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Abstract 10 

To increase the sustainable reuse of animal manure as fertilizer, in many cases suitable 11 

treatment techniques are needed to modify the composition and obtain a balanced nutrient 12 

content. This study was conducted to evaluate the best strategies to remove solids, P, Cu and 13 

Zn, using two additives Ca(OH)2 and Al2(SO4)3, in combination with an ammonia stripping 14 

process. The assessment was carried out on five type of liquid fractions derived from the 15 

mechanically separation of: raw pig slurry, pig digested slurry, pig digested slurry after 16 

ammonia stripping, pig and cattle digested slurry, pig and cattle digested slurry after ammonia 17 

stripping. After the addition of the chemicals, the liquid fractions were mixed and then 18 

separated using a static filter. The contents of total solids P, Cu and Zn were determined. The 19 

additives effectively improved separation efficiencies which depended on the type of slurry and 20 

additive used. The P separation efficiencies ranged from 72% to 93% using Al2(SO4)3, and 21 

from 20 to 74% using Ca(OH)2. The use of Al2(SO4)3 always had a more consistent effect on 22 

the removal efficiencies than Ca(OH)2. The ammonia stripping process, reducing the alkalinity 23 

of the digested liquid fractions, facilitated a higher concentration of elements in the separated 24 

fraction. With the addition of Al2(SO4)3 to digestate after stripping the concentration of P, Cu 25 

and Zn in the solid fraction generally increased when compared to the same liquid fraction 26 

without stripping. The addition of Ca(OH)2 might be effective in removing P before the stripping 27 

process with the additional benefit to raise pH and improve the ammonia removal efficiency. 28 

These findings indicate that solid-liquid separation of animal manure slurries, assisted by 29 

chemical additives and coupled with ammonia stripping, can be a viable option for improving 30 

the sustainable use of animal manure as a fertiliser.  31 

Keywords: solid-liquid separation, calcium hydroxide, aluminium sulfate, heavy metals, 32 

manure, nitrogen removal  33 
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1. Introduction 34 

As much as 40 million tonnes of phosphorus (P) as phosphate (P2O5) is used worldwide mainly 35 

for agriculture; this consumption will increase P demand by 1.5% annually (Harris et al., 2008). 36 

The production of P fertilisers from phosphate rock is energy intensive and leads to significant 37 

emissions of carbon, radioactive by-products and heavy metals (Cordell et al., 2009; 38 

Tervahauta et al., 2014). Furthermore, rock phosphate is not a renewable resource and can 39 

be exhausted in 100–250 years at the present rate of use (Grigatti et al., 2015; Tervahauta et 40 

al., 2014). Therefore, unnecessary P use must be limited and an alternative found to mining 41 

phosphate rock. Because of the imbalance in the amounts of N and P in animal manure relative 42 

to crop needs, P is often applied in excess of crop requirements, increasing the P concentration 43 

in soils and consequently the potential for P movement to water resources. Thus, removing P 44 

from manure can reduce the risk of environmental pollution from this element when manure is 45 

applied to the land. Similarly, changing the relative amounts of P in the solid and liquid fractions 46 

of manure can facilitate its use as a renewable source of P fertiliser in agriculture. 47 

Besides the need to recover P from livestock manure to avoid over-application (especially in 48 

intensive livestock production areas), another concern about the correct utilisation of livestock 49 

manure is related to their content in heavy metals, especially copper (Cu) and zinc (Zn) 50 

(Sommer et al., 2013). Heavy metals are present in low concentrations in livestock diets and 51 

can be added to certain feeds for improving health and wellbeing or as growth promoters 52 

(Nicholson et al., 2003; Sommer et al., 2013). Nevertheless, only a small percentage of 53 

ingested heavy metals are absorbed by animals (10-20% of Cu and Zn); the remainder is 54 

excreted in the faeces or urine, as is 60-85% of the P ingested (Suzuki et al., 2010). Over time, 55 

land-applied elements not used by plants can accumulate and cause soil and water pollution 56 

(Almasri and Kaluarachchi, 2004). Approximately 40% of total annual input of Zn and Cu to 57 

agricultural land is derived from livestock manures (Marcato et al., 2008; Nicholson et al., 2003; 58 

Suzuki et al., 2010) and the continuous application of manure can lead to an increase of the 59 

concentration of Cu and Zn in soils and in the food chain (Provolo et al., 2018). 60 
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One possibility for recovering P and removing heavy metals from animal manure is solid-liquid 61 

separation. This physical treatment technique produces a solid fraction having a high dry 62 

matter (DM) content that is rich in nutrients, as well as a liquid fraction; the fractions can be 63 

managed separately. The solid fraction, which has a relatively small volume, contains high 64 

concentrations of carbon (C) and nutrients, particularly N and P. Even though solid-liquid 65 

separation alone can be considered a suitable method to remove N and P from animal slurry 66 

(Møller et al., 2007a), high removal efficiencies can be achieved only with the use of chemical 67 

additives, flocculants and/or coagulants (Fernandes et al., 2011; Vanotti et al., 2017). 68 

Concerning chemical precipitation, several types of additives have been studied to coagulate 69 

manure, to flocculate it or to remove orthophosphate (PO4
3-). Experimental and actual 70 

applications have used iron (Fe), aluminium (Al) and calcium (Ca) salts, several types of 71 

polyacrylamides and clay as coagulants/flocculants (Christensen et el., 2009; Hjorth & 72 

Christensen, 2008; Møller et al. 2007b; Vanotti et al., 2002).  73 

While there are several reported P removal efficiencies from livestock manure using 74 

mechanical separation with or without additives, the effect of these treatments on Cu and Zn 75 

removal is not adequately addressed, especially with regard to digestate from anaerobically 76 

digested animal manure. Moreover, there is little information on P, Cu and Zn removal 77 

efficiencies from animal slurries after N removal process based on ammonia stripping. With 78 

this treatment ammonia is transferred from the waste stream into air, then absorbed from the 79 

air into a strong acid solution (generally sulphuric acid) generating an ammonium salt (Bonmatí 80 

and Flotats, 2003). This treatment is generally performed in a double column process: the first 81 

column is dedicated to ammonia stripping from the liquid fraction while the second column is 82 

dedicated to the recovery of nitrogen as ammonium salt (Bolzonella et al., 2018). The process 83 

in this configuration requires a pre-treatment for solid-liquid separation and a further treatment 84 

for suspended solid removal to avoid clogging of the stripping column (Bolzonella et al., 2018). 85 

Alternatively, the ammonia stripping can be performed with a simplified technique based on 86 

slow release of ammonia in a mixed container (Provolo et al., 2017). With this solution, there 87 
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are less limitation for solid contents and a mechanical solid-liquid separation (for example a 88 

screw-press) is the only pre-treatment required. 89 

The ammonia stripping process modify the characteristics of the slurry: besides the reduction 90 

of ammonia, one of the more relevant effect is the reduction of alkalinity. The formation and 91 

precipitation of salts and stripping of CO2 and ammonia may explain this reduction (Bonmatí 92 

and Flotats, 2003). The ammonia stripping process might affect P, Cu, Zn separation 93 

efficiencies with additives due to the side reactions of the additives with alkalinity to form 94 

precipitates (Mohammed and Shanshool, 2009).   95 

In order to define the best strategies to remove P, Cu and Zn in combination with ammonia 96 

stripping process, a pig and two co-digested liquid fractions after mechanical separation, with 97 

and without ammonia stripping treatment, were treated for solid-liquid separation with different 98 

doses of Al2(SO4)3 and Ca(OH)2. The overall goal of the research was to evaluate the efficiency 99 

of phosphorus recovery and heavy metals removal process, and to determine if such a 100 

treatment can be combined with a simplified stripping process for N recovery.  101 

 102 

2. Materials and methods 103 

2.1. Liquid fractions and ammonia stripping 104 

Laboratory scale solid-liquid separation experiments were conducted on liquid fraction of 105 

animal slurries (LF) using two additives Ca(OH)2, hereafter shortened to CaH, and Al2(SO4)3, 106 

hereafter shortened to AlS) to study the effect of different doses of the additives on removals 107 

of total solids (TS), P, Cu and Zn. Three types of LFs obtained using a screw-press equipment 108 

were used, two of which were tested both with and without being subjected to an ammonia 109 

stripping process:  110 

- LF of pig slurry  (PS), collected from a fattening pig farm; 111 

- LF of anaerobically co-digested pig slurry and corn silage (PD) and the same LF 112 

after a stripping process for ammonia removal (PDS); and  113 
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- LF of anaerobically digested pigs and cattle slurry (C+P)D and the same LF after a 114 

stripping process for ammonia removal ((C+P)DS). 115 

All LFs were collected from farms located in the province of Bergamo (Italy).  116 

The laboratory scale stripping process was carried out in 50 L reactors, each having a hydraulic 117 

residence time of 12 days. During the process the reactor temperature was maintained at 40°C 118 

and LFs were mixed at 50 rpm. The airflow over the liquid surface was set at two headspaces 119 

per minute. In the first 2 days, 33% of the airflow was provided from the bottom of the reactor 120 

through air stones and the rest was introduced into the headspace. Subsequently, 100% of the 121 

aeration was introduced into the headspace. The stripping process achieved an N removal 122 

efficiency of approximately 80% (Provolo et al., 2017). 123 

2.2. Determination of optimal chemical doses 124 

Preliminary tests were conducted using 500 mL samples of each LF to determine the correct 125 

doses of CaH and AlS for precipitation and separation treatments. An optimal dose (D) of each 126 

chemical was identified by observing the pH and electrical conductivity (EC) responses to 127 

increasing doses of each additive. Doses of each chemical were increased in increments of 128 

0.25 g/L of Ca2+ (or Al3+). 129 

As reported by other studies (Szogi et al., 2015) there is no direct relation between P 130 

concentration in animal manure slurries and the CaH dose necessary for its precipitation. In 131 

addition, P precipitation using CaH occurs only after the precipitation of CO3
-2. CaH induces 132 

significant CO3
-2 precipitation as confirmed by the decreasing EC, a decrease that continues 133 

until the CO3
-2 concentration becomes limiting and prevents the solubility limit of this salt from 134 

being exceeded. The optimal dose of CaH for CO3
-2 precipitation was determined at the 135 

minimum EC. In excess of the optimal dose, all inorganic C is consumed and the excess 136 

Ca(OH)2 introduced in the solution, which increases the Ca2+ content and thus the EC (Renou 137 

et al., 2008).  138 

Regarding AlS, in addition to observing pH and EC, the foaming and the size of flocs were 139 

evaluated. To determine the size of flocs, after the AlS was added, samples were mixed at 200 140 



7 
 

rpm for 20 s and then at 30 rpm for 2 min. Then the predominant dimension of the flocs was 141 

evaluated visually using an arbitrary scale from 1 (all liquid) to 5 (mostly flakes ~5 mm). The 142 

level of the foam produced was also measured. The reference dose selected corresponded to 143 

the Al3+ concentration beyond which the floc dimension did not change and the foam level 144 

remained relatively constant. 145 

2.3. Solid-liquid separation tests 146 

Jar tests with mechanical stirring were used to examine the effect of CaH and AlS on solid-147 

liquid separation of the LFs. Each separation test was conducted using each additive at three 148 

different doses: (1) null dosage, (2) the optimal dose determined from the preliminary tests for 149 

each LF (described in Section 2.2) and (3) 25% lower dosage than optimal. CaH was 150 

introduced into the sample as “lime milk” at concentration of 200 g/L. A 1 M solution of AlS was 151 

prepared for each experiment and added at the desired concentration using a micropipette. 152 

In each test, 500 mL of LF and the required dose of either CaH or AlS were added 153 

simultaneously to a 1 L glass beaker; then the mixing began. The first rapid mixing phase (5 154 

min at 250 rpm for CaH, and 30 sec at 250 rpm for AlS) was followed by a slow mixing phase 155 

at 30 rpm for 20 min for CaH and 20 rpm for 20 min for AlS. Then, the suspensions were 156 

allowed to settle for 30 minutes (Renou et al., 2008; Szabó et al., 2008). At the end of settling, 157 

each solution was separated using a 0.25-mm mesh static filter and allowing 30 min of 158 

drainage time. The two different fractions obtained, filtrate and retained solids, were weighed. 159 

All tests were conducted in duplicate. 160 

2.4. Analytical methods 161 

Each LF was characterized using standard procedures (Rice et al. 2012) for total Kjeldahl 162 

nitrogen (TKN), EC, total ammonia nitrogen (TAN), pH, and dry matter as total solids (TS) and 163 

volatile solids (VS). The total contents of P, Cu and Zn in the LFs were evaluated using 164 

inductively coupled plasma mass spectrometry after acid mineralisation (EPA 1998; Rice et al. 165 

2012). All analyses were conducted in duplicate. 166 
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2.5. Calculations and statistical analyses 167 

To evaluate the separation results, two indexes were calculated (Sommer et al., 2013). The 168 

separation efficiency, Et (x), was determined to express the distribution of TS, N, P, Cu and Zn. 169 

between the solid fraction (retained by the static filter) and liquid fraction (passing through the 170 

filter). This calculation (Eq. 1) uses the ratio between the mass of a specific entity in the solid 171 

fraction and the mass of the same entity in the input slurry (i.e., the combined liquid and solid 172 

fractions) (Cocolo et al. 2016). 173 

𝐸𝑡(x) =
𝑚𝑥(𝑠𝑜𝑙𝑖𝑑)

𝑚𝑥(𝑠𝑜𝑙𝑖𝑑) + 𝑚𝑥(𝑙𝑖𝑞𝑢𝑖𝑑) 

 
(1) 

where mx(solid) and mx(liquid) are the mass of the component x respectively in the solid and liquid 174 

fractions of the separated LFs. 175 

The simple separation efficiency defined by Eq. (1) gives no indication of how the concentration 176 

of entity x may change (increase) in the solid fraction. Therefore, the reduced separation index, 177 

E’t (x), was also calculated (Cocolo et al. 2016): 178 

𝐸𝑡 
′ (x) =  

𝐸𝑡(𝑥) −  
𝑚𝑠𝑜𝑙𝑖𝑑

𝑚𝑠𝑙𝑢𝑟𝑟𝑦

1 −  
𝑚𝑠𝑜𝑙𝑖𝑑

 𝑚𝑠𝑙𝑢𝑟𝑟𝑦

 

(2) 

where msolid and mslurry are the total masses of solid fraction and separated slurry, respectively, 179 

and Et(x) is defined by Eq. (1). Eq. 2 fulfils all requirements for an efficiency definition because 180 

it yields a 0 value when no separation takes place and 1 when complete separation is achieved 181 

(Møller et al., 2000). In particular, E’t(x) ranges from -1 to +1, such that positive values indicate 182 

an increase in concentration of entity x in the solid fraction compared with the raw slurry and 183 

negative values indicate an increase in concentration of entity x in the liquid fraction. 184 

Statistical analyses were conducted using SPSS v25 software (IBM Corp., Armonk, NY, USA). 185 

A descriptive statistical analysis was performed on all of the data, and the results were 186 

expressed as means and standard deviations. The data were also subjected to analysis of 187 

variance (ANOVA) using a full factorial model (fixed factors were additive dose, additive type 188 
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and LF type). The homogeneity of the variances was checked using Levene’s test. The 189 

significant treatments were compared using Tukey’s HSD multiple range test (p < 0.05). 190 

3. Results and discussion 191 

3.1. LF characteristics  192 

The physico-chemical characteristics of the five LFs are summarized in Table 1. The P 193 

concentrations in LFs were comparable to those reported by  Finzi et al. (2015) and Møller et 194 

al. (2007b). The Cu and Zn contents are similar to those reported by  Nicholson et al. (2003), 195 

but are higher than those reported by Suzuki et al. (2010). It has to be considered, however, 196 

that slurries analysed by these authors were not liquid fractions. The increase in concentrations 197 

of heavy metals and other elements in LFs after the stripping process can be explained as the 198 

consequence of water evaporation that occurs during stripping (at 40°C). The same 199 

explanation applies to solids: the stripping process increased the TS concentration by 16% 200 

and 19% for pig and cattle and pig digestate, respectively. Notably, the VS content (expressed 201 

as percentage of TS) decreased; probably in the digested LFs there were still biodegradable 202 

components that were degraded during the stripping process. As expected, the main effect of 203 

the stripping process was a reduction of TAN concentration and TKN concentration. Alkalinity 204 

also decreased after ammonia stripping. In fact, stripping affected the content of carbon dioxide 205 

and ammonia nitrogen, both of which are strictly connected with alkalinity concentration. It is 206 

important to highlight the fact that the stripping process used a retention time of 12 days with 207 

the effect of removing carbon dioxide still present in the LFs derived from digestate. Therefore, 208 

the effect was to lower alkalinity and increase pH values, despite the ammonia volatilisation 209 

should reduce pH (Bonmatí and Flotats, 2003; Provolo et al., 2017).  210 

3.2. Determination of chemical dose 211 
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Fig. 1 reports a selection of results from the preliminary tests for determining chemical doses. 212 

As shown in Figs. 1a and 1b for (C+P)D, an optimal dose of 7.58 g/L of Ca+ was identified, 213 

corresponding to an EC of 7.4 mS/cm and a pH of 11.5. 214 

Concerning Al3+, the optimal dose of 1.25 g Al3+/L corresponded to pH 6.68 and, EC 215 

18.06 mS/cm, a foam level of 400 mL and floc dimension slightly larger than 2.5 mm (Figs. 1b, 216 

1c and 1d). The optimal doses identified for each LF are reported in Table 2. Notably, the 217 

optimal dose of CaH was lower for both types of stripped digestate than for raw digestate. This 218 

was due to the decreased alkalinity concentration resulting from the stripping process, which 219 

in turn decreased the amount of CaH required to precipitate carbonate. 220 

3.3. Influence of additives on physico-chemical characteristics and 221 

separation of solids, P, Cu and Zn from LFs 222 

3.3.1 Separation efficiency 223 

The separation efficiencies Et (x) obtained for TS, P, Cu and Zn are reported in Fig. 2. The 224 

addition of AlS generally improved the separation efficiencies for all parameters for all the LFs 225 

tested. The separation efficiencies for TS varied according to LF type, ranging between 226 

approximately 5% at the null dose to approximately 92% at the optimal dose. For (C+P)D, the 227 

maximum TS separation efficiency (79%) was achieved with the optimal dose of AlS and was 228 

significantly better than the efficiency without chemicals (58–60%). After the stripping process, 229 

the TS separation efficiency for the same LF without chemicals was very low (29–40%). These 230 

differences could be due to the physical-chemical changes in the LFs caused by the stripping 231 

treatment. In fact, the reduction of alkalinity, the release of Carbon and the reduction of EC 232 

after stripping may reduce the aggregation of solid particles and limit the separation efficiency 233 

without the use of additives.  234 

Using AlS,  the highest TS separation efficiency (92%) was achieved for PSD. In contrast, the 235 

opposite response was observed when using CaH, and the maximum separation efficiency 236 
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(63%) was achieved at the sub-optimal dose applied to PD. Using CaH, the lowest TS 237 

separation efficiency among all LFs occurred with PS, both at null dose (< 10% TS separation) 238 

and when additives were used.  239 

The variation of Et(x) obtained for TS can be partly explained also by the difference in TS content 240 

of the different LFs. It is well known, in fact, that high contents of TS are related to high Et 241 

values (Fangueiro et al., 2012; Sommer et al., 2013). The TS contents of PD and PDS are 1.5-242 

2 times higher than the other LFs and this partly explain the higher Et values, although for PDS 243 

they can be obtained only with AlS. 244 

The highest P separation efficiencies (Fig. 2b) from all LFs were obtained with AlS and the 245 

addition of both chemicals achieved in general higher P separation efficiencies, as expected.  246 

The P separation efficiencies achieved for PDS and (C+P)DS using both additives were higher 247 

than those obtained for the non-stripped digestates with the exception of PDS with CaH, 248 

probably due to the lower dose of additive used. The maximum P separation efficiency 249 

obtained were 93% with PDS using a sub-optimal dose and 71% with (C+P)DS at the optimal 250 

dose respectively for AlS and CaH.  251 

The application of Ca compounds for P removal may initially precipitate a number of Ca 252 

phosphate minerals (Szogi et al., 2015). By adding calcium hydroxide Ca(OH)2 to increase the 253 

solution pH, soluble P can be precipitated as amorphous calcium phosphate. In addition, the 254 

hydroxide not only reacts with the existing bicarbonate (HCO3
-) to form carbonate (CO3

-2), but 255 

also reacts with NH4 
+ to form NH3, and with phosphate to form phosphate-containing 256 

precipitates (Szogi et al., 2015). Due to these multiple reactions the required dosage of CaH 257 

determined on EC might be not lead to the best Et(x) for P. Furthermore, the higher content of 258 

solids in PDS might have influenced the effect of CaH considering that the dose used for this 259 

LF was one third of the one used for PD (Table 2). 260 

The P separation efficiencies in PS were not particularly high (72% using AlS and 39% using 261 

CaH); however, the results using AlS were comparable with those obtained Ndegwa et al. 262 

(2001). In their research, the addition of aluminium sulfate to swine manure prior to quiescent 263 

natural sedimentation achieved P separation efficiencies of 78% and 65% at dosages of 1.5 264 
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and 2.0 g/L, respectively. In contrast, the P separation obtained using CaH in the present study 265 

was lower than that observed by Szogi et al. (2009). In fact, in that study, the Ca(OH)2 266 

concentration range (0.17–0.89 g/L) used to treat swine wastewater raw or pre-treated in a 267 

nitrification process was lower than in this study; yet the doses achieved P removal efficiencies 268 

ranging from 20% to 100%.  269 

Both AlS and CaH produced a greater increase in P separation efficiencies in relation to the 270 

null dose for PS than for other LFs. This observation is also true for Cu and Zn. In fact, for this 271 

LF, Cu separation efficiency increased from 1% without chemical to 44% and 79% for CaH 272 

and AlS, respectively (Figure 2 c and d). 273 

Similarly, without the application of chemicals the Cu separation efficiency for (C+P)D and 274 

(C+P)DS was 54–59% and 31–39%, respectively. 275 

The maximum Cu separation efficiency was achieved for stripped digestates using the optimal 276 

dose of AlS. Furthermore, for this LF the difference between the Cu separation efficiencies 277 

with and without application of chemical was also higher than for other LFs (22%–93% for PDS 278 

and 31%–81% for (C+P)DS). Using CaH, the lowest Cu separation efficiency was achieved 279 

with PS.  280 

The general behaviour of Zn separation was comparable with that of Cu, but the Zn separation 281 

efficiencies obtained for all LFs using both chemicals were higher than those observed for Cu. 282 

As reported by Marcato et al. (2009), Zn is much more sensitive to pH than Cu, so it is possible 283 

that the chemical characteristics of different LFs influenced Zn separation differently. Notably, 284 

the Zn content was higher than the Cu content in all LFs (Table 1).  285 

The results of the statistical analysis, reported in table 3, demonstrate that the use of the AlS 286 

instead of CaH always improve the separation efficiency and thus it can be considered more 287 

efficient in removing TS, P, Cu and Zn from LFs. Furthermore, the use of suboptimal doses 288 

has not resulted in a significant reduction of the separation index.   289 

The separation efficiencies for TS and P are similar for all LFs with the exception of PS, that 290 

has lower values. The difference for the other parameters are less straightforward and the 291 
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difference for Cu and Zn are significant only comparing PD and PDS. The lowest separation 292 

index is obtained also for these elements by PS. 293 

The reduction of the dose of CaH with the stripped LFs did not reduce the separation 294 

efficiencies. This result cannot be related to the pH as it is similar to the others LFs, but might 295 

be explained by a lower buffer capacity and the reduced EC of the stripped LFs. The reduction 296 

of buffer capacity after stripping is expected as two of its main component (inorganic carbon 297 

and total ammoniacal N) are removed during the process.  In line with the findings of Szogi at 298 

al. (2009), who developed a multi-stage process to reduce inorganic buffering in slurry before 299 

the addition of CaH, the ammonia stripping process in the present study decreased NH3 300 

alkalinity in all slurry types, thus lowering the required chemical dosage. 301 

As shown in Fig. 3, increasing doses of both CaH and AlS influenced the pH and EC of the 302 

LFs. In general, for all LFs, solid-liquid separation without the use of chemicals produced a 303 

liquid fraction having a pH slightly higher than that of the raw LF. 304 

With the use of AlS, the EC increased as the dosage increased and (as expected) pH 305 

decreased. At the maximum dose, pH decreased to less than 5.5. In contrast, using CaH, the 306 

pH of the liquid fraction increased (Renou et al., 2008), and pH exceeded 12 at the maximum 307 

dose. The use of AlS as expected reduced the pH in all the LFs (Fig. 3 B). However, the effect 308 

on PS is more relevant than with digestates due to their higher buffer capacity. 309 

 It can be noticed that the EC values obtained with the Optimal and Sub-optimal dose are very 310 

similar, explaining the limited differences obtained in the separation efficiencies.  311 

3.3.2 Reduced separation index 312 

Values of the reduced separation index E’t (x) at the optimal dose (Fig. 4) attest that the solid 313 

fraction increased in concentration more when AlS was used than when CaH was used. The 314 

solid-fraction P concentration increased markedly (17–67%) when AlS was used on raw or 315 

stripped LFs. A lower reduced index was observed only when AlS was added to (C+P)D. 316 
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Generally, the application of AlS showed a greater increase in P reduced separation index (up 317 

to 0.67), that were higher than those observed with CaH with the exception of (C+P)D.  318 

The reduced separation index for Cu and Zn, showed that the concentrations of these elements 319 

increased in the solid fraction of pig LF and in digestates after the stripping process (Fig. 4). 320 

This variation is mainly observed using AlS than CaH, for which the E’(x) was lower (0.08-2.8).  321 

 Also, with CaH the increase in concentration was larger after the stripping process, confirming 322 

the role of alkalinity in the separation process.  323 

The use of CaH with PDS decreased the reduced separation indexes for both Cu and Zn. In 324 

contrast, for both Cu and Zn the reduced separation indexes were significantly larger when 325 

AlS was added to PS (Et’(x) = 0.6–0.7) and to the stripped digestates (Et’(x) = 0.7–0.8). compared 326 

to when CaH was used. The higher Et’(x) values for PS than for PD might be partly explained 327 

by its relatively lower pH (6.7) compared to the digestate (> 8). However, this explanation 328 

cannot be applied to the stripped digestates as their pH values are similar to those of the un-329 

stripped digestates. Rather, the stripping process might increase the concentrations in the 330 

soluble fraction of these heavy metals.   331 

The results of ANOVA for the reduced separation index, reported in table 4, confirms that the 332 

two additives have a different behaviour and that AlS can concentrates the substances in the 333 

solid fraction. Moreover, the sub-optimal doses show for this index significantly lower values. 334 

This indicates that also if the separation efficiency is the same, the optimal dose can produce 335 

a solid fraction easier to dewater and therefore with higher concentration. 336 

The effect of AlS in increasing the reduced separation index of stripped digestates is very clear 337 

from Figure 4 and confirmed by the analysis in table 4, although the effect for Cu and Zn for 338 

PDS is not significant as the overall mean is affected also by the values for CaH. 339 

3.3.3 Practical indications 340 
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The results obtained in this study can give indications on the use of additives when there is the 341 

need for an improved separation efficiency of TS, P, Cu and Zn on the LFs obtained by 342 

mechanical separation.  343 

In any case, the use of AlS should be preferred if high separation efficiency and high 344 

concentrations in the solid fractions are required. However, also CaH can be effective in 345 

improving the separation efficiency and might be a suitable additive especially if an increase 346 

of pH can be beneficial for subsequent use. For example, in the case of an ammonia stripping 347 

treatment, a separation of LFs with addition of CaH might obtain a P removal of about 60% 348 

and an increase of the pH to values of 9.5-12, depending on the type of LF used. This 349 

modification can be beneficial to the stripping treatment due to the higher concentration of NH3 350 

in the liquid.   351 

On the contrary, the use of AlS might be more effective after a stripping process in order to 352 

remove P, but also Cu and Zn before land use of LFs. In this case, the addition of AlS can also 353 

help in reducing the pH of the final product and can result in high separation efficiencies with 354 

good increase in the concentrations in the solid fraction. 355 

In addition, the LFs after the stripping process requires a lower dose of chemicals to reach a 356 

given removal rate. In any case, the high doses of chemical additives required to achieve high 357 

separation efficiencies should be carefully evaluated due to the high cost and potential 358 

environmental impact of the chemicals. Nevertheless, complete removal of P or other elements 359 

such as Cu and Zn from animal manure slurry is not generally the objective of solid-liquid 360 

separation; rather, the objective is to only reduce the contents of these elements to match crop 361 

requirements. This objective can be achieved using less chemical than the dose needed for 362 

maximum removal of the elements. 363 

4. Conclusions 364 

Livestock manure represent an important source of some nutrients, which can be recovered 365 

and reused. The study attests the suitability of solid-liquid separation for recovering a solid 366 

fraction rich in P from different types of LFs. The results confirm that additives such as CaH 367 
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and AlS can increase the removal efficiency of TS, P, Cu and Zn in the solid-liquid separation 368 

process. In particular, the use of AlS gives removal rates that are higher than those obtained 369 

with CaH. 370 

The maximum efficiencies achievable using chemicals to remove TS, P, Cu and Zn from 371 

animal manure depend on the type of slurry and the additive used. In general, the lowest 372 

separation efficiencies have been obtained with PS while the higher removal rates have been 373 

achieved with digested LFs after ammonia stripping and addition of AlS.  374 

Thus, solid-liquid separation complemented with the addition of chemicals and coupled with 375 

ammonia stripping can produce a liquid fraction from animal manure that can be directly used 376 

in the field, as well as a solid fraction that is rich in P. While the addition of AlS gives better 377 

separation efficiencies and increase of concentrations in the solid fraction, the use of CaH 378 

before an ammonia stripping process might obtain an interesting removal efficiencies, with the 379 

further benefit to increase the pH and therefore improve the ammonia volatilisation process 380 

and the recovering ammonium sulfate.   381 

Sub-optimal and optimal doses of CaH and AlS based on EC and floc formation, respectively, 382 

do not give significantly different results in the separation efficiency for TS, P, Cu and Zn, even 383 

though the higher dose does increase the concentration of these elements in the solid fraction. 384 

Therefore, using the sub-optimal dose of either additive can achieve equally acceptable results 385 

at lower cost compared to those achieved using the optimal dose, if the concentration of 386 

elements in the solid fraction is not an issue. 387 

The solid-liquid separation of animal manure slurries using additives might increase the 388 

concentration of heavy metals in the resulting solid fraction. Therefore, the subsequent use of 389 

the solid fraction in agriculture should be carefully evaluated and controlled to avoid over-390 

application of heavy metal elements and their possible negative effects on environmental 391 

quality and human health. 392 
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 495 

Figure captions 496 

 497 

Figure 1  498 

Example results from jar tests to determine optimal doses (D) of Ca(OH)2 (CaH) and Al2(SO4)3. (AlS) for “cattle and 499 

pig digestate”: a) pH and EC responses to CaH; b) pH and EC responses to AlS; c) Level of solid/liquid interface 500 

(HC) and foam fraction (HF) in response to AlS; d) Floc dimension in response to AlS. The lowest value of EC 501 

(denoted by the red circle) was used to identify D for CaH. The reference dose of AlS selected corresponded to the 502 

Al3+ concentration beyond which the floc dimension did not change and the foam level remained relatively constant. 503 

 504 

Figure 2  505 

Separation efficiencies (Et) achieved using and Al2(SO4)3 (left) and Ca(OH)2 (right) as additives to different LF 506 

types: a) total solids (TS); b) phosphorus (P); c) copper (Cu); d) zinc (Zn). N: null dose; SO: sub-optimal dose; O: 507 

optimal dose. PS: pig LF; PD: pig digestate; PDS: pig digestate stripped; (C+P)D: cattle and pig digestate; (C+P)DS: 508 

cattle and pig digestate stripped. 509 

 510 

Figure 3  511 

Variation of pH (left) and EC (right) in different LFs as a function of a) Ca(OH)2 dose and b) Al2(SO4)3 dose. Data 512 

reported are means and the error bars represent standard deviation. PS: pig LF; PD: pig digestate; PDS: pig 513 

digestate stripped; (C+P)D: cattle and pig digestate; (C+P)DS: cattle and pig digestate stripped. 514 

 515 

Figure 4 516 

Reduced separation indexes resulting from Ca(OH)2 (CaH) and Al2(SO4)3 (AlS) for a): total solids (TS); b) 517 

phosphorus (P); c) copper (Cu); and d) zinc (Zn). PS: pig LF; PD: pig digestate; PDS: pig digestate stripped; (C+P)D: 518 

cattle and pig digestate; (C+P)DS: cattle and pig digestate stripped. 519 
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