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Pygmy dipole response of proton-rich argon nuclei in
random-phase approximation and no-core shell model
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The occurrence of a pygmy dipole resonance in proton rich 32,34Ar is studied using the unitary correlator
operator method interaction VUCOM, based on Argonne V18. Predictions from the random-phase approximation
(RPA) and the shell model in a no-core basis are compared. It is found that the inclusion of configuration mixing
up to two-particles–two-holes broadens the pygmy strength slightly and reduces sensibly its strength, as compared
to the RPA predictions. For 32Ar, a clear peak associated with a pygmy resonance is found. For 34Ar, the pygmy
states are obtained close to the giant dipole resonance and mix with it.
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I. INTRODUCTION

Recent advances in experimental techniques for radioactive
beams have fueled several studies of the properties of exotic
nuclei, away from the line of β stability. One of the most
interesting results is the discovery of low-lying dipole strength
in neutron-rich isotopes which is interpreted as a pygmy
dipole resonance (PDR). This new excitation mode is then
explained as the resonant oscillation of the weakly bound
neutron skin against the isospin saturated proton-neutron core.
Typically, one observes in nuclei with a neutron excess, i.e.,
N > Z, a concentration of electric dipole states close to the
particle emission threshold. These carry a small fraction of
the Thomas-Reiche-Kuhn (TRK) sum rule, which increases
with the charge asymmetry of the nucleus. The PDR is also
interesting because of its astrophysical implications. Although
it carries only a small fraction of the total dipole strength,
the occurrence of increased strength at the particle separation
threshold can enhance radiative capture cross sections [1,2],
which can have strong effects on the r-process nucleosynthesis
and on the abundance distribution of elements. In addition, the
thickness of the nuclear skin is directly related to the density
dependence of the symmetry energy. Recently, data on the
PDR resonance have been used to constrain models for the
symmetry energy [3].

The onset of low-lying E1 strength has been reported even
in stable nuclei with moderate proton-neutron asymmetry such
as 44,48Ca and 208Pb [4–6]; see Ref. [7] for a review of high
precision photon scattering experiments. For unstable nuclei
with large neutron excess, a sizable fraction of low-lying
E1 strength was observed in 20,22O [8] and 130,132Sn [9].
Several theoretical models have been employed to study
the nature of this low-energy dipole strength. Recent works
employed the Skyrme Hartree-Fock (HF) plus quasiparticle
random-phase approximation (RPA) with phonon couplings
[10,11], the quasiparticle phonon model [12–14], and the
relativistic quasiparticle RPA (RQRPA) [15,16]. In a recent
work, the PDR was analyzed including effects of particle-
vibration coupling on top of the RPA approach [17]. The
inclusion of low-lying phonons mainly correspond to consider

explicit admixtures of two-particle–two-hole (2p2h) states
and increase the fragmentation of the dipole distribution. In
neutron-rich isotopes, it was found that this effect can generate
a shift in the position of the PDR but otherwise does not
noticeably change its characteristics.

On the proton-rich side, nuclei with an excess of protons
over neutrons are found only for Z � 50. Due to the Coulomb
repulsion, the proton drip line is much closer to the β stability
line, and proton skins are possible only for the lightest isotopes.
For these elements, the multipole response is generally less
collective. Although these facts seem to disfavor the existence
of a proton PDR, a recent calculation suggested that this
mode can actually be observed in medium-mass nuclei [16].
Using RQRPA calculations, low-lying pygmy states were
obtained when approaching the proton drip line along the
Ar isotopes and the N = 20 isotones chains. However, no
study of correlations beyond the RPA, such as in Ref. [17],
has been reported to date for the proton PDR. In this work,
we will consider the proton-rich isotopes 32,34Ar and compare
predictions for the dipole strength as obtained in the RPA with
those from shell model (SM) studies in a no-core configuration
space. These approaches include complementary correlation
effects, since rather different portions of the Hilbert space are
probed. Still, it is preferable to perform such a comparison
based on the same Hamiltonian.

In the following, the unitary correlator operator method
(UCOM) [18] will be employed to regularize the strong core of
the realistic Argonne V18 potential [19]. The UCOM operator
generates a unitary transformation within the many-body
Hilbert space in which a weakly correlated wave function
is mapped into one where strong short-range repulsion and
tensor effects are explicitly manifested. If one applies this
transformation to the Hamiltonian, rather than the wave
function, it finds an expansion of the effective interaction into
many-body terms. The VUCOM force is obtained by truncating
the expansion at the two-body level. The result is an effective
force that tames the strong short-range and tensor components
of the original force and is therefore applicable to smaller
basis sets. The subtle cancellation between large nuclear and
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kinetic contributions to the total energy is also accounted for
in this expansion. Since the correlator operator is chosen in
such a way that nucleon-nucleon phase shifts are preserved,
VUCOM can also be regarded as a realistic two-nucleon force
on its own that is applicable, however, only to medium- and
low-energy processes. Therefore, the UCOM method provides
an interaction independent of the employed model space and
can be applied meaningfully to both the RPA and the SM
methods. At the same time, it includes the correlation effects
proper for modern high precision realistic interactions.

Details of the formalism employed in the calculations are
discussed in Sec. II. The RPA and the shell model results are
compared in Sec. III. Before presenting these results, we will
discuss the dependence of our calculations on the parameters
of the oscillator space and use the Hartree-Fock (HF) approach
to construct a basis to be used in the shell model studies, in
Sec. III A. Conclusions are drawn in Sec. IV.

II. FORMALISM

Consistent RPA calculations were performed to guarantee
the exact separation of the spurious center-of-mass motion.
This means that our single-particle basis was obtained by
solving the HF problem, and the same interaction was used
for both HF and RPA. To do this, one must take some care
in treating the d3/2 orbit which contains only two protons in
the mean-field picture. To maintain consistency and to ensure
the separation of spurious states, one must (1) force uniform
occupation for protons in this orbit when solving the HF
equations, (2) account for its partial occupation when solving
the RPA problem, and (3) allow for excitations of protons
both from the d3/2 to higher orbits and from lower orbits into
the (half empty) d3/2 level. This was done by considering the
latter orbit both as a particle and as a hole state, with the
respective depletion or occupation probabilities. Indicating
the HF basis with a ≡ nalajaτa (τ is the isospin), the RPA
eigenvalue equations for the amplitudes XJ

ab and Y J
ab are(

AJ BJ

BJ∗ AJ∗

) (
XJ,ν

Y J,ν

)
= ων

(
1 0

0 −1

)(
XJ,ν

Y J,ν

)
, (1)

where

AJ
ab,cd = na n̄b HJ

ab,cd nc n̄d + δacδbd (εa − εb),
(2)

BJ
ab,cd = na n̄b HJ

ab,dc n̄d nc,

where J is the angular momentum of the excited state, εa is
the HF single-particle energy of orbit a, and HJ

ab,cd the Pandya
transform of the residual two-body interaction. The numbers
(na)2 define the occupation of orbit a in the HF wave function,
while (n̄a)2 measures the unoccupied space. Hence, for the
Ar isotopes, we have

(na)2 = 1 − (n̄a)2 =



1 for a fully occupied,
0 for a empty,
1/2 for a = π0d3/2.

(3)

In Eqs. (1) and (3), the products nan̄b are restricted to
1p1h configurations only, except for the partially occupied
orbit. It must be stressed that the above prescription arises
naturally when deriving the HF+RPA scheme from propagator

(or Green’s function) theory [20,21]: following Baym and
Kadanoff [22,23], conserving RPA equations are derived
consistently from the HF self-energy and propagator. The HF
propagator, however, contains both particle and hole poles for
each partially occupied orbit, such as the d3/2 in our case. We
checked that neglecting proton excitations from lower orbits
to the d3/2 level no longer allows for the exact separation of the
spurious center-of-mass mode (although the breaking is small
and has negligible effects on the remaining E1 strength). The
RPA results reported in this paper are obtained in the fully
conserving approach. In all cases, we consider the isovector
dipole operator

Q̂T =1
1m = N

N + Z

Z∑
p=1

rpY1m − Z

N + Z

N∑
n=1

rnY1m, (4)

which is corrected for the center-of-mass displacement. In
all figures below, the calculated B(E1) strength to each final
state f ,

Bf i(E1) = 1

2Ji + 1
〈f ‖Q̂‖i〉, (5)

was folded with a Lorentzian of width � = 1 MeV,

R(Ex) =
∑
f

Bf i(E1)
�/2π

(Ex − ωf )2 + �2/4
. (6)

However, the reported integral quantities are always calculated
by considering the full strength of each peak concentrated at
the respective eigenvalue.

In all calculations, we employ the VUCOM interaction and
subtract the kinetic energy of the center-of-mass motion. The
intrinsic Hamiltonian is then written in the form of a two-body
interaction

Hint = T + V − Tc.m. =
∑
i<j

{
(pi − pj )2

2 A mN

+ Vi,j

}
. (7)

In all cases, a UCOM operator was used which corresponds
to a correlation volume of Iϑ = 0.09 fm3 for the tensor force.
This correlator was tuned to reproduce the binding energies
of 4He and 3H without the need for additional three-nucleon
forces [24]. Subsequent calculations suggested that binding
energies are reproduced, in perturbation theory, throughout
the nuclear chart without additional corrections to this UCOM
operator [25,26].

A harmonic oscillator basis with length bHO = 1.8 fm
was used for all the RPA calculations, except for 32Ar
when indicated. This basis was truncated according to the
number of major shells 2n + l � Nmax (with Nmax = 0, 1, . . .).
Calculations based on VUCOM generally converge in model
spaces of 10–20 shells if a harmonic oscillator basis is used.
Standard applications of the no-core shell model (NCSM) [27]
are based on using harmonic oscillator bases and truncating
the model space in terms of the maximum number of cross
shell excitations. The reason for doing so is to allow for
an exact separation of the center-of-mass motion. As it will
be shown in Sec. III A, a very large number of oscillator
functions would be required for converging the excitation
energy of the pygmy state. Obviously, this is beyond the
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capability of present-day computers, and one needs to resort
to a more realistic single-particle basis. Below, we will expand
the Hamiltonian, Eq. (7), over the lowest HF orbits that are
obtained while solving the corresponding HF+RPA problem.
Since we will only consider model spaces in which all nucleons
are active, we refer to this scheme as NCSM. The secular
problem was diagonalized using the shell model code ANTOINE

[28,29]. The dipole response was derived as usual by first
applying the operator Q̂ to the Jπ = 0+ ground state of 32,34Ar,
and then using the resulting 1− wave function as a pivot for
successive Lanczos iterations.

III. RESULTS

A. Dependence on the model space

Figure 1 shows the dipole strength distribution, Eq. (6),
obtained with RPA for different model spaces and oscillator
lengths. In all cases, one can identify a peak on the low-energy
tail of the isovector giant dipole resonance (IVGDR) which
receives strength almost exclusively from proton excitations,
that is, from the first term on the right-hand side of Eq. (4).
As it will be discussed below, this represents the PDR.
Unfortunately, very large configuration spaces are needed to
converge the pygmy peak at low energies. This behavior is
an artifact of employing a harmonic oscillator basis, which
does not properly describe loosely bound states. The dominant
contributions to the PDR come from the collective excitation
of protons to states just above the continuum threshold. Hence,
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FIG. 1. (Color online) Isovector dipole strength of 32Ar obtained
with HF+RPA, for different sizes of the model space (Nmax) and
harmonic oscillator lengths (bHO). The dashed lines represent the
contribution from protons only [first term in Eq. (4)].

TABLE I. Total E1 strength (in e2 fm2) for 32Ar obtained with
HF+RPA for energies below 12 and 40 MeV. The centroids of
these distributions are also reported (in MeV).

Ex � 12 MeV Ex � 40 MeV

Basis Ē
∑

B(E1) Ē
∑

B(E1)

bHO = 1.8 fm:
Nmax = 5 – – 23.06 7.13
Nmax = 9 10.71 1.03 22.69 8.01
Nmax = 11 10.12 1.08 22.14 7.86
Nmax = 15 9.15 1.01 22.26 8.04
Nmax = 19 8.72 0.97 22.14 8.05
Nmax = 23 8.51 0.86 22.17 8.09

bHO = 2.6 fm:
Nmax = 15 9.03 1.13 21.99 8.27
Nmax = 19 8.59 0.93 22.22 8.14
Nmax = 23 9.28 1.14 22.12 8.09

rather diffuse wave functions may be needed to properly
describe this strength. This implies large harmonic oscillator
bases. An inspection of the HF single-particle energies of
protons show that the orbits in the sd shell are well converged
already for Nmax = 5, while the pf orbits are found above
the separation energy and keep changing when increasing the
model space.

To assess the sensitivity of our results to the choice of
the model space, RPA calculations were performed up to
Nmax = 23 (24 major oscillator shells). For the largest model
spaces, the HF ground state properties are independent of
the oscillator length used. Hence, we have also performed
calculations with a larger oscillator length, bHO = 2.6 fm,
to facilitate the description of states in the continuum. The
centroid and total strength of the resulting E1 distributions are
reported in Table I for energies up to 12 and 40 MeV. It must
be stressed that the pygmy behavior is reproduced by RPA
theory even for the smallest model spaces considered here,
and its existence is therefore a stable prediction. However, no
strength is obtained in the low-energy region when a small
number of oscillator functions is employed. Increasing the
space, the pygmy peak is lowered, and it eventually stabilizes
at around 9 MeV. Table I shows that 16 major oscillator shells
are required to converge the centroid of the IVGDR and the
summed strength in the region below 12 MeV. Increasing the
space further, small variations of the results still occur which
are a result of discretizing the continuum with an increasing
number of single-particle orbits. The limit of an infinite space
would be reached by solving directly the continuum RPA
equations. However, we do not expect that this would lead
to sensible deviations for the integral quantities of Table I.

Although very large oscillator bases are needed to generate
the proper HF wave functions, only the orbits near the Fermi
surface are actually relevant for constructing the pygmy
resonance. This is depicted in Fig. 2, in which the distribution
obtained in the full Nmax = 15 model space is compared to
the one obtained using the same HF basis but restricted to the
six lowest shells. Solving the RPA equations in this basis is
sufficient to reproduce the original results up to an excitation
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FIG. 2. (Color online) Dependence of the HF+RPA strength
distribution on the truncation of the single-particle basis. The same
HF basis is employed in both calculations, and was derived in a
Nmax = 15 harmonic oscillator space. Full line: all the HF states are
used to solve the RPA equations. Dashed line: only the six lowest HF
shells were retained.

energy of ≈ 23 MeV. The summed strength and centroid below
40 MeV, obtained in this way, are 22.0 MeV and 7.97e2 fm2,
which underestimates the total strength by only a percent due
to truncation. Thus these quantities remain largely unaffected.
The truncation of the HF basis reproduces the pygmy results
obtained with the larger harmonic oscillator space. It is also
small enough to allow no-core shell model calculations, which
are presented in Sec. III C.

We note that not only the matrix elements of the Hamil-
tonian, Eq. (7), were expanded in the new HF basis, but also
the matrix elements of the dipole operator Q̂. Employing the
correct one-body matrix elements of this operator was found
to be crucial to reproducing the correct transition strengths.

B. RPA results for 32Ar

From Table I we deduce that with the present choice of the
correlator (Iϑ = 0.09 fm3) and at the RPA level, the VUCOM

interaction predicts an isovector dipole strength of 8.15 ±
0.10 e2 fm2 within the first 40 MeV of excitation energy. The
centroid of this distribution is EIVGDR = 22.15 ± 0.15 MeV.
This is close to the empirical estimate Epeak = 31.2/A1/3 +
20.6/A1/6 = 21.4 MeV [30]. However, one should keep in
mind that this formula was derived from data on stable nuclei
with masses A > 50, and it is just indicative in this case.
In the energy region up to 40 MeV, the RPA calculation
exhausts about 153% of the TRK sum rule. This enhancement
is expected for realistic interactions, and it can be traced
to the strong tensor component of the VUCOM force [31]. A
similar enhancement has also been reported applying VUCOM to
4He [32]. Examples for the transition densities to states around
20 MeV are shown in Fig. 3. These describe an out-of-phase
oscillation of protons and neutrons and confirm the IVGDR
nature of these excitations.

More interesting is the pygmy peak at the lower end of the
GDR tail. As already noted, this receives E1 strength almost
exclusively from protons—the first term on the right-hand
side of Eq. (4)—as shown by the dashed lines in Fig. 1.
The transition densities for the RPA states at 8.45, 8.60,
and 10.94 MeV are reported in Fig. 3 and show the typical
behavior of the PDR: protons and neutrons move in phase
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FIG. 3. (Color online) Proton and neutron transition densities for
32Ar obtained from RPA theory (Nmax = 15). Three states associated
with the proton pygmy resonance (at 8.45, 8.60, and 10.94 MeV) are
compared to the IVGDR eigenstates at 16.75 and 21.16 MeV.

in the nuclear interior, while only protons are excited at the
surface and extend outside the nuclear core. The total strength
found below 12 MeV of excitation energy is 1.0 ± 0.15 e2 fm2,
for Nmax � 15. No strength is seen in this region if only six
oscillator shells are retained. In this case, the PDR is obtained
at larger energies, but it carries a similar strength (0.84 e2 fm2

up to Ex = 15 MeV).

C. NCSM results for 32Ar

No-core shell model calculations were done in order to
investigate the effect of correlations beyond RPA on the
dipole distribution. As indicated in Fig. 1, an oscillator basis
Nmax = 15, corresponding to a 13h̄ ω model space, would
be required to converge the energy of the PDR. The number
of active single-particle orbits can be reduced by employing
the truncated HF basis discussed in Sec. III A. The proton
HF orbits were used to expand the VUCOM interaction and
the dipole operator. The explicit configurations employed were
(0s1/20p3/20p1/20d5/2)14−nν (1s1/20d3/20f7/2 . . . 0h11/20h9/2)nν

for neutrons and (0s1/20p3/20p1/20d5/21s1/20d3/2)18−nπ

(0f7/20f5/21p3/2 . . . 0h11/20h9/2)nπ for protons. The model
space was truncated in terms of the total number of
particle-hole excitations (nν + nπ � n). This maintains all the
particles active and allows for excitations from the core. The
0+ ground state was first derived using an n-particle-n-hole
(npnh) model space. Once this is done, the dipole operator,
Eq. (4), connects this to states in a space containing up to
(n + 1)p-(n + 1)h. By performing Lanczos diagonalization
of the 1− final states in the larger configuration space, one
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FIG. 4. (Color online) Top panels: isovector spectral strength
obtained with the shell model for dipole excitations to the 1p1h and
2p2h configuration spaces. The first six HF orbits were included in
the basis. Bottom panel: 1h̄ ω result, including excitations up to the
pf shell only.

is guaranteed to exhaust the total dipole strength. Note that
for a 0p0h space, the neutrons are constrained to the lowest
HF orbits while some mixing is possible for protons, which
can be excited from the lower shells into the half-empty d3/2

orbit. This already leads to a configuration space beyond the
corresponding RPA theory.

The upper panels of Fig. 4 show the strength distributions
obtained from the 0p0h-1p1h and 1p1h-2p2h configuration
spaces. The same structure of an IVGDR resonance and
pygmy peak is found, as for the RPA (Fig. 2), but both the
IVGDR distribution and PDR are broadened by shell model
correlations. For the 2p2h model space, the IVGDR is centered
at 21.66 MeV. Integrating up to 40 MeV excitation energy, one
finds that the total strength is lowered by configuration mixing
and exhausts 137% of the TRK sum rule. The response in the
pygmy region is compared with the RPA approximation in
Table II. Shell model correlations do not significantly alter the
position of the PDR. On the other hand, its strength is reduced
by a factor of 2.

The configuration spaces used above restrict most of the
neutrons in the d5/2 orbit and below. One may question whether
neutron correlations in the sd shell affect the properties of
the PDR. To check this, we performed a NCSM calculation
in the 1h̄ ω model space, that is, by opening the sd shell
and allowing for one excitation across major shells. The
strength distribution, plotted in the lower panel of Fig. 4,
shows no qualitative distortion of the pygmy peak. Hence,

TABLE II. Total dipole strength (e2 fm2) and its centroid
(MeV) in the region of the pygmy resonance, as obtained in
RPA and shell model with 1p1h and 2p2h configurations. The
dipole distribution was integrated up to 12 MeV of excitation
energy for 32Ar and 14 MeV for 34Ar.

32Ar 34Ar

Ēpyg
∑

Bpyg(E1) Ēpyg
∑

Bpyg(E1)

RPA 9.15 1.0 12.7 0.8
1p1h 9.66 0.44 12.8 0.65
2p2h 8.95 0.49 11.6 0.62

the approximation made restricting neutrons in the 0p0h
configuration should not noticeably affect our conclusions.
The PDR strength is also reduced here to about 60% of the
RPA value. However, at 1h̄ ω, only excitations to the pf shell
are possible. Since this corresponds to a more severe truncation
of the HF basis, we do not attempt to extract quantitative
information on the PDR from this calculation.

D. Results for 34Ar

A similar analysis was carried out for 34Ar. The strength
predicted from RPA theory is depicted in Fig. 5 for Nmax =
15. The centroid of the dipole distribution in the interval [0,
40] MeV is obtained as 23.3 MeV. Summing this strength
within the same interval gives 8.69 e2 fm2, which corresponds
to 161% of the TRK sum rule. These predictions do not vary
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FIG. 5. (Color online) Isovector spectral strength for 34Ar ob-
tained with HF+RPA (top) and the shell model up to 1p1h and 2p2h
(center and bottom). The full Nmax = 15 harmonic oscillator space
was employed in the RPA calculations. The same HF basis derived
for the RPA calculation is used for the shell model, but truncated to
the lowest six shells.
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to an IVGDR state at 18.44 MeV.

by increasing the model space and the oscillator parameter.
A similar analysis as that done for 32Ar suggests an uncertainty
of ±0.8 MeV and ±0.2e2, fm2 for these quantities.

A pygmy resonance is also found for this isotope but closer
to the centroid of the IVGDR. The dashed line in Fig. 5
shows that a sizable proton contribution to the dipole response
strength is found up to about 14 MeV. An analysis of the
transition densities (Fig. 6) confirms that these states have
the character of a pygmy mode. Instead, the RPA eigenstates
found just a few MeVs above contribute to the lower tail of
the IVGDR. To estimate the total strength associated with the
pygmy resonance, we integrated R(Ex) up to 14 MeV and
found 0.80e2 fm2.

No-core shell model calculations were performed in a
model space analogous to the 32Ar case, obtained by solving
the HF equation for 34Ar in the same harmonic oscillator
space as used for RPA. This basis was then truncated to six
major shells and, at the 0p0h level, neutrons were constrained
in the d5/2 and s1/2 orbits. Also in this case, we found a
slight reduction of the total strength with respect to the RPA
result, yielding 8.21e2 fm2 for the 1p1h-2p2h configurations
space. In this case, the centroid of the IVGDR was lowered to
22.0 MeV, and the energy weighted sum rule reduces to 143%
of the TRK value, in the first 40 MeV. The strength resulting
from the shell model calculation is plotted in the lower panels
of Fig. 5 and shows a broad distribution of the E1 strength.
Since for this nucleus the pygmy peak is obtained close to the
giant resonance, the two are strongly mixed, and one finds
just a long tail spreading in the low-energy region. From
the figure, it is not possible to clearly identify a separate
peak corresponding to the pygmy resonance. Table II lists

the summed strength below 14 MeV, where one expects to find
most of the pygmy states. Contrary to the 32Ar case, the effects
of configuration mixing on the low-energy dipole strength is
moderate. A reduction of about 20% with respect to the RPA
result was found.

IV. CONCLUSIONS AND DISCUSSION

The properties of the pygmy dipole resonance in the proton-
rich isotopes 32Ar and 34Ar were investigated by comparing
the predictions of the RPA and the shell model in a no-core
configuration space. The VUCOM interaction was employed
in all cases as a low-energy realistic Hamiltonian. In this
approach, the nuclear force is tamed to account for the effects
on short-range correlations and can be directly applied in
large-scale RPA and shell model calculations. In general a
large number of harmonic oscillator shells is still required to
converge the distribution of dipole strength in the low-energy
region. However, it was seen that the number of active orbitals
can be significantly reduced using the HF single-particle basis.
Therefore, comparisons could be done employing the same
Hartree-Fock basis for the RPA and shell model.

For 32Ar, enhanced low-lying strength was found at energies
up to 12 MeV, which could be identified as proton PDR. The
corresponding strength distribution is peaked at about 9 MeV,
considerably above the experimental proton separation energy
of 2.4 MeV [33]. This should not come as a surprise, since
oscillations of the proton skin need to overcome the Coulomb
barrier. The RPA approximation predicts about 1.0e2 fm2 in
this energy region. Additional correlations, as accounted for
in shell model studies, reduce this strength. Furthermore the
pygmy peak is slightly broadened due to a larger number of
configurations. By explicitly including up to 2p2h states, the
pygmy strength is halved to 0.49e2 fm2. The results obtained
here predict a well-defined pygmy peak separated from the
IVGDR, in accordance with the previous RQRPA calculations
of Paar et al. [16]. Excitations associated with a PDR were also
found for 34Ar, which has only two more protons than neutrons.
The present calculations place its strength at energies up to
14 MeV and close to the IVGDR. The total strength found up
to this energy is also reduced by shell model calculations, as
compared to RPA. However, the mixing with the nearby giant
resonance states leads to a rather uniform response without a
well-defined pygmy peak.

We note that the neutron PDR observed in larger nuclei
is typically found below 10 MeV, and its excitation energy
lowers with increasing mass. On the other hand, little is still
known for medium-mass nuclei. Unstable oxygen isotopes,
for example, show a behavior more similar to the NCSM
results of Fig. 5, i.e., a broad dipole response spreading
continuously from the giant resonance region down to the
PDR [8]. The proton PDR, if discovered, could also have a
different qualitative behavior, as the Coulomb repulsion affects
its excitation energy. The shell model predicts a centroid of the
PDR of ≈ 11.6 MeV for 34Ar (see Table II) which may appear
particularly large. However, this could be understood in view
of the expected Coulomb effect. The large centroid might also
be due to a shortcoming of the VUCOM interaction: calculations
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based on this force have reported too small radii [25] and
correspondingly they overestimate the energy of GDRs [34] at
the RPA level. Although recent second RPA calculations which
include 2p2h configurations seem to cure this issue [35]. The
inclusion of three-nucleon forces may also play a role. Planned
experiments, aimed at observing low-energy dipole response
of proton-rich Ar isotopes [36], will help in testing the accuracy
of the present approach. If the pygmy states in 34Ar are actually
observed within a few MeVs of the IVGDR tail, a substantial
mixing should be expected. This would result in a broad PDR,
seen as an extended low-energy tail of the isovector dipole
distribution.

Finally, we note that pairing effects in the final states are
partially included in the largest model spaces considered here.

A comparison of the last two rows in Table II shows that these
do not generate significant changes. Nevertheless, some effects
could still come including higher configurations. Including up
to 1p1h excitations in the initial state effectively limits the
present calculations to assuming a spherical ground state for
both 32Ar and 34Ar. However, an estimate of the quadrupole
transitions based on the universal sd (USD) interaction [37]
does not suggest strong deformations for these isotopes.
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