Eﬁ'A/' Since L/ (XCL/ . 'BLIA/> is equivalent to xc., - B(c,—iT,) by Proposition 4.18, the assertion follows.
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Now, Corollary 2.9 implies that for every ¢ € E there is m_ € S(E(z,_;1)) such that m. o L' = my
on S . Nevertheless, we must prove that these functions m. can be patched together to form a Schwartz
function which equals m on (L, —iT). Then, take \' € J.cp, Seco and define A :== L'(X). Let EY, be
the set of ¢ € E; such that A € S. g, so that UEGE;\, L'(Sc ) is a neighbourhood of X in o(L,—iT).
Define 'y, as the set of v € IN™ such that v, = 0 if for every 1,62 € EY, we have €14 = €24, and
observe that X' € S, , for every ¢ € Ej, and for every v € I'y;. Assume that EY}, has at least two
elements, so that Iy, # {0}. Now, fix ¢ € EY,, and observe that Lemma 8.2 implies that the closure
of U, er,, Sey 18 [laea Va, where Vo = R(1y, ,,€q) if e = &, for every ¢’ € EY, while V,, = Rratl

otherwise. In particular, [ Vo does not depend on the choice of € € EY,. Now, the preceding remarks

€A
show that, for every v € I'y/, the union of the convex sets L’(S. o) N L'(Se ), as ¢’ runs through EY,, is
a neighbourhood of A in L'(S. - ); as a consequence, there is €/, € EY, such that L'(Se; 0) N L'(Sc,y) has
non-empty interior in L'(S. ), so that A is adherent to the interior of L'(Se; 0) N L'(Se,5) in L'(Se ).
Hence, my, which is invariant on the fibres of L' in o(L';,), equals m’E,7 ol/on S, = E,,YO(SEIW,Q +ker L'),
which is a convex subset of S, ., with non-empty interior in Se .

Take k € N and let Py ; be the Taylor polynomial of order k of mq at \’; in addition, let P ; _, be
the Taylor polynomial of m.,, of order k at A, for every ¢” € E},. Then, the preceding remarks imply
that Py = P} ;. e © L' on the closed convex cone C{ ., with vertex A" generated by the convex set S .
Hence, the same happens on the closure of C’éﬁ in the Zariski topology, which is the affine space Vg'ﬁ
generated by S._. The preceding remarks then imply that VE’N is the affine space generated by S; .,
which, in turn, is the vector space {(wa(ln, . + 27a),€awa): w € R4}

The preceding remarks then imply that, for every e” € EY, we have Py = Py ; _, oL’ on the closure
Zer, in the Zariski topology, of the union of the V/  asy € 'y and €/, = &". Now, Z = J,

Zen i
”GE;, e/t 1S

the closure in the Zariski topology of | J Se v, which is ] V4 by the preceding remarks. Since Z

yel'y/ a€cA

is then an irreducible algebraic variety, it follows that Z = Zz for some € € E},, so that Py = P>’\’ 3,20 L
on Z for every k € IN. Now, Z D S, for every €” € E},, so that ng,m,, oL = Pyvy = P)ﬁ,k,go L
on S o for every k € IN and for every €” € EY,; in addition, L'(S.~ o) has non-empty interior, so that
the arbitrariness of k implies that m., — m. vanishes of order oo at A for every ¢’ € EY,, whence our
assertion.

Hence, by means of Theorem 2.7 we see that there is m’ € S(E(z _;7y) such that m’ o L = mg on
o(L'y)), so that m’ =m on o(L, —iT ), whence the result in this case.

3. Now, consider the general case. Take a finite subset 7’ of g2 which contains 7 and generates a
hyperplane of go, so that 2 implies that (£, —i7") satisfies property (S). Observe that o(L£, —i7") is a

convex semi-algebraic set. Therefore, the assertion follows easily from Proposition 2.10. O

Theorem 8.4. Let G’ be a homogeneous group endowed with a positive Rockland operator L' which is

homogeneous of degree 2. Then, the following hold:
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1. (L+ L', —iT) satisfies property (RL);
2. if T does not generate go, then (L + L', —iT) satisfies property (S);
3. if L' satisfies property (S), then also (L + L', —iT) satisfies property (S).

Notice that we do not require that G’ is graded, so that the requirement that £’ has homogeneous
degree 2 can be met up to rescaling the dilations of G’. In addition, if A # @) and £’ is not positive, then
(L+ L', —iT) is not a Rockland family, since the mapping o (L, —iT, L") 3 (A1, A2, A3) —= (A1 + Az, A2)

is not proper.

Proof. 1. Let us prove that (£ + L', —iT) satisfies property (RL). Assume first that 7 is a basis of
g2, define £/, == (((—X? — X12+n1,av ce —X%La - X22n1,u)v —iTw)aca, L"), and observe that £, satisfies

property (RL) by Theorems 2.2 and 7.4. Let L: EL/A/ — E(z42/,—i1) be the unique linear mapping such
that L(L',,) = (L+ L', —iT), and define

SO = {(|wa|1n1=a’wo‘)a€A Tw e IPLA} X R+,

so that Sp is a closed semi-algebraic set of dimension Card(A) 4+ 1. Then, apply Proposition 2.6 with
B = XSO/BL%/ (cf. Proposition 4.18), observing that L induces a proper bijective mapping from Sy onto
o(L+ L', —iT), hence a homeomorphism. By means of Proposition 4.18 and [20, Theorem 3.2.22], we
see that B,y ) and L.(B) are both equivalent to X, (z+r/,—iT) - H{Card(A)+1 g5 that the assertion
follows.

The general case follows by means of Proposition 2.10, thanks to the preceding remarks.

2. Now, assume that 7 does not generate g, so that A is not empty. Then, (£, —iT) satisfies property
(S) by [34, Corollary 1.3 and Theorem 1.4] and Theorem 8.3. In addition, o(L£,—iT) is a closed convex
cone containing Ry x {0}, so that o(L, —iT) = o(L+ L', —iT). Then, take ¢ € S(z4 2/, —i7)(G x G’) and
define m = M40/ i) (@) € Co(o(LAL",—iT)) (cf. 1). Let 7: GxG" — G be the canonical projection.
Then, [32, Theorem 3.2.4], applied to the right quasi-regular representation of G' x G’ in L?(G), implies
that 7, () = K(z,—s7)(m). Then, the preceding remarks show that m € S(o(L£ + L', —iT)), whence the
result.

3. Finally, assume that £’ satisfies property (S), and let us prove that (£L+ L', —iT) satisfies property
(S). Observe that, by 2, we may assume that 7 = (Ty)acA-

Observe first that, with the notation of 1, £,, satisfies property (S) by Theorems 2.2 and 7.4.
Then, take m € Co(o(L + L', —iT)) such that K4z i) (m) € S(G x G'). It follows that there is
mg € S(E,,) such that

mo L =mg
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on o(L'y,). The proof then proceeds along the lines of that of Theorem 8.3. More precisely, define, for

every ¢ € {—1, 1}A and for every v € IN™1
Sey = {(Wa(ln, , +27a),€awa): w € ]Rﬁ} x Ry,

so that S, is a closed semi-algebraic subset of o(L£’,,). In particular, for every ¢ € {—1, 1}* there
is m. € S(E(z4r/,—i7)) such that m, o L = mg on S o, thanks to Corollary 2.9. Now, observe that
L(Sc ) C L(S:,) for every v € IN™ so that, since mg is constant on the fibres of L in o(L,), we
have m, o L = mg on S, for every v € N™*. Then, fix A € o(L+ L', —iT) and let X’ be the unique
element of Sy such that A = L(\'). Let Ef, be the set of ¢ € {—1, l}A such that X' € S. ¢, so that
UEGE;/ L(S;.,) is a neighbourhood of A in (£ + £',—iT). Then, define I'y/ as the set of v € IN™* such
that v, = 0 for every a € A such that €1 o, = €3, for every e1,e2 € E},. Observe that, for every fixed

e € EY,, the closure of | J Se, in the Zariski topology is ([T,c4 Va) X R, where Vo, = R(1,, ., €q)

yeT
for every a € A such that e, = ¢/, for every ¢’ € EY,, while V,, = R""> x R otherwise (use Lemma 8.2).

Therefore, arguing as in the proof of Theorem 8.3, we see that m. — m., vanishes of order infinity at A

g

for every ¢’ € FY,, whence the result thanks to Theorem 2.7. O
As a complement to Theorem 8.4, we present the following pathological case.

Proposition 8.5. Let (X,Y,T) be a standard basis of H', and let L' be a positive Rockland operator
on a homogeneous group G'. Assume that (L') satisfies property (S) and that L™ is homogeneous of
degree 2 for some h > 2. Then, the Rockland family (—X? — Y2+ L' —iT) is functionally complete and

satisfies property (RL), but does not satisfy property (S).

Proof. 1. Define £ := —X? — Y2, Then, Theorem 8.4 implies that (£ + £, —iT) is a Rockland family
which satisfies the property (RL). Next, take some m € D(E(z,_i7,cr)) supported in {(A], A5, A3): ] <

3|\, — M} and equal to pry on a neighbourhood of (1,1,0). Then,

m: (A1, A2) — m (|)\2\7)\2a m>

is not equal to any elements of S (E(£+£/;L7_1-T)) on o(L+ L™, —iT) (cf. Proposition 4.18). On the other
hand, K2y pm —iry(m) = Kz —ir,cry (M) € S(H' x R). Hence, (£ + L™ —iT) does not satisfy property
(S).

2. Now, let us prove that (£ + £, —iT) is functionally complete. Take m € £°(R?) such that
K(z+cm —ir)(m) is supported in {e}. Notice that we may assume that m is continuous since (£L+L", —iT)
satisfies property (RL). Project onto the quotient by the normal subgroup {ep: } x G’ and make use of [32,
Theorem 3.2.4], applied (arguing by approximation) to the right quasi-regular representation of H! x G’

in H!; since (£, —4T), considered as a family on H*, is functionally complete (cf. Proposition 2.12), we
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see that there is a unique polynomial P on R? which coincides with m on o(L,—iT). On the other
hand, the family (£, —iT, £’) is functionally complete since it satisfies property (S) (cf. Theorem 2.2 and

Proposition 2.12). Hence, there is a unique polynomial @ on R? such that
m(Ar+ A5, A2) = Q(A1, A2, As)

for every (A1, A2, A3) € o(L, —iT, L"). Hence,
P(A1+ A%, A2) = Q(A1, A2, As)

for every (A1, Ag, A3) € {(k1|r|, T, \h/k2|r|) :r€R,ky € 2N+ 1,ky € 2]N}. Now, the closure of this latter

set in the Zariski topology is R3, so that m = P on o (£ + L™, —iT). The assertion follows. O
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