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ABSTRACT
We give a new method for calculating the cohomology of the normal bun-
dles over rational varieties which are smooth projections of Veronese
embeddings. The method can be used also when the projections are not
smooth, in this case it provides information about the critical locus of
maps between projective spaces.
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1. Introduction

The problem of calculating the restricted tangent and especially the normal bundle to a smooth
or at most nodal rational curve in a projective space has been very popular since the 80s, when a
series of papers was devoted to the problem of classifying the rational curves with normal bundle
having a given splitting type, when pulled back to P

1 by means of the parameterization map, see
for example [6, 7, 11, 12]. This problem has received renewed attention in recent times in a line
of research that answered some of the questions left open in those earlier papers, notably the
question of the irreducibility of the Hilbert scheme of smooth rational curves having a given
splitting type of the normal bundle, see [1, 5]. In order to classify curves having normal bundle
with a given splitting type, one has to develop general methods of calculating this splitting type
from a given embedding P

1 ! P
s: This is equivalent to calculating the cohomology groups of any

twist of the normal bundle pulled back to P
1:

In [1, 2], we introduced a new method to calculate the cohomology groups of the tangent and the
normal bundle of smooth rational curves embedded in projective spaces. This method has been use-
ful in some applications developed in those papers and other applications are given in [3, 4]. In [5] a
very simple method is found for calculating the splitting type of the normal bundle of a curve para-
meterized by a monomial map P

1 ! P
s: It is natural to try to extend the method of calculation of

cohomology from our previous papers to any smooth rational variety of dimension n � 1:
Let us consider maps f : Pn ! P

s, given by sþ 1 homogeneous, degree d polynomials. In this

case we can define the normal bundle N f of the map f as the cokernel of T P
n!df f �T P

s : In this
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article we develop a method to calculate the cohomology of f �T P
sð�kÞ and N f ð�kÞ for any inte-

ger k. The proofs require some algebraic machinery based on representation theory and devel-
oped in Section 2.

When X :¼ f ðPnÞ is smooth and f is an embedding, X is the smooth projection of some d-

Veronese embedding of Pn in P
N , where N ¼ d þ n

d

� �
� 1: In this case f �T P

s is the restriction

of the tangent bundle of Ps to X and N f can be identified with the normal bundle of X in P
s: So

we get a method for calculating the cohomology of the normal and the restricted tangent bundle
of smooth projections of d-Veronese embeddings, see Theorem 1 in Section 3 and Theorem 2
and Corollary 3 in Section 4.

Note that in the case dimðXÞ ¼ 1 any smooth rational curve is a suitable d-Veronese embed-
ding of P1, so the results of the present paper may be considered as a generalization of known
results in the case of curves. In that case one can use the cohomology of twisted normal bundles
to determine their splitting type, but, when dimðXÞ � 2, the dimensions of cohomology groups
of the normal bundle in the various shifts appear as the only possible substitute for the splitting
type, as the normal bundle itself may very well not be split into a sum of line bundles (it may
even be stable), so there is no splitting type in general. Let us recall that, even for monomial
maps Pn ! P

s, there is no general recipe for calculating the cohomology groups of twists of the
normal bundle, for example the method of [5] for n¼ 1 does not apply.

As mentioned above, we compute the full cohomology groups of the shifts of the normal
bundle. The non-trivial part of this computation is provided by Theorem 2. The result of
Theorem 2 also makes explicit the upper semicontinuity of the cohomology of N f ð�kÞ with
respect to f. This knowledge in principle could be applied to obtain a stratification of the space
of maps f with respect to the cohomology modules of Nf. This is not an easy task, indeed even
in the case n¼ 1 there is still no general description of the admissible Hilbert functions of the
normal bundles to smooth rational curves. However, if one admits curves with at most ordinary
nodes as singularities, such a description was provided in [9, 11]. Moreover it is known that
the strata corresponding to a given Hilbert function of N f may have many irreducible compo-
nents, see for example the results of [1] or [5]. We leave the possible study of this stratification
to future work.

When f is not an embedding our results about the cohomology of twists of N f provides infor-
mation about the critical locus Z of f, namely numerical bounds on the degree of the 1-dimen-
sional part of Z, if any, or on the degree of its 0-dimensional part. In the case when Z has both
0-dimensional and 1-dimensional components we show that their degrees are non-trivially
bounded, by giving some examples and some general results linking these invariants to the coho-
mology of twists of N f : We consider these problems a promising line of research to pursue fur-
ther in a future work.

The article is organized as follows: in Section 2 we set notations and we describe some repre-
sentation-theoretic constructions involving an ðnþ 1Þ-dimensional vector space U and we prove
some of the required properties of them. In Section 3, we describe how these constructions allow
to compute the cohomology of f �T P

s (shortly T f ), hence the cohomology of the restricted tan-
gent bundle of X when X is a smooth d-Veronese embedding. In Section 4, we deal with the
cohomology of N f , hence with the cohomolgy of the normal bundle of X when X is a smooth d-
Veronese embedding. In Section 5, we consider the case n¼ 2 in detail, assuming that X is a
smooth d-Veronese embedding and f is a monomial map: in this case our method allows to cal-
culate the cohomology by hand in many cases and that section is devoted to give some hints how
to perform the calculation in the simplest cases. In the last section we consider maps f which are
not embeddings and we get the results about Z quoted above.
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2. Notation and preliminary results

Notation
V :¼ finite dimensional vector space on C

h:::i :¼ vector subspace generated by the elements between the brackets
V� :¼ HomðV ,CÞ the dual vector space of V
Mt :¼ transposed of the matrix M
A? :¼ annihilator of A : for any linear subspace A � V, when there exists a perfect symmetric

pairing h, i : V � V ! C, let us denote A? ¼ fb 2 Vjha, bi ¼ 0 for any a 2 Ag:
SecðYÞ :¼ secant variety of a projective variety Y � P

t , the closure of the set of points belong-
ing to all secant lines to Y

Tan ðYÞ :¼ tangent variety of a smooth projective variety Y � P
t , the closure of the set of

points belonging to all tangent spaces to Y
VðIÞ :¼ variety associated to the ideal I
Let U ’ C

nþ1 be a ðnþ 1Þ-dimensional vector space and let SdU be the d-symmetric product
of U: Throughout this article, we will always assume n � 1: Let x0, x1, :::, xn be a base for U and
let x :¼ ½x0:::xn� be the corresponding matrix of vectors. Let us consider the linear operators
@x0 , @x1 , :::, @xn (in brief @0, :::, @nÞ acting on U as partial derivatives. It is known that we can
choose h@0, :::, @ni as a dual base for U� in such a way that every x 2 U� can be written as x ¼
a0@0, :::, an@n and the two bases fxig and f@jg induce a perfect pairing SdU � SdU� ! C for any
d � 1, defining by letting the second space act on the first by derivations.

Let us consider a (nonzero) subspace T � SdU with d � 2: We can define

@T :¼ hxðTÞjx 2 U�i ¼ h@0T, :::, @nTi,

for instance @SdU ¼ Sd�1U: We can also introduce the space

@�1T :¼ \
x2U�

x�1ðTÞ
� �

¼ @�1
0 T \ ::: \ @�1

n 0T,

for instance @�1SdU ¼ Sdþ1U: By using induction we can also define @kT and @�kT for
any k � 2:

For future use, let us recall some GL(U)-invariant operators acting between spaces of tensors
on U or U�: Note that, if y0, y1, :::, yn is another base for U, y :¼ ½y0:::yn� the corresponding
matrix of vectors and M is a non singular ðnþ 1, nþ 1Þ matrix representing the linear map y ¼
Mx, then the matrix acting on @ :¼ ½@0:::@n�, in order to preserve the perfect pairing, is ðMtÞ�1:
In fact, if v ¼ ðMtÞ�1@ , then hv, yi ¼ hðMtÞ�1@ ,Mxi ¼ @ tM�1Mx ¼ @ tx is the identity ðnþ
1, nþ 1Þ matrix. The previous pairs of transformations, acting on U and U�, respectively, can be
extended to SdU and to SdU� in a natural way and moreover to any tensor product V of
such spaces.

A linear operator / : V ! V 0, defined between vector spaces V and V 0 on which the group
GL(U) acts as above, is called GL(U)-linear if, for any v 2 V and for any g 2 GLðUÞ, we have
/½gðvÞ� ¼ g½/ðvÞ�: A linear subspace W � V is called GL(U)-invariant if, for any w 2 W and for
any g 2 GLðUÞ we have: gðwÞ 2 W: For instance: if / is GL(U)-linear then kerð/Þ and Imð/Þ are
GL(U)-invariant. Any subspace W � V which is GL(U)-invariant defines a representation of
GL(U) which is a subrepresentation of V:

The following operators will be needed in the sequel.
1) General contractions. Due to the perfect pairing SdU � SdU� ! C quoted above, we have

contractions maps:

SiU� 	 SjU ! Sj�iU for j � i � 0

COMMUNICATIONS IN ALGEBRAVR 3



such that every element of SiU� is thought as a degree i polynomial of differential operators
@0, :::, @n acting on every degree j polynomial of SjU: For instance, if i ¼ j ¼ d � 1, q 2 SdU� and
l ¼ a0x0, :::, anxn 2 U we have that q	 ld ! qðldÞ ¼ d!qða0, :::, anÞ:

2) Multiplication maps. They are the GL(U) linear maps

SiU 	 SjU ! SiþjU for i � 0, j � 0

extending linearly the natural maps associating to any pure tensor a	 b 2 SiU 	 SjU the prod-
uct ab 2 SiþjU:

3) Polarizations maps. They are GL(U) linear maps

pk : S
dþkU ! SkU 	 SdU for k � 1, d � 1

which are proportional to the duals of the multiplication maps m : SkU� 	 SdU� ! SdþkU�; the
proportionality factor is determined so that m½pkðqÞ� ¼ q for any q 2 SdþkU, the polarizations
maps are always injective and they are also uniquely defined by the condition pkðldþkÞ ¼ lk 	 ld

for any l 2 U:
In the sequel, we will need an explicit way to write pkðqÞ for any q 2 SdþkU: To this aim, let

us introduce some notation. Let I be a multi-index ði0, i1, :::, inÞ where ij are non-negative integers.
Let us denote jIj :¼

Pn
j¼0 ij: By the symbol xI we will denote the monomial xi00 x

i1
1 :::x

in
n of degree

jIj: By the symbol @I f we will denote the partial derivative of any polynomial f 2 C½x0:::xn� by
@i1
0 @

i1
1 :::@

in
n : For any r ¼ 0, :::, n, I þ 1r ¼ ði0, i1, :::, ir þ 1, :::, inÞ; analogously I � 1r ¼ ði0, i1, :::, ir �

1, :::, inÞ, of course only if ir � 1: Moreover
k
I

� �
:¼ k!

i0!i1!::::in!
:

Then we can say that (see [1], formula (3.3)):

pkðqÞ ¼
d!

ðd þ kÞ!
X
jIj¼k

k
I

� �
xI 	 @Iq:

Note that
k
I

� �
ir ¼

k
I � 1r

� �
: Note also that the sum with respect to jIj ¼ k is the sum with

respect to all monomials of degree k in n variables.
4) The GL(U) linear operator d : SkU 	 SdU ! Sk�1U 	 Sdþ1U for any k � 1, d � 0, such

that:

dða	 bÞ ¼
Xn
j¼0

@jðaÞ 	 xjb for any generator a	 b 2 SkU 	 SdU:

5) The GL(U) linear operator h : SkU 	 SdU ! Skþ1U 	 Sd�1U for any k � 0, d � 1, such
that:

hða	 bÞ ¼
Xn
j¼0

xja	 @jðbÞ for any generator a	 b 2 SkU 	 SdU:

6) wk, t maps. They are maps

wk, t : U 	 StU ! U 	 SkU 	 St�kU ! SkU 	 St�kþ1U for k � 1, t � k

which are the composition of 1	 pk : U 	 StU ! U 	 SkU 	 St�kU and the multiplication on
the first and third factor: U 	 St�kU ! St�kþ1U: As 1	 pk and the multiplication are GL(U) lin-
ear maps, we have that Imðwk, tÞ are GL(U)-invariant subspaces of SkU 	 St�kþ1U, hence they
define GL(U) subrepresentations of this vector space.

7) The operators ni, j: For any pair of distinct integers i, j 2 ½0, n� with i < j, let us consider
the element xi 	 xj � xj 	 xi 2 U 	 U: Then, we have a map
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ni, j : S
k�1U 	 Sd�1U ! SkU 	 SdU for k � 2, d � 2,

given by the multiplication of every element of Sk�1U 	 Sd�1U by xi 	 xj � xj 	 xi:
8) The operators Di, j: For any pair of distinct integers i, j 2 ½0, n� with i < j, let us consider

the element @i 	 @j � @j 	 @i 2 U� 	 U�: Then, we have a map

Di, j : S
kU 	 SdU ! Sk�1U 	 Sd�1U for any k � 1, d � 1,

given by the derivation of every element of SkU 	 SdU by @i 	 @j � @j 	 @i: Note that, for any

q 2 SkþdU, we have Dr, s½pkðqÞ� ¼ 0: In fact Dr, s½pkðqÞ� ¼ Dr, s½ d!
ðdþkÞ!

P
jIj¼k

k
I

� �
xI 	 @Iq�, and for-

getting the fixed coefficient d!
ðdþkÞ! we have:

X
jIj¼k;ir�1

k
I � 1r

� �
xI�1r 	 @Iþ1s q�

X
jIj¼k;is�1

k
I � 1s

� �
xI�1s 	 @Iþ1r q ¼

X
jHj¼k�1

k
H

� �
xH 	 @Hþ1rþ1s q�

X
jJj¼k�1

k
J

� �
xJ 	 @Jþ1sþ1r q ¼ 0;

for the last equalities we have put H :¼ I � 1r when ir � 1, and J :¼ I � 1s when is � 1:
We need to prove the following Lemma.

Lemma 1. For any q 2 SdþkU with k � 0 and d � 1 we have h½pkðqÞ� ¼ ðdÞpkþ1ðqÞ: For any q 2
SdþkU with k � 1 and d � 0 we have d½pkþ1ðqÞ� ¼ ðkþ 1ÞpkðqÞ: For any q 2 SdþkU with k � 1
and d � 1 we have dfh½pkðqÞ�g ¼ dðkþ 1ÞpkðqÞ, hence d 
 h is an automorphism of pkðSdþkUÞ,
and hfd½pkþ1ðqÞ�g ¼ dðkþ 1Þpkþ1ðqÞ, hence h 
 d is an automorphism of pkþ1ðSdþkUÞ: The opera-
tors d and h commute with all operators ni, j:

Proof. Let us write

h pkðqÞ
� �

¼ h
d!

ðd þ kÞ!
X
jIj¼k

k

I

 !
xI 	 @Iq

2
4

3
5 ¼ d!

ðd þ kÞ!
X
jIj¼k

k

I

 !Xn
j¼0

xIþ1j 	 @Iþ1j q ¼

¼ d!
ðdþ kÞ!

X
jHj¼kþ1;hj�1

Xn
j¼0

k

H � 1j

 !
xH 	 @Hq;

for the last equality we have put H :¼ I þ 1j, of course hj � 1:

ðdÞpkþ1ðqÞ ¼
d!

ðd þ kÞ!
X

jHj¼kþ1

kþ 1

H

 !
xH 	 @Hq ¼

¼ d!
ðd þ kÞ!

X
jHj¼kþ1

kþ 1

H

 !Xn
j¼0

1
kþ 1

xj@jðxHÞ 	 @Hq ¼

¼ d!
ðd þ kÞ!

X
jHj¼kþ1

k

H

 !Xn
j¼0

ijx
H 	 @Hq ¼

¼ d!
ðd þ kÞ!

X
jHj¼kþ1;hj�1

Xn
j¼0

k

H � 1j

 !
xH 	 @Hq

and we have done.
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We have used the Euler relation by writing xH ¼ 1
kþ1

Pn
j¼0 xj@jðxHÞ because degðxHÞ ¼ kþ 1:

d pkþ1ðqÞ
� �

¼ d
ðd � 1Þ!
ðd þ kÞ!

X
jIj¼kþ1

kþ 1

I

 !
xI 	 @Iq

2
4

3
5 ¼

¼ ðd � 1Þ!
ðd þ kÞ!

X
jIj¼kþ1

kþ 1

I

 !Xn
j¼0

@jðxIÞ 	 xj@
Iq ¼

¼ ðd � 1Þ!
ðd þ kÞ!

X
jIj¼kþ1;ij�1

kþ 1

I

 !Xn
j¼0

ijx
I�1j 	 xj@

Iq ¼

¼ ðd � 1Þ!
ðd þ kÞ!

X
jIj¼kþ1;ij�1

Xn
j¼0

kþ 1

I � 1j

 !
xI�1j 	 xj@

Iþ1j�1j q ¼

¼ ðd � 1Þ!
ðd þ kÞ!

X
jHj¼k

Xn
j¼0

kþ 1

H

 !
xH 	 xj@

Hþ1j q;

for the last equality we have put H :¼ I � 1j, of course when ij � 1:

ðkþ 1ÞpkðqÞ ¼ ðkþ 1Þ d!
ðd þ kÞ!

X
jHj¼k

k

H

 !
xH 	 @Hq

2
4

3
5 ¼

¼ d!
ðd þ kÞ!

X
jHj¼k

kþ 1

H

 !
xH 	 1

d

Xn
j¼0

xj@
Hþ1j q� ¼

¼ ðd � 1Þ!
ðd þ kÞ!

X
jHj¼k

Xn
j¼0

kþ 1

H

 !
xH 	 xj@

Hþ1j q

and we have done.
We have used the Euler relation by writing @Hq ¼ 1

d

Pn
j¼0 xj@

Hþ1j q because degð@HqÞ ¼ d:
The above relations show that dfh½pkðqÞ�g ¼ dðkþ 1ÞpkðqÞ and hfd½pkþ1ðqÞ�g ¼ dðkþ

1Þpkþ1ðqÞ: The last property follows by straightforward calculations. w

Now we are ready to prove a particular Pieri decomposition for SkU 	 SdU as direct sum of
irreducible GL(U)-representation (for which we refer to [8]), for any 1 � k � d:

Proposition 1. In the previous notation, for any 1 � k � d, we have:

SkU 	 SdU ¼ pkðSdþkUÞ�
X

ni, jpk�1ðSdþk�2UÞ�
�
X

ni, jnr, spk�2ðSdþk�4UÞ�:::�
X

ni, j:::nr, sp0ðSd�kUÞ

assuming that SiU ¼ 0 for i< 0, S0U ¼ C and that p0 is the identity. Note thatP
ni, jpk�1ðSdþk�2UÞ is a short notation for the linear space

hn0, 1pk�1ðSdþk�2UÞ, n0, 2pk�1ðSdþk�2UÞ, :::, nn�1, npk�1ðSdþk�2UÞi

and so on.
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Proof. First, let us prove the above Proposition when n ¼ 1: In this case we have to prove that

SkU 	 SdU ¼ pkðSdþkUÞ�n0, 1pk�1ðSdþk�2UÞ�
�n20, 1pk�2ðSdþk�4UÞ�:::�nk0, 1p0ðSd�kUÞ:

For any t ¼ 0, :::, k, we have that nt0, 1pk�tðSdþk�2tUÞ is a GL(U)-representation of SkU 	 SdU of
dimension d þ k� 2t þ 1:On the other hand, the standard Pieri decomposition of SkU 	 SdU is the dir-
ect sum of kþ 1 irreducible representations Sðkþd, 0Þ, :::,Sðd, kÞ such that dimðSðkþd�t, tÞÞ ¼ d þ k� 2t þ
1 (see [8] p. 81 and Theorem 6.3, in general it is not easy to calculate such dimensions, but it is very easy for
n¼ 1); therefore we can conclude that nt0, 1pk�tðSdþk�2tUÞ ¼ Sðkþd�t, tÞ for any t ¼ 0, :::, k:

From now on, let us assume that n � 2 and let us start with the case d ¼ k ¼ 1: It is well-
known that U 	 U ¼ S2U�

V2 U and that this is the decomposition of U 	 U as the sum of its
irreducible GL(U)-representations. On the other hand, p1ðS2UÞ ’ S2U is a GL(U) invariant sub-
space of U 	 U, as p1 is GL(U) linear, and a direct calculus shows that the same is true forP

ni, jp0ðS0UÞ ¼ hn0, 1, n0, 2, :::, nn�1, ni: Hence they are two GL(U)-representations of U 	 U, a pri-
ori reducible, and they appear in the decomposition U 	 U ¼ S2U�

V2 U: By calculating the

dimension
n
2

� �
of
P

ni, j it is immediate to see that p1ðS2UÞ ’ S2U and that
P

ni, j ’
V2 U:

Now let us consider the cases with k¼ 1 and d � 2: We know that U 	 SdU ¼
Sð1þd, 0ÞU�Sðd, 1ÞU and that Sð1þd, 0ÞU ¼ Sdþ1U (see [8] p. 81); moreover, as in the case d ¼ 1, it
can be shown that p1ðSdþ1UÞ and

P
ni, jp0ðSd�1UÞ ¼

P
ni, jSd�1U are GL(U)-representations of

U 	 SdU (a priori reducible). Let us recall that the pk maps are always injective, hence
p1ðSdþ1UÞ � Sdþ1U, this latter intended as the irreducible summand of U 	 SdU ¼
Sdþ1U�Sðd, 1ÞU: It follows that the GL(U)-representation p1ðSdþ1UÞ is irreducible and it coincides
with Sð1þd, 0ÞU ¼ Sdþ1U: Moreover p1ðSdþ1UÞ \

P
ni, jSd�1U ¼ 0; in fact any element ofP

ni, jSd�1U � U 	 SdU is of the following type:
P

i, j¼0, :::, nðxi 	 xjf i, j � xj 	 xif i, jÞ for suitable
f i, j 2 Sd�1U, hence m½

P
i, j¼0, :::, nðxi 	 xjf i, j � xj 	 xif i, jÞ� ¼ 0, where m : U 	 SdU ! Sdþ1U is

the multiplication map. This fact proves that
P

ni, jSd�1U � kerðmÞ: On the other hand, any
element of p1ðSdþ1UÞ is of the following type: 1

dþ1 ðx0 	 @0q, :::, xn 	 @nqÞ for a suitable q 2
Sdþ1U: It follows that m½ 1

dþ1 ðx0 	 @0q, :::, xn 	 @nqÞ� ¼ q, hence kerðmÞ \ p1ðSdþ1UÞ ¼ 0 and
therefore p1ðSdþ1UÞ \

P
ni, jSd�1U ¼ 0: As p1ðSdþ1UÞ ¼ Sð1þd, 0ÞU we get

P
ni, jSd�1U ¼ Sðd, 1ÞU:

Now let us consider the general cases with k � 2 and d � 2 and let us proceed by induction
on k: Let us fix any d � 2; by induction, for any k � 2, we can assume that

Sk�1U 	 Sdþ1U ¼ pk�1ðSdþkUÞ�
X

ni, jpk�2ðSdþk�2UÞ�

�
X

ni, jnr, spk�3ðSdþk�6UÞ�:::�
X

ni, j:::nr, sp0ðSd�kþ2UÞ:

and we want to prove that

SkU 	 SdU ¼ pkðSdþkUÞ�
X

ni, jpk�1ðSdþk�2UÞ�

�
X

ni, jnr, spk�2ðSdþk�4UÞ�:::�
X

ni, j:::nr, sp0ðSd�kUÞ:

To simplify notations, let us write At :¼
P

ni, j:::nr, spk�tðSdþk�2tUÞ for t ¼ 0, :::, k and Bt :¼P
ni, j::nr, spk�1�tðSdþk�2tUÞ for t ¼ 0, :::, k� 1: So that we can assume that

Sk�1U 	 Sdþ1U ¼ B0�B1�:::�Bk�1

and we have to prove that

SkU 	 SdU ¼ A0�A1�:::�Ak�1�Ak:

Note that every At is a GL(U)-representation of SkU 	 SdU, a priori reducible, and we know that
the standard Pieri decomposition of SkU 	 SdU as direct sum of irreducible GL(U)-representations is:
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SkU 	 SdU ¼ Sðkþd, 0ÞU�Sðkþd�1, 1ÞU�:::�Sðd, kÞU

(see [8] p. 81) hence, to complete our proof, it suffices to show that fA0, :::,Akg ¼
fSðkþd, 0ÞU, :::,Sðd, kÞUg as sets of kþ 1 elements. A priori, every At is the direct sum of some ele-
ments of fSðkþd, 0ÞU, :::,Sðd, kÞUg; to complete our proof it suffices to show that every At coincides
exactly with one element of the set fSðkþd, 0ÞU, :::, Sðd, kÞUg and we can assume, by induction, that
fB0, :::,Bk�1g ¼ fSðdþk�1, 0ÞU, :::, Sðd, k�1ÞUg as sets of k elements.

Let us proceed by contradiction: if the previous statement is false, then there exists at least a
nonzero direct sum of some elements of fSðkþd, 0ÞU, :::, Sðd, kÞUg, say S, and two distinct integers
a,b 2 ½0, k� such that Aa ¼ S�Sa and Ab ¼ S�Sb where Sa and Sb are other direct sums of ele-
ments of fSðkþd, 0ÞU, :::, Sðd, kÞUg with Sa \ Sb ¼ 0 (possibly Sa ¼ 0, and/or Sb ¼ 0).

By Lemma 1 we know that, for any t ¼ 0, :::, k� 1, we have: hðBtÞ � At; dðAtÞ � Bt;
d½hðBtÞ� ’ Bt and dðAkÞ ¼ 0: Of course dðAtÞ is a GL(U)-representation of Sk�1U 	 Sdþ1U, by
Lemma 1 it follows that it is nonzero and it is contained in Bt for any t ¼ 0, :::, k� 1: By induc-
tion assumption, every Bt is an irreducible representation of Sk�1U 	 Sdþ1U, then we can con-
clude that dðAtÞ ¼ Bt for any t ¼ 0, :::, k� 1, while dðAkÞ ¼ 0:

Now let us apply d to Aa and Ab: If a � k� 1 and b � k� 1 we get Ba ¼ dðAaÞ ¼ dðS�SaÞ,
hence dðSÞ � Ba and dðSaÞ � Ba; analogously Bb ¼ dðAbÞ ¼ dðS�SbÞ, hence dðSÞ � Bb and
dðSbÞ � Bb: As dðSÞ, dðSaÞ, dðSbÞ are GL(U)-representations of Sk�1U 	 Sdþ1U and Ba \ Bb ¼ 0
the unique possibility is dðSaÞ ¼ Ba, dðSbÞ ¼ Bb, dðSÞ ¼ 0: If a � k� 1 and b ¼ k we have 0 ¼
dðAkÞ ¼ dðS�SkÞ, hence dðSÞ ¼ 0: The same argument runs if a ¼ k and b � k� 1: In any case
dðSÞ ¼ 0: This means that for any pair Aa ¼ S�Sa and Ab ¼ S�Sb as above, we have dðSÞ ¼ 0:
Hence S 6¼ 0 is the direct sum of some elements in fSðkþd, 0ÞU, :::, Sðd, kÞUg all contained
in kerðdÞ:

Therefore we have the following conditions:

� every At is the direct sum of some elements of fSðkþd, 0ÞU, . . . ,Sðd, kÞUg for t ¼ 0, . . . , k;
� dðAtÞ ¼ Bt 6¼ 0 for t ¼ 0, . . . , k� 1 and dðAkÞ ¼ 0;
� at least one element in fSðkþd, 0ÞU, . . . ,Sðd, kÞUg is contained in kerðdÞ;

but there are no sufficient elements in fSðkþd, 0ÞU, :::, Sðd, kÞUg to guarantee the above conditions,
unless S  Ak (for instance, it could be k ¼ 3, A0 ¼ Sð3þd, 0ÞU, A1 ¼ Sð2þd, 1ÞU,A2 ¼
Sð1þd, 2ÞU�Sðd, 3ÞU, A3 ¼ Sðd, 3ÞU).

However S cannot contain Ak, otherwise Ak would be also contained in some Aa with a 2
½0, k� 1� and this is not possible, otherwise the same thing would be true also for n ¼ 1, but we
know that A0�A1�:::�Ak is a direct sum when n ¼ 1, as a consequence of the fact that the Ai’s
are distinct irreducible representations of GL(U). w

Note that we can write the above decomposition in a different way in order to obtain the fol-
lowing two relations:

Sk�1U 	 Sd�1U ¼ pk�1ðSdþk�2UÞ�
X

i, j¼0:::n

ni, jðSk�2U 	 Sd�2UÞ

SkU 	 SdU ¼ pkðSdþkUÞ�
X

i, j¼0:::n

ni, jðSk�1U 	 Sd�1UÞ ¼

¼ pkðSdþkUÞ�
X

i, j¼0:::n

ni, jpk�1ðSdþk�2UÞ�
X

i, j¼0:::n;r, s¼0:::n

ni, jnr, sðSk�2U 	 Sd�2UÞ:

The following Propositions give some relations between the previously introduced operators.

Proposition 2. In the previous notation, for any 1 � k � d we have:
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1) pkðSdþkUÞ ¼ \
i, j¼0:::n

kerðDi, jÞ;

2) pkðSdþkUÞ�
X

i, j¼0:::n

ni, jpk�1ðSdþk�2UÞ ¼ \
i, j¼0:::n;r, s¼0:::n

kerðDi, j 
 Dr, sÞ:

Before proving Proposition 2 we need the following two Lemmas.

Lemma 2. Let f 2 StþeU with t � 1 and e � 1. Let us consider ptðf Þ ¼ e!
ðeþtÞ!

P
jIj¼t

t
I

� �
xI 	 @I f 2

StU 	 SeU; if we transform any element a	 b of the sum with respect to jIj ¼ t in the following
way, for a fixed pair of integers ðp, qÞ 2 ½0, n�:

a	 b ! a	 xp@qbþ xp@qa	 b

then we get the element ptðxp@qf Þ 2 StU 	 SeU: w

Proof. Let us apply the above transformation to any addend of ptðf Þ and, by forgetting the coeffi-
cient e!

ðeþtÞ! , we get:

X
jIj¼t

t
I

� �
xI 	 ðxp@Iþ1q f Þ þ

X
jIj¼t;iq�1

t
I � 1q

� �
xIþ1p�1q 	 @I f ¼

X
jIj¼t

t
I

� �
xI 	 ðxp@Iþ1q f Þ þ

X
jJj¼t�1

t � 1
J

� �
xJþ1p 	 @Jþ1q f :

On the other hand, if we determine ptðxp@qf Þ and we forget the same coefficient e!
ðeþtÞ! , we

have:

X
jIj¼t

t

I

 !
xI 	 @Iðxp@qf Þ ¼

¼
X

jIj¼t;ip�1

t

I

 !
xI 	 ðip@I�1pþ1q f þ xp@

Iþ1q f Þ þ
X

jIj¼t;ip¼0

t

I

 !
xI 	 xp@

Iþ1q f ¼

¼
X
jIj¼t

t

I

 !
xI 	 xp@

Iþ1q f þ
X

jIj¼t;ip�1

t

I � 1p

 !
xI 	 @I�1pþ1q f ¼

¼
X
jIj¼t

t

I

 !
xI 	 xp@

Iþ1q f þ
X

jJj¼t�1

t � 1

J

 !
xJþ1p 	 @Jþ1q f

which is exactly the previous element in StU 	 SeU: w

Lemma 3. Let us consider the operators Di, j : SkU 	 SdU ! Sk�1U 	 Sd�1U for any 0 � i < j � n
with k � 2, d � 2:

Then \
i, j¼0:::n

kerðDi, jÞ and \
i, j¼0:::n;r, s¼0:::n

kerðDi, j 
 Dr, sÞ are subspaces GL(U)-invariant.

Proof. Note that K :¼ \
i, j¼0:::n

kerðDi, jÞ can be described as follows:

K ¼ fp	 q 2 SkU 	 SdUjxðp	 qÞ ¼ 0 for any x 2
V2 U�g:

For any g 2 GLðUÞ, let g1, g2, g3 be the induced actions on SkU 	 SdU, Sk�1U 	 Sd�1U andV2 U�, respectively. We know that, for any p	 q 2 SkU 	 SdU, for any g 2 SLðUÞ and for any
x 2

V2 U�, we have: g2½xðp	 qÞ� ¼ g3ðxÞ½g1ðp	 qÞ�: Hence, if p	 q 2 K, we
have g3ðxÞ½g1ðp	 qÞ� ¼ 0:

Let p	 q be any element in K and let g 2 GLðUÞ; we have to show that g1ðp	 qÞ 2 K, i.e.
that, for any x 2

V2 U�, we have x½g1ðp	 qÞ� ¼ 0: It suffices to remark that there is a suitable
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x0 2
V2 U� such that x ¼ g3ðx0Þ (it suffices to choose x0 ¼ g�1

3 ðxÞ);
hence x½g1ðp	 qÞ� ¼ g3ðx0Þ½g1ðp	 qÞ� ¼ 0:

For the second part of the Lemma we can argue in the same way. Note that kerðDi, jÞ is not
GL(U)-invariant for a fixed pair i< j when n � 2: w

Proof. (of Proposition 2). Let us recall that Proposition 2 is true when n ¼ 1 : see Corollary 3.2
of [1]; let us assume n � 2:

1) By the definition of Di, j it is obvious that pkðSdþkUÞ � \i, j¼1:::nkerðDi, jÞ: On the other hand
\i, j¼0:::nkerðDi, jÞ is a GL(U)-representation of SkU 	 SdU by Lemma 3, hence, by Proposition 1, it is the
direct sum of pkðSdþkUÞ and some vector space At :¼

P
ni, j:::nr, spk�tðSdþk�2tUÞ for t ¼ 1, :::, k: This

fact would imply that At � kerðD0, 1Þ for some t 2 ½1, k�, also in case n ¼ 1, as one can see by setting
equal to 0 all the variables except x0, x1. This is not possible because Proposition 2 is true when n ¼ 1:

2) Let us consider, more generically, the action of any operator Dr, s 
 ni, j acting on a	 b 2
SpU 	 SqU: Let ar be @rðaÞ, let as be @sðaÞ and so on. Then we have:

Dr, s ni, jða	 bÞ
� �

¼ Dr, sðxia	 xjb� xja	 xibÞ ¼
¼ 2 @rðxiÞ@sðxjÞ � @sðxiÞ@rðxjÞ
� �

a	 bþ
þ a	 ð@sðxjÞxi � @sðxiÞxjÞbr þ ð@rðxiÞxj � @rðxjÞxiÞbs

� �
þ

þ ð@sðxjÞxi � @sðxiÞxjÞar þ ð@rðxiÞxj � @rðxjÞxiÞas
� �

	 bþ ni, j Dr, sða	 bÞ½ �:

Now, by recalling that r< s and i < j, we can distinguish six cases:

i) i 6¼ r, j 6¼ s, i 6¼ s, j 6¼ r, then

Dr, s ni, jða	 bÞ
� �

¼ ni, j Dr, sða	 bÞ½ �;

ii) i ¼ r, j ¼ s, i 6¼ s, j 6¼ r, then

Dr, s ni, jða	 bÞ
� �

¼ 2a	 bþ a	 ðxibr þ xjbsÞ þ ðxiar þ xjasÞ 	 bþ ni, j Dr, sða	 bÞ½ �;

iii) i ¼ r, j 6¼ s, i 6¼ s, j 6¼ r, then

Dr, s ni, jða	 bÞ
� �

¼ a	 xjbs þ xjas 	 bþ ni, j Dr, sða	 bÞ½ �;

iv) i 6¼ r, i ¼ s, j 6¼ s, j 6¼ r, then

Dr, s ni, jða	 bÞ
� �

¼ �a	 xjbr � xjar 	 bþ ni, j Dr, sða	 bÞ½ �;

v) i 6¼ r, i 6¼ s, j 6¼ s, j ¼ r, then

Dr, s ni, jða	 bÞ
� �

¼ �a	 xibs � xias 	 bþ ni, j Dr, sða	 bÞ½ �;

vi) i 6¼ r, i 6¼ s, j ¼ s, j 6¼ r, then

Dr, s ni, jða	 bÞ
� �

¼ a	 xibr þ xiar 	 bþ ni, j Dr, sða	 bÞ½ �:

Now, let us apply Dr, s 
 ni, j to the generic element pk�1ðf Þ 2 pk�1ðSdþk�2UÞ, i.e. let f be any
polynomial in Sdþk�2U: Let us use Lemma 2 and let us recall that Dr, sðpk�1ðf ÞÞ ¼ 0 for any 0 �
r < s � n and k � 1: We get:

i) Dr, s½ni, jðpk�1ðf ÞÞ� ¼ 0;
ii) Dr, s½ni, jðpk�1ðf ÞÞ� ¼ 2pk�1ðf Þ þ pk�1ðxifrÞ þpk�1ðxjfsÞ;
iii) Dr, s½ni, jðpk�1ðf Þ� ¼ pk�1ðxjfsÞ;
iv) Dr, s½ni, jðpk�1ðf Þ� ¼ �pk�1ðxjfrÞ;
v) Dr, s½ni, jðpk�1ðf Þ� ¼ �pk�1ðxifsÞ;
vi) Dr, s½ni:jðpk�1ðf Þ� ¼ pk�1ðxifrÞ:
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It follows that, in any case, Du, vfDr, s½ni, jðpk�1ðf Þ�g ¼ 0 for any pair of integers u < v, r < s,
i< j and this fact proves that

pkðSdþkUÞ�
X

i, j¼0:::n

ni, jpk�1ðSdþk�2UÞ � \
i, j¼0:::n;r, s¼0:::n

kerðDi, j 
 Dr, sÞ:

For the other inclusion we can argue as in item (1). w

Proposition 3. Let us consider the maps wk, dþk�1 : U 	 Sdþk�1U ! SkU 	 SdU for any k � 1 and
d � k � 1 then we have:

Imðwk, dþk�1Þ ¼ \
i, j¼0:::n;r, s¼0:::n

kerðDi, j 
 Dr, sÞ:

Proof. According to Pieri decompositions, we have:

U 	 Sdþk�1U ¼ p1ðSdþkUÞ�
X

i, j¼0:::n

ni, jðSdþk�2UÞ

SkU 	 SdU ¼ pkðSdþkUÞ�
X

i, j¼0:::n

ni, jpk�1ðSdþk�2UÞ�:::

If we restrict wk, dþk�1 to the two components of the Pieri decomposition of U 	 Sdþk�1U we
see immediately that

0 6¼ wk, dþk�1 p1ðSdþkUÞ
� �

� pkðSdþkUÞ

0 6¼ wk, dþk�1

X
i, j¼0:::n

ni, jðSdþk�2UÞ
" #

�
X

i, j¼0:::n

ni, jpk�1ðSdþk�2UÞ

moreover, as Imðwk, dþk�1Þ is a subspace GL(U)-invariant giving rise to a GL(U)-representation of
U 	 Sdþk�1U and the components of the Pieri decomposition are all the irreducible GL(U)-repre-
sentations of the vector spaces SaU 	 SbU, we get that

wk, dþk�1 p1ðSdþkUÞ
� �

¼ pkðSdþkUÞ

wk, dþk�1

X
i, j¼0:::n

ni, jðSdþk�2UÞ
" #

¼
X

i, j¼0:::n

ni, jpk�1ðSdþk�2UÞ:

Hence, by Proposition 2, we get:

Imðwk, dþk�1Þ ¼ \
i, j¼0:::n;r, s¼0:::n

kerðDi, j 
 Dr, sÞ:

w

3. Rational varieties as projections of Veronese embeddings and cohomology of the
restricted tangent bundle

Given any C-vector space W, let us denote by PðWÞ the projective space of 1-dimensional sub-
spaces of W: If E � W is a ðeþ 1Þ-dimensional subspace of W, let us denote by PðEÞ the corre-
sponding projective subspace; if w 2 W is a nonzero vector, ½w� will be the associated point
in PðWÞ:

As in Section 2, let U ’ C
nþ1 be a ðnþ 1Þ-dimensional vector space and P

n ¼ PðUÞ the asso-
ciated projective space. Let us assume d � 2 and let SdU be the d-symmetric product of U and let

�d : P
n ! PðSdUÞ ¼ P

N be the usual d-embedding of Veronese; of course N ¼ nþ d
d

� �
� 1:
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Let us consider a map f : PðUÞ ! P
s, defined by sþ 1 homogeneous polynomials of degree d.

Denoting X ¼ f ðPðUÞÞ, then X is always the projection in P
s of �dðPnÞ � P

N by a suitable pro-
jective subspace PðTÞ such that dimðTÞ ¼ eþ 1 ¼ N � s, where P

s :¼ PðVÞ, n � 1: We have that
f is in fact defined by an injection

f � : H0ðPs,OP
sð1ÞÞ ¼ V�, ,!H0ðPn,OP

nðdÞÞ ¼ SdU�

such that the polynomials in f �ðV�Þ (a basis of which gives the polynomials defining f) have no
common roots. We have T ¼ f �ðV�Þ? � SdU: Then one sees that f � can be identified with the
dual of the natural projection SdU ! SdU=T ’ V, hence PðVÞ ’ PðSdU=TÞ and f can be identi-
fied with pT 
 �d where pT : PN ! P

s is the projection with vertex PðTÞ: Note that dimðT�Þ ¼
sþ 1 ¼ N � e: Moreover the natural inclusion ðSdU=TÞ� � SdU� identifies ðSdU=TÞ� with T?,
hence SdU=T ’ ðT?Þ�:

We have the following fundamental exact sequence:

0 ! T P
n ! f �T P

s ! N f ! 0 (3.1)

where f �T P
s is the pull back of the tangent bundle of Ps, the first map is the differential of f and

N f is its cokernel. Similarly, the pull back f �T P
s of the tangent bundle of P

s will be often
denoted by T f :

Remark 1. The fact that f : Pn ¼ PðUÞ ! P
s ¼ PðSdU=TÞ is everywhere defined, and the identifi-

cation f ¼ pT 
 �d discussed above, amounts to the condition

PðTÞ \ �dðPðUÞ ¼ Ø:

Remark 2. If moreover we assume that f is an embedding, identifying P
n with its image X, which

is a smooth rational, projective, n-dimensional variety embedded in P
s, then

PðTÞ \ Secð�dðPðUÞÞ ¼ Ø:

Note that in particular one must have s � 2nþ 1:
Let IX be the ideal sheaf of X in P

s: The normal bundle of X in P
s is defined as N X :¼

HomðIX=I 2
X ,OXÞ: When f is an embedding, T f can be identified with the restriction of T P

s to
X. Moreover f identifies the pull back f �N X of the normal bundle with N X and we also have
f �N X ¼ N f : Hence, in our assumptions, the sequence (3.1) becomes:

0 ! T P
n ! T f ! N X ! 0: (3.2)

Now let us go back to the general case, where f is just a map. Taking into account the previous
notation and considering the Euler sequence for P

n and the pull back of the Euler sequence for
P
s we get the following commutative diagram:

0 0
# #

0 ! OP
n ! OP

n ! 0
# # #

0 ! U 	OP
nð1Þ ! ðT?Þ�	OP

nðdÞ ! N f ! 0
# # #

0 ! T P
n ! T f ! N f ! 0:

# # #
0 0 0

(3.3)
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Let us consider the central vertical exact sequence, twisted by OP
nð�kÞ where k is any integer:

0 ! OP
nð�kÞ ! ðT?Þ�	OP

nðd � kÞ ! T f ð�kÞ ! 0: (3.4)

The one has the following immediate result.

Proposition 4. The dimensions of the cohomology vector spaces HiT f ð�kÞ are uniquely determined
by the ranks and the degrees of the sheaves in the exact sequence (3.4), with the only exceptions for
i 2 fn� 1, ng and k � d þ nþ 1:

In the cases not covered by the previous proposition we can consider the following exact sequence:

0 ! Hn�1T f ð�kÞ ! HnOP
nð�kÞ ! HnOP

nðd � kÞ 	 ðT?Þ� ! HnT f ð�kÞ ! 0:

Of course, it suffices to calculate hn�1ðT f ð�kÞÞ to obtain also hnðT f ð�kÞÞ: We have
the following.

Theorem 1. Let f : Pn ! P
s be a map and let PðTÞ � P

n ¼ PðUÞ be a suitable projective subspace
such that, if �d : PðUÞ ! PðSdUÞ ¼ P

N is the d-Veronese embedding and pT : PðSdUÞ � � !
P
s ¼ PðSdU=TÞ is the projection with vertex PðTÞ, then f ¼ pT 
 �d:
Let us set dimðTÞ ¼ eþ 1 ¼ N � s and let us denote T f ¼ f �T P

s , the pull-back of the tangent
bundle of Ps. For any integer k � d þ nþ 1, let us set v :¼ k� d � n� 1 � 0: Then we have

hn�1ðT f ð�kÞÞ ¼ dimð@�vTÞ:

Before giving the proof of Theorem 1, we need the following.

Lemma 4. ð@�tTÞ? ¼ T? � StU� for any integer t � 0:

Proof. For t¼ 0 the equality is obvious. Let us assume that t ¼ 1: Let us consider any two ele-
ments r 2 T? � SdU� and x ¼ a0@0, :::, an@n 2 U�; we have that rx 2 ð@�1TÞ?, in fact, for any
q 2 @�1T � Sdþ1U we have: hq, rxi ¼ r½xðqÞ� ¼ 0 because xðqÞ 2 T, by definition of @�tT and
r 2 T?; therefore T? � U� � ð@�1TÞ?: Vice versa, let q be any element of ½T? � U��? � Sdþ1U,
then, for any r 2 T? and for any i ¼ 0, :::, n, we have hq, r@ii ¼ 0, hence r½@iðqÞ� ¼ h@iðqÞ, ri ¼
0, for any i ¼ 0, :::, n; this implies that @iðqÞ 2 T for any i ¼ 0, :::, n, hence q 2 @�1T and there-
fore ½T? � U��? � @�1T: This implies T? � U�  ð@�1TÞ? and, as the other inclusion was proved
before, we get ð@�1TÞ? ¼ T? � U�:

When t � 2 we can use recursion on t, starting from the case t ¼ 1, since T? � Stþ1U� ¼
ðT? � StU�Þ � U� and @�t�1T ¼ @�1ð@�tTÞ: w

Now we can prove Theorem 1.

Proof. (of Theorem 1) Note that the map

HnOP
nð�kÞ ! HnOP

nðd � kÞ 	 ðT?Þ�

in the above sequence is the dual of the linear map

u : T? 	H0OP
nðk� d � n� 1Þ ! H0OP

nðk� n� 1Þ,
which is the same as u : T? 	 Sk�d�n�1U� ! Sk�n�1U�, which is a multiplication map, so that
ImðuÞ ¼ T? � Sk�d�n�1U� and hn�1ðT f ð�kÞÞ ¼ dimðSk�n�1U�Þ � dimðIm uÞ:

By Lemma 4 we have:

dimðSk�n�1U�Þ � dimðIm uÞ ¼ dimðSk�n�1U�Þ � dimðð@�vTÞ?Þ ¼ dimð@�vTÞ:
w

Corollary 1. In the previous notation: if dimð@�vTÞ ¼ 0, then hn�1ðT f ð�kÞÞ ¼ 0:
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4. Cohomology of the normal bundle

Now we want to consider the cohomology of the sheaf N f defined as in (3.1). Recall, by Remark
2 of the previous section, that when f is an embedding and in particular X is smooth, this is also
the cohomology of the normal bundle N X of X.

Let us consider the middle horizontal exact sequence in the diagram 3.3, twisted by OP
nð�kÞ,

where k is any integer:

0 ! U 	OP
nð1� kÞ ! ðT?Þ�	OP

nðd � kÞ ! N f ð�kÞ ! 0: (4.1)

Similarly as in the previous section, where we studied the cohomology of the restricted tangent
bundle, we have the following immediate result.

Proposition 5. The dimensions of the cohomology vector spaces HiN f ð�kÞ are uniquely determined
by the ranks and degrees of the sheaves appearing in the sequence (4.1), with the only exceptions
for i 2 fn� 1, ng and k � d þ nþ 1:

In the cases not covered by the previous proposition, we consider the following exact
sequence:

0 ! Hn�1N f ð�kÞ ! U 	HnOP
nð1� kÞÞ ! ðT?Þ� 	HnOP

nðd � kÞ ! HnN f ð�kÞ ! 0:

Of course, it suffices to calculate hn�1ðN f ð�kÞÞ to obtain also hnðN f ð�kÞÞ: We have

Theorem 2. Let f : Pn ! P
s be a map and let PðTÞ � P

n ¼ PðUÞ be a suitable projective subspace
such that, if �d : PðUÞ ! PðSdUÞ ¼ P

N is the d-Veronese embedding and pT : PðSdUÞ � � !
P
s ¼ PðSdU=TÞ is the projection with vertex PðTÞ, then f ¼ pT 
 �d:
Let N f be the normal sheaf to the map f, as defined as in (3.1). For any integer k � d � n� 1,

let us set v :¼ k� d � n� 1 � 0 and let us consider the map

wv, k�n�2 : U 	 Sk�n�2U ! SvU 	 SdU:

If v � 1, then

Hn�1ðN f ð�kÞÞ ¼ Imðwv, k�n�2Þ \ ðSvU 	 TÞ

¼ ðSvU 	 TÞ \
� \

i, j¼0:::n;r, s¼0:::n
kerðDi, j 
 Dr, sÞ

�
:

If v ¼ 0, then hn�1ðN f ð�kÞÞ ¼ dimðl�1ðTÞÞ where l : U 	 Sd�1U ! SdU is the multiplica-
tion map.

Proof. Firstly let us assume v � 1 and let us choose a base for T? � SdU� and for ðT?Þ� ’
SdU=T, say T? ¼ hg0, :::, gsi and ðT?Þ� ¼ hg�0 , :::, g�s i: Then the sheaf map

U 	OP
nð1Þ ! ðT?Þ�	OP

nðdÞ
can be described as follows:

x1 	 l1 þ x2 	 l2, :::, xn 	 ln !
!
X
i¼0:::s

g�i 	 l1@@1ðgiÞ þ
X
i¼0:::s

g�i 	 l2@@2ðgiÞ, ::::,
X
i¼0:::s

g�i 	 ln@@nðgiÞ

where lj are generic local sections of OP
nð1Þ; recall that gi 2 SdU� hence it is a degree d polyno-

mial in @0, :::, @n, so that every @@jðgiÞ is a degree d � 1 polynomial in @0, :::, @n: By Serre’s duality
we can identify
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HnðPn,OP
nð1� kÞÞ ’ H0ðPn

, OP
nðk� n� 2ÞÞ� ’ Sk�n�2U and

HnðPn,OP
nðd � kÞÞ ’ H0ðPn

, OP
nðk� d � n� 1ÞÞ� ’ Sk�d�n�1U:

In our case the sheaf map OP
nð1� kÞ!OP

nðd � kÞ is defined by global sections belonging to
H0ðPn

, OP
nðd � 1ÞÞ ’ Sd�1U�, i.e. by the elements @@jðgiÞ when we tensor by ðT?Þ�, hence the

induced map HnðPn
, OP

nð1� kÞÞ ! HnðPn
, OP

nðd � kÞÞ can be considered as a linear map
Sk�n�2U ! Sk�d�n�1U acting as a differential operator of degree d � 1 and the map U 	
HnðPn

, OP
nð1� kÞÞ ! ðT?Þ� 	HnðPn

, OP
nðd � kÞÞ can be viewed as defined by the ðnþ 1Þðsþ

1Þ differential operators @@0ðgiÞ, :::, @@nðgiÞ for i ¼ 0, :::, s:
Therefore we have that Hn�1ðN f ð�kÞÞ is the kernel of the linear map

l : U 	 Sk�n�2U ! ðT?Þ� 	 Sk�d�n�1U

defined by:

xj 	 q !
X
i¼0:::s

g�i 	 @@jðgiÞðqÞ for any q 2 Sk�n�2U, for any j ¼ 0, :::, n and

kerðlÞ ¼ fx0 	 q0, :::, xn 	 qn 2 U 	 Sk�n�2Uj@@0ðgiÞðq0Þ, :::, @@nðgiÞðqnÞ ¼ 0 for any i ¼ 0, :::, sg:

This is equivalent to say that

f@@0ðgÞðq0Þ, :::, @@nðgÞðqnÞ ¼ 0, as element of for any SvU, for any g 2 T?g ()�

fp @@0ðgÞðq0Þ, :::, @@nðgÞðqnÞ
� �

¼ 0 for any g 2 T?, for any p 2 SvU�g ()

f@@0ðgÞðpðq0ÞÞ, :::, @@nðgÞðpðqnÞÞ ¼ 0 for any g 2 T?, for any p 2 SvU�g:

Recall that @@jðgÞ and p act as derivations, hence they are commutative.
Let us remark that @@jðgÞðhÞ ¼ gðxjhÞ for any h 2 Sd�1U if g 2 Sd�1U� as in this case; (note

that pðqiÞ 2 Sd�1U), hence the above set coincides with

fg½x0pðq0Þ, :::, xnpðqnÞ� ¼ 0 for any g 2 T?, for any p 2 Sk�d�n�1U�g ()
fx0pðq0Þ, :::, xnpðqnÞ 2 T for any p 2 Sk�d�n�1U�g:

In conclusion:
Hn�1ðN f ð�kÞÞ ¼

fx0 	 q0, :::, xn 	 qn 2 U 	 Sk�n�2Ujx0pðq0Þ, :::, xnpðqnÞ 2 T for any p 2 SvU�g ¼
¼ fx0 	 q0, :::, xn 	 qn 2 U 	 Sk�n�2Ujx0pðq0Þ, :::, xnpðqnÞ 2 T for any monomial p 2 SvU�g:
Then Hn�1ðN f ð�kÞÞ ¼

¼ fx0 	 q0, :::, xn 	 qn 2 U 	 Sk�n�2Ujwv, k�n�2ðx0 	 q0, :::, xn 	 qnÞ 2 SvU 	 Tg ¼
¼ Imðwv, k�n�2Þ \ ðSvU 	 TÞ:

In fact, if x0pðq0Þ, :::, xnpðqnÞ 2 T for any p 2 Sk�d�n�1U�, obviously
wv, k�n�2ðx0 	 q0, :::, xn 	 qnÞ 2 SvU 	 T:

For the other direction recall that if T ¼ hs0, :::, sei then f d!
ðdþkÞ!

k
I

� �
xI 	 s0, :::, d!

ðdþkÞ!
k
I

� �
xI 	

seg with jIj ¼ k, is a base for SvU 	 T, hence if wv, k�n�2ðx0 	 q0, :::, xn 	 qnÞ 2 SvU 	 T then

x0pðq0Þ, :::, xnpðqnÞ 2 T, for any monomial p 2 Sk�d�n�1U�, because x0pðq0Þ, :::, xnpðqnÞ is a lin-
ear combination of s0, :::, se:
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By Proposition 3 we know that

Imðwv, k�n�2Þ ¼ \
i, j¼0:::n;r, s¼0:::n

kerðDi, j 
 Dr, sÞ:

Then Hn�1ðN f ð�kÞÞ ¼ Imðwv, k�n�2Þ \ ðSvU 	 TÞ ¼

¼ ðSvU 	 TÞ \
� \

i, j¼0:::n;r, s¼0:::n

kerðDi, j 
 Dr, sÞ
�
:

Obviously if v ¼ 0 (hence k ¼ d þ nþ 1Þ the above formula cannot hold because wv, k�n�2
cannot be defined (recall 6) at §2). However, by following the above proof, it is easy to see that
hn�1ðN f ð�kÞÞ ¼ dimðl�1ðTÞÞ where l : U 	 Sd�1U ! SdU is the multiplication map. w

Corollary 2. If \i, j¼0:::n;r, s¼0:::nkerðDi, j 
 Dr, sÞ ¼ 0 then Hn�1ðN f ð�kÞÞ ¼ 0:

Remark 3. With the same technique one can also prove that

Hn�1ðT f ð�kÞÞ ¼ ðSvU 	 TÞ \
� \

i, j¼0:::n

kerðDi, jÞ
�
:

Finally, in the case of an embedding f : Pn ! P
s, taking into account the discussion in

Remark 2 of section 3, we get the following result.

Corollary 3. Let f : Pn ! P
s be an embedding, and let X ¼ Imðf Þ. Then the normal bundle N X is

identified with N f and then Proposition 5 and Theorem 2 provide the dimensions of the cohomol-
ogy spaces HiN Xð�kÞ, for any i, k.

5. The monomial case for n52:

In this section, we will assume that f is embedding, hence in particular X smooth, as in Corollary
3. Moreover we will assume that n ¼ 2, that is, X is a rational surface, and we will also assume
that the map f is defined by monomials. In particular the vector space T will be assumed to be
generated by monomials.

We remark that the same hypotheses in the case of curves, that is, dimðXÞ ¼ 1, have led to
interesting applications (see [3, 4]).

When n¼ 2 it is convenient to use different names for the three variables: U ¼ hx, y, ui and
U� ¼ h@x, @y, @ui; in this way T is generated by eþ 1 distinct monomials xaybuc $ ða, b, cÞ such
that aþ bþ c ¼ d and a, b, c 2 ½0, d�: As any one of these monomials is in fact identified by a
triple of integers having the above properties, we can say that any vector space T under consider-
ation can be identified with a choice of eþ 1 triples ða, b, cÞ such that aþ bþ c ¼ d and a,b, c 2
½0, d�: Note that f and X are completely defined by choosing a suitable set T of monomials
as above.

To get a simple way to calculate the cohomology by hand, in most cases, it is useful to con-
sider a graph TD whose vertices are the triples of integers such that aþ bþ c ¼ d and a,b, c 2
½0, d� and whose edges join every triple ða, b, cÞ with ðaþ 1,b, cÞ, ða, bþ 1, cÞ, ða, b, cþ 1Þ when-
ever this is possible taking into account that a,b, c 2 ½0, d�: This graph naturally assumes a tri-
angular shape; we will call D this triangle: the three corners of D are ðd, 0, 0Þ, ð0, d, 0Þ, ð0, 0, dÞ
and the three sides of D are the sets: fð0, b, cÞjbþ c ¼ dg, fða, 0, cÞjaþ c ¼ dg,
fða, b, 0Þj aþ b ¼ dg:

In the next proposition we will show that, as f has no base points, the set of triples of D defin-
ing T is “far” from the corners of the triangle.
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Proposition 6. Let T � SdU be an ðeþ 1Þ-dimensional vector space defining a smooth projection
of �dðP2Þ in P

s as explained at the beginning of Section 3. Assume that the corresponding map f is
an embedding. Then, if we identify T with a set of triples ða, b, cÞ in D as above, we have: a �
d� 2, b � d � 2, c � d � 2:

Proof. The property is symmetric with respect to a,b, c, so we can prove it only for a: We have
to show that a � d � 2 for any triple ða, b, cÞ 2 T: First, let us show that a � d � 1:

Let us choose ðxd, xd�1y, :::, udÞ as a basis for SdU and let us choose coordinates in PðSdUÞ
with respect to this basis. By contradiction, let us assume that ðd, 0, 0Þ 2 T, hence xd 2 T � SdU,

and hence ð1 : 0 : ::: : 0Þ 2 PðTÞ � P
N ¼ PðSdUÞ (here N ¼ d þ 2

d

� �
� 1). But this is not pos-

sible because PðTÞ \ �dðP2Þ ¼ ;, as X is smooth, while ð1 : 0 : ::: : 0Þ 2 �dðP2Þ because ð1 : 0 :
::: : 0Þ ¼ �dð1 : 0 : 0Þ (recall that ð1 : 0 : 0Þ cannot be a base point by assumption).

Now let us show that a � d � 2: Let us assume, always by contradiction, that ðd � 1, 1, 0Þ 2 T:
We know that f ðx : y : uÞ ¼ ð::: : kða, b, cÞxaybuc : :::Þ is defined by all triples ða, b, cÞ in D T,
with kða, b, cÞ suitable non zero coefficients. By our assumption ða,b, cÞ 6¼ ðd � 1, 1, 0Þ: Let us
consider the restriction / of f to the affine plane for which x 6¼ 0: In this affine plane we can
choose coordinates (v, w) by putting v :¼ y=x and w :¼ u=x: In this setting / is an affine map
such that /ðv,wÞ ¼ ð:::, kða ¼ d � b� c, b, cÞvbwc, :::Þ: We have that:

if b � 2, then c � 0;
if b ¼ 1, then c � 1;
if b ¼ 0, then c � 1;
because ðb, cÞ 6¼ ð1, 0Þ: Of course ðb, cÞ 6¼ ð0, 0Þ by the first part of the proof.

Let us compute @/
@v : Taking into account the above three possibilities, we get that @/

@v ð0, 0Þ ¼ 0
in any case. But this is not possible, because the smoothness of X at f ð1 : 0 : 0Þ ¼ /ð0, 0Þ implies
that @/

@v ð0, 0Þ and
@/
@w ð0, 0Þ must be independent vectors, generating the tangent (affine) plane to X

at f ð1 : 0 : 0Þ ¼ /ð0, 0Þ:
The same argument works if we assume ðd � 1, 0, 1Þ 2 T, so the Proposition is proved. w

Remark 4. Note that there exist examples of smooth surfaces X for which

T ¼ fða, b, cÞja ¼ d � 2, b ¼ d � 2, c ¼ d � 2g
Hence Proposition 6 is sharp. For instance let d¼ 3 and

f ðx : y : uÞ ¼ ðx3 : x2y : x2u : xy2 : xu2 : y3 : y2u : yu2 : u3Þ
with T ¼ hxyui and dimðTÞ ¼ 1: In this case X is a smooth surface in P

8 of degree 9, as you can
verify by using a computer algebra system as Macaulay.

In the last part of this section we will state a Proposition showing that, for monomially
embedded projective planes, in most cases, the calculation of @T and @�1T become easier, mak-
ing easier to compute the cohomology of the restricted tangent bundle.

Recall that the monomials generating T in D are vertices si of the graph TD, hence we can
define the distance between two monomials generating T as the usual distance d on a graph. We
have the following

Proposition 7. Let T � SdU be an ðeþ 1Þ-dimensional vector space defining a smooth projection
of �dðP2Þ in P

s as explained at the beginning of Section 3. Assume that the corresponding map f is
an embedding. Let TD and D be the graphs defined as above. Let us denote T ¼ hs0, :::sei and let
us assume that dðsi, sjÞ � 2 for any i, j. Then:
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i) dimð@TÞ ¼ 3aþ 2b, where a is the number of generators of T which are not on the sides of
D and b is the number of the other generators of T;

ii) dimð@�1TÞ ¼ 0:

Proof. (i) Obviously, for a single monomial ða, b, cÞ 2 T � D, with ða, b, cÞ not belonging to the
three sides of D, we have that dimð@ða,b, cÞÞ ¼ 3; in fact @ða,b, cÞ ¼ hða� 1,b, cÞ, ða, b�
1, cÞ, ða, b, c� 1Þi: Proposition 6 shows that ða, b, cÞ cannot be a corner of D. For a single mono-
mial ða, b, cÞ 2 T, belonging to any one of the three sides of D, one has dimð@ða,b, cÞÞ ¼ 2:

In our assumptions every monomial of T behaves as it were single; in other words: the contri-
bution of action of @ over any monomial is not affected by the action over the other ones. Hence
we have dimð@TÞ ¼ 3aþ 2b:

(ii) For any single monomial ða,b, cÞ 2 T � D, we have that @�1ða, b, cÞ ¼ 0: To get examples
for which @�1T 6¼ 0, we need that, among the generators of T, there exists at least:

� (first case) three monomials: ða, b, cÞ, ða� 1,bþ 1, cÞ, ða, bþ 1, c� 1Þ which are three verti-
ces of TD, not belonging to the sides of D, whose mutual distance is 1 (giving rise to a sub-
graph of the triangular shape as the picture “�”);

� (second case) a pair of monomials, whose distance is 1, lying on a side of D.

In our assumptions every monomial of T behaves as it were single (as in iÞ and none of the
above two cases can occur, so that dimð@�1TÞ ¼ 0: w

Remark 5. If in TD there exist pairs of generators for which d ¼ 1, then the calculation of
dimð@TÞ is more difficult. In these cases, although the calculation can often be done by hand, a
general formula is not available at the moment. As far as dimð@�1TÞ is concerned, if T is the dis-
joint union of h triples of the first case quoted in Proposition 7 and k pairs of the second case,
then dimð@�1TÞ ¼ hþ k: Otherwise the calculation is more difficult, as we said above. Note that
if T is a set of “sparse” monomials then @�1T ¼ 0:

6. An application to the normal sheaf of maps f : P2fiP
3

In this section we will not assume that the map f is an embedding. In this case X can be singular,
hence N f cannot be the pull back of the normal bundle of X. However we have defined N f as
the cokernel of the sheaf map df : T

P
2 ! T f ¼ f �T

P
3 , so that there exists an exact sequence as

the sequence (3.1):

0 ! T
P
2!
df
f �T

P
3 ! N f ! 0: (6.1)

Recall that one has the Euler sequences 0 ! O
P
2 ! O3

P
2ð1Þ ! T

P
2 ! 0 and 0 ! O

P
3 !

O4
P
2ð1Þ ! T

P
3 ! 0: By pulling back the second one to P

2 by means of f, one obtains a simpler
presentation of N f given by

0 ! O3
P
2ð1Þ!F O4

P
2ðdÞ ! N f ! 0, (6.2)

where F is the map defined by the matrix @fi
@xj

� �
, (in the sequel we will denote by the same letters

maps and matrices defining them). Note that the entries of F are homogeneous polynomials of
degree d – 1 because f is defined by polynomials of degree d.

Let us define Z the subscheme of P2 where F drops rank, in the sequel Z0 will denote the 0-
dimensional part of Z, if any, when dim(Z) ¼ 1. Note that Z is also the branch locus of f.
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Example 1. Let f : P2 ! P
3 be given by f ðx : y : uÞ ¼ ðx2 : y2 : u2 : 2xyÞ with T ¼ hxy, yui and

dimðTÞ ¼ 2: Then

F ¼ 2

x 0 0

0 y 0

0 0 u

y x 0

0
BBB@

1
CCCA:

The closed set where df drops rank is the set of common zeros of the 3� 3 minors of F, that
is Z ¼ Vðxyu, x2u, y2uÞ: By the primary decomposition ðxyu, x2u, y2uÞ ¼ ðuÞ \ ðx, yÞ2, one sees
that, as a scheme, Z is the union of the line l ¼ VðuÞ with the fat point Pð2Þ given by the first
infinitesimal neighborhood of the point P ¼ ð0 : 0 : 1Þ: Denoting with ðt : s : v : wÞ the chosen
coordinates of P3, one sees that the image of f is the cone Y ¼ Vð4ts� w2Þ: Then one sees that
the degree of f : P2 ! Y is degðf Þ ¼ 2: The vertex of Y is the point Q ¼ ð0 : 0 : 1 : 0Þ and the
schematic fiber of f over Q is f �ðQÞ ¼ Pð2Þ: This accounts for P belonging to the branch locus of
f. Moreover the pull-back of the conic C ¼ Vðv, 4ts� w2Þ to P

2 is the line l ¼ VðuÞ counted with
multiplicity 2, and the restriction of f to l is the Veronese embedding of l in VðvÞ ffi P

2, since it
is defined by f ðx : y : 0Þ ¼ ðx2 : y2 : 0 : 2xyÞ: In particular f jl : l ! C is injective, that is, the car-
dinality of f�1ðRÞ is 1 for any point R 2 C: This accounts for the inclusion of l in the branch
locus of f. As the matrix of F can be decomposed in two diagonal blocks, it is not difficult to see
that, in this case, N f ¼ Olð2Þ�IZ0 ð4Þ where Z0 is the 0-dimensional part of Z.

6.1. Torsion of the normal sheaf

We start recalling that the Eagon-Northcott complex associated to the map O3
P
2ð1Þ!F O4

P
2ðdÞ has

the form

0 ! O3
P
2ð1Þ!F O4

P
2ðdÞ ! O

P
2ð4d � 3Þ ! OZð4d � 3Þ ! 0, (6.3)

with the middle map in (6.3) defined by the 4-tuple of 3� 3 minors of F. Here Z is the sub-
scheme defined by the maximal minors. Recall that (6.3) is in general only a complex, but that it
is exact if the degeneracy locus has the expected dimension, in this case if dimðZÞ ¼ 0 (see [10]).

Let N f be the normal sheaf of the map f : P2 ! P
3 as in (6.1) and (6.2). Let us denote sðN f Þ

its torsion subsheaf and let hN be the degree of the divisorial part of SuppðsðN f ÞÞ, that is
hN ¼ c1ðsðNf ÞÞ:

We have the following result.

Proposition 8. In the above situation there exists some 0-dimensional subscheme Z0 � P
2 such

that N f =sðN f Þ ffi IZ0 ð4d � 3� hN Þ:

Proof. From the Eagon-Northcott complex (6.3) we have a map N f ! IZð4d � 3Þ, with Z the
degeneracy locus of f endowed with the scheme structure defined by the maximal minors of F.
As IZð4d� 3Þ is torsion free, the map N f ! IZð4d � 3Þ factors through N f =sðN f Þ !
IZð4d � 3Þ: Since the map O4

P
2ðdÞ ! IZð4d � 3Þ induced by (6.3) is defined by the maximal

minors of F and it is surjective by the definition of Z, then also the map N f =sðN f Þ !
IZð4d � 3Þ is surjective and, since 1 ¼ rkðN f Þ ¼ rkðN f =sðN f ÞÞ ¼ rkðIZÞ, the map
N f =sðN f Þ ! IZð4d � 3Þ is also injective, hence it is an isomorphism. Assume that the divisorial
part of Z has equation H¼ 0, with degðHÞ ¼ h, then one can write

N f =sðN f Þ ¼ IZð4d � 3Þ ffi IZ0 ð4d � 3� hÞ,
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with Z0 a 0-dimensional subscheme of P2: To complete the proof of the proposition it is sufficient
to show that h ¼ hN ¼ c1ðsðN f ÞÞ: This is an immediate consequence of the exact sequences

0 ! O
P
2ð1Þ3 ! O

P
2ðdÞ4 ! N f ! 0

and

0 ! sðN f Þ ! N f ! IZ0 ð4d � 3� hÞ ! 0, (6.4)

which respectively imply c1ðN f Þ ¼ 4d � 3 and c1ðN f Þ ¼ c1ðsðN f ÞÞ þ c1ðIZ0 ð4d � 3� hÞÞ ¼
hN þ 4d � 3� h, this last equality obtained by using that dimðZ0Þ ¼ 0: Hence hN ¼ h. w

The following result relates the cohomology of N f and that of IZ0 :

Proposition 9. Using notation as in section 4: for any k 2 Z one has

h2N f ð�kÞ ¼ h2IZ0 ð4d � 3� hN � kÞ
¼ h0O

P
2ðkþ hN � 4dÞ:

Proof. By taking the long cohomology sequence of

0 ! IZ0 ð4d � 3� hN � kÞ ! O
P
2ð4d � 3� hN � kÞ ! OZ0 ð4d � 3� hN � kÞ ! 0

and using dimðZ0Þ ¼ 0 one obtains

h2IZ0 ð4d � 3� hN � kÞ ¼ h2O
P
2ð4d � 3� hN � kÞ ¼ h0O

P
2ðkþ hN � 4dÞ,

the last equality being due to Serre duality. By the exact sequence

0 ! sðN f Þð�kÞ ! N f ð�kÞ ! IZ0 ð4d � 3� hN � kÞ ! 0,

due to Proposition 8, and using the fact that dim½SuppðsðN f ÞÞ� � 1, one obtains

h2N f ð�kÞ ¼ h2IZ0 ð4d � 3� hN � kÞ:

w

In particular, we can state the following result.

Corollary 4. The function h2N f ð�kÞ determines the degree hN of the divisorial part of the branch
locus of f.

Recall also that from the exact sequence (6.2) one obtains the exact sequence

0 ! H1N f ð�kÞ ! H2O3
P
2ð1� kÞ!F H2O4

P
2ðd � kÞ ! H2N f ð�kÞ ! 0

and hence

h2N f ð�kÞ ¼ 4h2O
P
2ðd � kÞ � 3h2O

P
2ð1� kÞ þ h1N f ð�kÞ

¼ 4h0O
P
2ðk� d � 3Þ � 3h0O

P
2ðk� 4Þ þ h1N f ð�kÞ:

Then, from Theorem 2, it follows immediately

Corollary 5. By using the same notation as in section 4: for any k � d þ 4 one has

h2N f ð�kÞ ¼ 4
k� d � 1

2

 !
� 3

k� 2

2

 !

þ dim
�
ðSvU 	 TÞ \ \i, j¼0, 1, 2;r, s¼0, 1, 2kerðDi, j 
 Dr, sÞ

h i�
,

where v ¼ k� d � 3:
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Remark 6. It is well-known that a finite morphism f : X ! Y between smooth projective varieties
of dimension n has a pure ðn� 1Þ-dimensional branch locus, i.e. a divisor, whose first Chern
class is c1ðf �K�1

Y 	 KXÞ: This is no longer true when dimðXÞ 6¼ dimðYÞ, as in the cases f : P2 !
P
3 taken in consideration. As we already saw in Example 1, the branch locus of f is in general

not pure, it may very well have components of different dimensions. In the next example, we will
show that it can even have embedded components. Nevertheless, it may be useful to can calculate
some invariants of the branch locus of f. The above corollary says something on the divisorial part of
that locus. When v � 1 the value of h2N f ð�kÞ calculated by Theorem 2 depends only by the dimen-
sion of T or by the cohomology of the first two bundles of (3.1), hence it cannot depend on the branch
locus of f, these values are in fact those predicted by the Eagon-Northcott complex associated to F.
Hence the branch locus can be characterized by the values of h2N f ð�kÞ only when v � 2:

Remark 7. If we consider a generalization of Example 1 taking f ðx : y : uÞ ¼ ðx2 : y2 : u2 : p2ðx :
y : uÞÞ, where p2 is a generic degree two homogeneous polynomial, then the branch locus Z con-
sists of 6 points not in general position; these points belong to the cubic xyu¼ 0. In this case
dim(Z) ¼ 0, the Eagon-Northcott complex is exact and the cohomology of N f ¼ IZð5Þ can be
easily computed.

Example 2. Consider f : P2 ! P
3 defined by

f ðx : y : uÞ ¼ ðx3 : y3 : u3 : 3x2yÞ:

Then d¼ 3, dim(T) ¼ 7, the homogeneous Jacobian is

F ¼ 3

x2 0 0
0 y2 0
0 0 u2

2xy x2 0

0
BB@

1
CCA

and the row of the maximal minors defining the map O4
P
2ð3Þ ! O

P
2ð9Þ in (6.3) is

ð2xy3u2, x4u2, 0, � x2y2u2Þ ¼ xu2ð2y3, x3, 0, � xy2Þ:

Note that, if we slightly modify the example taking f ðx : y : uÞ ¼ ðx3 : y3 : u3 : 3xyuÞ (or f ðx :
y : uÞ ¼ ðx3 : y3 : u3 : p3ðx : y : uÞÞ with p3 generic degree three homogeneous polynomial), then
dim(Z) ¼ 0 and the Eagon-Northcott complex is exact; on the contrary this is not the case in
this example. Note also that F can be decomposed into two diagonal blocks, but now this fact
does not help in dividing Z as the union of disjoint components of different dimensions, as in
Example 1, because there are embedded components. This remark could be used to simplify the
following diagram, but not in a substantial way. In fact in this example 9 ¼ 4d � 3 and the divi-
sorial part of the subscheme Z defined by the maximal minors is Vðxu2Þ, consisting in the div-
isor Lþ 2M with L ¼ divðxÞ a reduced line and 2M ¼ divðu2Þ a double line. Moreover
Z0 ¼ Vðy3, x3, xy2Þ, a multiple point supported on the reduced line L, is an embedded primary
component of Z. Proposition 8 predicts that c1ðsðN ÞÞ ¼ hN ¼ 3 and that there exists an exact
sequence 0 ! sðN f Þ ! N f ! IZ0 ð6Þ ! 0:

Indeed we have a commutative diagram where the vertical complexes are exact:
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with

G ¼
x 0 0
0 1 0
0 0 u2

0
@

1
A, H ¼

x 0 0
0 y2 0
0 0 1
2y x2 0

0
BB@

1
CCA:

Now the complex

0 ! O
P
2ð2Þ�O

P
2ð1Þ�O

P
2ð3Þ!H O4

P
2ð3Þ !

ð2y3, x3, 0, xy2Þ
O

P
2ð6Þ ! OZ0 ð6Þ ! 0

is the Eagon-Northcott complex associated to H and it is exact, since Z0 is 0-dimensional. Hence
cokerðaÞ ffi cokerðHÞ ¼ IZ0 ð6Þ and therefore the rightmost column in the diagram above can be
identified with

0 ! sðN f Þ ! N f ! N f =sðN f Þ ! 0:

In particular we see

sðN f Þ ffi OLð2Þ�O2Mð3Þ,

which verifies c1ðsðN f ÞÞ ¼ c1ðOLð2Þ�O2Mð3ÞÞ ¼ 3: Moreover degðZ0Þ ¼ 7; this number can be
calculated directly from the equations of Z0 by a computer algebra system as Macaulay or from
the cohomolgy of IZ0 ð6Þ, computed by using (6.4) and the cohomology of N f computed as in
Theorem 2.

6.2. Numerical bounds

In this last subsection we give some numerical bounds for the degree hN of the divisorial part of
Z and for the degree of its 0-dimensional part Z0: First of all note that the integer hN can be eas-
ily bounded:

Proposition 10. By using the above notation we have: 0 � hN � 3ðd � 1Þ:

Proof. Z is defined by the 3� 3 minors of F, hence hN cannot exceed the degree of such a
minor. w

In Example 1, one has hN ¼ 1, while 3d � 3 ¼ 3: In the following Proposition 11 we will
show that indeed for d¼ 2 the value hN ¼ 1 is the maximum possible value, by showing that, in
that case, Example 1 is the only possibility for f : P2 ! P

3 defined by quadratic polynomials and
hN > 0, up to the natural action of PGL(3) � PGL(4). In Example 2, we have hN ¼ 3 and in
that case 3d � 3 ¼ 6: We currently do not know whether hN ¼ 3 is the maximum possible value
when f : P2 ! P

3 is defined by cubic polynomials. This facts leads to the following

Problem 1. Find an explicit better bound for hN :
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Proposition 11. Let f : P2 ! P
3 be defined by quadratic polynomials and such that f ðP2Þ is a

quadric surface S, then the branch locus of f has dimension 1, and f is PGL(3) � PGL(4)-equivalent
to the morphism described in Example 1. In particular the maximum possible value for hN is 1
for d¼ 2.

Proof. Let us consider an arbitrary morphism f : P2 ! P
3 defined by homogeneous forms f0, :::, f3

of degree 2. Writing as usual f ¼ pL 
 �2, where L is a suitable line in P
5: In order to study the

branch locus of f, we need to consider how L can intersect the secant variety of �2ðP2Þ: We recall
that W :¼ Secð�2ðP2ÞÞ ¼ Tan ð�2ðP2ÞÞ and it is a cubic hypersurface in P

5, with defining polyno-
mial the determinant of the general symmetric 3� 3 matrix and with singular locus equal
to �2ðP2Þ:

As f is a morphism, L cannot intersect �2ðP2Þ: As the degree of f must be 2, for any generic
point P of S the plane hL, Pi must intersect �2ðP2Þ at two distinct points, so that, for any P, there
exists a secant line of �2ðP2Þ cutting L. These secant lines cannot cut L at a finite number of
points (at most three, of course) because there are only a simple infinity of secant lines to �2ðP2Þ
passing through any point w of W, w not in �2ðP2Þ: Proof of this claim: in a suitable coordinate
system w has equation xy¼ 0, it belongs only to the secant lines of �2ðP2Þ given by pairs of dou-
ble lines passing through ð0 : 0 : 1Þ, these lines correspond to pencils of conics of the following
type: kðaxþ byÞ2 þ lðcxþ dyÞ2, the pencil contains xy¼ 0 if and only if ðadÞ2 � ðbcÞ2 ¼ 0 and
this is only one equation in P

1 � P
1 : the claim is proved.

Therefore L is contained in W, L does not intersect �2ðP2Þ and it corresponds to a pencil of
singular conics: it is well-known that there exists only one possibility: the conics of the pencil are
given by a fixed line l and a variable line in a pencil of lines whose center is not on l. By choos-
ing suitably the coordinate system in P

2 we have: L ¼ hxu, yui, and by choosing suitably a coord-
inate system in the target P3 we have that f is exactly as in Example 1.

Final step: if L is not contained in W then deg(S) ¼ 4 and it is easy to see that, in this case,
hN ¼ 0: If L is contained in W, as L cannot intersect �2ðP2Þ, the above argument shows that f is
exactly as in Example 1. There are no other possibilities, hence, in our assumptions, hN is at
most 1 in any case. w

Remark 8. From Proposition 9 we see that

h2Nð�kÞ ¼

kþ hN � 4dþ 2

2

 !
for kþ hN � 4d

h2Nð�kÞ ¼ 0 for kþ hN < 4d:

8>><
>>:

It follows that 4d � hN � 1 ¼ maxðkjh2N f ð�kÞ ¼ 0Þ: Recall also from Theorem 2 and its proof
that h2N f ð�tÞ ¼ 0 is equivalent to say that the map

H2O3
P
2ð1� tÞ ! H2O4

P
2ðd � tÞ

is surjective, equivalently that the map

l : U 	 Sk�n�2U ! ðT?Þ� 	 Sk�d�3U

is surjective. This argument, or similar ones based on the formulas above, open the possibility to
use the results of the previous sections to study the Problem above.

As for the degree of Z0, for any map f we can argue as in Example 2 and write a commutative
diagram as follows:
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where E is a suitable sheaf over P2 and the rows and columns in the diagram are exact. By look-
ing at the Chern classes of the sheaves involved by the diagram (here the Chern classes are iden-
tified with integers) and assuming to know hN ¼ c1ðsðN f ÞÞ by the previous arguments we have:

c1ðEÞ ¼ 3þ hN

c2ðO4
P
2ðdÞÞ ¼ 6d2 ¼ c2ðEÞ þ c2ðI 0

Zð4d � 3� hN ÞÞ þ c1ðEÞc1ðIZ0 ð4d � 3� hN ÞÞ ¼
¼ c2ðEÞ þ degðZ0Þ þ ð3þ hN Þð4d � 3� hNÞ:

Unfortunately, we cannot say that c2ðEÞ � 0 as in Example 2, so that we have not a bound for
degðZ0Þ from the above equations. However, see the following remark, we can estimate degðZ0Þ
by the cohomology of N f as we have done for hN in Corollary 4.

Remark 9. If we define q :¼ 4d � 3� hN ¼ dþ g we have the following exact sequence from the
above diagram:

0 ! sðN f Þð�qÞ ! N f ð�qÞ ! I0
Z ! 0

and we have:

degðZ0Þ ¼ h1ðIZ0 Þ þ 1 ¼ 1þ h1ðN f ð�qÞÞ � h1ðsðN f Þð�qÞÞ � 1þ h1ðN f ð�qÞÞ:

Note that our method is useful only when q � d þ 5 (g � 5), otherwise the calculation of
h1ðN f ð�qÞÞ is immediate from 6.2.
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