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SUMMARY 

 

Introduction: According to the World Health Organization (WHO), ambient and household 

air pollution are currently a major cause of death and disease globally. However, air 

pollution does not affect the whole population in the same way. In particular, a larger 

impact is reported being linked to the most susceptible subgroups of the population, such 

as children. To effectively tackle this public health threat, strengthen actions to protect 

the most vulnerable ones are needed, as well as environmental education interventions 

aiming to effectively raise awareness among the public. This is especially true for the city 

of Milan, which is located in one of the most polluted areas in Europe.  

Moreover, since a multitude of new evidences shows up on the relation between air 

pollution and health outcomes, reducing exposure misclassification in epidemiological 

studies remains an important challenge in the framework of exposure science. 

The aim of this dissertation is to present a novel participatory approach to assess 

schoolchildren exposure to air pollution with different approaches and to find possible 

exposure-mitigation actions. The common thread of the whole research process is black 

carbon (BC), an important component of particulate matter, a well-known indicator of 

traffic-related air pollution, linked with both long- and short-term health outcomes. In 

this process, some of the newest approaches in the framework of the exposure science 

are experienced. 

 

Methods: A four-step research project was set up. In the first part, BC was monitored on 

fixed sites during two seasons in a school catchment area. The monitoring sites were 

identified by involving the school, schoolchildren parents and the residents of the 

neighborhood. The spatial distribution of the contaminant was studied and modelled as 

well, focusing in particular on the morning rush hour. In the second part, a two-module 

environmental education intervention was carried out with a participatory and 

experienced-based approach. In the third part, more than 100 schoolchildren were 

involved in a two-season personal monitoring campaign to identify the weight of different 

microenvironments (MEs) on the overall daily personal exposure to BC. Finally, a validation 

of the previously developed spatial model focused on morning rush hour was conducted 
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by using personal BC concentration, measured during home-to-school paths in order to 

assess the effectiveness of the tool in the identification of the cleanest routes. 

 

Results and conclusions: The two seasonal fixed-sites monitoring campaigns showed that 

the cold season is the most critical period for BC concentrations, while the morning rush 

hour is the most critical daily time-window. In general, according to our data, increasing 

concentrations are linked to the period during which people move, whether they go to 

work or to school (weekly morning rush hour), or spend time in the city for leisure 

activities (weekend nighttime). These findings especially highlight the need for actions to 

mitigate personal exposure during weekly morning rush hours, the time during which 

children go to school.  The six developed spatial models show that traffic variables are 

the main factors that explain BC distribution inside the school catchment area, suggesting 

that traffic mitigation actions can be useful to lower BC concentrations.  

In the second part of the project, 128 schoolchildren were involved in a multitude of 

ludical activities on air pollution, raising their awareness and their level of engagement 

in the research process. This participatory approach helped to recruit volunteers for the 

following step: the two-season personal monitoring campaigns. The measured personal 

concentrations of BC, matched with time-activity diaries and GPS data, showed that 

indoor MEs are the most relevant source of personal exposure. Moreover, although it 

accounts only for 5-10% of the overall daily personal exposure, transportation-related 

exposure is actually the most intense, i.e. it exposes schoolchildren to the highest peaks 

of concentration in a very short period. Among the others, home-to-school commuting 

period is confirmed as the highest critical time-window for personal exposure for both 

warm- and cold-season.  

Furthermore, the comparison between spatial model estimates and personal exposure 

data collected during the home-to-school routes shows moderate to good agreement, 

suggesting that a modelling approach is a valuable choice to identify and predict the 

cleanest routes to school. Moreover, although the model tends to a systematic 

underestimation of personal measured concentrations, this can be a valuable starting 

point toward more refined tools for lowering exposure misclassification bias in the 

framework of environmental epidemiology studies. 

In summary, starting from the analysis and the spatial modelling of a selected air 

pollutant, passing by the personal exposure assessment, to the validation of the model 
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with personal exposure data, this dissertation confirms that a participatory approach is a 

valuable choice that can add social value to the research project without losing in 

scientific quality. 
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1. GENERAL INTRODUCTION 

1.1. PROBLEM STATEMENT 

Ambient and household air pollution is currently estimated to cause 5.6 million deaths 

related to non communicable diseases and 1.5 million pneumonia deaths all over the 

world. Moreover, year after year, increasing evidence and new research link exposure to 

air pollution at all the stages of life and negative health outcomes, ranging from 

respiratory to neurological effects.  

However, air pollution does not affect the whole population in the same way, and in fact 

a larger impact is reported being linked to the most susceptible subgroups of the 

population. In particular, according to the World Health Organization (WHO) estimates, 

more than 98% of Italian children in 2016 were exposed to fine particulate matter (PM2.5) 

concentrations higher than 10 µg/m3, the recommended limit value to protect general 

population health (WHO, 2018a). 

To effectively answer to this public health threat, the first global conference on air 

pollution took place in November 2018, in Genève, Switzerland. Among the others, the 

conference outcomes highlighted the need: 

a) to “strengthen action to protect the most vulnerable populations, especially 

children. […] These actions need to be taken in the home, streets, parks, clinics 

and schools”;  

b) to “enhance education on air pollution as a key factor for improving health and 

quality of life, within a lifelong learning approach. Target audiences include 

children, educators, doctors, health and environment workers, patients and the 

general population […]” (WHO, 2018b). 

According to the U.S. Research Council, Committee on Human and Environmental Exposure 

Science, the engagement of communities and citizens in the research process is one of 

the key aspects to achieve the exposure science vision of 21th Century (Lioy and Smith, 

2013).  Furthermore, as reported by the United Nations (UN) “since the adoption of the 

UN Convention on the Rights of the Child in 1989, Article 12 – the provision that children 

have a right to express their views and have them taken seriously in accordance with their 

age and maturity – has proved one of the most challenging to implement” (UN, 2011).  
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Finally, from year to year, a multitude of new evidences shows up on the relation between 

air pollution and both long- and short-term health outcomes. Therefore, with the aim to 

reduce possible misclassifications, another fundamental challenge in environmental 

epidemiology is to refine exposure attribution process. In particular, even if personal 

exposure during transportation has become an important field of study due to its relevance 

in everyday life, it seems that epidemiological studies still prefer indicators of personal 

exposure such as concentration at home, school or other fixed addresses. 

Given all this, an even greater commitment is request to professionals of exposure science 

to raise awareness among public opinion, refine methods, and enhance the impact of their 

research, focusing especially on the most vulnerable segments of the population.  
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1.2. RESEARCH OBJECTIVES 

The overall aim of the dissertation is to present an innovative research design focused on 

participatory approach in the framework of the exposure science. The starting hypothesis 

is that using a participatory approach in a research project on air pollution could add 

social value by raising awareness among the engaged population, without lowering the 

quality of the scientific process. 

To reach the goal, some of the newest available technologies and state-of-the art 

approaches are used in a multi-step process that consisted in:  

a) modelling spatial distribution of air pollution in a school catchment area focusing 

especially on morning rush hour; 

b) engaging teachers, schoolchildren and their families in the research process; 

c) assessing personal exposure to air pollution of the engaged schoolchildren; 

d) validating the morning rush hour model by using personal exposure data to test the 

effectiveness of this approach in the estimate of personal exposure during 

transportation. 

In this framework, methodologies are applied to the air pollutant black carbon (BC), a 

fraction of fine particulate matter (PM2.5), a well-known indicator of traffic related air 

pollution, the main source of exposure in the outdoor urban environment. 

This contribution is part of the MAPS MI project, “Mapping Air Pollution in a School 

catchment area of Milan with a participatory approach”, supported by Fondazione Cariplo 

[grant numbers 2017-1731]. The project aims at:  

a) raising awareness of schoolchildren, parents and teachers about air pollution; 

b) assessing ambient personal exposure to air pollution of schoolchildren with 

different techniques (i.e. personal air sampling, biomarker of exposure analysis, 

epigenetic analysis, microbiota analysis, exposure modelling etc.); 

c) developing a model framework to identify the least polluted routes to reach school. 

The chosen approach included different stages and requires the use of different 

techniques that are reported in Figure 1. 
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Figure 1. The four stages of the MAPS MI project “Mapping Air Pollution in a School catchment area of Milan 

with a participatory approach” 

1.3. OUTLINE OF THE THESIS 

In Table 1 the structure of the thesis is given, as well as the main research questions. 

The dissertation starts with a presentation of the state of the art linked with the main 

topics and methodologies covered by the thesis. The third chapter focuses on spatial 

distribution of BC in an elementary school catchment area of the city of Milan, and on its 

modelling using a Land Use Regression (LUR) technique and a participatory approach to 

select monitoring sites. Then, the fourth chapter focuses on schoolchildren engagement 

and the personal exposure assessment. The fifth chapter describes the validation of a Land 

Use Regression model for BC using personal exposure data and focusing especially on 

home-to-school trips. Finally, a conclusive chapter highlights the main contributions of 

this dissertation to the state of the art.  
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Table 1. Chapters of the dissertation and main research questions 

  

CHAPTER 1 GENERAL INTRODUCTION 

CHAPTER 2 STATE OF THE ART 

CHAPTER 3 
ANALYSING AND MODELLING THE SPATIAL DISTRIBUTION OF BLACK CARBON IN A SCHOOL 

CATCHMENT AREA 

- Q1 
Is the participatory approach suitable to identify monitoring sites to develop a LUR 

model? 

- Q2 
Is it possible to develop performant LUR model using BC data collected on a 

neighborhood-scale environment, such as a school catchment area? 

- Q3 
Is it possible to develop LUR models focusing on MRH, by increasing the frequency of 

measurement and using only collected data between 7 am and 9 am? 

- Q4 
Are there different spatial patterns in the distribution of BC during different seasons 

and time of the day? 

CHAPTER 4 
A PARTICIPATORY APPROACH TO INVOLVE TEACHERS, SCHOOLCHILDREN AND THEIR 

PARENTS IN THE RESEARCH PROCESS 

- Q5 

Is the used participatory approach to involve directly the school (i.e. teachers and 

children) in the research project a valuable approach to raise awareness on air pollution 

topic? 

- Q6 Is this a suitable approach to recruit volunteers in the research process? 

CHAPTER 5 MEASURING PERSONAL EXPOSURE OF SCHOOLCHILDREN TO BLACK CARBON  

- Q7 
Is transportation period an important factor to consider when analysing schoolchildren 

personal exposure in everyday life? 

 

CHAPTER 6 
VALIDATION OF A LUR MODEL BY USING PERSONAL EXSPOSURE DATA AND IDENTIFICATION 

OF THE CLEANEST HOME-TO-SCHOOL ROUTES 

- Q8 
Is it possible to apply a LUR model to mitigate the risk of exposure to air pollution, and 

in particular to identify the least expositive home-to-school paths? 

- Q9 
Can a LUR model developed on fixed monitoring sites help to reduce misclassification of 

exposure during transportation? 

CHAPTER 7 CONCLUSION AND NEXT STEPS 
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2. STATE OF THE ART 
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2.1. AIR POLLUTION: AN OVERVIEW 

As proposed by Seinfeld JH and Pandis S. (2016), ambient air pollution is defined as the 

presence in the atmosphere of substances in higher concentration and in longer duration 

than expected in natural circumstances(Seinfeld and Pandis, 2016). Moreover, to talk 

about air pollution, these contaminants should be capable to generate adverse effects on 

environment, human health or other targets (such as buildings, infrastructure etc.). 

According to the World Health Organization (WHO), nowadays air pollution is one of the 

major global public health concern (WHO, 2016).  

2.1.1. Classification of air pollutants 

Air pollutants are usually classified according to their physical state, sources, type of 

emission etc. In Table 2 the main families of air pollutants are reported according to their 

classification. In particular: 

a)  if we focus on physical state it is possible to distinguish between gaseous/vapour 

pollutants at normal temperatures and suspended droplets and/or solid particles; 

b) we usually identify primary or secondary class of pollutants depending on whether 

contaminants are originated directly from the sources or are the results of 

atmospheric chemical reactions; 

c) we can also distinguish between air pollutants in indoor and outdoor environments;  

d) more in general, it is possible to classify contaminants by sources and in particular 

using the two natural and anthropogenic sources categories: among the first, it is 

possible to include such sources as sand and dust winds, pollen grains, wild fires 

etc.; while transportation, heating systems, agriculture, industries etc. are few of 

the sources among the latest class. 
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Table 2. Air pollutants classified by physical state, origin and environment (dapted from(Bernstein et al., 

2004). 

Physical state Gaseous/ 

vapours 

Carbon oxides (CO, CO2), nitrogen oxides (NOx), sulphur dioxides (SO2), 

ozone (O3), semi-volatile and volatile organic compounds (SVOC and VOC, 

aldehydes, alcohols, benzene, polycyclic aromatic hydrocarbons (PAHs) 

etc.) 

Particulate Particulate matter (aerodynamic diameter ≤10 µm, PM10), coarse 

particulate (<10µm and >2,5 µm, PM10-2.5), PM fine (≤2,5 µm, PM2.5), PM 

ultrafine (≤0,1 µm, PM0.1, UFP). 

Origin Primary PM, SO2, NOx, CO, organic carbon (OC), elemental carbon (EC), black 

carbon (BC) 

Secondary O3, NO2, PM, OC etc. 

Environment Indoor CO, CO2, radon, biologic agents, SVOC 

Outdoor Particulate matter, SO2, ozone, NOx, CO, PM, SVOC 

Among the others, in the last decades, atmospheric particulate matter and in particular 

its fine fraction (PM2.5) has shown to represent a major player in atmospheric pollution 

by leading to a broad spectrum of negative effects including health-related effects, 

ecosystems degradation, climate change, a decrease in visibility etc.  

In particular, among other pollutants, PM2.5 is the major contributor of premature death 

for both all-causes and in particular for cardiovascular disease (Hoek et al., 2013). 

Moreover, the global burden of disease project attributes to outdoor fine particulate 

matter exposure 4.2 million deaths and 103.1 million disability-adjusted life-years (DALY) 

in 2015 (Cohen et al., 2017). These estimates make exposure to PM2.5 the fifth leading 

risk factor for death worldwide. 
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2.1.2. Air quality in Europe 

In a recent scientific contribution, Ciarelli G et al (2019) using different datasets found a 

substantial decrease in the concentration of PM2.5 during the 1990-2015 period (Figure 

2). 

 

Figure 2. Trend in PM2.5 concentration for 1990-2015 years in Europe according to different models 3 

(Ciarelli et al., 2019) 

This reduction in overall concentration of particulate matter has been supported for Italy 

and, in particular, for the Po valley by Manara et al (2019) who, among others, compared 

long time series of visibility measures with PM2.5 data finding a general improvement in 

visibility and a negative correlation with PM2.5 concentrations (Manara et al., 2019). 

Despite this positive trend, the European Environment Agency estimates that about 8% of 

the European population still experience an exposure to PM2.5 over the European Union 

(EU) limit values (Figure 3). However, all this contribution shows a strong decreasing trend 
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that tends to a plateau in the last few years pointing out the need of further and new 

interventions to bring air pollutants concentration below health-based limit values. 

 

 

Figure 3. Fraction of urban population exposed to air pollutant concentrations above selected limit and 

target values (EEA, 2018) 

This estimate dramatically increase to about 81% if we consider the more stringent World 

Health Organization threshold (Table 3).  

Table 3. Air quality standards in EU and WHO guideline thresholds 

 EU WHO 

NO2 
200 µg/m3 (1h mean, 18 times/year) 

40 µg/m3 (annual mean) 

200 µg/m3 (1h mean) 

40 µg/m3 (annual mean) 

PM10 50 µg/m3 (1day mean, 35 days/year) 20 µg/m3 (1day mean) 

PM2.5 25 µg/m3 (annual mean) 
25 µg/m3 (1day mean) 

10 µg/m3 (annual mean) 

SO2 350 µg/m3 (1h mean, 24 days/year) 20 µg/m3 (1day mean) 

O3 120 µg/m3 (8h mean, 25 days/year) 100 µg/m3 (8h mean) 
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These two set of limit values appear very different because of their different nature. In 

particular, WHO thresholds are identified after a massive work in reviewing the body of 

scientific evidence that in literature links exposure to health outcomes. For instance, 

PM2.5 10 µg/m3 limit value was the lowest (by 2005) level at which total, cardiopulmonary 

and lung cancer mortality have been shown to increase the long-term exposure 

significantly (WHO, 2005). On the contrary, European limit values and, more in general, 

national standards, are the result of a complex balance among health risks, technological 

feasibility, economic considerations and various other political and social factors (EU, 

2008). 

2.1.3. Air quality in the Po Valley 

In the EU framework, Northern Italy is one of the most polluted areas (Figure 4). 

 

Figure 4. 2017 average concentration of PM2.5 in Europe (EEA, 2019) 

The Po valley region is a highly populated, industrialized area with one of the highest 

motorization rate in Europe (EUROSTAT, 2019). This picture is further complicated by 

extremely adverse meteorological conditions: Caserini et al (2017) studied a 20-year time 

series of temperature vertical profile measured at Milano Linate station, a monitoring site 

representative of the so called higher Po valley (Caserini et al., 2017). Sounding data 

revealed a minimum of about 105 days/year of temperature inversion and a maximum of 

about 150 days/year. Moreover, because of climate change, temperature inversion and 

stagnation events (i.e. days of light low- and high-level winds and lack of precipitation) 
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are projected to increase in the future. Afterwards, the presence of high mountain chains 

on three sides of the valley influence the stagnation of air in the lower layers of the 

atmosphere resulting in a very low annual wind speed average (Figure 5). 

 

Figure 5. Annual wind speed average in the Northern part of Italy and the surrounding areas (DTU, 2019) 

The combination of these factors reduces the potential of dispersion of the atmosphere 

and influence the chemical reactions that underlie the formation of secondary class of 

pollutants. 

2.1.4. Conclusion 

Air pollution is currently one of the most important health-related challenges at a both 

global and European scale. Among others, the Po valley is one of the most polluted areas 

in Europe due to many reasons, included meteorological and geomorphological 

characteristics. In the attempt to tackle this issue, a particular focus on fine particulate 

matter is needed given its relative important impact on health when compared to other 

air pollutants.  
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2.2. PARTICULATE MATTER 

2.2.1. Definition and characteristics 

Particulate matter is a mixture of solid contaminants and liquid droplets that it is possible 

to find in nature at different scales of dimension, from nanoscale (<0.1 µm in at least one 

dimension) to a maximum of 100 µm. Generally speaking, the mass of PM2.5, the portion 

that has an aerodynamic diameter ≤2.5 µm, account for a significant fraction of PM total 

mass; while, for its part, ultra-fine particles (UFP) accounts for about 5% of PM2.5 mass 

(Cabada et al., 2004)(Figure 6). However, this proportion proved to be both location- and 

time-dependent; for example, Brauer et al. (2012) estimated a range of PM2.5/PM10 ratio 

from 0.13 to 0.94 in 21 different regions of the world (Brauer et al., 2012). 

 

Figure 6. Major features of the mass distribution of atmospheric particles by particle size (John G. Watson 

and Judith C. Chow. 2014) 

Anthropogenic processes are a major source of particulate matter. In those area in which 

combustion of fossil fuels and biomasses are prevailing, the fine fraction of PM is usually 

predominant. Moreover, natural processes are to be taken in account, particularly in Italy 



23 
 

where wildfire (both natural and human related) are common during summer (Faustini et 

al., 2015), as well as Sahran-Sahel dust blown by winds (Mallone et al., 2011). 

2.2.2. Chemical composition of PM in Milan 

Particulate matter is a complex mixture of different contaminants and its chemical 

composition may vary from location to location. This is due to the influence of different 

variables, such as the presence of heavy industries, population density, the presence of 

natural sources, the proximity to traffic and biomass heating. This variability in 

composition is present also at local scale. For example, by comparing four sets of paired 

roadside and urban background locations, Harrison et al (2004) found that the increment 

in PM10 and PM2.5 concentration at roadside sites is comprised very largely of elemental 

carbon, organic compounds and iron-rich dusts (Harrison et al., 2004). 

Because of different seasonal sampling campaigns carried out in Milan between 2006 and 

2009, Perrone MG et al (2012) characterized PM2.5 composition at a traffic site (Perrone 

et al., 2012). Among other results, as reported in Figure 7, they found that:  

a) elemental carbon accounted for a significant fraction in the mixture with a seasonal 

trend; 

b) organic material (carbonaceous plus other) was the major contributor in both the 

seasons; 

c) the three inorganic ions nitrate (NO3
–), sulphate (SO4

=) and ammonium (NH4
+) 

accounted for a large fraction of the PM2.5 mass in both winter and summer. 

 

Figure 7. Average seasonal PM2.5 composition in Milan measured in a urban traffic site (adapted 

from(Perrone et al., 2012) 
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Moreover, the Environment Agency of Lombardy recently characterized PM collected in a 

urban background site in Milan for the 2017-2018 period (ARPA, 2018b). The average 

fractions in the chemical composition of PM2.5 were: (1) 6% of elemental carbon; (2) 30% 

of organic carbon; (3) 28% of ammonium sulphate ((NH4)2SO4) and ammonium nitrate 

(NH4NO3). The different composition of PM suggest a different influence of primary and 

secondary sources.  

Among the organic materials, polycyclic aromatic hydrocarbons (PAHs) are a major health 

concern for the general population. PAH are normed by the EU Directive 2008/50/CE (EU, 

2008). In particular, benzo(a)pyrene (BaP) is classified as a carcinogen, group 1, by the 

International Agency for Research on Cancer (IARC, 2016b). 

2.2.3. Source apportionment of PM2.5 in Milan 

The air quality inside the city is usually affected by a complex panel of primary and 

secondary sources that contribute in different percentage according to time and location. 

Perrone MG et al (2012) accounted for the source apportionment of PM2.5 in the traffic 

site of Torre Sarca (45°31′19″N, 9°12′46″E) founding that traffic emissions were the 

primary contributor to PM2.5 total mass with a relative weight of 17%, 24%, 23% and 23% 

during spring, summer, fall and winter respectively. However, also biomass burning was 

found to contribute significantly with 8%, 1%, 30% and 25% of relative weight during spring, 

summer, fall and winter respectively. As part of the AIRUSE LIFE+ European project, ARPA 

Lombardy apportioned the source of PM2.5 in a urban background site from January 2013 
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to January 2014 (ARPA, 2016). The low impact of traffic exhaust is likely to be linked to 

the different location and classification of the monitoring site (Figure 8).  

 

Figure 8. Pie chart of the identified source contributions in Milan urban background site (ARPA, 2016) 

Moreover, since also part of the secondary inorganic material (i.e. secondary nitrate, 

secondary sulphate) can be attributed to specific sources, the final average annual impact 

of traffic was estimated to be about 29%, while for the biomass burning was 21%.  

2.2.4. Inventory of Emissions of PM2.5 in Milan, greater municipality 

As regarded the emission in the territory of Milan greater municipality, as reported by the 

Inventory of Emission in the Air of ARPA (ARPA, 2018a)(Figure 9), the largest part of the 

total emitted PM2.5, as well as PM10, Elemental Carbon (EC) and Black Carbon (BC), can 
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be attributed to traffic sources. On the contrary, organic carbon (OC) is mostly 

attributable to non-industrial combustion such as heating systems. 

 

Figure 9. Emission sources per atmospheric pollutant in the Milan greater municipality (ARPA, 2018a) 

2.2.5. Conclusions 

In the territory of Milan, particulate matter, and especially its fine fraction (PM2.5), is 

mainly emitted by traffic sources. However, at a local scale source apportionment 

experiences show different gradient of contribution related to different seasons and 

location. Nevertheless, traffic remains a very important source as well as biomass burning. 

This fact represents an important variable when addressing personal exposure since 

people, especially if we consider people living in urban environment, usually spend a 

significant portion of their life in transport or at a close distance from these kind of sources 

(Dons et al., 2012). Given this picture, addressing personal exposure to traffic related air 

pollutants is fundamental in the area of Milan. Finally, Elemental Carbon (EC) and Black 

Carbon (BC) are among the best tracers of traffic related air pollution (EPA, 2012).   
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2.3. BLACK CARBON 

2.3.1. Definition, characteristics and dispersion 

In atmospheric science, BC is a term that is often used interchangeably with EC. However, 

the definitions of these two contaminants refers to different characteristics (Figure 10). 

In particular:  

a) EC is usually defined with is thermal property as the carbon fraction inert in 

atmosphere up to 3500 °C; 

b) BC is defined with is optical property as the mixture of carbonaceous elements, 

mostly pure, that strongly absorbs solar radiation at all the wavelengths, the most 

effective form of PM, by mass, at absorbing solar energy, and the major component 

of “soot”, a complex light-absorbing mixture that also contains OC (EPA, 2012).  

c) BC is operationally defined as an aerosol species based on measurement of light 

absorption and chemical reactivity and/or thermal stability (UNEP and WMO, 2011).  

 

Figure 10 – Comparison of EC, BC, OC by optical and thermochemical properties (Poschl, 2003) 

Actually, EC and BC cover about the same fraction of carbonaceous elements: a mixture 

of natural carbon and graphite-like structures included entirely in the fine fraction of 

particulate matter. BC is a primary pollutant entirely linked to the partial combustion of 

fossil fuels and biomasses that in Europe account for 5-10% of total PM2.5 mass and 

possibly up to 20-25% at kerbside sites (Putaud et al., 2004; Viidanoja et al., 2002). BC is 

considered as a good tracer of PAHs: in fact, its high surface-to-volume ratio and affinity 

to non-polar substances are linked to a high capacity for adsorbing this class of 

contaminants (Dachs and Eisenreich, 2000). Moreover, even though BC is defined as a 
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short-life pollutant, with an estimated lifetime of 4-12 days (Cape et al., 2012), it has 

been classified as the second climate forcers after CO2 (Bond et al., 2013)(Figure 11). 

 

Figure 11. - sources and impact of Black Carbon (adapted from Fultescu et al., 2018) 

Due to the uncertainty that currently affects global inventories of BC, it is not simple to 

define clearly the total amount of emissions and the influence of sources (Dong et al., 

2019). By using the GAINS integrated assessment model, an already used tool by the 

European Commission for the EU Thematic Strategy on Air Pollution, Klimont z et al (2017) 

found that anthropogenic emission of BC were about 7.2 Tg (75% of the global total) in 

2010 with an increasing trend in emission at a global scale from 2005, mainly driven by 

Asia. BC was considered to account for the 15% of global PM2.5, but up to 50% focusing on 

transportation sector (Cofala et al., 2010; Klimont et al., 2017). Residential combustion 

is the main global source of BC, while transport sector was found to account for about the 

25% of global BC emission, however this pattern follows a strong regional variability. In 

Europe they observed a decline in BC emission, and a different contribution of sources: 

transport sector was found to weight about 50% on the total emission in 2010 with a 

decreasing trend from 2000. BC in Europe remains mostly driven by transport sector and, 

consequently, at a very local scale by traffic congestion. 

Concluding, BC is an important air pollutant that threat human health and contribute 

significantly to the radiative forcing, by affecting environment at local, regional and 

global scales.  

2.3.2. Measurement techniques and artefacts 

As previously reported, BC is defined through its optical properties as the fraction of PM2.5 

capable to efficiently absorb the solar radiation from short to long wavelengths in the 

visible spectrum up to infrared (IR) (EPA, 2012). Several techniques take advantage of this 

optical property, but no standardization has been proposed so far. Therefore, the use of 

terms in literature is not consistent and lends to incomprehension. Moreover, the complex 
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nature of Light Absorbing Carbon (LAC) and, in particular, the highly variable presence in 

aerosols of organic-coated absorbing carbon particles, or Brown Carbon, further 

complicates the setting, pointing out all the limitations of optical-based measurement 

techniques (Andreae and Gelencser, 2006). In this dissertation, we will refer to Black 

Carbon (BC) as the result of the measurement performed by a filter-based optical 

technique at a wavelength of 880 nm. 

Among the other, the most used filter-based measurement methods consist in:  

a)  the transmittance of a beam of light through a filter, used by the aethalometer 

(Hansen et al., 1984) and the Particle Soot Absorption Photometer (PSAP; Radiance 

Research, Seattle, WA);  

b) both the reflectance and transmittance: these methods are combined by the Multi 

Angle Absorption Photometer (MAAP; (Petzold et al., 2002)).  

In literature, all these techniques appear well correlated with high R2 but significant 

variability in absolute values (Hitzenberger et al., 2006; Park et al., 2006; Snyder and 

Schauer, 2007).  

Moreover, filter-based optical instruments that take advantage only of transmittance, 

show some peculiar artefacts, which are:  

a) the so-called shadowing effect (Weingartner et al., 2003); 

b) the multiple light scattering.  

These two analytical issues are linked to the fact that the attenuation of light through the 

filter is not only related to the absorption of the same light, but it is also influenced by 

the scattering, caused by both aerosols’ particles and filter fibres (Ran et al., 2016). In 

particular, the shadowing effect reduces the optical path in the filter: the increasing 

amount of absorbing material on the filter, contrasts the overall multiple scatter induced 

by the filter fibres leading to an underestimate of the BC concentration (LaRosa et al., 

2002). However this issue only proved to be a critical one in those environments dominated 

by aerosols composed by fresh-highly absorbing-particles, conversely aged aerosols 

dominated by organic-externally coated-BC show higher scattering behaviour that is 

inversely proportional to the magnitude of the shadowing effect (Weingartner et al., 

2003). This effect is correlated to the single scattering albedo (ω0) of the sampled 

aerosols, by definition the ratio between scattering to extinction, a parameter that gives 

information on the composition of the aerosol and can be estimated by combining 

absorption and scattering measurement. The second artefact consists in the multiple 
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scattering of light due to the filter material and the aerosol and leads to an enhancement 

of the optical path in the filter and a consequent overestimate of BC concentration. The 

MAAP account for this analytical issue and for this reason is often used as a gold standard 

in comparison with the aethalometer. All the measurements included in this dissertation 

were performed by using micro-aethalometer devices. 

2.3.3. The Aethalometer device 

Aethalometer derived from the greek word aethaloun that means blacken with soot. The 

device provides an estimate of optically absorbing material concentration in the sampled 

aerosol. The calculation starts from the measure of the rate of change in optical 

transmission through a filter onto which the aerosol is continuously collected at a constant 

airstream velocity. The transmitted light intensity is collected by a photodetector and 

amplified proportionally to the optical attenuation (ATN). The rate of increase of this 

signal is therefore related to the rate of deposition of BC on the filter. Finally, the rate 

of attenuation of the light through the loaded spot is compared to a reference unloaded 

filter to correct for any variations in incident light intensity and drift in electronics (Figure 

12). 

 

Figure 12 - Sampling scheme of the original aethalometer ((Hansen et al., 1984)) instrument. Optical and 

aerosol collection components: A, light source; B, 530-nm band pass filter; C, quartz light guide; 

D,transparent mask; E, filter with particles collected on portion underneath hole in mask; F, 

filter support with optical fibres set in; G, flowmeter. Electronic system components: 1, silicon 

photodetectors; 2, logarithmic amplifiers; 3, difference amplifier giving output proportional to 

ln(I/Io); 4, A/0 converter; 5, storage and subtraction; 6, variable time base; 7, 0/A converter.  
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This technique is based on the Beer-Lambert law that explain the relation between the 

intensity of a beam of light incident on a filter (I0) and the remaining light intensity after 

passing the material (I):  

𝐼

𝐼0
= 𝑒−𝑏𝑎𝑏𝑠∙𝑥 

Where 𝑏𝑎𝑏𝑠 is the absorption coefficient of the medium with thickness 𝑥. 

Another way to write the above-mentioned equation is reported below:  

𝑏𝑎𝑏𝑠 =
𝐴

𝑄
∙

∆𝐴𝑇𝑁

∆𝑡
 

Where 𝐴 is the area of the filter spot, 𝑄 the flow rate, ∆𝐴𝑇𝑁 the change in attenuation 

and ∆𝑡 is the time interval in which the change happens. 

Finally, absorption coefficient is related to a concentration by dividing 𝑏𝑎𝑏𝑠 by the mass 

absorption cross section of BC (𝑀𝐴𝐶). 𝑀𝐴𝐶 is dependant from the mixing state of BC, i.e. 

the degree of coating of BC particles that is linked to the age of the aerosol and to the 

source of combustion (Bond and Bergstrom, 2006; Knox et al., 2009). 

In the last few years, new devices have been developed giving an answer to the need of 

portability expressed by exposure sciences’ researchers. It is the case of the micro-

aethalometer AE51 and MA200, the two optical instruments used to perform the 

measurements included in this dissertation (Figure 13). 

 

Figure 13. microaethalometer AE51 and MA200 (AethLabs, San Francisco, California, US) 

The AE51 device measure BC at only one wavelength (880 nm, the most representative of 

highly absorbing particulate) combining high portability (weight: 280 g, dimension 117 mm 

x 66 mm x 38 mm) with long battery life, built-in memory and adaptability to different 

conditions (with the possibility to set up temporal resolution and flowrates). The MA200 

(weight: 420 g, dimension: 137 mm x 85 mm x 36 mm) add a multi-wavelength 
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measurement (from 375 nm, UVPM, to 880 nm interpreted as BC) and a new technology 

capable to account for shadowing effect (Dualspot©)(Drinovec et al., 2015). In particular, 

by performing a double-parallel-measurement at different flowrates on the same filter, 

the device is able to compare the different rate of loading and then calculating a 

compensating factor that allow to overcome the shadowing effect (Figure 14). 

 

 

Figure 14. Aethalometer equipped by Dualspot © technology diagram. The air passes through filter spots 

S1 and S2, each with a different flow rate. Flowmeter 1 measure airflow speed from S1, while 

flowmeter C measure the total speed. Airflow speed from S2 is calculated by difference. The 

valves allow to choose different settings. 

Moreover, the multi-wavelength modality allows to catch the spectral dependence of 

aerosol absorption and to speculate about the mixing state of the aerosol and, 

consequently, about different sources.  

 

2.3.4. Conclusions 

Black Carbon is an important primary pollutant, a fraction of PM2.5 defined and measured 

thanks to its optical properties. It is possible to measure this contaminant by filter-based 

optical portable device that allows designing personal monitoring campaign. The optical 

artefacts related to filter-based measurement are important issues, partially overcome 

by the devices of new generation. For this reasons and because BC is emitted directly from 
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the combustion of fossil fuels and biomasses, it is a valuable pollutant for assessing air 

pollution exposure in the urban environment.   
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2.4. HEALTH EFFECTS OF PARTICULATE MATTER AND BLACK CARBON 

2.4.1. Overview 

Particulate matter is linked with a broad spectrum of different short- and long-term 

adverse health outcomes and recently it was included in the IARC Group 1 list of 

carcinogen agents to humans (IARC, 2016b). In literature a special focus is provided for 

the fine fraction of particulate matter (PM2.5) that appear to be the most dangerous 

(Cohen et al., 2017; Hoek et al., 2013). This is due to the small dimension of this particles 

that can enter in depth the airways up to the alveoli, can promote inflammation responses 

and oxidative stress near the membranes; moreover, ultrafine particles (UFP, <0.1 um) 

can even pass membranes entering in the circulatory system and provoking systematic 

inflammation (Figure 14)(Stone et al., 2017). Dockery et al. (1993) were the first to 

discover a relation between ambient PM2.5 and all-cause mortality, cardiovascular and 

lung-cancer mortality in a prospective cohort of 8111 adults from 6 United States cities 

(Dockery et al., 1993). Starting from the same cohort Lepeule et al. (2012) have stressed 

the non-threshold linearity of the relationship between chronic exposure and all-causes, 

cardiovascular and lung-cancer mortality with PM2.5 concentration below 8 µg/m3 

(Lepeule et al., 2012).  Furthermore, particulate matter and especially traffic related air 

pollution can act as a trigger for acute events like myocardial infarction, ischemic and 

thrombotic effects (Mills et al., 2007; Nawrot et al., 2011). 

More recently, PM2.5 and UFP were suspected to be neurodevelopmental toxicant by 

inducing inflammation cascade and oxidative stress condition once overcome the olfactory 

epithelium and reached the brain trough the axons or the blood brain barrier (Brockmeyer 

and D'Angiulli, 2016). The principal inhalation pathways for the penetration of particulate 

matter into the human body are reported in Figure 15.
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Figure 15.  Different pathways of exposure to fine, ultrafine particles and nanomaterial (adapted from(Stone et al., 2017);(ERS, 2010; Madl, 2012)) 
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As reported in chapter 1.3.1., Black Carbon is the constituent of fine particulate matter 

that can weight up to 20-25% of its mass. As a function of type of sources and location, in 

particular if close to traffic sources, BC can even be smaller than µm and tends to be 

included in ultrafine class (Costabile et al., 2015). Together with NO2, BC is one of the 

best tracer of fossil fuel combustion, particularly of diesel engine vehicles (U.S.EPA, 

2012). In 2014, the International Agency for Research on Cancer (IARC) classified diesel 

engine exhaust as carcinogenic to humans (IARC, 2014). Moreover, Janssen NA et al. (2011) 

identified BC as a valuable additional air quality indicator to evaluate the health risks of 

aerosols dominated by primary combustion particles (Janssen et al., 2011). More recently, 

Tobias A et al. (2014) looking at respiratory mortality and asthma hospital admissions in 

Barcelona estimated greater effects for BC than PM2.5 and PM10. They also found that 

the developed BC models were more robust (Tobias et al., 2014). 

2.4.2. Exposure to air pollution and vulnerability: focus on school age children 

Health effects related to particulate matter exposure does not affect the population 

homogeneously. In the past, concentration-response relationship has been related to type 

of exposure, vulnerability and genetic susceptibility (Makri and Stilianakis, 2008). Among 

other factors, life stage is one of the most important population characteristic that 

influence this relation. In particular, children have higher exposure, due to higher 

respiratory rate, and to both higher activity level and higher resting metabolic rate than 

adults. Moreover, they live and breathe close to the ground and air pollution sources (i.e. 

tailpipes), and tends to stay more outside during the day, resulting exposed to higher level 

of air pollution (Bateson and Schwartz, 2008; Vanos, 2015; WHO, 2018). Consequently, 

the inhalation of air per body weight combined with the still evolving lung structure and 

immune system determine a condition of vulnerability. Moreover, natural barriers against 

exogenous malignant factors such as the blood-brain barrier and nasal epitheliums have 

been shown to be compromised in children living in urban environment and exposed to air 

pollution (Calderon-Garciduenas et al., 2015). From prenatal to the second decade of life, 

if the development process is interrupted or impaired by environmental pollutants the 

health consequences for the child may last for a lifetime (Dratva et al., 2016). 

The WHO estimates that more than 98% of children in Italy are exposed to PM2.5 level 

above 10 µg/m3 (Figure 16). 
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Figure 16. Proportions of children under 5 years living in areas in which the WHO air quality guidelines 

(PM2.5) are exceeded, by country, 2016 (WHO, 2018) 

2.4.3. Children long term health effect 

In the last decade, numerous studies have shown significant associations between 

exposure to ambient air pollution and long term adverse health effect on children. For 

instance, the relation between exposure to PM and TRAP and the risk of developing asthma 

is more and more evident. Khreis et al. (2017) in a systematic review and meta-analysis 

found statistically significant associations for BC, NO2, PM2.5, PM10 exposures and risk of 

asthma development; in particular the relation with BC appeared the strongest with a 

random-effects risk estimates (95% CI) of 1.08 (1.03, 1.14) per 0.5×10-5m-1 PM2.5 

absorbance, as a marker for BC (Khreis et al., 2017a). Gehring et al. (2013) linked with a 

consistent relationship PM2.5 concentrations and PM2.5 absorbance to a decrease in lung 

function in children aged 6–8 years (Gehring et al., 2013). Long term effect of particulate 

matter and black carbon exposure can be also associated with neurological outcomes 

(Suades-González et al., 2015). For instance, in a prospective study of birth cohort, Suglia 

et al. (2008) measured intelligence, memory and learning tests of more than 200 children 

(mean±sd age = 9.7 ± 1.7 y) finding that increasing levels of long term exposure to BC 

were associated with lower performances (Suglia et al., 2008). Lower performances and 

an increased number of errors in a specific performance task were also found by Chiu et 

al. (2013) linked to children in the 2nd and 3rd tertile of BC exposure (Chiu et al., 2013).  

Moreover, there is an increasing growing evidence of an association between exposure to 

ambient air pollution in prenatal and early postnatal periods and long-term health effects. 
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Bowatte et al. (2015) linked early childhood exposure to TRAP and a higher risk of 

developing asthma in later childhood (Bowatte et al., 2015). Exposure to PM2.5 during 

prenatal period was found to be positively linked with the incidence of recurrent 

pulmonary infections in 214 children with seven-year follow up (Jedrychowski et al., 

2013). 

Chiu et al. (2016) found associations between PM2.5 levels at different weeks of 

gestational age and outcomes such as reduced IQ and general memory in 267 children (age 

6.5 ± 0.98 y)(Chiu et al., 2016). Rundle et al. (2012) measured higher BMI in 341 children 

(age 7 y) whose mother resulted exposed to higher level of PAHs with a relative risks of 

obesity of 2.26 (Rundle et al., 2012).  

Finally, the incidence of cancer in children is increasing worldwide and leukaemia and 

lymphoma account for almost half of all childhood cancers (IARC, 2016a). In particular, a 

significant relation between exposure to TRAP and acute lymphoblastic leukaemia was 

found in a case-control study that involved 3,590 children (age < 6 y) with various types 

of cancer (Heck et al., 2013). Filippini T et al. (2019) in a recent meta-analysis found an 

association between exposure to benzene and childhood acute myeloid leukaemia, with 

no indication of any threshold effect (Filippini et al., 2019). They suggested also that other 

measured and unmeasured pollutants from motorized traffic could have a possible role in 

the relationship. 

2.4.4. Children short term health effect 

Ambient air pollution exposure can determines short-term health effects on children. 

There is broad consensus that breathing pollutants exacerbates asthma in children. A 

meta-analysis covering Australia, Canada, China, Denmark, Finland, Turkey and the USA, 

Lim H et al. (2016) found an increase of 4.8% in risk of asthma-associated hospital 

admissions related to a 10 μg/m3 short-term increase in PM2.5 concentrations. 

Furthermore, short-term exposure events exacerbates acute respiratory infections. Nhung 

et al. proposed a meta-analysis of 17 studies for children up to 18 years of age and found 

that short-term increases of many pollutants including PM2.5 were associated with 

increased hospital admissions for pneumonia (Nhung et al., 2017). Carugno et. al (2018) 

linked short- and mid-term PM10 concentrations and increased risk of hospitalization due 

to respiratory syncytial virus bronchiolitis in infants in Lombardy, Italy (Carugno et al., 

2018). 
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Short- and mid-term exposure to traffic related air pollutants, including BC, were also 

associated with an increased concentration of airway oxidative stress and airway 

inflammation markers in a cohort of 130 Belgian children (6-12 y)(De Prins et al., 2014). 

Paunescu et al. (2019) found a positive association between increasing short-term (24 h) 

BC levels and increasing fractional exhaled nitric Oxyde (FENO) and lung function 

parameter (FEV1, FVC) in 147 children (9-11 y) with persistent respiratory symptoms 

(Paunescu et al., 2019). Finally, recent exposure to increasing level of particulate matter 

including fine fraction, was also related to reduced neurobehavioral performances as well 

as to reduced blood vessel diameter of retinal microcirculation, a possible underlying 

mechanism through which fine PM contributes to age-related disease development, in a 

cohort of Belgian children (age 8-12) (Provost et al., 2017; Saenen et al., 2016). 

2.4.5. The epigenetic pathway 

Many pathways have been studied through which air pollution may influence our health, 

the most known of which are inflammation and oxidative stress. In the last two decades, 

research have shown another important mechanism of action in the relationship between 

ambient air pollution and health: epigenetic pathway. With epigenetics we usually refer 

to those processes that alter genome expression without changes in DNA sequence (Wolffe 

and Guschin, 2000). These mechanisms may be trigged by exogenous factors, such as air 

pollutants, and can even become stable alteration of gene activity with a propagation 

from the original altered cell to the next generation (Bollati and Baccarelli, 2010).  

In a recent literary review on altered methylation and exposure to particulate matter, 

Ferrari et al. (2019) showed that selected scientific works covered the entire lifespan 

(Ferrari et al., 2019). However, not all the life stages are impacted at the same level 

(Figure 17).  
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Figure 17. Susceptibility to DNA methylation at different life stages. In red the most concerning life 

windows (adapted from Ferrari et al. 2019) 

For instance, Gruzieva et al. (2019) identified the epigenetic mechanisms through which 

PM exposure during pregnancy possibly contributes to several respiratory system 

dysfunctions in children (Gruzieva et al., 2019). Furthermore, in asthmatic children, high 

level of BC exposure was found to favour DNA methylation of pro-inflammatory genes 

(Jung et al., 2017). 

2.4.6. Particulate matter and microbiota 

Another relatively new topic of research that regards exposure to particulate matter is 

human microbiota. With this word we usually refer to the human bacterial community 

that acts as a barrier against exogenous stressors and influences the host immune response 

(Turnbaugh et al., 2007). 

In particular, changes in the composition of internal microbiome can alter the anti-oxidant 

and pro-inflammatory balance and play a role in the development of asthma in childhood 

(Sbihi et al., 2019). It is likely that ambient air pollution plays a major role in this process 

(Muñoz et al., 2019). So far, there is no scientific publications that investigated the 

relation between children, particulate matter and microbiome, however some evidences 

have been shown for healthy adults. For instance, Mariani et al. (2018) have linked short-

term (3 days) effect of PM2.5 and PM10 to microbiota characteristics and structure 
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highlighting a positive association with Moraxella taxa (Mariani et al., 2018). Anyway, they 

concluded stressing the opportunity of further researches on the role that these 

alterations have in the development of diseases. 

2.4.7. Conclusions 

The fine and ultrafine are considered as the most health-threatening fractions of PM 

because of their small dimension and their capability to carry other pollutants. The PM-

related exposure health consequences are more evident on vulnerable population group, 

such as children, than on healthy adults. In general, traffic related air pollution have been 

linked to a broad range of health effects in children. Moreover, the effect of this kind of 

exposure on both long and short term health suggest the need to implement integrated 

personal exposure assessment that include both measures at a high time resolution and 

modelling approach to estimate longer term exposure.  
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2.5. EXPOSURE ASSESSMENT TO AMBIENT AIR POLLUTION 

2.5.1. The exposure framework 

Exposure in general is defined as the contact between a chemical, physical, or biological 

agent and a target. In particular, referring to air pollution, inhalation exposure can be 

defined as the contact between an air pollutant and a human physical boundary (Ott, 

1982). Generally, exposure scientists and occupational and environmental hygienists are 

particularly interested in temporally-averaged exposure and peak exposure (Figure 18) 

that are normed in both occupational and general environment as threshold limit values, 

occupational limit values (TLVs, OLVs) or air quality standards. 

 

Figure 18. Hypothetical exposure time profile: temporally averaged exposure, peak exposure, 

instantaneous exposure and temporally integrated exposure are reported as a function of time (Adapted 

from Zartarian, Ott and Duan 1997). 

Exposure can be even defined in a quantitative way. For instance, averaged temporally-

averaged exposure (𝜉𝑡𝑎) to a certain concentration (C) at a certain position (x,y,z) can be 

defined as the integral of instantaneous contact between the target and the agent over 

the time (t) divided by the duration of the selected time window (Zartarian et al., 1997), 

according to the formula: 

𝜉𝑡𝑎(𝑥, 𝑦, 𝑧) =
∫ 𝐶

𝑡2

𝑡1
(𝑥, 𝑦, 𝑧, 𝑡) 𝑑𝑡

𝑡2 − 𝑡1
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Another important framework in the exposure sciences is the so-called temporal-

integrated spatially-integrated exposure (𝜉𝑡𝑖𝑠𝑖), i.e. the attempt to divided a complete 

continuous-exposure time profile (m) in discrete time-windows related to each 

microenvironment (j) in which a target experience a certain contact at time t over the 

selected time window:  

𝜉𝑡𝑖𝑠𝑖 = ∑ ∫ 𝐶𝑖,𝑗

𝑡𝑗2

𝑡𝑗1

(𝑡) 𝑑𝑡

𝑚

𝑗=1

 

This last approach allows to focus on the relative weight of each microenvironment in a 

certain exposure time profile (Klepeis, 1999). To reach such level of detail, the most 

effectiveness method is to measure directly the personal exposure with a portable device 

at high time resolution. 

Moreover, another important concept is included in the exposure framework: the notion 

of dose. If the definition of exposure restricts its range to the contact between a stressor 

and a human surface, the definition of dose involves the overcoming of this boundary and 

a consequent double way of action: 1) the non-diffusing dose defined as intake dose; 2) 

the diffusing dose defined as absorbed dose (EPA, 1992). In the particular case of 

inhalation dose, the final amount of pollutants that enter airways depends on both the 

concentration of pollutants in the air and the breathing rate and volume of the target. 

These last two variables are influenced by multiple factors such as gender, age, weight 

and current status (inactive or active)(Oravisjärvi et al., 2011). Given this, in the attempt 

to accurately study exposure and link it to adverse health outcomes, it seems important 

accounting for the volume of air inhaled per minute in order to reduce misclassifications 

(Greenwald et al., 2019). For instance, Int Panis et al. (2010) have already shown how 

different can be the intake of air pollutants by different city users and in different 

environments (Dons et al., 2017; Int Panis et al., 2010). 

2.5.2. Time-activity pattern 

The place in which we live, if we are running or walking, if we are studying or sleeping: 

personal exposure to air pollutants is closely related to environment and habits, ultimately 

to our daily agenda. As successfully geo-visualized by Kwan M. (2000) with the space-time 

density plot and the space-time aquarium plot (Kwan, 2000)(Figure 19), daily movements 

performed by a selected population can result in extremely complex trajectories. 

Afterwards, multiple dimensions such as location, duration, type of activity etc, can 

characterize each trajectory. 



 

44 
 

 

Figure 19. Space-time activity density plot (on the left) and space-time aquarium with the space-time 

paths (on the right)(Kwan, 2000) 

The framework results in an even more complex figure if we consider different population 

subgroups. In fact, the individual time-budget within this groups appears composed by 

different life-paths given peculiar physiological and physical necessities (Hägerstrand, 

1970). For instance, an office worker has a large portion of her/his routine occupied by 

work shifts, while a school-age child by school hours (Figure 20) 

 

Figure 20. Examples of time-activity pie charts for typical 24-hour days (Bower et al., 1999) 

Since personal exposure can be seen as a function of air pollution and the position of 

affected people, understanding better time-activity patterns of the general population 

seems to be a crucial task for exposure scientists (Dons et al., 2011; Klepeis et al., 2001). 
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Nowadays, with the rise of geographical information system (GIS) and global positioning 

system (GPS), time-activity surveys are usually conducted with the complementary use of 

classical techniques, such as paper-based or electronic diaries, and GPS logger (Dons et 

al., 2011; Gerharz et al., 2013). 

However, many issues remain. In particular, not always GPS loggers prove to be accurate, 

especially in urban environment, but even more important, collecting information 

consistently and at high time resolution, means to ask the people involved in the project 

to spend time and efforts to keep the diary updated, with a consequent high risk of 

dropout and low data quality. This kind of issues could be reduced by enhancing the level 

of engagement of the participants. 

2.5.3. The role of urban environment 

Urban environment has always had a central role in the health of citizens. One of the first 

epidemiological surveys reported in literature is the famous John Snow’s “Mode of 

communication of Cholera” in which the physician studied the spatial patterns of the 1854 

London Cholera epidemic. Still today, even if the determinants have changed, cities 

remain an important source of health risks that affect an increasing and diversified crowd 

of people (Khreis et al., 2017b; Nieuwenhuijsen et al., 2018). In fact, urbanization is a 

peculiar social process that from the first industrial revolution has proved to characterize 

our societies: if in the early 20th century just 10–15 % of the global population lived in 

urban areas, now the percentage is projected to reach 67% by 2050 (UN, 2018). Given this 

picture, the United Nations in 2015 included sustainable cities and communities among 

the sustainable development goals. As it is possible to read in SDG 11 “Cities are hubs for 

ideas, commerce, culture, science, productivity, social development and much more. At 

their best, cities have enabled people to advance socially and economically”, however, 

the increasing urbanization trend gives important challenges ahead: “Common urban 

challenges include congestion, lack of funds to provide basic services, a shortage of 

adequate housing, declining infrastructure and rising air pollution within cities.”(UN, 

2015). 

Among many risk factors, one of the most worrying is urban air pollution. This phenomenon 

is strictly linked with the energy consume driven by transportation and heating systems. 

In particular, if we focus on individuals, living in an urban environment means to be 

exposed to a certain background of air pollution concentration and a variable number of 
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peaks, which are mainly influenced by individual time-activity patterns and due to the 

time spent in transport (Dons et al., 2019)(Figure 21).  

 

Figure 21. Individual exposure pattern in urban environment (Ranzi, 2012) 

In 2018 the European Environmental Agency estimated that for certain pollutants like 

PM2.5, benzo[a]pyrene or ozone, more than 80% of people living in European cities are 

exposed at concentrations above the WHO guideline thresholds (EEA, 2018).  

In a review on urban, transport planning environmental exposure and health topics, 

Nieuwenhuijsen MJ (2016) stressed that environmental interventions at a community scale 

are generally more cost-effective than at individual scale. In particular, variables such as 

road networks, distance to major roads, traffic density, household density, presence of 

green areas etc. proved to influence the variability that it is usually measured among 

personal exposure to urban risk factors, and in particular to air pollution (Nieuwenhuijsen, 

2016). Related to this, urban and transport planners seem to have key role in achieving 

the UN sustainable goals related to cities. However, another important player in this game 

is the community that can represent either a driver or a brake of innovation. A 

participatory approach in environmental research and planning can work to make the first 

prevail on the second one (Nieuwenhuijsen et al., 2017). 
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2.5.4. Participatory approach in exposure science 

In the attempt to pursue a healthier and more sustainable development for our cities, a 

fundamental factor is the level of awareness and engagement of citizens. 

Moreover, if we focus on exposure sciences, Lioy and Smith (2013) identified in the 

engagement of communities and citizens in the research process one of the key aspects 

to achieve the exposure science vision of 21th Century (Lioy and Smith, 2013). In their 

proposal, this approach is fundamental to broader the view of exposure sciences from the 

point of contact between stressor and receptor, inward into the organism and outward to 

the general environment and society (i.e. the so-called endo- and eco-exposome). In the 

last decades, the scientific literature has seen a constantly increasing multitude of citizen 

science projects. Many of them are framed in the Community-Based Participatory 

Research (CBPR) definition that include different approaches to science with some 

common denominators, i.e. participation, research and action (Minkler, 2005)(Figure 22).  

 

Figure 22. Flowchart of Community-based participatory research for exposure science (Commodore et al., 

2017) 

Research projects that have embraced this philosophy proved in many occasion to be 

valuable contributions to exposure science. For instance, Commodore A. et al (2017) in a 

review of 36 CBPR and citizen science studies found that from the action-oriented aspect 

of such approaches can result important achievements, such as:  

a) long-lasting partnerships between different and multidisciplinary players 

(universities, no-profit organizations, municipalities and regulatory authorities 

etc.);  

b) enhanced capacity for both researchers and citizens;  

c) air quality awareness even on issues at a local scale;  

d) new health protective practices and policies;  
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e) increasing level of trust between researchers and community; 6) Increased quantity 

and quality of data collection;  

f) increased dissemination;  

g) translation of research into policy (Commodore et al., 2017; Minkler, 2010; O'Fallon 

and Dearry, 2002).  

Even if participatory research is generally recognised as a great opportunity, such an 

approach presents many challenges. For instance, from an academic perspective finding 

time and resources to maintain at the same time research activities, local presence, and 

participatory activities is not trivial (Cargo M et al, 2008). Moreover, different actors can 

have different expectations and objectives, i.e. academic part could be more interested 

in a publishable work, while other could be more interest in near-term results. Finally, 

bias in selection of sample and data collection may affects the overall interpretation and 

generalizability of the results. However, new technologies such as GIS mapping and real-

time air monitoring seem to be useful tools to both reach high quality level of data 

collection and enhance the understandability of technical and complex phenomenon, even 

if the accessibility of this kind of devices could lead to a selection bias, by excluding 

certain segments of population (English PB et al, 2018).  

2.5.5. Measuring personal exposure 

Personal exposure to air pollution can be measured directly using passive or active 

portable devices. The first are generally low-cost, are usually based on diffusion 

mechanism through a barrier or permeation through a membrane, and have been 

introduced in the field since 1970 (Kot-Wasik et al., 2007). The concentration measured 

by a passive sampler is a time-weighted concentration over the sampling time with 

possibly high spatial resolution, but low time resolution. On the other hand, active 

samplers can measure pollutant concentration at high time resolution enabling 

researchers to explore the time-space dimension of exposure and causality of the relation 

between air pollution sources and adverse health effects. Active air samplers are equipped 

with a pump that drives the air internally where a detector measures or estimates the 

concentration of the pollutant in the sample. Different devices can insist on different 

chemical or physical characteristics of the pollutant. For instance, optical devices take 

advantage by optical properties, photoacoustic by the capacity of pollutants to absorb 

light energy and release a certain acoustic signal. These techniques allow to measure 

concentrations in real time even detecting exposure peaks. 
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However, since the cost in both a sufficient number of instruments and the time consuming 

of massive quantity of data collected, this approach remains too expansive, especially if 

the aim is to characterize a broad population focusing not only on short- but also mid- and 

long-term exposure (Klepeis, 1999). This seems to remain true also after the last decade 

of market-growth in low-cost sensors: in a recent review, analysing 17 large projects 

Moraskwa L et al (2018) found that not so many advances seems to be made in wide-scale 

monitoring of personal exposures. This is probably linked to the level of engagement and 

commitment that requires such an approach (Morawska et al., 2018). The way weather 

these instruments represents a valuable alternative of classic and more expansive devices 

is still a matter of debate, in particular remains high the level of concern about data 

quality, especially related to air quality legislative compliance applications (Castell et al., 

2017; Kumar et al., 2015). However, the availability of low-cost sensors and the growing 

awareness and level of engagement of the general population still represents an 

opportunity for exposure researchers. Snyder et al. (2013) stressed that this change of 

paradigm in exposure science can represents a great opportunity to enhance and expand 

application such as personal exposure, source compliance, conversation with the 

community and integrating official air quality monitoring networks (Snyder et al., 2013). 

2.5.6. Modelling personal exposure 

In the last two decades satellite-based new technologies like GIS, GPS allowed exposure 

science taking steps further (Briggs, 2005; Croner et al., 1996; Hoek, 2017; Kistemann et 

al., 2002; Wang and Christopher, 2003). In the new scenario, the opportunity to link 

position, time-activity information, characteristic of the surrounding environment and 

spatial distribution of air pollutants represents still today an effective approach to avoid 

misclassification of exposure (Panis, 2010). Indeed, the spatial distribution analysis of air 

pollutants can resolve in high spatial resolution concentration grids valuable for exposure 

assignment. This approach can be followed by applying different techniques, such as 

dispersion models, land use regression (LUR) models or a combination of the two (HEI, 

2010; Jerrett et al., 2005; Jerrett et al., 2010). In addition, statistical rescaling methods 

to derive hourly or daily trend can even improve the temporal resolution of the model 

allowing professionals to investigate health effects in relation to different exposure time 

windows (Dons et al., 2014).  

Land use regression (LUR) modelling is a widely used technique that consists in the 

implementation of a multiple regression model using as response variable a pool of 
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measurements of the air pollutant under investigation, and, as independent variables, a 

pool of potential predictors such as traffic intensity, population density land use 

parameters etc. Once developed, the model is used to predict concentration at unsampled 

sites. The published reviews on the topic identified works that measured from 20 to more 

than 100 sites (Hoek et al., 2008; Ryan and LeMasters, 2007). There is no published 

guideline to perform such analysis, so in the literature it is possible to find different ways 

to choose the number and the type of monitoring sites. Ultimately, the aim is to stress 

the spatial contrast inside the study area regardless of the fact that you choose a more 

formal or a more experienced-based way to set up the monitoring campaign and different 

ways to build up the model (Kanaroglou et al., 2005; Poplawski et al., 2009).  

Afterwards, GIS software, such as QuantumGIS or ArcGIS, allow to georeference each of 

the monitoring sites on a map and then to measure possible predictors. In particular, 

different layers incorporating data on roads, traffic, population, land use etc. are usually 

overlapped and used to intersect the previously drawn buffers for each monitoring site. 

Buffers can be drawn in different shapes and with different radius in order to cover the 

behaviours of sources and variables (Figure 23). 
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Figure 23. GIS visualization of the intersection procedure between buffers and road layer used in the LUR 

selection process of explanatory variables 

Just as for the monitoring sites choice, also for the model development process there is 

not a gold standard. However, a well-known procedure is the one proposed by Henderson 

et al. (2007)(Henderson et al., 2007), that consists in:  

a)  ranking variables by the level of correlation with the pollutant; 

b) identifying subgroups of variables, and eliminate the variables correlated with the 

highest-ranking one; 

c) entering all the remaining variables in a stepwise linear regression and supervise 

the influence of the variables on the model parameters;  

d) removing not significant variables and those that result inconsistent with a priori 

assumption (for instance, the coefficient of traffic intensity variable can’t be 

negative);  

e) removing variables that contribute less than 1% to the R2 for a final, parsimonious 

model. 
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The validation of the model can be conducted by multiple approaches. If the number of 

monitoring sites is enough, the most effective way to test the model is to split the sample 

in two: a) the training set, b) the validation set. Afterwards, this technique, named hold-

out validation, requires to compare the estimates performed by the model developed 

using the training set with the validation set(Briggs et al., 1997). If the sample size does 

not allow performing such analysis, the leave one out cross validation (LOOcV) is another 

valuable option. In this case, the model developed on n-1 monitoring sites is used to 

estimate concentration at nth monitoring site. Thereafter, nth estimate is compared to nth 

measurement and the procedure repeated for n times (Brauer et al., 2003). However, 

Wang et al (2012) found that LUR models based on small training sets seemed to perform 

worse when evaluated against independent sets of measures if compared to a LOOcV 

validation technique (Wang et al., 2012).  

Linking the life-paths of each individual with his or her exposure is the final aim of the 

modelling approach. So, ultimately, LUR models are used in combination with time-

activity diaries to attribute a concentration at selected locations or during time-windows 

in the attempt to better profile personal exposure (Ryan et al., 2008). The same result 

can be obtained by using different techniques. However, even if LUR modelling proved to 

be one of the most reliable approach in the field, it is not the only way to estimate 

concentration (Gulliver et al., 2011).  

Moreover, in the last few years, the rise of machine learning techniques, the satellite-

based optical measurement and the massive use of low-cost sensors have brought new life 

to the field allowing to refine the process of exposure modelling and paving the way for 

new studies (Brokamp et al., 2019). 

2.5.7. Conclusion 

According to the classical definition, an individual is exposed when a pollutant comes in 

contact to his/her physical boundary. In the study of exposure determinants, time-activity 

patterns play a major role. Moreover, urbanization and urban variables, such as urban 

planning and transportation, give important health-related challenges ahead. Generally, 

to profile individual exposure to air pollutants direct personal measurements are the best 

way allowing considering the influence of different sources and of time-activity patterns. 

However, this technique is still highly demanding in term of both time and costs. The rise 

of GPS system linked with indirect exposure assessment techniques and time-activity 

diaries help to achieve a high level of accuracy in exposure attribution. In particular, Land 
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Use Regression modelling seems to be a valuable technique to estimate personal exposure. 

Finally, to achieve better results and move toward healthier and sustainable cities, 

participatory approach involving citizens is considered one of the key aspects of exposure 

science vision of 21th century.  
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3. ANALYSING AND MODELLING THE SPATIAL DISTRIBUTION OF 

BLACK CARBON IN A SCHOOL CATCHMENT AREA 
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RESEARCH QUESTIONS AND ANSWERS 

Q1: Is the participatory approach suitable to identify monitoring sites to develop a 

LUR model? 

A1: Even if the eligibility criteria were quite rigid, the participatory approach helped 

to collect a relevant quantity of valuable monitoring sites among those it was 

possible to find the final set. Furthermore, this process allowed engaging the 

school and the parents in the first stage of the research project 

Q2: Is it possible to develop performant LUR model using BC data collected on a 

neighborhood-scale environment, such as a school catchment area? 

A2: Even if the spatial extent of the study area was very small (~20 km2), the set of 

chosen monitoring sites showed heterogeneity in BC concentrations. 

Furthermore, the developed LUR models proved to perform very well without 

spatial autocorrelation issues. This confirms that BC is a valuable pollutant to 

study spatial heterogeneity of air pollution inside urban environment. 

Q3: Is it possible to develop LUR models focusing on MRH, by increasing the frequency 

of measurement and using only collected data between 7 am and 9 am? 

A3: Two seasonal LUR models focused on MRH were developed using data collected 

between 7 am and 9 am. These models proved to perform very well, 

outperforming in two cases (cold-season and annual models) the models 

developed on the overall collected data. 

Q4: Are there different spatial patterns in the distribution of BC during different 

seasons and time of the day? 

A4: Even if the overall BC concentration was higher in cold- than in warm-season, the 

spatial contrast among Street (S), Urban Traffic (UT) and Urban Background (UB) 

sites was found to be larger during the warm season. Moreover, for both of the 

seasons, a similar increase in absolute BC concentrations was found during the 

Morning Rush Hour (MRH) period. This increment seems to follow different spatial 

patterns, being of greater magnitude near S and UT sites. However, the only 

seasonal spatial pattern seems to be related to the relative increment of BC 
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concentrations that affects more the S than the UB sites during cold season, 

while is the opposite during the warm season. This is mostly due to the overall 

higher level of BC concentration during the cold season that smooths the relative 

increment of concentration of UB sites during the MRH.   
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ABSTRACT 

 

Introduction: The European Environment Agency has identified Northern Italy as one of 

the most polluted areas in Europe. Among air contaminants, black carbon (BC) has been 

identified as a sensitive marker of traffic related air pollution. This study aims to 

investigate the spatial distribution of BC in the catchment area of an elementary school 

of Milan, the biggest city in Northern Italy, using Land Use Regression (LUR) models and 

focusing especially on Morning Rush Hour (MRH). 

 

Methods: Two recruitment campaigns were performed asking schoolchildren's parents and 

residents of the study area to host a monitoring site in their own dwellings. Finally, 34 

monitoring sites and 1 reference site were sampled. BC was measured in two seasonal 

campaigns using eight micro-aethalometers. Six seasonal and annual LUR models were 

developed, 3 focused on MRH.  

 

Results: Overall, median BC was 3247 and 1309 ng/m3 in the cold and warm season, 

respectively. In both seasons, there was a significant spatial variation between the 

monitoring sites. MRH values were higher than the daily values with median concentrations 

of 4227 and 2331 ng/m3, respectively. Developed LUR models showed that BC variability 

is well explained only by traffic variables; R2 ranged from 0.52 to 0.79 and from 0.65 to 

0.81, for seasonal/annual and MRH LUR models respectively. 

 

Discussion: LUR models based on traffic variables explain most of the measured BC 

distribution variability for both warm and cold season. MRH represents a critical moment 

for BC during all the year, with an increase of 1000 ng/m3 respective to the daily median 

value and differences in magnitude according to location. Our results highlight that the 

mobility issue is one of the most important challenges to reduce air pollution in the city 

of Milan and this is of particular concern for elementary schoolchildren that commute to 

school during MRH.  
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3.1. INTRODUCTION 

According to the World Health Organization (WHO) air pollution is currently one of the 

major global public health concerns (WHO, 2016). Recently the European Environment 

Agency (EEA) has identified Northern Italy as one of the most polluted areas in Europe for 

both gaseous pollutants and particulate matter (EEA, 2018). In the greater Municipality of 

Milan, the biggest city in the Northern Italy basin with an estimated population of about 

3.2 million residents (ISTAT, 2018), urban motorized traffic is an important source of local 

air pollution (ARPA, 2018a; Perrone et al., 2012). In 2014, the International Agency for 

Research on Cancer (IARC) classified diesel engine exhaust as carcinogenic to humans 

(IARC, 2014). 

Currently, one of the most investigated air pollutants related to traffic is black carbon 

(BC), a fraction of particulate matter (PM) emitted during the incomplete combustion of 

fossil fuels, in particular diesel exhaust and biomass (U.S.EPA, 2012). BC is also an 

important climate-forcing agent, second only to carbon dioxide (Bond et al., 2013). This 

pollutant has been proposed by WHO as a valuable indicator for the evaluation of local 

traffic control policies and as an additional indicator of the health effects of air 

particulate matter (Janssen et al., 2011). 

The health impact of exposure to traffic related air pollutants seems to be greater for the 

weaker population groups, such as children; for instance, many studies have suggested 

relationships between air pollution and lung development and airway disorders like 

inflammation, wheezing, asthma, sensitization and allergies (Bateson and Schwartz, 2008; 

Bowatte et al., 2015; Khreis et al., 2017a). In particular, in De Prins S et al. (2014) a 

significant increase in Fractional exhaled Nitric Oxyde (FeNO), a marker of airway 

inflammation, was linked with a BC Inter Quartile Range (IQR) increase in the last 24 hours 

(4.50 µg/m3) and last week (1.73 µg/m3) of exposure(De Prins et al., 2014). The sample 

was a Belgian cohort of 130 children (aged 6-12 y) and the exposure was measured and 

estimated at a central station, at home and at school respectively. More recent studies 

have investigated the link between children’s exposure to BC and their cognitive skills 

(Saenen et al., 2016; Sunyer et al., 2015). In particular, Alvarez Pedrerol M et al. (2017) 

found a significant reduction in the growth of working memory in a Spanish cohort of 1,234 

children (aged 7-10 y) related to an IQR increase of BC concentration estimated for the 

walking commute schools (Alvarez-Pedrerol et al., 2017). More recently, BC was found to 

act through different pathways: in particular, as well as representing a carrier for the 
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main harmful compounds such as metals and polycyclic aromatic hydrocarbons, it also acts 

directly inducing immune response at the site of exposure, activating different mediators 

(Niranjan and Thakur, 2017) 

If we focus on urban environment, the activity space of children is reasonably limited to 

their school catchment area and, on a typical weekday, home-school routes are one of 

the most critical windows of exposure. This is true especially in Milan in which (a) more 

than 190.000 people enter the city with their own private motorized vehicles every 

working day for work or study reasons (Milan, 2011), (b) parents still prefer private 

motorized vehicles to reach school. The sustainable mobility plan of Milan estimates that 

currently about 20% of the traffic during morning rush hour (MRH) is due to the so-called 

school run (AMAT, 2015). 

In the past, most of the studies carried out in the environmental epidemiology field have 

limited their exposure assessment to measuring or estimating concentrations of pollutants 

in pre-defined places such as home, workplace and school. This approach biases the real 

exposure of subjects since it does not account for the spatial distribution of pollutants 

and peoples’ movement between areas, not considering that during these activities 

subjects are in direct contact with traffic pollutants(Dons et al., 2012; Int Panis et al., 

2010). 

To overcome this issue, it is possible to use a personal exposure assessment approach that 

links spatial and temporal variability of air pollutants and GPS data. One of the most used 

models in this field is the so-called Land Use Regression (LUR) model that consists of a 

multiple regression that uses sampling data of the chosen air pollutant as the response 

variable, and information on the territory, such as land use, population density, traffic 

data, as explanatory variables. LUR allows drawing high spatial resolution maps of air 

pollutant concentrations (Hoek et al., 2008; Ryan and LeMasters, 2007). 

The aim of the MAPS MI project, “Mapping Air Pollution in a School catchment area of 

Milan”, is to study exposure to air pollution of schoolchildren in Milan, using LUR models, 

air pollutants personal monitoring and biological monitoring techniques with a 

participatory approach. The aim of the present report is to study the spatial distribution 

of BC in the catchment area of an elementary school in Milan focusing especially on MRH.   
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3.2. MATERIALS AND METHODS 

3.2.1. Reference area, monitoring sites and the participatory approach 

The study area is located in the northwest part of the city of Milan (Figure 24), one of the 

most important gateways into the city, with intense motorized traffic. This area 

represents the catchment area of an elementary school, which is attended by more than 

700 children, aged 6 to 11. 

In order to study the spatial variation of BC in the area, 34 monitoring sites and one 

reference site were a priori selected. Monitoring sites were made available from parents 

of the schoolchildren and from area residents, following their involvement in the study. A 

reference site was placed inside the courtyard of the school. 

 

Figure 24. Study area with roads(line line thickness proportional to traffic intensity), monitoring sites and 

reference site (School). In the small frame the map location within the city of Milan is reported. 

Firstly, the project was submitted to and approved by the school board. Parents were 

asked to join the study by hosting a monitoring site in their own dwellings. Only dwellings 

located at the ground or first floor and with a window facing the street were eligible. 

Additionally, area residents were asked to join the study to increase the number of 
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potential monitoring sites; their involvement was sought through social media, creating 

and spreading a project focus event for the principal community groups. 

Table 4. Summary of main characteristics of the 34 monitoring sites. 

 

To focus on the variation of BC in the study area, monitoring sites were selected based on 

the proximity to/intensity of traffic sources, and grouped in three classes: street sites (S), 

urban traffic sites (UT) and urban background sites (UB) (Figure 24). Characteristics of the 

monitoring sites, including definitions, are summarised in Table 4. The reference site was 

chosen to be not directly influenced by traffic sources; therefore, it was placed in the 

school courtyard. The courtyard is closed on three sides by a three floor building (height 

> 20 m) and on the fourth side by a garden. 

Monitoring devices for sampling BC were placed on windowsills, on balconies and in 

gardens, at a maximum height of 5 meter from the ground. 

3.2.2. BC monitoring campaigns and meteorological data 

BC was monitored during the warm season (from May 7 to June 12, 2017) and the cold 

season (from January 7 to February 12, 2018). These periods were chosen as 

representative of different meteorological conditions and reflecting a different use of the 

heating system, one of the major sources of PM. In particular, according to the Mayor’s 

  Monitoring Sites  

 S UT UB 

Definition 
Street site, site with  very 

important traffic influence 

Urban Traffic, site with 

traffic influence 

Urban Background, site without important 

traffic influence 

Classification variables 

Adjacent road > 10000 

veh/day, no obstacles in 

between 

Adjacent road < 10000 

veh/day, no obstacles in 

between 

Nearest road with > 1000 veh/day at a distance 

> 50 m AND nearest road with > 10000 veh/day 

at a distance > 75 m 

N 6 (18%) 21 (62%) 7 (20%) 

Distance to the nearest 

road (m) 
9-23 3-36 50-201 

Tot vehicles per day on 

the nearest road 

(veh/day) 

3379-20284 47-18224 89-324 

Number of addresses in 

a circular buffer with 

radius = 50 m (N) 

6-27 3-72 1-30 
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order, private and public buildings’ heating systems in Milan are switched on at mid-

October and switched off at mid-April. In this paper these two monitoring periods are 

defined as warm and cold seasons, respectively. The reference site was sampled by a 

micro-aethalometer, type MA200 (AethLabs, USA),for the whole period of both seasonal 

monitoring campaigns, allowing to measure  both 𝐵𝐶𝑟𝑒𝑓, the seasonal BC averages,, and 

𝐵𝐶𝑟𝑒𝑓−𝑖, i.e. the BC weekly averages The 34 monitoring sites were sampled using seven 

micro-aethalometers, type AE51 (AethLabs, USA); each of those sites were sampled for a 

single week, allowing the determination of 𝐵𝐶𝑖. Seven to 8 devices simultaneously 

collected air samples for approximately an entire week at each site. It means that every 

new week a new set of 7-8 monitoring sites was measured. 

For both the monitoring campaigns, a seasonal estimate of BC (𝐵𝐶𝑠𝑒𝑎𝑠𝑜𝑛) for each 

monitoring site was inferred by comparison with the BC concentration measured at the 

reference site during the complete monitoring campaign by season (𝐵𝐶𝑟𝑒𝑓), and in the 

specific week of monitoring (𝐵𝐶𝑟𝑒𝑓−𝑖), by applying the formula [1]. 

 

𝐵𝐶𝑠𝑒𝑎𝑠𝑜𝑛 = 𝐵𝐶𝑖
𝐵𝐶𝑟𝑒𝑓

𝐵𝐶𝑟𝑒𝑓−𝑖
     [1] 

From May 26, 2017 to June 1, 2017, some failures of the sampling device at the reference 

site occurred. To deal with this issue, we extrapolated both MRH and daily BC 

concentrations at the reference site based on the urban background station operated by 

the air quality network (AQN) of Milan (ID station 10283, via Ponzio 34/6 – Pascal Città 

Studi). The correction factors for MRH and daily periods were similar to the regression 

slopes between the reference site and the AQN site computed for the entire monitoring 

period (S6-S7).  

BC annual estimate (𝐵𝐶𝑎𝑛𝑛𝑢𝑎𝑙) at each site was obtained as a mean value of the warm and 

the cold 𝐵𝐶𝑠𝑒𝑎𝑠𝑜𝑛, assuming that both the monitoring campaigns represented a period of 

six months. 

Meteorological data were collected from the nearest Milan AQN station (piazza Zavattari, 

~ 1 km from the school reference site).  

R (Team, 2014) was used to perform statistical analysis. Kruskal-Wallis and Bonferroni 

post-hoc tests, with significance set at α = 0.05 and rejected Ho if p <=  α /2, were used 

to check differences among classes of monitoring sites. 
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3.2.3. Micro-aethalometer devices and BC data handling 

BC was estimated as equivalent black carbon using seven micro-aethalometers AE51 and 

one micro-aethalometer MA200. The AE51 and the MA200 were run at a 5 minute temporal 

resolution and the 100 ml/min flowrate was calibrated before each measurement 

campaign with a portable flow calibrator (Alicat scientific, USA). The AE51 measures BC 

at 880 nm wavelength, while the MA200 supports a multi-wavelength setup that includes 

375 nm, 625 nm, 528 nm, 470 nm and 880 nm. The micro-aethalometers are optical 

portable devices that link the attenuation rate (ΔATN) of a beam of light that passes 

through a filter spot to the concentration of black carbon. This relation was found to be 

non-linear due to some artefacts, the most important of which are the so-called shadowing 

effect linked with the increasing filter load and the multiple scattering of the filter fibres 

(Weingartner et al., 2003). The shadowing effect is of concern for the AE51 devices, while 

for the MA200 device, it is automatically corrected by the Dualspot© technology. This 

technology was available only for the cold season campaign, while during the warm 

season, the attenuation threshold of the MA200 was set at a low value (40 ATN), to 

minimize the filter loading. For the AE51 no processing algorithm has been applied to the 

raw data but, to avoid the shadowing effect artefact, filters were regularly changed, once 

or even twice a day, during highly polluted days.  

BC raw data were post-processed by removing reported errors, by smoothing with the 

Optimized Noise-reduction Algorithm (ONA)(Hagler et al., 2011) and by applying 

correction factors to account for differences between devices. Indeed, to evaluate the 

comparability between AE51s and the MA200, inter-comparison exercises were conducted 

pre- and post-monitoring for each campaign; these were performed running all devices 

simultaneously and next to each other for 24 hours. The MA200 was the most recent device 

calibrated by the manufacturer, so we decided to consider it as the gold standard. By 

comparing the MA200 with the AE51s, we calculated correction factors for each device 

that were applied to the raw data to obtain the final BC estimates. These values ranged 

from 0.53 to 1.06, and representing the regression slopes between MA200 and AE51s. The 

applied factors were calculated as the mean value between the pre- and post-monitoring 

inter-comparisons.  

Finally, the BC obtained by the MA200 device was also used to calculate the Absorption 

Ångström Exponent (AAE) of the two seasonal monitoring campaigns. In fact, this device 

measures black carbon at five different wavelengths allowing studying the absorption 
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coefficient of the measured aerosol. In particular, the AAE gives information about the 

type of aerosol and contribution of different sources (Kirchstetter et al., 2004). In this 

study the AAE was derived from the aerosol absorption coefficient (babs) measured at the 

UV channel (λ = 375 nm) and the IR channel (λ =880 nm), using the following equation: 

𝐴𝐴𝐸 = −
𝑙𝑛(

𝑏𝑎𝑏𝑠(375)

𝑏𝑎𝑏𝑠(880
)

𝑙𝑛(
375

880
)

      [2] 

Higher 𝐴𝐴𝐸 values were reported for aerosols with higher concentrations of organic 

compounds components, typically derived from the combustion of biomass; for traffic 

related aerosols lower 𝐴𝐴𝐸 values were reported (Martinsson et al., 2017; Sandradewi et 

al., 2008)  

3.2.4. LUR models and independent variables 

LUR models to estimate BC distribution in the study area were developed using 𝐵𝐶𝑠𝑒𝑎𝑠𝑜𝑛 

as the dependant variable. Six seasonal and annual LUR models were developed, three 

focused on MRH. In particular, MRH models were developed using data from 7 am to 9 am 

on working days, while seasonal models used all available data. 

As independent variables, GIS based covariates were calculated using QGIS 

software(Team, 2016). Overall, more than 100 variables (S1) were obtained and grouped 

in three different classes: a) road and traffic variables, b) population variables, c) land 

use variables. Shapefiles and metadata were obtained from different institutions and in 

particular: 

- road and traffic data from the Mobility and Environmental Agency of the 

Municipality of Milan (AMAT, 2017); 

- population data from the Statistic National Institute of Italy (ISTAT, 2011) and the 

open data site of the Municipality of Milan (2018); 

- land use data from the Urban Atlas project of the EEA (2011). 

When necessary, different reference systems were converted in the local projected 

coordinate system (Monte Mario, EPSG:3003). For all variables, circular buffers of 

different size around monitoring sites, were tested. In particular, for traffic variables we 

tested circular buffers of radius 50, 100, 300, 500 and 1000 m, while for land use and 

population variables we tested circular buffers of radius 50, 100, 300, 500, 1000 and 3000 

m. Traffic variables were estimated by the Mobility and Environment Agency of the 

Municipality of Milan using a four-step travel demand model (Citilabs, USA), representing 

daily mean values or MRH mean values. Elevation variables were not collected because 
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there are no substantial differences in altitude in the city, while a Sky View Factor (SVF) 

was estimated for each monitoring site by the DEMtools QGIS experimental plugin (K, 

2014), to consider possible urban canyon effect (Eeftens et al., 2013). No microclimate 

data were included into the model; nevertheless, the study design, measuring BC over 

five weeks and two different seasons, allowed to partially take into account 

meteorological variability. 

Each model was developed by using the ESCAPE methodology (Eeftens et al., 2012): a 

supervised forward stepwise procedure was performed using the above-mentioned 

variables. Multicollinearity was checked before entering the variables in the model. The 

collinearity cut-off was set at Pearson’s |r| ≥ 0.6. The final models were those with a 

higher coefficient of determination (adjusted R2) and lower Root Mean Square Error 

(RMSE). Spatial autocorrelation was checked on model residuals by calculating the Moran’s 

I index with the free GeoDa software (Anselin L et al., 2006). The leave one out cross 

validation (LOOcV) procedure was used to test the performance of the models focusing on 

R2 and RMSE. 

Six BC concentration maps were developed in QGIS by 1) applying the models to a set of 

more than 70,000 points on a regular grid inside the study area 2) applying a Natural 

Neighbour interpolation algorithm (Sibson R, 1981) to obtain six 1x1 meter spatial 

resolution maps. Finally, three maps were developed to show the relative increment of 

BC during the MRH periods. The percentage value of each 1x1 meter pixel is the increment 

of BC concentration during the MRH compared to the daily period, computed using the 

same regular grid, data and interpolation algorithm previously mentioned.  

3.3. RESULTS 

3.3.1. Monitoring sites and the participatory approach 

Seven hundred and forty letters and brochures were sent to parents of schoolchildren (S9-

S10), 40 of which expressed their availability to host the sampling device; among them 14 

dwellings met the requested characteristics and were selected as monitoring sites. The 

recruitment campaign on social media allowed to identify 19 additional monitoring sites. 

A monitoring site was then placed at the main entrance of the school (via Gattamelata, 

33, Milano), for a total of 34 monitoring sites. 
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3.3.2. BC monitoring data, Absorption Ångström Exponent (AAE) and meteorological data 

In Figure 25 the measured concentrations of weekly BC on the different monitoring sites 

are reported, for the warm and cold season as median, 25th and 75th percentiles. 

Differences in BC concentrations were observed during the monitoring campaigns, 

especially in the warm season. For this reason, it was necessary to integrate the observed 

temporal variability estimating the seasonal BC concentration for each monitoring site.  

 

Figure 25. Weekly median (25th-75th percentile) BC concentrations at the 34 monitoring sites and the 

reference site in the two investigated seasons. 

In Table 2 estimated seasonal and annual BC concentrations, divided in seasonal and MRH 

values, are reported. Highest concentrations of BC were observed in the cold season with 

an overall median (IQR) of 3247 (455) ng/m3, while in the warm season the overall median 

(IQR) was 1309 (639) ng/m3 (Table 5). The comparison between different types of 

monitoring sites showed concentrations that ranged from 906 ng/m3 on an UB site, to 2584 

ng/m3 on a S site in the warm season, and from 2684 ng/m3 on an UT site to 5111 ng/m3 

on a S site in the cold one. The same comparison but focusing on MRH showed values 

ranging from 1536 ng/m3 to 4264 ng/m3 during the warm season, and from 3298 ng/m3 to 
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6764 ng/m3 during the cold season. In Figure 26, the same data reported in Table 2, are 

presented as box plots. The figure shows that the differences between classes were more 

pronounced in the warm season, with BC at the S sites about 1.5 fold-higher than UT, and 

UT 1.2 fold-higher than UB, according to both BC and MRH BC. In the cold season the 

picture was similar, but with a smaller contrast between sites. Kruskal-Wallis and 

Bonferroni post-hoc test (S8) showed that: a) UB and S sites were always significantly 

different; b) UB and UT sites were significantly different only according to the annual non-

MRH estimates; b) UT and S sites were always significantly different, with the exception 

of cold season data. 

Table 5. Statistics of estimated seasonal, annual and MRH BC at different monitoring sites 

  

BC (ng/m3) S* UT* UB* All 

Warm season 

Median 1922 1322 1039 1309 

IQR 588 308 125 639 

Min-Max 1768-2584 922-1846 906-1177 906-2584 

Cold season 

Median 3684 3286 3005 3247 

IQR 290 375 215 455 

Min-Max 3128-5111 2684-4227 2901-3239 2684-5111 

Annual 

Median 2735 2335 2039 2331 

IQR 373 228 64 446 

Min-Max 2519-3847 1894-2774 1962-2149 1894-3847 

Warm season MRH 

Median 3888 2394 2102 2357 

IQR 552 637 232 1018 

Min-Max 3412-4264 1769-3167 1536-2320 1536-4264 

Cold season MRH 

Median 5042 4104 3857 4227 

IQR 1100 489 727 726 

Min-Max 4642-6764 3298-5560 3374-4308 3298-6764 

Annual MRH 

Median 4441 3282 2882 3299 

IQR 596 485 340 739 

Min-Max 4029-5382 2678-3948 2645-3314 2645-5382 

 N 6 7 21 34 

*the differences between different classes of monitoring sites were tested by a Kruskal-Wallis test. 

Mostly of the monitoring sites were significantly different from each other according to Bonferroni 

post hoc (α = 0.05, reject Ho if p <=  α /2). UB and UT sites were not different during both cold and 

warm season. Moreover, during the cold season also S and UT sites were not significantly different. 
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In Figure 27, seasonal hourly median and IQR BC trends during working days and weekend 

are presented; highest peaks were found corresponding to the time with the highest 

traffic, i.e. morning rush hour period during working days (7-9 am), and leisure night time 

during the weekend. During the weekend the MRH peak was still present but with a much 

lower concentration. MRH peak during working days was found in both seasons, although 

in the warm season it was slightly earlier in the morning. On working days, an evening 

peak was observed only during the cold season. Wind speed data are presented in the 

same figure with opposite trends when compared to BC. Highest values took place during 

the afternoon and, in particular, in the warm season during which it was also measured a 

more intense and prolonged daily solar radiation (S3). Meteorological parameters during 

the monitoring campaigns, as measured at the nearest Milan air quality network station 

(piazza Zavattari, ~ 1 km), are summarised in Supplemental Table S2 together with the 

solar radiation daily trend plot (S3), accumulated rain plot (S4) and wind rose diagram 

(S5). At the reference site located in the school courtyard the averaged Angstrom 

exponent during the cold season was 1.9 (± 0.19) and during the warm season was 1.5 (± 

0.25). 
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Figure 26. Boxplots of  seasonal and MRH BC at different type of monitoring sites. Black dots are outliers: 

x<Q1-(1.5*IQR), x>Q3+(1.5*IQR). Inferior and superior whiskers represent: (Q1-1.5*IQR)<x<Q1, 

Q3<x<( Q3+1.5*IQR). Where x=data, Q=quartile and IQR is interquartile range. 

 

Figure 27. BC concentrations and wind speed hourly trends during the warm and the cold season, by working 

days and the weekend. Data are presented as median value for both BC concentrations and wind 

speed, and IQR only for BC concentrations. 
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3.3.3. Annual and seasonal LUR models for BC 

Table 5 shows a summary of relevant parameters of the annual and seasonal LUR models. 

Models explain from 52 to 79 % of BC variability. Among the investigated covariates (traffic 

variables, population variables and land use variables), the most explanatory ones were 

those related to traffic. In particular, the most significant for the annual and warm season 

models were DAILY_TOTINVDist, that is the ratio between total vehicle/day and the 

distance to the nearest road and TRAFLOAD_100, which is the product of total vehicle/day 

and the length of the roads in a circular buffer of 100 m radius. The Variance Inflation 

Factor (VIF) showed no collinearity between these covariates. For the cold season model 

only TRAFLOAD_50, i.e. the product of total vehicle/day and length of the roads in a 

circular buffer of 50 m radius, significantly contributed to the model. Intercepts ranged 

between 1013 ng/m3, in the warm season model, to 3095 ng/m3, in the cold season model, 

showing the different seasonal background of BC. 

The root mean square errors (RMSE) for the daily annual, warm and cold season models 

were 173.68 ng/m3, 203.99 ng/m3, 304.32 ng/m3 (Table 6). These values were lower than 

the standard deviations of the estimated data (380 ng/m3, 426 ng/m3, 443 ng/m3, Table 

2). The LOOcV technique confirmed positive results for the daily annual and warm season 

model, with high R2 LOOcV RMSE (0.67 and 0.73), that were similar to the model RMSE. 

For the cold season model, the cross validation resulted in a lower value of LOOcV R2 

(0.35). Overall, there was only one influential observation (Cook’s D value >2) that affects 

both the annual and the cold season models. No spatial autocorrelation was highlighted 

according to the Moran’s I test applied on residuals. 

3.3.4. MRH annual and seasonal LUR models 

Table 7 shows a summary of relevant parameters of the MRH annual and seasonal LUR 

models. Models explain from 65 to 81 % of BC variability. Once again, only traffic variables 

with small buffers significantly contributed to models. In particular, TRAFLOAD_100_MRH 

and TOTINVDist_MRH have the same meaning of the daily variable explained above, but 

were obtained using data MRH-focused. Variance Inflation Factor (VIF) showed no 

collinearity between these covariates.  

The RMSE (300.04 ng/m3, 456.98 ng/m3, 508.63 ng/m3) of the models were lower than the 

standard deviation of the estimated data (639 ng/m3, 709 ng/m3, 731 ng/m3, Table 5). 

The LOOcV technique confirmed positive results for all the models (R2 = 0.78, 0.59, 0.51) 

and LOOcV RMSE were similar to the model RMSE. Overall there was only one influential 
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observation (Cook’s D value >1) that affected the cold seasonal MRH model. No spatial 

autocorrelation was found according to the Moran’s I test applied on residuals.  

3.3.5. BC concentration maps and spatial patterns 

In Figure 28 the concentration maps of BC derived by the six LUR models (Table 6 and 7) 

are shown. In dark red, the highest values were estimated according to the LUR cold MRH 

model, while in green the lowest concentrations were estimated according to the LUR 

warm season model. For each couple of seasonal/annual and MRH models, the latter 

showed higher BC concentrations. Furthermore, to better explain spatial differences 

between seasonal/annual and MRH models, Figure 29 presents the relative incremental 

percentage of BC concentration that occurred during MRH, according to the estimates 

given by LUR models. All the pictures show a general increment in BC concentrations that 

go from +33% to +233%, while spatial patterns seem to be different in the two seasons. 

.
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Table 6. Summary of parameters of the daily annual and seasonal LUR models for BC (ng/m3). 

a TOT_INVDist = the ratio between total vehicle/day and the distance to the nearest road; TRAFLOAD_100 = that is the product of total vehicle/day and the length of the roads in a circular buffer of 

100 m radius; TRAFLOAD_50 = that is the product of total vehicle/day and the length of the roads in a circular buffer of 50 m radius   

b Variance Inflation Factor for multicollinearity 

*p < .001 

  

 Variablesa Units Estimate Std err T Value P VIFb Variable range R2 Adj R2 
LOOcV 

R2 
RMSE 

LOOcV 

RMSE 

highest 

Cook’s D 

Moran’s 

I 

Annual 

Intercept ng m-3 2007 45.57 44.040 .00* - - 

.79 .78 .67 173.68 217.27 2.23 .0507 
TOT_INVDist veh·day-1·m-1 4.044×10-1 

8.144×10-

2 
4.966 .00* 1.196 4.386-1.893×103 

TRAFLOAD_100 veh·day-1·m 5.278×10-5 
7.744×10-

6 
6.816 .00* 1.196 0-2.207×107 

Warm 

season 

Intercept ng m-3 1013 53.51 18.921 .00* - - 

.77 .75 .73 203.99 219.41 .065 .0278 
TOT_INVDist veh·day-1·m-1) 5.783×10-1 

9.565×10-

2 
6.046 .00* 1.196 4.386-1.893×103 

TRAFLOAD_100 veh·day-1·m 4.497×10-5 
9.094×10-

6 
4.945 .00* 1.196 0-2.207×107 

Cold 

season 

Intercept ng m-3 3095 66.770 46.355 .00* - - 

.52 .51 .35 304.32 354.58 2.58 .0381 

TRAFLOAD_50 veh·day-1·m 1.928×10-4 
3.258×10-

5 
5.916 .00* - 0-7.645×106 
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Table 7. Summary of parameters of the MRH-focused annual and seasonal LUR models for BC (ng/m3). 

a TOT_INVDist_MRH = the ratio between total vehicle/MRH and the distance to the nearest road; TRAFLOAD_100_MRH = that is the product of total vehicle/MRH and the length of the roads in a circular 

buffer of 100 m radius; TRAFLOAD_50 = that is the product of total vehicle/MRH and the length of the roads in a circular buffer of 50 m radius   

b Variance Inflation Factor for multicollinearity 

*p < .001 

 Variablesa Units Estimate Std err T Value P VIFb Variable range R2 
Adj 

R2 

LOOcV 

R2 
RMSE 

LOOcV 

RMSE 

highest 

Cook’s 

D 

Moran’s 

I 

Annual 

Intercept  ng m-3 2842 73.1 38.883 .00* - - 

.81 .80 .78 300.04 278.74 .17 -.16 TOT_INVDist_MRH veh·day-1·m-1 11.71 1.796 6.521 .00* 1.197 0.318-1.367×102 

TRAFLOAD_100_MRH veh·day-1·m 1.020×10-3 1.700×10-4 5.999 .00* 1.197 0-1.616×106 

Warm 

season 

Intercept  ng m-3 1979 109.2 18.120 .00* - - 

.65 .62 .59 456.98 416.51 .61 -.07 TOT_INVDist_MRH veh·day-1·m-1 11.18 2.683 4.166 .00* 1.197 0.318-1.367×102 

TRAFLOAD_100_MRH veh·day-1·m 1.032×10-3 2.540×10-4 4.063 .00* 1.197 0-1.616 e×106 

Cold 

season 

Intercept  ng m-3 3706 113.8 32.574 .00* - - 

.65 .62 .51 508.63 433.73 1.51 -.29 TOT_INVDist_MRH veh·day-1·m-1 12.24 2.795 4.380 .00* 1.197 0.318-1.367×102 

TRAFLOAD_100_MRH veh·day-1·m 1.007×10-3 2.646×10-4 3.806 .00* 1.197 0-1.616×106 
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Figure 28. BC concentration maps (ng/m3). The BC concentration value of each pixel (1x1 meters resolution) 

was estimated using the LUR models (Table 3 and 4) on a set of more than 70,000 points, and 

applying a Natural Neighbour interpolation algorithm. The colour classification is based on the 

total distribution’s deciles, i.e. the distribution of all the seasonal and MRH-seasonal estimates 

merged together. The blue star indicates the school. 

 

 

Figure 29. Increment BC maps of MRH according to the warm season, cold season and annual models. The 

percentage value of each point is the increment of BC concentration measured during the MRH 

compared to the daily period, using the 70,000 points and data from Figure 5. A Natural 

Neighbour interpolation algorithm was applied to obtain the spatial resolution of 1x1 meters. 
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3.4. DISCUSSION 

Two seasonal BC monitoring campaigns were carried out in the catchment area of an 

elementary school in the city of Milan using optical devices. The spatial distribution of BC 

measured at different monitoring sites allowed us to develop annual, seasonal, and MRH 

Land Use Regression models.  

Weekly median concentrations of BC at 34 monitoring sites and the reference site (Figure 

2) show that street sites (S) were those with the highest values. Particularly, the highest 

BC concentration was measured at site 17-S: this site is facing the outer ring road of the 

city, that in this particular section doubles the carriageways from four to eight, by an 

additional elevated road (Cavalcavia della Ghisolfa). During the warm season, BC 

concentration at the reference site was comparable to or lower than BC concentration at 

all the other monitoring sites. This was expected, given that the reference site was 

located inside the courtyard of the study school, protected from direct traffic sources. 

Conversely, in the cold season BC concentration at the reference site was higher than the 

other monitoring sites. This may be due to the use of the MA200 device equipped with the 

Dualspot© technology, that was not available for the AE51s devices used at the 34 

monitoring sites; this technology automatically corrects for the shadowing effect, avoiding 

the underestimation of BC usually observed in the presence of high values of ATN that 

occur more often during the cold season. Another possible explanation is the contribution 

of the school heating system exhaust to BC at the reference site. 

Overall, BC values were lower in the warm season (median 1309 ng/m3) than in the cold 

season (median 3247 ng/m3) (Table 5). This is attributable mainly to the contribution of 

heating systems, operating in Milan from mid-October to mid-April. MRH (7 am-9 am) 

represents a very critical window for exposure to BC, with median (IQR) concentrations of 

2331 (446) and 4227 (726) ng/m3 in the warm and cold season, respectively, and an overall 

increase of 1000 ng/m3 in comparison with the daily median value, due to the vehicular 

traffic of commuters. 

Annual BC concentrations in our study are consistent with those reported in other studies. 

In Antwerp in 2010-2011 Dons et al. (2013) found BC average (± SD) values of 2654 (± 766), 

2417 (± 660) and 2224 (± 297) ng/m3 for S, UT and UB sites, respectively . In 2009 Reche 

C et al. (2011) found BC average (± SD) values of 1900 (± 700), 7800 (± 2700) and 3500 (± 

1300)  ng/m3 at a UB and a S site in London, and in a S site in Bern, respectively . In these 

last two S sites BC values were greater probably because they were particularly affected 
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by traffic: both located in street canyons, and close to highly congested roads (80,000 

veh/day, London; 30,000 veh/day, Bern)(Dons et al., 2013; Reche et al., 2011). Moreover, 

on the monitoring site located in Bern, BC was measured with a multiangle absorption 

photometer that is not affected by the shadowing effect. In 2011 a 3-day BC monitoring 

campaign was performed in Milan during the warm season, measuring daily average (± SD) 

BC concentration of 1600 (± 400), 2000 (± 500) and 1500 (± 500) ng/m3 at a UB site, 3100 

(1700), 2800 (1400) and 2600 (1900) ng/m3 at a UT site and 6300 (2900), 5200 (2300) and 

3300 (1900) ng/m3 at a S site (Invernizzi et al., 2011). These values appear to be higher 

than those we measured during the warm season monitoring campaign because they did 

not consider night-time, but also probably due to the stricter vehicle emission standards 

introduced over the years. 

The chosen set of monitoring sites allowed us to catch the spatial contrast inside the study 

area (Figure 26). The differences in median BC among sites (Table 5) were more 

pronounced during the warm season with an increase of about 85% (883 ng/m³) from UB 

to S sites, 45% (600 ng/m³) from UT to S, 27% (283 ng/m³) from UB to UT, while during 

the cold season, the increase was 23% (679 ng/m³) from UB to S, 12% (398 ng/m³) from 

UT to S, 9% (281 ng/m³) from UB to UT. The above mentioned differences suggest that BC 

distributes more homogeneously in the study area during the cold season  than during the 

warm season, probably due to the impact of heating system source and meteorological 

condition. In particular, very low wind speed values (S2-S5) and the frequent thermal 

inversions that usually characterize the cold season in the study area, favour the 

stagnation of particulate matter (Caserini et al., 2017; Vecchi et al., 2004) A similar 

pattern was observed in the comparison between seasonal MRH BC data. Although these 

considerations were broadly supported by the significance tests applied to the data set, 

concentrations measured at the UB sites and UT sites were not found to be significantly 

different, with the exception of the annual estimates. This is probably due to the used a 

priori selection criteria (Table 3) that did not allow to clearly distinguishing these two 

classes. 

The BC hourly trends (Figure 27) show the highest peaks in connection to the commuting 

to work periods, i.e. MRH in working days. Elevated levels of BC were also measured during 

night time in working days in the cold season; this peak and the consequent accumulation 

of BC is probably due to the commuting from work, the use of biomass heating systems 

and finally favoured by the decrease of wind speed observed starting from 4 pm. During 
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the weekend, a different hourly trend was found: MRH peak was always less pronounced, 

while highest BC levels were observed during night-time, probably in connection with 

people entering the city for leisure activities. 

Six LUR models, three of which focused on MRH, were developed (Table 5 and 6). The 

variability of BC explained by our annual and warm season models (R2 = 0.79 and 0.77), as 

well as RMSE values (217 and 219 ng/m3) are comparable to those reported in Dons et al. 

(2014) (R2 = 0.73 and 0.70, RMSE = 384 and 343 ng/m3); conversely, the performance of 

our cold season model (R2 = 0.52, RMSE = 304 ng/m3) is worse than the one developed in 

the just mentioned study (R2 = 0.69, RMSE = 403 ng/m3); this is probably linked to the 

ADDRESS_50 explanatory variable, i.e. the number of addresses in a 50 meter circular 

buffer, that was able to partly catch the portion of variability caused by heating systems. 

Moreover, the other explanatory variables appear very similar, especially focusing on the 

warm season model in which traffic variable with small buffers played an important role. 

Finally, intercept values appear lower in Dons et al. (2014) probably due to both the lower 

background BC concentration in Antwerp and the presence of rural sites in the pool of 

monitoring sites used to develop the models (Dons et al., 2014). Similar to LUR season 

models developed in Pittsburgh by Tunno BJ et al.(2018) and, once again, in Antwerp 

(Dons E et al., 2014), our models better explained the variability of BC in the warm than 

in the cold season(Tunno et al., 2018). This is probably connected with both the different 

contribution of sources to BC concentrations and our ability to explain the variability of 

BC caused by these non-traffic sources. The higher average Absorption Ångström Exponent 

value found for the cold season (mean ± SD, 1.9 ± 0.19) than the warm season (mean ± 

SD, 1.5 ± 0.25), reinforces this hypothesis, possibly indicating a major role played by 

combustion for heating, and especially biomass heating (Martinsson et al., 2017). 

Moreover, in our study, the high time resolution of BC acquisition (every 5 min) and the 

availability of dynamic traffic variables, allowed us to focus on MRH. In particular, for the 

cold season and the annual models, MRH models better explained BC variability, with adj 

R2 that increased from0.51 to 0.62 and from 0.78 to 0.80, respectively. In general, better 

performances of LUR models focused on MRH are expected due to the higher contribution 

of traffic source; however, for the warm season our models show an opposite behaviour 

with adj R2 that worsened from 0.78 to 0.62. One of the possible reasons could be the 

effect of wind, not included in the models, which behaved differently in the two seasons: 

as showed in Figure 4, during the warm season wind speed morning increment take place 
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simultaneously to the MRH, probably influencing BC spatial distribution. Despite BC is 

strongly related to traffic source, there are only a few LUR models that focus on rush 

hours; this is probably due to expensive equipment, and logistic and technical issues that 

are required for BC monitoring. In particular, Tunno et al. (2018) developed two seasonal 

rush hour models in Pittsburgh, USA, that explained the 75% and the 61% of BC variability 

for summer and winter periods respectively (Tunno et al., 2018). These two models used 

only traffic variables with 200 meters circular buffers. Besides, Dons et al (2013) 

developed for Flanders hourly annual LUR models explained the 59% and 58% of the BC 

variability measured at 7 am and 8 am during weekdays; these LUR models used traffic, 

land use and population dynamic explanatory variables(Dons et al., 2013). However, both 

these two examples are not comparable to our study: models by Dons et al. (2013) used a 

pool of regional-scale BC data; while Tunno et al. (2018) used BC data that represents an 

average concentration of both morning and evening rush hours. 

Furthermore, the spatial patterns shown by the application of our LUR models (Figures 5 

and 6) suggest an overall increase in BC concentrations during MRH, with differences in 

magnitude according to location. In particular, during the warm season, while the highest 

concentrations are linked to the major roads (Figure 28), the main relative increase seems 

to affect the background and the local roads network (Figure 29). Conversely, during the 

cold season both highest BC concentration and main relative increase are linked to the 

major roads. The different behaviour observed according to the relative increase of BC 

concentration during MRH period is probably due to the very high background 

concentration of BC linked to the presence of residential heating. This source is active 

only during the cold season and probably affects especially the concentration in urban 

background sites, lowering the relative impact of traffic sources. Nevertheless, the annual 

model showed similar pattern to the warm season model suggesting that traffic remains a 

major issue during MRH. Our work has some limitations. Raw BC data were not post-

processed to account for optical related artefacts (Good et al., 2017). This might have 

caused, especially during cold season, an underestimation of BC concentrations and it 

might have contributed to the lower performance of the cold season LUR models. 

However, to partially deal with this issue, we increased the frequency of filter 

replacement, up to twice a day during highly polluted periods; moreover, by applying a 

correction factor resulting from two 24-hours intercomparison between AE51s and the 

MA200, we took advantage of the correction of BC introduced by the Dualspot© 
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technology. This correction factor should have partially corrected the systematic 

underestimation of BC concentrations caused by the filter loading effect. However, due 

to technical reasons, we were able to use the Dualspot© technology only during the cold 

season monitoring campaign. Therefore, it is likely that warm season campaign 

measurements are more biased than the cold one, even if during this season the 

underestimation is usually lower. Another limitation is that LUR models were developed 

using a pool of data collected in two seasonal 5-weeks monitoring campaigns, during which 

each site was monitored only for one week; this may have introduced some temporal 

variability bias, that we tried to address by applying equation [1]. Furthermore, some LUR 

models suffer high Cook’s D values (max 2.58), pointing out the presence of an influential 

observation. In particular, it was found that there was one street site characterized by an 

extremely high flux of traffic, site 17-S (Figure 25). We decided not to exclude this site 

because in a very congested city like Milan we expect to find other locations like this, and 

because this issue was not consistently seen in all models. Finally, a part of the 

unexplained variability in our LUR models could be attributed to the use of land use 

variables from 2011 that could not properly take into account the urban transformations, 

which happened in the last few years. Moreover, for the cold season LUR models there is 

a lack of explanatory variables that properly account for the contribution of heating 

systems. These systems may differently contribute to BC concentrations at the ground 

level, due to the different fuels burnt and the variable heights of surrounding buildings. 

Ultimately, more studies are needed to better understand the spatial variability of BC 

during the cold season, especially referring to the portion of variability caused by heating 

systems. 

3.5. CONCLUSION 

In conclusion, BC spatial variability was analysed for the first time in Italy by a multisite 

and high time resolution approach, with the aim to characterize a very specific portion of 

the urban environment and focusing on the most critical daily time window for exposure, 

i.e. a school catchment area and MRH. Furthermore, to increase awareness among citizens 

and in particular schoolchildren’s parents, we used a participatory approach by involving 

all the actors of the selected school from the very first part of the project. 

This study confirms that traffic is a major source of BC in Milan, and MRH is the part of 

the day in which the highest concentrations occur. Transport policy should aim to reduce 
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air pollution exposure in the city of Milan and limit its impact on health, in particular 

during the cold season when a high background concentration is added to the daily peaks 

of exposure. Children are especially susceptible to the effects of air pollution and when 

they commute to school concentrations tend to be the highest, partly because many 

parents drive their children to school. Our spatial analysis could help policy makers to 

identify hot spots and reduce emission inside the study area, for example through the 

promotion of less polluted school streets. Finally, reducing the emissions of BC has the 

important co-benefit of reducing global warming and achieving the United Nations 

Intergovernmental Panel on Climate Change goal (ONU, 2018).  
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4. A PARTICIPATORY APPROACH TO INVOLVE TEACHERS, 

SCHOOLCHILDREN AND THEIR PARENTS IN THE RESEARCH 

PROCESS 
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RESEARCH QUESTIONS AND ANSWERS 

Q5: Is the used participatory approach to involve directly the school (i.e. 

teachers and children) in the research project a valuable approach to raise 

awareness on air pollution topic? 

A1: Inspired by the IVAC methodology and consisting in a) the gamification of the 

topic, and b) the experience-based and participatory approach, the 

environmental education intervention proposed in the framework of the MAPS MI 

project proved to be a valuable way to engage the stakeholders and raise 

awareness among schoolchildren.  

Q6: Is this a suitable approach to recruit volunteers in the research process? 

A2: the two educational modules were planned to take place just before the two 

seasonal personal monitoring campaigns in order to help to recruit volunteers. 

The relatively high response rate (63%) and the increase in number of 

participants (+22%) of the first and of the second monitoring campaign 

respectively, could be seen as an indicator of the effectiveness of such an 

approach. 
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ABSTRACT 

 

Introduction:  

The engagement of communities and citizens in the research process is one of the key 

aspects to achieve the exposure science vision of 21th Century. Moreover, enhancing 

education on air pollution is considered a key factor for improving health and quality of 

life, especially for children. This chapter discuss an environmental education intervention 

focused on air pollution and carried out with a participatory approach aiming to raise 

awareness and involve children and their parents in a two-seasonal personal monitoring 

campaign. 

 

Methods: The environmental education intervention consisted in a double series of ludical 

and experience-based laboratories set according to the Investigation, Vision, Action, 

Change (IVAC) methodology. The design of the intervention was firstly shared with the 

Teaching Committee of the school, and then planned according to the collected 

suggestions. To assess children awareness on air pollution topic, the data collected during 

a personal monitoring campaign performed during home-to-school commuting were 

compared to their according perceptions. 

 

Results:  

With the environmental education intervention 128 children (9-10 yrs.) were involved in 

the research process. Children were involved in a multitude of ludical activities on air 

pollution topic starting from their perceptions and experiences in the neighborhood. 

Moreover, the overall response rate to the personal monitoring recruitment was 63% 

according to the first, with a 22% increment in the number of participants according to 

the second one. Finally, a first attempt to compare children perceptions to the personal 

exposure measurements of Black Carbon shows that Children overestimated BC 

concentration in the 42% of the cases, while underestimated in 33%. 

 

Discussion:  

This experience showed the potential of a participatory approach in the framework of 

exposure science to both raising awareness among stakeholders and help researchers to 

involve volunteers in the research process.  
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4.1. INTRODUCTIONNorthern Italy is one of the most polluted areas in Europe according 

to the European Environment Agency (EEA). Among those located in this territory, 

Milan is the biggest city with an estimated population of about 3.2 million residents. 

If we focus on this urban environment, air pollution is mainly caused by motorized 

traffic and, among air contaminants, Black Carbon (BC) has been identified as a 

sensitive marker of traffic-related air pollution (TRAP). The health impact of TRAP 

exposure is reported to be heavier for the weaker population groups, such as 

children; for instance, many studies have suggested relationships between TRAP 

exposure, airways disorders and cognitive skills. In particular, Morning Rush Hour 

(MRH) is the most congested period of a common urban working day and it is also the 

time during which schoolchildren commute to school and are directly exposed to 

traffic pollution. The United Convention on the Rights of the Child states the rights 

for all children to live in a healthy and safe environment, to express their opinion, 

to be informed and listened to about what affects them. Moreover, as reported by 

the United Nations (UN) “since the adoption of the UN Convention on the Rights of 

the Child in 1989, Article 12 – the provision that children have a right to express their 

views and have them taken seriously in accordance with their age and maturity – has 

proved one of the most challenging to implement” (UN, 2011). Moreover, the 2030 

Agenda for Sustainable Development puts at the top of its concerns the most 

vulnerable people, including children.  

This part of the dissertation will focus on the development of an environmental education 

intervention to raise awareness among teachers, schoolchildren and their parents and to 

favour an active and informed participation to a two-season personal monitoring 

campaign.  
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4.2. MATERIALS AND METHODS 

Firstly, the project was submitted to and approved by the school board of the elementary 

school IC Pietro Micca, via Gattamelata 35, Milano (MI). Then, a preliminary document of 

the contents of the ludical laboratories as well as the proposed activities were shared with 

the schoolteachers’ commission, asking for comments. Finally, according to the different 

curricula and the teachers’ opinions, six third grade-classes were chosen to be involved in 

the project. The intervention took place in spring and autumn 2018, and consisted in a 

double-serie of ludical and experience-based laboratories set according to the 

Investigation, Vision, Action, Change (IVAC) methodology.  

4.2.1. The IVAC model of pedagogy 

According to Jensen and Schnack (1997), “[…] the aim of environmental education is to 

make students capable of envisioning alternative ways of development and to be able to 

participate in acting according to these objectives”, and the better way to achieve the 

goal is through a multi-step process that include as key components: Knowledge, 

Commitment, Visions and Action experiences. This framework is better known as “action 

competence” approach (Jensen et Shnack, 1997). Given this, the IVAC model represents 

a practical declination of the theory that uses questions to define the process by which 

reaching the original goals. In particular, starting from a first introductive part focused on 

the common definition of the problem (A), the group of students should deal with the 

construction of a vision on the future related to the issue of concern, and how it could be 

according to their hopes (B). Finally, a discussion and an implementation of actions should 

take place by looking at both positive and negative consequences and by choosing the 

ones to be carried out (C) (Jensen, 1997). In Table 8 the questions related to the IVAC 

approach are given.  
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Table 8. The Investigations, Visions, Actions and Changes (IVAC) approach 

A: 

Investigation 

of a theme 

- why is this important to us? 

- its significance to us/others?—now/in the future? 

- what influence do lifestyle and living conditions have? 

- what influence are we exposed to and why? 

- how were things before and why have they changed? 

B: 

Development 

of visions 

- what alternatives are imaginable? 

- how are the conditions in other countries and cultures? 

- what alternatives do we prefer and why? 

C: Action and 

change 

- what changes will bring us closer to the visions? 

- what changes within ourselves, in the classroom, in the society? 

- what action possibilities exist for realising the changes? 

- what barriers might prevent carrying out these actions? 

- what barriers might prevent actions from resulting in change? 

- what actions will we initiate? 

- how will we choose to evaluate these actions? 

4.2.2. General approach and ludical laboratories in the MAPS MI framework 

The environmental educational intervention proposed in the framework of the MAPS MI 

project consisted in seven meetings divided in two modules co-designed with ABCittà 

cooperativa ONLUS, a non-profit organization historically focused on participatory 

processes: the first took place in March and April 2018, while the second during October 

and November of the same year. The first module cover the first two contents of the IVAC 

approach, i.e. investigation and the development of a vision, while the second was more 

focused on action and change. Common threads of the whole experience were both a 

participatory and a gamification approach to raise the level of engagement of both 

children and teachers, and an experience-based approach. Such an approach was achieved 

by setting all the activities on the neighbourhood of the school, a well-known environment 

to children, and by asking them to act starting from their own experience and perception 

in that environment. In Table 9, the original IVAC sheet proposed to the schoolteachers 

commission is given. Among the other, the proposed activities included:  

a) a story-telling on air pollutants to make children familiar with the topic;  

b) a series of ludical activities to make children comfortable with the topic, starting 

from their own experiences, focusing especially on home-to-school commuting;  
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c) six BC monitoring campaigns around the school area; 

d) a presentation and discussion of measured data, by playing with charts and maps;  

e) a focus on Sustainable Development Goals (SDGs) with the aim to develop an 

awareness-raising campaign.  

Finally, Figure 30 and 31 give a schematic overview of the first module, with key 

moments, while Figure 32 gives four of the posters designed by schoolchildren for the 

awareness-raising campaign. 
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Table 9. IVAC scheet of the MAPS MI project 

 

 

IVAC Goals Specific goals Example of activities 

IN
V

ES
TI

G
A

TI
O

N
 

 
Turning the classroom 
into a laboratory, 
getting comfortable, 
organizing 
collaborative 
relationships, 
presenting a different 
way of working, 
making the most of 
listening to oneself and 
others as tools for 
getting to know the 
territory, be funny and 
having fun, broadening 
participation, 
reflecting on collected 
data. 

> To contextualize, identify and share the general 
objectives of the project (environment, sociality, 
health); 

> To define together the role of children in the 
project (from the neighborhood mapping, to 
research, to action); 

> To start the first reflections on the home-to-school 
commuting and on the perception and memory of 
the key-places in the neighborhood; 

> To experience the learned things in the 
neighborhood  

> To describe and analyze the home-to-school paths 
putting it in a system together with the other 
children’ paths and the different perceptions of 
places; 

> To use drawing, maps and interactive games to 
visualize the learned concepts; 

☺ Drawing the map of the 
neighborhood together; 

☺ Visualizing ugly and beautiful 
places of the area on the 
map; 

☺ Drawing and systemitize 
home-to-school paths; 

☺ Presenting the identikit of 
Black Carbon and other air 
pollutants; 

☺ Identifying where Black 
Carbon is hiding on the map 
of the neighborhood; 

☺ Acting as a researcher, by 
monitoring Black Carbon in 
the neighborhood. 

V
IS

IO
N

 

Collecting and reading 
data, expressing the 
wishes, starting to 
think about the future, 
trying to unhinge the 
clichés about 
movement and air 
pollution, working in a 
team, rethinking 
sustainability in pro-
active terms. 

> Reflecting upon the experience of the monitoring 
campaign; 

> Reading together the results, and collecting them to 
the neighborhood map; 

> Expressing and visualizing wishes and expectations 
about the future focusing on new forms of home-
to-school mobility to fight pollution 

> Sharing ideas and analyzing everyone's needs and 
requests in a creative way;  

> Prioritizing alternatives. 

☺ Presentation of the 
neighborhood monitoring 
campaign results; 

☺ Implementing the 
neighborhood map with the 
new collected elements 

☺ Presentation of the personal 
monitoring project to the 
children; 

☺ Activitiy: what can we do? 
How be a researcher can 
counteract Black Carbon 
diffusion. 

☺ Discussing and visualizing 
how to encourage low-
carbon behaviours and 
identifying less polluted 
home-to-school paths 

A
C

TI
O

N
 F

O
R

 C
H

A
N

G
E  

From being a 
researcher to act as an 
agent of changing: we 
are not alone, how the 
world is trying to fight 
against Black Carbon? 
Understanding how to 
be part of the change, 
and how to spread our 
awareness. 

 Summarising the work done and reflecting on the 
main achievements 

 Introducing the Global Goals and the main planned 
actions 

 Identifying the most effective way to counteract 
Black Carbon; 

 Working on material and a schedule to spread 
awareness 

☺ Playing with hourly trend of 
BC graphs to reacquaint with 
the topic; 

☺ Presentation of the Global 
Goals 

☺ Selection of the most 
important ones 

☺ Designing an awareness- 
raising campaign and 
working on communication 
materials 

☺ Presenting the work to other 
actors  
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Figure 30. On the left, the identikit of BC and other pollutants presented as characters is reported. In the middle a bicycle equipped with a laptop and a 

microaethalometer AE51. The bicycle was used for the online measurements in the neighbourhood. On the top-right a moment during which children 

were asked to say if there was normal, high or very high level of BC according to the location and their perceives; on the mid-right one of the maps 

developed using the data collected during each neighbourhood measurements; at the bottom-right of the figure. a moment during which children 

were asked to figure out the place according to the level of BC is reported. 
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Figure 31. Example of one of the exercise in the frame of the environmental education intervention. This 

exercise was played at the beginning of the second module, during October 2018 to go over the 

topic previously learnt in the first module. Schoolchildren were asked to put a big black carbon 

inside the box with the highest concentration, while small black carbon close to all the peaks. 

Original data was used to build up the sheet. Translations: “Settimana primaverile” is “Spring 

week”, “Settimana invernale” is “Winter week”, “Giorni della settimana” is “days of the week”, 

“Sabato e domenica” is “Saturday and sunday”, finally “tempo” is “Time” and “Quantità di 

Black Carbon” is “Amount of Black Carbon”. 
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Figure 32. SDGs-oriented posters produced by schoolchildren during the MAPS MI project. The main topics chosen by schoolchildren were: greenness, clean 

energy and active and sustainable mobility inside urban areas (SDGs 11). In the original IVAC framework, this was the “action” part.
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4.2.3. Personal exposure during home-to-school paths and personal perceptions 

Amidst the two environmental education modules and just after the last one, children and 

their parents were invited to take part in a two-season personal exposure assessment 

campaign (May-June 2018 and January-February 2019), that consisted in a 7-day GPS 

tracking, a 1-day air pollution personal exposure assessment, and a final biomonitoring. 

In particular, 

Finally, on the very last day of the cold-season, personal monitoring campaign and just 

after the home-to-school commuting, children were asked to draw their home-to-school 

paths and to colour it in green, yellow or red according to the perceived level of black 

carbon. In particular, the green colour was assimilated to a normal level of air pollution, 

yellow at a high level, red at an extremely high level. This classification had already been 

explained and experienced by the same schoolchildren during the whole process. 

For each child, the coloured sections of the drawn home-to-school route were compared 

to the measured personal BC concentrations. In particular, the green sections were 

computed as values <50th percentile, the yellow sections as values in between of the 50th 

and the 75th percentiles, and the red sections as values >75th percentile. Moreover, it was 

assumed that children perceptions were only influenced by what happened during the 

home-to-school routes. Consequently, the percentiles of the measured BC concentrations 

to be compared were computed starting from each personal BC distribution of the home-

to-school commuting.  

Afterwards, we compared drawn segments with the data collected from the personal 

monitoring campaigns (Figure 33). This was possible by using GPS technology, which 

allowed us to link personal BC to each specific segment. The final sample was composed 

by 40 schoolchildren that went to school on foot, drawn and coloured properly their home-

to-school route on the map, and finally had accurate and reliable GPS signals. All the 

spatial analysis were conducted in GIS environment. 
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Figure 33. Picture A is an example of drawn home-to-school route coloured by schoolchildren according to 

their perception, while picture B is the same route re-drawn in GIS environment and coloured 

according to personal BC measures. 

4.3. RESULTS AND DISCUSSION 

The two environmental educational modules involved 128 children. Children pointing out 

the key places, both positive and negative, and the most critical areas according to their 

perception of pollution. They completed N.6 big posters featuring the neighbourhood and 

the catchment area of the school. Moreover, N.6 monitoring campaigns, one for each 

class, were successfully carried out in the neighbourhood in a participatory modality. BC 

data were collected and discussed with a gamification approach, focusing specifically on 

determinants. Children drew 120 alternative home-to-school routes with the aim to 

reduce their own perceived exposure. Among all SDGs, schoolchildren decided to focus on 

goals 3 “good health and well-being”, 7 “affordable and clean energy”, and 11 

“sustainable cities and communities”, creating 8 posters on topics such as public 

transportation, bike sharing, green in the urban area and renewable energy. The posters 

were exhibited in a public event organized inside the school during which schoolchildren 

presented their works. Schoolchildren and parents involved in personal monitoring 

campaigns were 85 and 109, in May/June 2018 and January/February 2019 respectively. 

A response rate of 66% and an increment of +28% were observed for the warm- and the 

cold-season personal monitoring campaign recruitment respectively.. This result is 

probably connected to the level of engagement of both schoolchildren and teachers, that 
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was likely to be achieved thanks to the planning of the ludical laboratories that were 

performed amidst the two personal monitoring campaigns. 

Finally, Table 10 gives the results of the comparison between measured and perceived 

levels of BC during the on foot home-to-school commuting.  

Table 10. Agreement between BC personal measures during home-to-school routes and BC concentration 

levels perceived by schoolchildren. In red overestimates, in light blue underestimates. The green 

lines were compared to the values <50th percentile, the yellow ones to the values included in 50-

75th percentile range, the red ones to the values >75th percentile. 

 

In particular, an agreement between perceptions and measurements was observed in the 

25% of the cases. Children overestimated black carbon concentration in the 42% of the 

analysed segments. Finally, an underestimation of BC concentrations was observed in the 

remaining 23% of the cases.  

Even if the Chi-squared test does not highlight differences (p=0.055), it is possible to see 

an overall tendency to overestimation. This is probably due to: 

a) the higher concentration of air pollution that occurs during morning rush hour in 

Milan than in other time-windows of the day. This could in some way over-sensitize 

children; 

b) the specific area that is one of the most congested in Milan, especially during the 

morning rush hour  

c) a general over-sensitization due to the engagement in the MAPS MI project 
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4.3.1. Challenges of the participatory approach 

Although the involvement in this kind of process it is likely to lead to interesting results 

and mutual learning, as a researcher it is important to be aware of the complexity of such 

an approach. Designing an education intervention, as well as conducting actively a part of 

the activities can be highly demanding. In particular, it is important that the involved 

researchers in the ludical laboratories are suited for this kind of intervention and show to 

be deeply committed. For instance, classrooms of more than 20 children are not simple 

to engage and manage. In a preparatory phase, it is important to be aware of this, 

otherwise the intervention could even lead to negative results in terms of engagement 

that could mean unsatisfactory rate of recruitment and low quality of data. 

Moreover engage schoolchildren not always is equal to engage their parents. However, the 

engagement of the adults is fundamental if we consider that many of the activities 

planned for the personal monitoring campaign. 

Moreover, due to schedule and funding issues, the “action” part of the intervention was 

limited to a single event organized inside the school during which the results of the two 

series of ludical laboratories were presented to all the school. A single event can’t be 

judged as sufficient to spread the content of the work and this was a source of discontent 

for all the partners. By treasuring this experience, in the future a more careful planning 

is needed.  
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4.4. CONCLUSION 

A participatory approach that involves teachers, children and their families in a research 

project is a powerful way to raise awareness about scientific culture, air pollution and 

sustainable way of living. This approach can also help researchers to keep the lights on 

the project, increasing the level of engagement of the stakeholders. In this context, the 

partnership with the ABCittà cooperativa ONLUS proved to be an effective tool to widen 

the scope of the project. Moreover, the reached level of engagement allowed increasing 

the number of participants from the first to the second personal monitoring campaign. 

Finally, this approach helped to work together with active, engaged and well informed 

schoolchildren during the two personal exposure monitoring campaigns. 
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5. MEASURING PERSONAL EXPOSURE OF SCHOOLCHILDREN TO 

BLACK CARBON 
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RESEARCH QUESTIONS AND ANSWERS 

Q7: Is transportation period an important factor to consider when analysing 

schoolchildren personal exposure in everyday life? 

A7: Although it accounts for only 5-10% of the overall daily personal exposure, 

transportation-related personal exposure is actually the most intense, i.e. 

exposes schoolchildren to the highest peaks of concentration in a very short 

period. Moreover, the hourly trend of BC personal exposure highlights that 

morning rush hour, and especially the home-to-school commuting, is the most 

critical daily time-window for personal exposure for both warm- and cold-season.  
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ABSTRACT 

 

Introduction: In the last decade, a multitude of new evidences show up on the relation 

between air pollution and both long- and short-term health outcomes on children, from 

airways disorders, to cognitive impairment and even cancer. According to the World 

Health Organisation, more than 98% of Italian children are exposed to average annual 

concentrations of PM2.5 above 10 µg/m3. In the specific area of Milan, the biggest city in 

northern Italy, transportation is one of the main source of air pollution. This chapter aims 

to investigate the contribution of different microenvironments to the total amount of 

personal exposure to BC in a group of about 100 schoolchildren. 

 

Methods: During January and February 2019, 82 and 98 children respectively were 

involved in two seasonal personal monitoring campaigns by measuring for approximately 

one day their personal exposure to BC, tracking their movements inside their living area 

with GPS technology, and collecting other information by means of time-activity diaries. 

 

Results: The personal BC average (±sd) was 1399 (±431) and 4224 (±2220) during the warm- 

and the cold-season, respectively. According to both the seasons, children were exposed 

to the highest BC concentrations during the MRH, the home-to-school commuting time 

window. The overall weight of transportation on total exposure was relatively small, but 

relevant (5-10%). Furthermore, the exposure during transportation was found to be the 

most intense. 

 

Discussion: Transportation is a relevant source of personal exposure to BC for 

schoolchildren. In particular, the home-to-school commuting period represents the 

highest critical daily time-window for personal exposure.  
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5.1. INTRODUCTION 

According to the World Health Organisation, more than 98% of Italian children are exposed 

to average annual concentrations of PM2.5 above 10 µg/m3 (WHO, 2018). This is the 

currently standard that has been identified to protect the health of the largest part of 

general population, including vulnerable groups, such as children (Makri and Stilianakis, 

2008). 

Children in the prenatal and early life, up to adolescence, are the most affected part of 

the general population due to: 

1) their habits: children tends to be less inactive and to spend more time outdoor than 

adults; 

2) their physiology: they have an higher respiratory rate, as well as an higher 

metabolic rate during inactivity and body weight/volume of air intake;  

3) their natural barriers and body systems are still not completely developed (Bateson 

and Schwartz, 2008). 

In the last decade many scientific works have investigated the effect of exposure to air 

pollution, and especially traffic related air pollution (TRAP), and children health (WHO, 

2018). Among the other, acute lower respiratory infections, leukaemia, asthma, and 

cognitive impairment are the most alarming. Moreover, many new discovers has been 

found on how pollutants interact with human organism. For instance, Calderon-

Garciduenas et al., (2015) showed that the blood-brain barrier and the nasal epitheliums 

can be compromised in children exposed to urban air pollution (Calderón-Garcidueñas et 

al., 2015). More recently, Bovè et al (2019) found an higher number of Black Carbon (BC) 

particles in the foetal side of placenta tissues of pregnant women with high residential BC 

exposure and living close to major streets than those living at least 500 meter far from 

major roads (Bove et al., 2019).  

The urban environment is an important source of different health risk factors, among 

which air pollution is one of the most threatening (Nieuwenhuijsen et al., 2018). In the 

specific area of Milan, the biggest city in the northern Italy among the most polluted areas 

in Europe (EEA, 2018), transportation is one of the main source of air pollution (ARPA, 

2018a). Given this, BC, a primary pollutant strictly linked with fossil fuels combustion 

(U.S.EPA, 2012), represents an ideal marker to study personal exposure to air pollution. 

Furthermore, it is a valuable indicator of adverse health effects related to airborne 

particles (Janssen et al., 2011), it has been recognized as a carrier of harmful chemical 
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components such as Polycyclic Aromatic Hydrocarbons (PAHs)(Dachs and Eisenreich, 2000) 

and it is an effective marker of diesel exhaust, both classified as carcinogen for humans 

(IARC, 2008; IARC, 2014). 

In this chapter the first insights of a two-season personal monitoring campaign is reported. 

A special focus is given to the contribution of different microenvironments (MEs)/activities 

to the total amount of personal exposure to BC in the city of Milan. 

5.2. MATERIALS AND METHODS 

5.2.1. Study area and project design 

For this contribution, a two-season personal monitoring campaign was carried out during 

spring 2018 (April, May and June) and winter 2019 (January and February) in Milan, the 

biggest city of the Northern Italy, with approximately 3.2 million residents in its greater 

area. Measurements were performed on children aged 8-11 years. All of the children 

attended the same school located in the northwest part of the city of Milan (Figure 23). 

The study area, which can be overlapped to the school catchment area, is affected by one 

of the major gateways into the city, with intense motorized traffic especially during the 

so-called morning rush hour. After being informed, to effectively take part in the project, 

children and parents were asked to sign three informed consent formats as required by 

the new General Data Protection Regulation of the European Union (EU, 2016). To identify 

possible confounders and other influencing variables and to investigate children health 

status, parents were asked to fill a specifically developed questionnaire. 

The involved schoolchildren were asked to wear a GPS device for 7 days, to fill a 1-week 

time-activity diary (TAD) in order to collect valuable information on locations, habits and 

diet and finally, and finally to wear a shoulder bag equipped with a microaethalometer 

model AE51 to measure black carbon.  

All the planned preliminary and logistic operations were carried out in the ex-medical 

room of the school with the permission of the school board. To complete all the steps, 

each child and his/her parents had to pass three times to the room (Table 11).  
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Table 11. List of the planned meeting between researchers and participant during each personal monitoring 

campaign 

Meeting 
Day of personal 

monitoring 
Who Motivation 

First 1st Children+parents 
Training, informed consent, GPS, questionnaire and 

activity-diary handover 

Second 6th Children Second training, other equipment handover 

Third 7th Children+parents Equipment, questionnaire and activity diary restitution 

In particular, starting from Monday afternoon and up to Friday morning, every school day 

a group of 4-5 children was expected to pass by the medical room at 4 pm to take and 

wear the shoulder bag, and then to handback the equipment on the very next morning, 

after the home-to-school commuting and as soon as entered the school. Moreover, in 

preparation of each personal monitoring period and before each meeting a standard 

message was sent to schoolchildren parents to remind the main requests related to the 

activities.  

For the occasion, taking advantage from the two environmental education modules carried 

out in the classrooms just before the starting of each of the personal monitoring periods, 

parents and children were well informed on the objectives of the monitoring and the 

general procedures to follow. In particular, they were asked to behave as in a normal day, 

doing all the planned activities, wearing the shoulder bag as long as possible, and anyway 

to leave the equipment in their proximity. For instance, if the child planned to go to the 

swimming pool, it was asked to leave the shoulder bag in the dressing room, while in the 

presence of outdoor activities, it was asked to leave the equipment as close as possible in 

the outdoor environment. Moreover, children and parents were trained on how to put the 

equipment down, stressing the importance of leaving it in a relatively opened environment 

(i.e. not locked in a wardrobe) and with the inlet tube free from obstruction. 

In addition to the personal monitoring campaign, a microaethalometer MA200 (Aethlabs, 

San Francisco, CA) was placed inside the ex-medical room and measured black carbon 

continuously during the two seasonal monitoring periods. 

5.2.2. 24-hour exposure attribution 

Schoolchildren were equipped with the AE51 monitor set up with a flowrate of 100 ml/min 

and a time resolution of 1 minute. Each monitoring period lasted for only about 16h and 
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30 min, from the 4 pm of the 6th day to the 8.30 am of the 7th day of personal monitoring. 

To profile the entire 24 hour of exposure, the MA200 device placed inside the ex-medical 

room of the school was used. Ultimately, for each schoolchildren the daily personal 

exposure profile is composed by: 

a) From 12 am to 4 pm of the 6th day the concentration measured by the MA200 inside 

the school; 

b) From 4 pm of the 6th day to the 8.40 am of the 7th day the concentration measured 

by the worn AE51; 

c) From the 8.40 am to the 12 am of the 7th day the concentration measured by the 

MA200 inside the school. 

The 8.40 am of the 7th day was the time threshold for AE51 data, and was chosen to include 

the home-to-school commuting of the latecomers.  

Moreover, some failures of the MA200 sampling device occurred, especially during the 

warm season. To deal with this issue, we extrapolated hourly BC concentrations at the 

MA200 site based on the urban background station operated by the air quality network 

(AQN) of Milan (ID station 10283, via Ponzio 34/6 – Pascal Città Studi). The applied 

correction factors ranged from 0.75 to 1.25 and were similar to the regression slopes 

between the reference site and the AQN site computed separately for the two monitoring 

periods.  

5.2.3. Data cleaning and quality control 

A total of 6 microaethalometers, 5 AE51 and 1 MA200 were used during the two monitoring 

campaigns. BC raw data were post-processed by removing reported errors, by smoothing 

with the Optimized Noise-reduction Algorithm (ONA)(Hagler et al., 2011), by applying 

correction factors to account for differences between devices and finally by applying other 

correction factors to account for the loading effect of the particulate on the filter 

(Weingartner et al., 2003). 

In particular, intercomparison exercises were conducted pre- and post-monitoring for each 

campaign; these were performed by running all devices simultaneously and next to each 

other for about 24 h. The MA200 was the most recent device calibrated by the 

manufacturer, so we decided to consider it as the gold standard. By comparing the MA200 

with the AE51s, we calculated correction factors for each device that were applied to the 

raw data to obtain 𝐵𝐶𝑐𝑜𝑟𝑟𝑒𝑐𝑡. These values ranged from 0.78 to 1, and representing the 

regression slopes between MA200 and AE51s. The applied factors were calculated as the 
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mean value between the pre- and post-monitoring inter-comparisons. The final correction 

algorithm to estimate 𝐵𝐶𝑐𝑜𝑟𝑟𝑒𝑐𝑡 is reported as follows: 

𝐵𝐶𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 𝐵𝐶𝑟𝑎𝑤 × (1 + 𝐴𝑇𝑁 × 0.007) × 𝐹𝐼𝐶 

Where 𝐹𝐼𝐶 is the intercomparison factor, while 0.007 is the chosen k Virkkula’s factor, a 

parameter that account for the different type of sampled aerosols and the consequent 

loading effect. In this contribution it was decided to apply the k factor suggested in Good 

et al. (2017) that was found by analysing more than 100 previously sampled filters (Good 

et al., 2017). 

5.2.4. Activity diaries and GPS   

The information reported on the last day of personal monitoring campaign were firstly 

checked with the GPS data to avoid possible misclassification, and then used to 

characterise each 1-minute BC data. The information linked with the GPS and TAD were: 

the microenvironment (ME) (in transport, at school, at home, public park, other); the type 

of transportation mode (car, on foot/scooter/roller blade/skateboard, bike, subway, 

motorcycle or public bus); the presence/absence of active cooking stove; the type of MEs 

(indoor/outdoor). 

Afterwards, the total measured BC associated to each microenvironments (𝐵𝐶𝑀𝐸) was used 

to calculate the relative weight of each ME (𝑀𝐸𝑐𝑜𝑛𝑡𝑟𝑖𝑏) to the overall personal exposure 

(𝐵𝐶𝑡𝑜𝑡) by applying the following equation: 

𝑀𝐸𝑐𝑜𝑛𝑡𝑟𝑖𝑏 =
𝐵𝐶𝑀𝐸

𝐵𝐶𝑡𝑜𝑡
 

While to compute the related intensity of exposure (𝑀𝐸𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) we used: 

𝑀𝐸/𝑎𝑐𝑡𝑖𝑛𝑡 =

𝐵𝐶𝑀𝐸

𝐵𝐶𝑡𝑜𝑡

𝑡𝑀𝐸

𝑡𝑇𝑂𝑇

 

Where 𝑡𝑀𝐸 is the total spent time in the selected ME and 𝑡𝑇𝑂𝑇 is the total time of the 

personal monitoring campaign. The above-mentioned equations are the same used by 

Buonanno G et al (2013), Rivas et al (2016), and Jeong H et al (2017). 

5.2.5. Statistical analysis 

R studio and several R packaging were used to manipulate and clean data, as well as 

perform the statistical analysis. In particular, t-test for paired samples was used to test 

differences among different microenvironments 
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5.3. RESULTS AND DISCUSSION 

5.3.1. Sample and general information 

In Figure 34, the flow-chart of participants sums up the process that brought to the 

selection of the final sample. During the warm-season, personal monitoring campaign, 

from the starting 85 children that had answered the call, only 82 was confirmed and 73 

were finally selected for the analysis. In this first case, the sample was composed by 57.5% 

of female and the average±sd age was 8.5 ± 0.7 years. 

During the cold-season personal monitoring campaign, starting from the 109 children that 

had answered the new call, only 98 were confirmed and 89 were finally selected for the 

analysis. In this second time, the sample was composed by 51.7% female and the 

average±sd age was 9 ± 0.5 years. An increase in involvement was seen in the cold-season 

monitoring campaign that took place about 7 months later. This could be linked to the 

rising level of engagement of the third grade classes, teachers included, thanks to both: 

a) the second series of ludical and experienced-based laboratories that took place 

amidst the two personal monitoring campaigns;  

b) the word of mouth among schoolchildren and parents already involved in the first 

personal monitoring campaign. 

A participatory approach that include environmental education intervention could lead to 

self-selection bias, by having the capacity to only involve those kids who have parents 

already sensitive about environmental issues (Hernan MA et al 2004). To control for this 

phenomenon, it was the teachers were involved from the very beginning in order to let 

them be part of the process. Consequently, the recruitment process was driven not only 

from the academic partner, but also from the teachers who may have offered greater 

guarantees of impartiality to the adults. However, since the original design of the project, 

this issue cannot be completely removed lowering the generalizability of the results.
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Figure 34. Flow chart of the personal monitoring campaign participants. Cases were excluded due to lack of information on microenvironments (MEs) and AE51 

instrumental issues 
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The principal motivations for the exclusion from the analysis were: 

a) lack of information due to low-quality data from time-activity diaries and/or from 

GPS devices; 

b) AE51 instrumental issues.  

In general, AE51 drawbacks are generally linked to a loss of battery linked with the 

impossibility to recharge the device from a day to another, and to the obstruction of 

sampling tube that may occur during the monitoring, especially when we talk about 

schoolchildren that usually moves and don’t are expected to take too much care about 

devices. For the very same reason also GPS device can be easly forgotten in some 

microenvironment, or can be also put inside the schoolbag precluding its functioning. 

Moreover, during the first personal monitoring campaign the latter motivation was the 

most frequent, while during the second personal monitoring campaign there was a higher 

level of lack of information due to low quality data. The lower percentage of instrument-

related issues can be related to the increasing experience of the operators, while the low-

quality data can be related to: 

a) the newly and less experienced involved schoolchildren, who may even have been 

less supported by the parents; 

b) the trouble for children to manage the TAD autonomously, and a contemporary lack 

of parents engagement. 

Among all the participants included in the analysis, 65 were found to be involved in both 

warm- and cold-season monitoring campaigns. Among the 8 children that participated to 

the first monitoring campaign, but were not confirmed for the second one, only two 

decided voluntarily to not participate, while the others were either not confirmed due to 

illness or were excluded from the analysis for technical reasons. 

5.3.2. Daily-seasonal time-activity pattern 

In Figure 35 the pie charts show the relative contribution of MEs/activities in the two 

seasons. In particular, during the cold season children passed more time at home, while 

during the warm season spent more time in public parks and in other locations. However, 

these seasonal differences are not statistically significant. On the other hand, if we focus 

on the time spent indoor or outdoor, the t-test for paired samples shows a significant 

seasonal variation (p<0.01) with about the 96% of time spent indoor during the warm 

season, while the 94.5% during the cold season. Moreover, this difference could have been 
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even stronger if we consider that we did not collect information on time spent in the 

playground during school time. 

 

 

Figure 35. Seasonal time-activity pie charts 

What we found seems to be comparable to other similar studies. For instance, Cunha-

Lopes et al (2019), in a cohort of 9 schoolchildren (age 7-10 y) monitored for three 

consecutive working days in spring 2018, showed that children passed about 55% of their 

time at home, 30% at school and 5% in transport and 89% of the time in indoor 

environments (Cunha-Lopes et al., 2019). Moreover, Buonanno G et al (2013) in a cohort 

of 103 children (age 8-11 y) from an Italian middle town (resident population: 33,000 

inhabitants) found that children spent 24% of their daily time-budget at school, the 64% 

at home and the 92% in indoor environment (Buonanno et al., 2013). In this case, the 

personal monitoring campaign was carried out between October 2011 and March 2012. 
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5.3.3. Overall seasonal personal exposure to BC 

In Figure 35, the box plots of seasonal personal BC is reported. The strong difference 

between warm and cold season mirrors the same strong difference that we have already 

noted during the two seasonal fixed-sites monitoring campaigns (figure 26 among the 

other). In particular, on average personal exposure to BC was about 3.5 fold higher during 

the cold season than the warm season. This is probably due to the high BC concentration 

produced by both transportation, heating systems, and favoured by the frequent thermal 

inversions that usually occur in the so-called Po valley during winter. 

 

Figure 36. Boxplots of seasonal personal BC. Inferior and superior whiskers represent: (Q1-1.5*IQR)<x < Q1, 

Q3<x<(Q3+1.5*IQR). Where x = data, Q = quartile and IQR is interquartile range. 

Moreover, during the cold season it is possible to observe a higher variability than during 

the warm season. This was expected and it is partly caused by the different time-activity 

patterns, but mostly it is caused by the different seasonal variability in background 

concentration (Figure 40). According to the boxplots, no outliers (x<Q1-1.5*IQR, 

x>Q3+1.5*IQR) were identified. The overall personal BC concentrations are given in Table 

12.  
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Table 12. Statistics of measured personal BC concentrations (ng/m3), presented as average, standard 

deviation, minimum and maximum. The values are computed starting from the averages of all 

personal BC measured concentrations. 

Season n mean sd min max 

Cold 89 4224 2220 574 10350 

Warm 73 1399 431 618 2514 

 

At a first analysis, concentrations are comparable to those measured in other scientific 

contributions. In particular, Buonanno G et al (2013) in the 2012 cold season measured an 

average of 5.1 μg/m3 in a cohort of 103 children (age 8-11 y) from an Italian congested (as 

reported in the paper) middle town (Buonanno et al., 2013). These measurements were 

made 7 years before ours, so it is possible that, for instance, the new emission standards 

for vehicles have influenced these concentrations. Moreover, only the 16% of the children 

went to school on foot. This can be read as an indicator of a lower inclination than ours 

participants (52% went to school on foot) to the active transportation that in general 

exposes people to lower air pollution concentration than those that use motorize vehicles 

(De Nazelle et al., 2017).  

In a long-duration monitoring campaign in 2013/2014, Paunescu et al (2019) monitored 95 

children (24h each, 47 during the warm season) aged 9 (sd ±0.2) years. The average 

personal BC measured concentrations were 1.27 μg/m3 and 1.73 μg/m3 in warm and cold 

season respectively. These results appear comparable limiting the analysis to the warm 

season, while cold season BC average is more than two fold lower than our result. This 

can be partially explained by the fact that in Paris air quality is better than in Milan (EEA, 

2018), and it is also probably influenced by those measurements carried out during 

holidays according to which it is reasonable to expect lower values. 

However, further investigation need to be done in order to identify all the determinants 

of this differences. 
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5.3.4. BC personal 15-min daily trend 

In Figure 37, seasonal 15-min median and IQR BC trends during personal monitoring 

campaign days are presented; highest peaks were found corresponding to the time with 

the highest traffic, i.e. morning rush hour period. This is the daily time-window during 

which children commute to school (7-9 am). 

 

Figure 37. 15-min daily trend of personal BC concentrations during the warm- and the cold- season 

monitoring campaigns. Data are presented as median and IQR values for BC concentrations. 

Moreover, it is possible to identify other peaks during both warm and cold seasons. In 

particular, between 4 pm and 5 pm it is clear the contribution of the end-time of the 

school and the consequent daily time-window during which children are involved in other 

activities such as transportation, sport, leisure time etc. (5-7 pm). Other less pronounced 

peaks are presented between 7 pm and 9 pm probably representing indoor sources such 

as second-hand smoke or cooking. Finally, the consistent increase in BC concentrations 
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that occurred during the cold-season night times is likely to be attributed to the frequent 

thermal inversions that characterize the Po valley.  

The two just-mentioned seasonal trends appear slightly similar to the ones previously 

presented in figure 27 (left quadrants only) that was built up on fixed monitoring sites 

measurements. However, it is clear that the two can’t be completely overlapped, 

especially for the different behaviour during the second part of the day. The lack of 

afternoon peaks of exposure during the cold season can be attributed to the fact that, 

once outside school, schoolchildren passed more time in indoor environments that 

constitute a filter to outdoor evening peak of concentration. In this case the peak of 

exposure is replaced by an increasing trend in concentration probably due to: 

a) infiltration at home; 

b) the meteorological condition that during the evening and the night favour the 

accumulation of contaminants at the ground.  

This make emphasis to the fact that it is not possible to attribute a personal exposure 

value using only outdoor monitoring sites without introducing biases. 
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5.3.5. The role of time-activity patterns in personal exposure 

As expected, home and school are the major contributors to the total BC exposure. 

Moreover, the same patterns seems to repeat in both seasons with an increase in weight 

of public garden, other extracurricular ME/activities and transport during the warm 

season. On the other hand, if we consider not only the relative contribution, but also the 

intensity of exposure, transportation represents the most critical microenvironments 

(Figure 38). 

 

Figure 38. Seasonal relative contributions of MEs/activity on the total exposure (upper quadrants), and 

seasonal intensity of exposure per MEs/activity (lower quadrants) 
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These results are confirmed by other similar studies. In particular, Rivas et al (2016) found 

a very similar relation than the one we found (2.1 exposure:time). Moreover, using 

potential dose as numerator (i.e. exposure*inhalation rate:time), Buonanno et al. (2013) 

and Jeong H et al (2017) found a dose intensity linked to transportation equal to 2.8 and 

2.2, respectively(Buonanno et al., 2013; Jeong and Park, 2017; Rivas et al., 2016). 

These results confirm that to reduce air pollution exposure of schoolchildren it is 

fundamental to focus on home and school environment, however it is not possible to ignore 

the contribution of transportation related to which it is likely to find an high number of 

exposure peaks (Dons et al., 2019). 

5.4. CONCLUSION 

The results suggest that home and school are the major contributors of the total personal 

exposure to BC among the recruited schoolchildren. However, exposure during 

transportation is relevant, and the most intense, i.e. its relative contribution to the total 

amount of BC exposure is very high if compared to its short duration. Moreover, hourly 

trends of BC personal exposure show that the highest peaks of exposure occur during the 

morning rush hour of both warm- and cold-season. Therefore, home-to-school commuting 

confirms to represent a highly critical moment for children personal exposure to air 

pollution in urban environment. 
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6. VALIDATION OF A LUR MODEL BY USING PERSONAL 

EXSPOSURE DATA AND IDENTIFICATION OF THE CLEANEST 

HOME-TO-SCHOOL ROUTES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on: 

Boniardi, L; Dons, E; Campo, L; Van Poppel, M; Int Panis, L; Fustinoni, S; 2019. Is a Land 

Use Regression Model Capable of Predicting the Cleanest Route to School? 

Environments, 6, 90. DOI: 10.3390/environments6080090   
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RESEARCH QUESTIONS AND ANSWERS 

Q8: Is it possible to apply a LUR model to mitigate the risk of exposure to air 

pollution, and in particular to identify the least expositive home-to-school paths? 

A9: Despite the tendency to underestimate, the model estimates show moderate-to-

good agreement with the personal measuring technique, explaining approximately the 

55% of variability inside the personal BC distribution. In particular, our data suggest that 

a LUR model developed by using measured MRH-BC concentrations is a valuable tool to 

analyse home-to-school paths and select the cleanest one. This approach can help policy 

makers in the attempt to lower personal exposure of selected categories, i.e. 

schoolchildren going to school. 

Q9: Can a LUR model developed on fixed monitoring sites help to reduce 

misclassification of exposure by integrating transportation period? 

A9: Our exercise shows that by applying a LUR model to estimate personal exposure it 

is likely to obtain a systematic underestimation. Moreover, a trend to underestimate 

more was found when average personal BC was elevated. However, the moderate-to-

good agreement between modelling approach and personal measuring technique 

suggests that this experience is a valuable starting point toward more refined tools  for 

lowering exposure misclassification bias in the framework of environmental 

epidemiology studies. 
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ABSTRACT 

 

Introduction: Land Use Regression (LUR) modeling is a widely used technique to model 

the spatial variability of air pollutants in epidemiology. In this study, we explore whether 

a LUR model can predict home-to-school commuting exposure to black carbon (BC).  

 

Methods: During January and February 2019, 43 children walking to school were involved 

in a personal monitoring campaign measuring exposure to BC and tracking their home-to-

school routes. At the same time, a previously developed LUR model for the study area was 

applied to estimate BC exposure on points along the route.  

 

Results: Personal BC exposure varied widely with mean  SD of 9003 4864 ng/m3. The 

comparison between the two methods showed good agreement (Pearson’s r = 0.74, Lin’s 

Concordance Correlation Coefficient = 0.6), suggesting that LUR estimates are capable of 

catching differences among routes and predicting the cleanest route. However, the model 

tends to underestimate absolute concentrations by 29% on average.  

 

Discussion: A LUR model can be useful in predicting personal exposure and can help urban 

planners in Milan to build a healthier city for schoolchildren by promoting less polluted 

home-to-school routes. 
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6.1. INTRODUCTION 

Land Use Regression (LUR) modelling is a widely used technique to model spatial variability 

of air pollutants. This approach was used in both urban and non-urban environments, 

usually with the aim of better predicting exposures in large epidemiological cohorts (Hoek 

et al., 2008; Ryan and LeMasters, 2007). Especially in cities, where an important part of 

pollution is from traffic, identifying spatial patterns of traffic-related air pollutants (TRAP) 

is fundamental to enhance the accuracy of exposure assessment (Dias and Tchepel, 2018). 

From personal monitoring studies, it is known that exposure while travelling is elevated 

mainly because of exposure peaks, and inhaled doses increase as well because of increased 

ventilation while traveling with active modes (Buonanno et al., 2013; Dons et al., 2019; 

Dons et al., 2012). Following this, TRAP in urban areas has been one of the main health 

issues in the past years (Nieuwenhuijsen et al., 2018) and among others, the traffic-

related air pollutant Black Carbon (BC) has gained a primary role in this research field 

(Janssen et al., 2011). 

Personal exposure to BC in urban environments is of high health concern to many people, 

and even more so for schoolchildren travelling to school during rush hours (Rivas et al., 

2016). In particular, we recently found that morning rush hour (MRH) during weekdays is 

the most critical period for exposure to TRAP in Milan with an average increase of BC 

concentration of about 1 µg/m3 in both spring and winter time (Boniardi et al., 2019). 

Moreover, in the past few years, many studies found an association between BC, changes 

in respiratory and cardiovascular markers, and behavioral and cognitive skills and 

disorders in children (Chiu et al., 2013; Provost et al., 2017; Rice et al., 2016; Sunyer et 

al., 2015). Most of the time, exposure was inferred from monitoring sites of the official 

Air Quality Network (AQN) or estimated by a LUR at the residential address or school site. 

Recently, Alvarez Pedrerol M et al. (2017) linked a IQR increase of BC exposure during 

home-to-school commuting to a reduction in the growth of working memory in a Spanish 

cohort of 1,234 children (aged 7-10 y). In this study, both exposure and home-to-school 

routes were estimated for each child, and despite this the results suggested that focusing 

on commuting periods can play a major role in the effort to link exposure and health 

outcomes (Alvarez-Pedrerol et al., 2017). 

Furthermore, LUR models can give valuable information for public health officials and 

urban planners to reduce population exposure to air pollution and design health-promoting 

cities with less polluted routes for pedestrian and cyclists. For instance, Hankey S et al. 
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2016  combined facility-demand and LUR models to highlight exposure patterns during 

active travel suggesting that it should be possible to reduce exposure by ~15% after 

intervening on the given scenario (Hankey et al., 2017). Recently, several studies 

confirmed that the health benefits linked to active travel outweigh the risks such as 

exposure to air pollution or accidents, suggesting that the attempt to build more walkable 

and bikeable urban environments is worth the effort (Mueller et al., 2017; Tainio et al., 

2016). 

Given this picture, applying LUR modelling together with GPS monitoring to the specific 

case of home-to-school commuting could be a valuable approach to both enhance the 

quality of exposure assessment in epidemiological studies and to develop new public 

health policies focused on the youngest generation. First, however, it is necessary to 

validate this approach with mobile air pollution measurements to check the effectiveness 

of the method.  

The aim of the present study is to compare LUR model estimates and the personal BC 

measured concentrations of 43 schoolchildren during home-to-school commuting. 

Moreover, we discuss whether a LUR model can be applied to identify cleanest routes to 

school. The current analysis focuses on children walking to school only; commuting with 

other modes would imply several assumptions (such as indoor-outdoor ratios, position on 

the road, breathing rates) that might lead to differential misclassification (Alvarez-

Pedrerol et al., 2017). This contribution is part of the “MAPS MI, Mapping Air Pollution in 

a School catchment area of Milan”, whose aim is to study exposure to air pollution of 

schoolchildren in Milan, using LUR models, personal air pollution monitoring, GPS tracking, 

and biological monitoring with a participatory approach. 
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6.2. MATERIALS AND METHODS 

6.2.1. Study design 

The study area is about 25 km² large and is located in the north-west of Milan, which is 

the biggest city in the Northern Italy basin, with an estimated population of about 3.2 

million residents (ISTAT, 2018). This area represents the catchment area of an elementary 

school, which is attended by more than 700 children, aged 6 to 11. For the MAPS MI 

project, we recruited 92 schoolchildren from the school (aged 7 -11) to participate in a 7-

day personal monitoring campaign, performed from January 14 to February 19, 2019. 

During the whole period children were asked to wear a GPS device, model i-gotU GT600 

(Mobile Action, Taiwan) and to fill in an activity diary. Additionally, during the last day, 

children wore a shoulder bag equipped with a micro-aethalometer, model AE 51 

(AethLabs, USA), for personal monitor of BC in the breathing zone (Figure 39). This 

included the commuting to school in the morning, between 7:30 and 8:30. Once to school 

the children, with the help of their accompanying person, were asked to draw their route 

from home-to-school on a paper map of the study area. 

 

Figure 39. Picture of children wearing the shoulder bag equipped with a micro-aethalometer model AE51. 

GPSs were worn as wristwatch or necklace. 

Micro-aethalometers are optical devices that estimate the BC concentration by measuring 

the rate of attenuation (ATN) of a beam of light (880 nm) that passes through a T60 Teflon-

coated borosilicate glass fiber filter strip over which air samples are drawn. These devices 

are commonly used in BC personal monitoring assessment applications thanks to:  

a) their high portability;  
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b) the long lasting internal battery that allows about 24 hours of continuous 

monitoring;  

c) the possibility to set different flowrates and time resolutions according to the 

specific scenario.  

During our monitoring campaign, the pump flowrate was set at 100 ml/s on a 60-second 

time resolution. The optical measurement technique on filters may present some 

artifacts, the most important of which are the so-called shadowing effect, and the 880 

nm beam of light multiple scattering (Weingartner et al., 2003). In particular, the first 

relates to the increased filter loading, while the latter is linked to both filter material and 

aerosol composition. An overall underestimation of BC concentrations is reported in 

literature linked to high attenuation values and for this reason, post-processing methods 

are important to enhance the quality of data (Good et al., 2017). 

The project was submitted to and approved by the ethical committee of the University of 

Milan and the elementary school board. Before the start of the monitoring period, 

information and explanations about the project were given to both parents and children 

and permission forms were signed. 

6.2.2. Data analysis  

For the present report, we focus on the route of children walking to school, resulting in a 

total of 43 cases (56% female). Only BC data associated with home-to-school commuting 

were used in this study. Raw BC data were post-processed by removing observations 

showing an error message, smoothing and accounting for the loading effect. In particular, 

we applied the Optimized Noise-reduction Algorithm (ONA) (Hagler et al., 2011), and the 

algorithm from Virkkula et al. (2007) (Virkkula et al., 2007) to account for the loading 

effect. Furthermore, correction factors were applied to each device to correct for 

differences among them. These factors resulted from two intercomparison monitoring 

exercises carried out both before and after the personal monitoring campaign by running 

all devices simultaneously and next to each other for 24 hours. The golden standard was 

micro-aethalometer model MA200-105 because of: 

a)  the device was equipped with the Dualspot© technology that automatically 

accounts for the loading effect;  

b) the device was the most recent device calibrated by the manufacturer.  

  



 

122 
 

The final post-processing equation is the following: 

𝐵𝐶𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 𝐵𝐶𝑟𝑎𝑤 × (1 + 𝐴𝑇𝑁 × 𝐾) × 𝐹𝐼𝐶     (1) 

Where: 𝐵𝐶𝑐𝑜𝑟𝑟𝑒𝑐𝑡 is the post-processed BC personal exposure; 𝐵𝐶𝑟𝑎𝑤 is the raw 

measurement performed by the micro-aethalometer; ATN is the measured rate of 

attenuation; K is the chosen Virkkula’s factor; 𝐹𝐼𝐶 is the intercomparison factor. The K 

factor represents an empirically derived constant that has the aim to correct the BC 

concentration underestimates that occur in presence of filter overloading. In particular, 

we used the K factor equal to 0.0054 calculated from a long-term monitoring campaign at 

the urban site of Helsinki (Virkkula et al., 2007); FIC ranged from 0.78 to 1.00, representing 

the regression slopes between MA200 and AE51s calculated by putting together both pre- 

and post- intercomparison datasets. 

A Land Use Regression (LUR) model was previously developed (Boniardi et al., 2019), and 

was based on a 5-week multi-site BC monitoring campaign in the school catchment area 

in January and February 2018. 34 sites were sampled, one week each, using micro-

aethalometers, model AE51. The cold-season MRH LUR model used in this paper was 

developed by using the ESCAPE methodology (Eeftens et al., 2012), and selecting only 

weekdays BC data measured from 7 am to 9 am. A supervised forward stepwise procedure 

was performed using as dependent variable the seasonal estimated BC concentrations and 

as explanatory variables a pool of traffic and land use variables calculated with QGIS 

software (QGIS Team, 2016). The best model was then selected according to the higher 

coefficient of determination (adjusted R2) and lower Root Mean Square Error (RMSE). The 

final cold-season MRH LUR model was the following: 

𝐵𝐶𝐶𝑜𝑙𝑑 𝑀𝑅𝐻 𝐿𝑈𝑅 = 3706 + (12.24 × 𝑇𝑂𝑇_𝐼𝑁𝑉𝐷𝑖𝑠𝑡_𝑀𝑅𝐻) + (0.001007 ×

𝑇𝑅𝐴𝐹𝐿𝑂𝐴𝐷_100_𝑀𝑅𝐻)    (2) 

Where TOT_INVDist_MRH is the ratio of the number of vehicles on the nearest road during 

MRH and the distance to that road; while TRAFLOAD_100_MRH is the sum of the number 

of vehicles on each road during MRH multiplied with the length of the roads in a circular 

buffer of 100 meter of radius. The model R2 is 0.65, the RMSE is 434 ng/m3. The Leave 

One Out cross Validation (LOOcV) resulted in a R2 of 0.51 and a RMSE of 509 ng/m3. 

The routes from home-to-school were drawn in a GIS environment following the procedure 

below:  

a) uploading GPS data and selecting only routes from home-to-school; 
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b) checking the paths by comparing them with the routes drawn by children and 

parents; 

c) adjusting home-to-school routes, i.e. missing GPS data were replaced with the 

drawn path; 

d) converting routes to 1 meter equidistant points along each line. Then, for each 

point we estimated the BC concentration by applying the MRH LUR model.  

To remove possible outliers from the distribution of modelled BC values, a threshold equal 

to the highest seasonal BC value from the 2018 monitoring campaign +20% was set 

(Henderson et al., 2007). 

Before comparing personal exposure data and MRH LUR estimates, 𝐵𝐶𝐶𝑜𝑙𝑑 𝑀𝑅𝐻 𝐿𝑈𝑅 values 

were rescaled as measurements were done on different days with different background 

concentrations. For this, we retrieved data from an urban background site of the Air 

Quality Network (AQN) of Milan (ID station 10283, via Ponzio 34/6 – Pascal Città Studi), 

located 6 km far from the study area. In particular, BC MRH data measured during the 

2018 monitoring campaign period (BCAQN_2018) were compared to those measured on the 

specific day of the 2019 personal monitoring campaign (𝐵𝐶𝐴𝑄𝑁_𝑑𝑎𝑦). Finally, rescaled BC 

(𝐵𝐶𝐿𝑈𝑅_𝑑𝑎𝑦) was obtained by applying the formula below: 

𝐵𝐶𝐿𝑈𝑅_𝑑𝑎𝑦 = 𝐵𝐶𝐶𝑜𝑙𝑑 𝑀𝑅𝐻 𝐿𝑈𝑅
𝐵𝐶𝐴𝑄𝑁_𝑑𝑎𝑦

𝐵𝐶𝐴𝑄𝑁_2018
                                          (3) 

R (R Core Team, 2014) was used for the statistical analysis. In particular, we performed 

descriptive statistical analyses, Pearson correlation analysis to compare measured and 

modelled exposures along the routes, and we produced a Bland-Altman plot to assess 

agreement between the two methods. Lin’s concordance correlation coefficient was used 

to compare 𝐵𝐶𝐿𝑈𝑅_𝑑𝑎𝑦 model estimates and the gold standard represented by the average 

measured personal BC concentration. The coefficient ranges from 0 to ±1, showing:  

a) high concordance near +1; 

b) high discordance near -1; 

c) no correlation around 0.
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6.3. RESULTS 

The average distance travelled by schoolchildren was 650 m (SD: 258 m), the longest route 

was 1403 m, while the shortest was 114 m (Table 13). The commuting trips were spread 

all around the school, covering approximately the entire school catchment area. Personal 

BC exposure while walking to school varied widely across the monitoring campaign. The 

mean ± SD measured BC was 9003 ± 4864 ng/m3, while 1014 ng/m3 and 25,097 ng/m3 

respectively, were the lowest and highest values. BC values measured at the AQN 

background station for the monitoring period showed on average lower concentration with 

mean ± SD equal to 6635 ± 3730 ng/m3. 

Table 13. Study characteristics. 43 children who walked to school were included in the analysis. 24 children 

were female, 19 were male. 

 Mean ± SD Min-max 

Age (years) 9.1±0.7 7-11 

Distance (m) 650 ± 258 114 – 1,403 

Measured BC (ng/m3) 9,003 ± 4,864 1,014 - 25,097 

MRH LUR BC estimate (ng/m3) 6,365 ± 3,676 1,365 - 12,886 

MRH AQN background BC (ng/m3) 6,635 ± 3,730 1,350 - 14,050 

Figure 40 shows the temporal trend of BC concentrations during the 2019 monitoring 

campaign. The black line represents the MRH averaged values from the AQN monitoring 

site and shows a marked variability during the whole period. The circles represent the 

average BC exposure of the schoolchildren during their home-to-school commute. 
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Figure 40. Average MRH BC concentrations measured at an urban background reference site (black line) 

and average home-to-school commuting personal exposure values (circles) during the 2019 

personal exposure monitoring campaign. The colors of the circles correspond to the different 

days of monitoring. 

Personal 𝐵𝐶𝐿𝑈𝑅_𝑑𝑎𝑦  estimates averaged over all points along the route ranged from 1,365 

ng/m3 to 12,886 ng/m3 with mean ± SD of 6365 ± 3676 ng/m3. Figure 41A shows high 

correlation between average home-to-school estimates and personal BC measures (r=0.74, 

p<0.001). However, on average 𝐵𝐶𝐿𝑈𝑅_𝑑𝑎𝑦 model showed to underestimate concentrations 

of about 29% (Table 14). The Bland-Altman plot visualizes this underestimate (blue line), 

and shows a slight trend in under- and over-estimating values at the extremes (Figure 

41B). Lin’s Concordance Correlation Coefficient is 0.6 (95% C.I.: 0.43 - 0.74) and shows 

moderate concordance between methods.   
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Figure 41. Correlation plot (A) with confidence interval set at 95% (shadowed area), and reference line 

(black dashed line). Bland-Altman plot (B) with average line (blue line), and ±1.96 SD lines (red 

lines). According to A, Pearson’s correlation coefficient is 0.74. In the comparison between the 

two methods, Lin’s Concordance Correlation Coefficient is 0.6 (95% CI: 0.43 - 0.74). 

Table 14 and Figure 42 show five case studies comparing personal measured BC and 

𝐵𝐶𝐿𝑈𝑅_𝑑𝑎𝑦 estimates along home-to-school routes on two different days. On February 13, 

measured BC of Route 2 was higher by 15% than Route 1. This difference is similar to the 

one observed between 𝐵𝐶𝐿𝑈𝑅_𝑑𝑎𝑦 BC estimates for the same routes, although in absolute 

terms these last were about 30% smaller than the measured BC. On February 06, measured 

BC of Route 5 was higher by 22% and 10% than Route 4 and Route 3, respectively; the 

𝐵𝐶𝐿𝑈𝑅_𝑑𝑎𝑦 estimates followed a similar trend, but differences were smaller. According to 

the 𝐵𝐶𝐿𝑈𝑅_𝑑𝑎𝑦 estimates, for this day the model tends to overestimate measured BC of 

about 6-15%. A visual comparison between measured BC and 𝐵𝐶𝐿𝑈𝑅_𝑑𝑎𝑦 estimates is given 

in Figure 42. According to both measured BC and 𝐵𝐶𝐿𝑈𝑅_𝑑𝑎𝑦 estimates, near the school 

entrance there were high BC concentrations, probably because of vehicles dropping 

children in front of the school.  
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Table 14. Main information about the five case studies (see also Figure 4), such as home-to-school distance, 

measured and estimated BC statistics. For comparison, the mean concentration of BC at the AQN 

monitoring site is reported. 

 Day Distance 

(m) 

Measured BC 

(Mean ± SD, ng/m3) 

MRH LUR BC estimate  

(Mean ± SD, ng/m3) 

MRH AQN 

background BC 

(Mean, ng/m3) 

Route 1 13/02/2019 482 8,320 ± 1,892 5,633 ± 761 4,200 

Route 2 13/02/2019 486 9,591 ± 2,189 6,576 ± 871 4,200 

Route 3 06/02/2019 939 9,798 ± 2,217 10,753 ± 2,510 11,100 

Route 4 06/02/2019 492 8,884 ± 2,125 10,169 ± 1,954 11,100 

Route 5 06/02/2019 1403 10,779 ± 4,594 11,390 ± 2,490 11,100 

 

Meteorological parameters during both the 2018 and 2019 monitoring campaigns, as 

measured at the nearest Milan air quality network station (piazza Zavattari, ~ 1 km) are 

reported in Supplemental plot S11 and S12. Moreover, the statistics of BC concentrations 

for the same two periods are reported in Table S13, as measured at the background site 

of the Milan air quality network station (ID station 10283, via Ponzio 34/6 – Pascal Città 

Studi).   
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Figure 42. Visual comparison between measured BC and 𝐵𝐶𝐿𝑈𝑅_𝑑𝑎𝑦 estimates of five different home-to school 

routes. In panel A and C there are the measured BC, while in panel B and D there are the 

corresponding 𝐵𝐶𝐿𝑈𝑅_𝑑𝑎𝑦 estimates. The color is given by the quintile of the BC distribution for 

each day.  
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6.4. DISCUSSION 

To the best of our knowledge, this is the first time that a LUR model was tested to assess 

its reliability in estimating BC exposure during home-to-school commuting. We measured 

personal exposure to BC along home-to-school walking routes for 43 schoolchildren 

showing considerable variability across the entire monitoring period. Furthermore, a 

rescaled MRH LUR model, previously developed for the study area, was applied to the 

same routes estimating personal exposure to BC. On average, the model underestimated 

the measured personal exposure; however, the correlation between the two methods was 

high. This suggests that LUR models could be successfully used to: 

a) highlight relative differences among routes;  

b) analyse spatial patterns inside the school catchment area during home-to-school 

commuting;  

c) predict the cleanest route from a random home in the study area to the school 

(Figure 41, 42 and 43).  

  

Figure 43. Study area and home-to-school routes. The lines were converted to equidistant points, located 

at 1-meter distance from each other. For each point, 𝐵𝐶𝐿𝑈𝑅_𝑑𝑎𝑦 was applied to estimate BC 

concentrations. The colors are associated to the quantile of all estimates. The inset map 

represents the Municipality of Milan boundaries (black line) as well as the study area (yellow-

to-red lines).
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This paper presents some special features and in particular:  

a) schoolchildren were all monitored in a relatively short period (i.e. across January 

and February 2019);  

b) they belonged to the same school in Milan, so the resulting study area was relatively 

small;  

c) the MRH LUR model was developed only using MRH data collected in the school 

catchment area;  

d) a focus on home-to-school commuting on foot.  

As expected, our average personal BC exposure (9003 ng/m3) was higher than that 

reported in other studies, mainly because our data were measured during the most critical 

daily time-window for exposure in a congested urban environment, i.e. winter MRH in 

Milan. For instance, Buonanno et al. (2013) measured during winter an average daily BC 

personal exposure of 5100 ng/m3 on 103 schoolchildren from Cassino, a middle town in 

the central part of Italy (Buonanno et al., 2013). Moreover, Nieuwenhuijsen MJ et. al 

(2015), Paunescu et al. (2017) and Cunha-Lopes I et al. (2019) found an average personal 

BC exposure during commuting time of 2800, 3230 and 2500 ng/m3 respectively in 

Barcelona, Lisbon and Paris(Cunha-Lopes et al., 2019; Nieuwenhuijsen et al., 2015; 

Paunescu et al., 2019). These measures were conducted on three different cohorts of 

children; however, they were carried out in different seasons and considering all daily 

trips. 

Previously, other studies compared LUR estimates with personal exposure during 

commuting. Nieuwenhuijsen MJ et al. (2015) found a lower correlation between LUR 

estimates at home and personal BC values during commuting (r = 0.32) than the one we 

found (r = 0.74)(Nieuwenhuijsen et al., 2015). Furthermore, Minet L et al. (2018) 

compared BC LUR derived surfaces (100x100 meters grid) to personal exposure measures 

finding that the latter (median = 1764 ng/m3) were underestimated by the model (median 

= 1469 ng/m3)(Minet et al., 2018). This result is comparable with our findings showing that 

short-term high exposure events are very hard to catch with a LUR approach. On the 

contrary, the correlation between personal and modelled exposures appeared very low 

probably due to the lack of temporal rescaling. Hankey et al. (2017) applied a LUR model 

based on mobile monitoring to predict concentrations at the midpoint of bike path 

segments for a complete urban area (Minneapolis, USA). Although an external validation 

was not provided, this analysis showed the potential of this approach for urban planning 

purposes (Hankey et al., 2017). 
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Figure 42 shows that the spatial pattern of the personal measures and the estimates along 

the home-to-school routes were not always in agreement. This is probably due to short-

term exposure events that cannot be captured with a LUR model. Moreover, our 𝐵𝐶𝐿𝑈𝑅_𝑑𝑎𝑦 

model proved to behave differently by day according to the background concentration; in 

particular, it was able to detect relative differences between routes, but it seemed to 

over- or under-estimate personal BC depending on the background concentrations. This 

was partially expected because of the developing procedure of the model and the rescaled 

equation (2).  

Our work has some limitations. In particular, to estimate 2019 BC concentrations we used 

a MRH LUR model developed using data measured by fixed monitoring sites in 2018. Then, 

BC estimates were rescaled only according to the concentrations at the AQN background 

site in 2019. This procedure has some weaknesses: it does not allow catching short-term 

spikes and the BC estimates are strongly connected to the behavior of the background 

site. Moreover, the traffic variables that we used to develop the model were only available 

as annual MRH estimates. Hence, we were not able to catch daily traffic conditions. Other 

limitations are linked to our LUR model: for instance, since we used only traffic variables, 

we were not able to catch the local influence of other important determinants such as 

the presence of restaurants or bus stops. These variables have already proved to be 

influential in previous works and could be useful to explain the differences between 

measured and modelled data (Tunno et al., 2018; van Nunen et al., 2017). Furthermore, 

we measured personal exposure to BC during home-to-school routes only on one day per 

child. This limited amount of data exposes our measurements to the bias linked with the 

temporal variation of different meteorological variables, such as wind direction and wind 

speed. In other words, LUR models are better suited to estimate longer-term 

concentrations rather than single events. Nevertheless, our results suggest that the model 

can be used in the study area to find relative differences between routes and to estimate 

the on-average cleanest walking route from an origin to a destination. Finally, in our case 

studies we compared only average values, without considering peak exposures or the total 

time of commuting. In the comparison between different routes with different distances, 

a cleanest route algorithm should preferably also take into account travel time. In fact, 

walking significantly longer to avoid polluted roads may result in a higher total uptake of 

pollutants; moreover, it is necessary to consider also the willingness of people to take 

longer routes (Anowar et al., 2017). 
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6.5. CONCLUSIONS 

Our results suggest that a LUR model is capable of predicting the cleanest walking routes 

to school. A further analysis of the spatial patterns of the home-to-school commute and 

the BC distribution in the school catchment area of the city of Milan could provide valuable 

information to public health officials and urban planners. In the attempt of lowering 

exposure to air pollution and building a healthier city for schoolchildren, policy makers 

should promote less polluted home-to-school routes by, for instance, providing car-free 

school streets. 
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7. CONCLUSION 
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7.1. SUMMARY 

This dissertation presents a novel approach to assess in a comprehensive way the exposure 

of schoolchildren to Black Carbon (BC) in an urban environment. The project started with 

a two-season monitoring campaigns of BC with the aim to analyse and to model the spatial 

distribution of the contaminant inside an elementary school catchment area. In this first 

stage, a participatory approach was adopted and consisted in the selection of monitoring 

sites by involving both schoolchildren parents and other citizens of the study area, and by 

asking them to host a monitoring device on their windowsills or balconies. Afterwards, an 

environmental education intervention consisted in ludical and experienced-based 

laboratories focused on air pollution was carried out in partnership with a non-profit 

organization, and involving 128 schoolchildren. This approach helped to engage teachers, 

schoolchildren, parents, and to recruit a total of 109 children in the last step of the 

research project: a two-season personal monitoring campaign. Finally, the collected 

personal exposure data were used to validate one of the model developed during the first 

stage of the research project. This last exercise, integrated with the time-activity and the 

GPS information helped to analyse at a high spatial definition one of the most critical 

period for the personal exposure of schoolchildren: the home-to-school commuting. 

The present dissertation confirms that a participatory approach in exposure science is a 

suitable choice that can add value to the research project process without losing in 

quality. 
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7.2. MAIN CONTRIBUTION TO THE FIELD OF STUDY 

7.2.1. Analysing and modelling the spatial distribution of black carbon in a school 

catchment area 

Land Use Regression model is a well-known and intensively used technique in the fields of 

exposure science and environmental epidemiology. In chapter 3, our main contribution to 

the state of the art is represented by the participatory approach that we used to identify 

the monitoring sites inside the study area, as well as the special focus on both different 

seasons and morning rush hour, by highlighting peculiar spatial patterns. Being able to 

develop spatial models at both fine scale and high time resolution is the starting point 

toward an improvement of the exposure attribution accuracy in large-scale 

epidemiological studies. 

7.2.2. A participatory approach to involve teachers, schoolchildren and their parents in 

the research process 

In chapter 4, an environmental education intervention focused on air pollution in urban 

environment and based on both gamification of exposure science-related topics and IVAC 

methodology was presented. Moreover, such an approach was designed not only to raise 

awareness, but at the same time to favour the recruitment of volunteers in a two-season 

personal monitoring campaign, by scheduling the activities in order to increase the level 

of engagement of teachers, schoolchildren and their parents, and to favour their active 

and informed participation to the personal monitoring campaign. 

7.2.3. Measuring personal exposure of schoolchildren to black carbon  

In chapter 5, only the first insights of a two-season personal monitoring campaign are 

presented. The main objective of the contribution was to investigate personal exposure 

in different microenvironments with a focus on transportation. The main results confirm 

the findings already published in literature about both the role of home and school on the 

total exposure of schoolchildren, and the intensity of the exposure linked to 

transportation. 
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7.2.4. Validation and application of a Land Use Regression model 

In chapter 6, for the first time to our knowledge, a Land Use Regression model developed 

specifically by using measured morning rush hour BC concentration in the study area was 

validated with personal exposure data collected during home-to-school commuting. This 

exercise shows that a Land Use Regression model is a suitable tool to identify less polluted 

routes, and therefore to be used as a tool for mitigating personal exposure. 
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7.3. MAIN WEAKNESSES 

7.3.1. Analysing and modelling the spatial distribution of black carbon in a school 

catchment area 

For this analysis, raw BC data were not post-processed to account for optical related 

artefacts (Good et al., 2017). This might have caused, especially during cold season, an 

underestimation of BC concentrations and it might have contributed to the lower 

performance of the cold season LUR models. Another limitation is that LUR models were 

developed using a pool of data collected in two seasonal 5-weeks monitoring campaigns, 

during which each site was monitored only for one week; this may have introduced some 

temporal variability bias. Moreover, for the cold season LUR models there is a lack of 

explanatory variables that properly account for the contribution of heating systems. 

7.3.2. A participatory approach to involve teachers, schoolchildren and their parents in 

the research process 

The main weakness that raised from the participatory approach developed inside the 

school is linked to the level of engagement of schoolchildren parents. In fact, engaging 

successfully schoolchildren is not always equal to engage their parents. To tackle the issue 

we engage teachers from the beginning part of the project, however more can be done. 

Then again, the engagement of the adults is fundamental if we consider that children 

can’t carry out most of the planned activities for the personal monitoring campaign 

autonomously. 

7.3.3. Measuring personal exposure of schoolchildren to black carbon  

The two personal monitoring campaigns involved children for only one day. This brief 

period is likely to be not sufficient to profile entirely an individual exposure. However, 

the 7-day time-activity diary, as well as the GPS monitoring, will help us to fill this gap. 

Moreover, a participatory approach like the one proposed in the MAPS MI project is 

arguably linked to a selection bias, by favouring the engagement of those parents already 

sensitive about environmental issues. 

Moreover, for this contribution, we limited our analysis on BC that is a primary air 

pollutant highly linked with traffic sources. For this reason, even if in the MAPS MI project 

we measured also other air pollutants, such as NO2 and BTEX, it is possible that we 

underestimated the influence of important sources, such as cooking activities. In 
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particular, other studies have proved the influence of these kind of activities on UFP 

concentrations (Buonanno G 2013). 

7.3.4. Validation of a LUR model by using personal exposure data and identification of the 

cleanest home-to-school routes 

So far, the validation of the model performed through the comparison between estimates 

and personal measures was limited to the home-to-school commuting winter data.  

Besides, this exercise was conducted by comparing seasonal averaged estimates and one-

day personal measurement derived from different monitoring campaigns. In particular, 

estimates performed by a model developed on January/February 2018 data were 

compared to personal data measured during January/February 2019. Even if a rescale 

method was applied, it is likely that this approach introduced a bias in estimates. 

Moreover, one-day measurements are usually highly influenced by extemporary variables, 

such as direction and intensity of the wind, the presence of extemporaneous hotspots. 

Despite these limitations, our results suggest that this is a valuable analysis to perform 

and eventually refine in the future.  

7.4. FURTHER STEPS AND CHALLENGES 

One of the most important challenges that participatory scientific research should address 

in the future is the engagement of public authorities in terms of active partnership with 

precise functions. For instance, starting from the school catchment areas, urban planners 

could suite in this process by implementing policies oriented to design more walkable, 

bikeable and less polluted home-to-school routes, and consequently favouring active 

travel. This effort is likely to affect positively the health of citizens (De Nazelle et al., 

2011) and could represent a valuable approach to tackle air pollution and mobility issues 

in one of the most polluted and congested city of Europe. 

Indeed, our results suggest that the interest of community on air pollution can be 

prompted, and the answer to the call of participation can be very positive. In the frame 

of the new paradigm of exposure sciences, another important challenge would be to 

involve deeper the players, in particular the parents, by giving them the possibility to 

directly use low cost sensors, not only to monitor air pollution, but also to see possible 

subclinical effects (Ottaviano et al., 2019). Even if this approach could bring to less 

accurate data, it remains a valuable support to epidemiological studies (Jerrett et al., 
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2017), and it is likely to be an even more powerful approach to raise awareness among 

citizens (English et al., 2018). 

Moreover, from a technical point of view, although improvable, LUR models appear to be 

suitable tools for predicting the cleanest walking routes to school, therefore the next step 

should be finding resources and modifying the design of the project in order to broaden 

the analysis to more and more schools. Moreover, in the attempt to reduce the systematic 

underestimation of exposure performed by the model, this technique could be refined by 

using more sophisticated approaches such as machine learning. 

In the attempt to develop highly-performant models collecting and measuring more and 

more explicative variables is a fundamental challenge. This is particularly true if we refer 

to the spatial distribution of black carbon during the cold season, related to which there 

seems to be a lack of variables capable to catch the spatial variability due to different 

sources than traffic. 

Moreover, many technical and analytical challenges are related to the detection of BC. In 

particular, filter-based optical BC-detectors suffer from two important artefacts: the so-

called shadowing effect and the multiple scattering of light related to the composition of 

the measured aerosol. In the future, it would be interesting to match light scattering 

measures with optical measures of BC on different classes of urban monitoring sites (UB, 

UT, S), as well as during personal monitoring campaigns. 

One last research needed is about exposure to peaks of concentration. In fact, little is 

known about health-related effects and underlying mechanisms that could be trigged by 

highly intense exposure like those children experience when close to traffic sources. 

Finally, the next planned steps of the MAPS MI project are: 

a) going more in depth in the personal exposure assessment, by introducing the 

analysis of exposure-related dose and the detection of peaks of exposure; 

b)  estimating mid- and long-term children personal exposure to BC by integrating 

refined LUR estimates with the information collected with the time-activity diaries 

and the GPS; 

c) linking together the different layers by analysing possible relationships between 

biomarkers of exposure, epigenetic markers, microbiota and personal air pollutants 

exposure measures and estimates.  
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SUPPLEMENTARY MATERIAL 
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CHAPTER 3: SPATIAL DISTRIBUTION OF BLACK CARBON IN A SCHOOL 

CATCHMENT AREA 

 

S1. Explanatory variables used in the LUR models developing procedure 

Predictor variable Description 

Buffer size 

(radius in 

meters) 

ROADS_LENGTH_XX Sum of the length of the roads in a certain buffer 
50, 100, 300, 

500, 1000 

MAJORROADS_LENGTH_XX Sum of the length of the major roads in a certain buffera 
50, 100, 300, 

500, 1000 

Distance_NR The distance to the nearest roadb  

INVDist_NR 1/distance to the nearest roadb  

INVDist_NR2 1/(distance to the nearest road)^2b  

TOT_NR 
Total daily or morning rush hour vehicles on the nearest 

roadb 
 

TOT_INVDist_NR TOT_NR/Distance_NRb  

TOT_INVDist_NR2 TOT_NR/(Distance_NR)^2b  

HEAVY_NR 
Total daily or morning rush hour heavy commercial 

vehicles on the nearest roadb 
 

HEAVY_INVDist_NR HEAVY_NR/Distance_NRb  

HEAVY_INVDist_NR2 HEAVY_NR/(Distance_NR)^2b  

MR_Distance The distance to the nearest major roada  

MR_INVDist 1/distance to the nearest major roada  

MR_INVDist2 1/(distance to the nearest major road)^2a  

MR_TOT 
Total daily or morning rush hour vehicles on the nearest 

major roada 
 

MR_TOT_INVDist MR_TOT/MR_Distancea  

MR_TOT_INVDist2 MR_TOT/(MR_Distance)^2a  

MR_HEAVY 
Total daily or morning rush hour heavy commercial 

vehicles on the nearest major roada 
 

MR_HEAVY_INVDist MR_HEAVY/MR_Distancea  

MR_HEAVY_INVDist2 MR_HEAVY/(MR_Distance)^2a  

TRAFLOAD_XX 
Sum of (Total daily or morning rush hour vehicles * road 

length) in a certain buffer 

50, 100, 300, 

500, 1000 
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HEAVYLOAD_XX 
Sum of (Total daily or morning rush hour heavy 

commercials vehicles * road length) in a certain buffer 

50, 100, 300, 

500, 1000 

CONGESTION_NR TOT_NR/Capacity of the roadb  

CONGESTION_XX 
average (TOT_NR/Capacity of the road) in a certain 

buffer 

50, 100, 300, 

500, 1000 

MR_CONGESTION MR_TOT/Capacity of the roada  

MR_CONGESTION_XX 
Sum of (MR_TOT/Capacity of the road) in a certain 

buffera 

50, 100, 300, 

500, 1000 

HFRACTION_NR 
Fraction of heavy commercial vehicles on the nearest 

roadb 
 

HFRACTION_XX 
Average fraction of heavy commercial vehicles in a 

certain buffer 

50, 100, 300, 

500, 1000 

MR_TRAFLOAD_XX 
Sum of (Total daily or morning rush hour vehicles * major 

road length) in a certain buffera 

50, 100, 300, 

500, 1000 

MR_HEAVYLOAD_XX 

Sum of (Total daily or morning rush hour heavy 

commercials vehicles * major road length) in a certain 

buffera 

50, 100, 300, 

500, 1000 

ADDRESSES_XX Number of addresses in a certain buffer 

50, 100, 300, 

500, 1000, 

3000 

POPRES_XX Resident population in a certain buffer 

50, 100, 300, 

500, 1000, 

3000 

HDRES_XX High residential areas in a certain areas 

50, 100, 300, 

500, 1000, 

3000 

LDRES_XX Low residential areas in a certain buffer 

50, 100, 300, 

500, 1000, 

3000 

URBGREEN_XX Urban green and other green areas in a certain buffer 

50, 100, 300, 

500, 1000, 

3000 

IND_XX Industrial areas in a certain buffer 

50, 100, 300, 

500, 1000, 

3000 

SVF_XX Sky View Factor 25, 50 

amajor roads: roads with an estimated traffic of more than 10000 vehicles per day 

bonly roads with estimated traffic where included in the network  
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S2. Statistics of the principal meteorological parameters during the two seasonal 

monitoring campaigns 

 Warm season Cold season 

 Mean Median SD Min Max Mean Median SD Min Max 

Temperature 21.7 21.6 3.3 16.6 27.1 5.8 5.6 1.8 2.9 9.5 

Solar radiation 265.54 143.44 288.84 0.06 730.15 58.08 0.74 89.33 0.33 244.83 

Relative Humidity 

(%) 
54 53 12 36 76 83 86 8 63 94 

Accumulated rain 

(mm) 
0.045 0 0.138 0 0.7 0.065 0 0.010 0 0.5 

Wind speed 1.35 1.4 0.28 0.8 1.8 1.12 1.1 0.23 0.7 1.8 

Wind direction 207 203 23.8 166 250 219 216 40.8 112 319 

SD = standard deviation 
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S3. Averaged solar radiation daily trend during the two seasonal monitoring campaigns 

 

S4. Accumulated rain during the two seasonal monitoring campaigns 
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S5. Wind rose diagram of the two seasonal monitoring campaigns 
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S6. Scatter plot of regulatory site (Pascal) and reference site during warm and cold season 

monitoring campaigns 

 

S7. Scatter plot of regulatory site (Pascal) and reference site during the MRH (7 am – 9 

am) warm and cold season monitoring campaigns 
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S8. Kruskal-Wallis and Bonferroni post-hoc tests applied to test the differences among 

BC concentrations of the different monitoring sites classes, divided in seasonal, annual 

estimates, non-MRH and MRH data. The significance (*) was set at α = 0.05 and rejected 

Ho if p <= α /2. 

 

 

 

 

  

  S-UT S-UB UB-UT 

Non-MRH BC  

Warm 0.0042* 0.0000* 0.0403 

Cold 0.0782 0.0021* 0.0674 

Annual 0.0074* 0.0000* 0.0232* 

MRH BC  

Warm 0.0013* 0.0001* 0.1796 

Cold 0.0064* 0.0010* 0.2941 

Annual 0.0017* 0.0000* 0.0938 
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S9. Translated recruitment letter 
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S10. Brochure of the project (front/rear)
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CHAPTER 6: ESTIMATING BC PERSONAL EXPOSURE AND DESIGNING LESS 

POLLUTED HOME-TO-SCHOOL STREETS 

 

S11. Wind rose diagram of the two cold-season monitoring campaigns carried out in 

January and February 2018 and 2019. The selected Air Quality Network site that collected 

the data was located about 1 km away from the school 

 

 

S12. Accumulated rain during the two cold-season monitoring campaigns carried out in 

January and February 2018 and 2019 (2018 mean = 54.8 mm, 2019 mean = 51.2 mm). 
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S13. Statistics of BC concentrations according to the urban background monitoring site 

of the Air Quality Network for the city of Milan (ID station 10283, via Ponzio 34/6 – Pascal 

Città Studi). The data were selected for January and February 2018 and 2019. 
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