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ABSTRACT 

The principle of equivalence is known to cause non-uniqueness in interpretations of direct-

current (DC) resistivity data. Low or high-resistivity equivalences arise when a thin 

geological layer with a low/high resistivity is embedded in a relative high/low resistivity 

background formation causing strong resistivity-thickness correlations. The equivalences 

often make it impossible to resolve embedded layers. Here, we show that the equivalence 

problem can be significantly reduced by combining the DC data with full-decay time-

domain induced polarization (IP) measurements. We apply a 1D Markov Chain Monte 

Carlo algorithm to invert synthetic DC resistivity data of models with low and high-

resistivity equivalences. By applying this inversion method, it is possible to study the space 

of equivalent models, which have an acceptable fit to the observed data, and to make a full 

sensitivity analysis of the model parameters. We then include a contrast in chargeability 

into the model, modelled in terms of spectral Cole-Cole IP parameters, and invert the DC 

and IP data in combination. The results show that the addition of IP data largely resolves 

the DC equivalences. Furthermore, we present a field example where DC and IP data are 

measured on a sand formation with an embedded clay layer known from a borehole 

drilling. Inversion results show that the DC data alone do not resolve the clay layer due to 

equivalence problems, but by adding the IP data to the inversion, the layer is resolved. 
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INTRODUCTION 

The DC resistivity method, also known as the geoelectrical resistivity method, is one of the 

most used methods for mapping the electrical resistivity of subsurface geological layers. 

The method has well-known inherent ambiguities related to the principle of equivalence 

and equivalent layer sequences are investigated in several text books and papers (e.g. 

Koefoed, 1979, Knödel et al., 2007). Best known are the low- and high-resistivity 

equivalences (also referred to as S- and T-type equivalences), which arise when a thin layer 

with a relative low/high resistivity is present in a background formation with a high/low 

resistivity. For these equivalences, it is impossible to determine a unique solution for the 

model parameters, resistivity and layer thickness, of the thin layer. However, due to the 

correlation between the parameters, the thickness-resistivity ratio (the conductance) is well-

determined for low-resistivity equivalences and the thickness-resistivity product (the 

resistance) is well-determined for high-resistivity equivalences (Fitterman et al., 1988).  

A way to resolve equivalences and to improve model resolution is by using complementary 

geophysical methods. Several field surveys and quantitative analyses have been carried out 

with combined or joint inversion of two or more different data sets from the same location 

(e.g. Vozoff and Jupp, 1975, Raiche et al., 1985, Seara and Granda, 1987, Sandberg, 1993, 

Christiansen et al., 2007). Raiche et al. (1985) showed that a significant improvement in 

resolution of layered-earth models can be obtained by applying a joint inversion of transient 

electromagnetic data (TEM) and DC data compared to results obtained with either TEM or 

DC data alone. Sandberg (1993) showed that adding induced polarization (IP) data to a 

joint inversion of TEM and DC improves the resolution further.  
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If the subsurface is chargeable when acquiring DC data, the DC response will be 

accompanied by the IP effect, which manifests itself as a slow rise and decay of the 

potential after the injected current is turned on and off. Consequently, by measuring the 

time-varying potential at the current turn on/off, the IP effect can be measured in 

combination with the DC data (e.g. Binley and Kemna, 2005) in the time-domain (TD). The 

spectral content of the IP phenomenon can be extracted from the TDIP transients, and often 

the Cole-Cole model (Cole and Cole, 1941, Pelton et al., 1978) is used to model the IP 

effect in the inversion of the TDIP data (e.g. Hönig and Tezkan, 2007, Fiandaca et al., 

2012, 2013). Outside mineral exploration, the combined DCIP method is frequently applied 

for lithology discrimination and characterization (e.g. Gazoty et al., 2012b, Chongo et al., 

2015, Johansson et al., 2016, Maurya et al., 2016) as well as investigations of contaminated 

sites (e.g. Aristodemou and Thomas-Betts, 2000, Sogade et al., 2006, Leroux et al., 2007, 

Gazoty et al., 2012a, Johansson et al., 2015). 

The aim of this study is to show that the application of spectral information retrieved from 

TDIP data helps to reduce the well-known resistivity-thickness equivalences seen with DC 

resistivity models and therefore increases the reliability of inversion results dramatically 

with only little effort. We show this by using a Markov Chain Monte Carlo (MCMC) 

inversion method to invert DC data alone and then DC and TDIP data in combination. This 

allows us to study the space of equivalent models in detail. The MCMC method also allows 

for studies of parameter correlations and the full sensitivities of the nonlinear problem, 

which is essential when studying equivalences. In the following, we investigate synthetic 

examples of low- and high-resistivity equivalences and show that thickness-resistivity 

equivalences observed with DC data alone can be resolved by adding TDIP data where a 

layer contrast exist in just one of the Cole-Cole IP parameters. Finally, we present a field 

Page 4 of 37Geophysics Manuscript, Accepted Pending: For Review Not Production



5 

 

example where the IP data help to resolve a clay layer (known from boreholes) embedded 

in a sand formation.  

 

METHODOLOGY 

Data space 

When inverting TD DCIP data, the data space is composed by the apparent resistivity 

values, ��, and full-decay chargeability,	�, which are computed from the transient IP 

decay as described by Gazoty et al. (2012b). A log-transform is applied to enhance 

linearity, so the data vector, ����, is given as 

���� = 
log���,�� , log���,��� 

� = 1: ������������; 	! = 1: ���"��, 

where ��,� is the apparent resistivity measured at quadrupole � and ��,� is the 

chargeability of the !"# time gate of the IP decay recorded at quadrupole �. In the case of 

negative chargeability data, the inversion is carried out in the linear space without the log-

transform.   

The analyses in this study are based on data simulated over a 1D Earth as a vertical 

sounding with 20 quadrupoles with current electrode spacing, |AB|, from 7.5 m to 500 m 

and potential electrode spacing, |MN|, from 2.5 m to 65 m (Table 1). With these electrode 

configurations, the geometric factor is limited to 3000 m in order to keep a good signal-to-

noise ratio (Gazoty et al., 2013). 

The applied waveform has a 100% duty cycle as described by Olsson et al. (2015), where 

the data measurements are performed in the current-on time. Compared to the traditional 

(1) 
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50% duty cycle waveform, where the current is switched off before measurements are 

made, the 100% duty cycle reduces the acquisition time to half and increases the signal-to-

noise ratio due to signal superposition. The synthetic IP decays are simulated from 2.5 ms 

to 10,000 ms after the current switch. The signal is then divided into 35 time gates with 

logarithmically increasing gate lengths from 0.8 ms to 2040 ms. 

Gaussian noise is added to the data to simulate the noise level in the field (Gazoty et al., 

2013). The applied noise model is described in Olsson et al. (2015), where a total standard 

deviation, $%&"�"��, is computed by summing a squared uniform term, $%&�'(, and a 

voltage-dependent term, $%&)"#, for each data point or time gate !: 

$%&"�"��* (!) = $%&�'(* (!) + $%&)#"* (!) 

where $%&)#" is the effect of the signal level on the data uncertainty computed as 

$%&)#"(!) = ./0
.12(!)	3&'�4

&(!) 	 1
3��"�56�

 

where .12(!) is the measured voltage level, &(!) is the gate width, and ��"�56� is the 

number of stacked pulses. &'��4 is the nominal gate width for a voltage noise threshold 

value, ./0. In practice, data points that fall below the voltage threshold will be given a 

larger standard deviation. In this study, a $%&�'( = 2% has been used for DC data and 

a	$%&�'( = 5% has been used for IP data with ./0 = 0.1	<. for &'��4 = 0.01	=. Three 

stacks have been considered for each quadrupole measurement.  

 

(2) 

(3) 
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Model space and forward modeling 

Using the Cole-Cole model for parameterization, the complex resistivity is given as a 

function of frequency (Pelton et al., 1978): 

>'(?) = �' @1 − <BC D1 −	 1
1 + (E?F')5CGH 

where for the n
th

 layer, � is the resistivity and <B, F, and c are the IP parameters. Adding 

the layer thicknesses, thk, the model vector, L adds up to: 

L = 
log(�') , log�<B'� , log(F') , log(M') , log(NℎP4)� 

Q = 1: ���R���; 	< = 1: ���R��� − 1 

Given a layered-earth model, the algorithm presented in Fiandaca et al. (2012) is used to 

model the TDIP forward response. This algorithm applies the full-decay waveform and 

models the transmitter current waveform and the receiver transfer function accurately.  

 

Linearized inversion and uncertainties 

A linearized inversion approach is used to determine the start model for the MCMC 

inversion algorithm described in the next section. The linearized inversion of 1D DC data 

follows the algorithm described in Auken et al. (2005). The algorithm was later extended to 

include IP data as well (Fiandaca et al., 2012). In these inversion approaches, the 

uncertainty analyses of the model parameters are computed through the posterior 

covariance of the linear mapping, S��", as described by Tarantola and Valette (1982a). Due 

to the logarithmic transform applied in the inversion, the uncertainty on the model 

parameter <( is given as a standard deviation factor (STDF) defined as 

(4) 

(5) 

(6) 
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$%&T(<() = exp	DXS��"((,()G 

where the 68% confidence interval for <( is between 

<(	
$%&T(<( 	) < <( 	 < <( 	 ∙ $%&T	(<( 	). 

A perfect resolution will give a STDF = 1 and using the terminology from Auken et al. 

(2005) a STDF < 1.2 indicates a well-resolved parameter, 1.2 < STDF < 1.5 indicates a 

moderately resolved parameter, 1.5 < STDF < 2 indicates a poorly resolved parameter, and 

STDF > 2 indicates an unresolved parameter. 

 

MCMC inversion 

Following a probabilistic formulation, the posterior probability distribution of the model L 

is given as (Tarantola, 2005)  

[���"(L) = \	[��(��(L)	[�(6�(L) 

where [��(��(L)	is the prior probability distribution given by prior information, [�(6�(L) 

is the likelihood function describing the degree of fit between the observed data and the 

forward response of the model L, and \ is a normalization constant. The objective of the 

inversion is to describe the posterior probability distribution and thereby determine the 

space of models with the highest probability. Assuming the uncertainties of the model 

parameters to be Gaussian, the likelihood can be written (Mosegaard and Tarantola, 2002): 

[�(6� = P	 ∙ exp @− 1
2	(	](L) − ����	)/^���_`	(	](L) − ����	)H 

(7) 

(8) 

(9) 
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where ���� holds the observed data, ](L) is the forward response of L, ^��� is the 

covariance matrix of the observed data, and P is a normalization constant. If needed, the 

likelihood function can easily be extended in order to contain regulations terms as well. 

MCMC methods have previously been applied to geophysical inversion problems to 

describe the posterior probability distribution (Tarantola and Valette, 1982b, Mosegaard 

and Tarantola, 1995, Mosegaard and Tarantola, 2002). In this study, the method is applied 

with a Metropolis-Hastings sampling algorithm (Metropolis et al., 1953, Hastings, 1970), 

where a random walk samples models directly from the posterior probability distribution. 

The sampling algorithm repeats two steps. Firstly, a new model, Labc, is proposed. The 

new model is then accepted or rejected based on the likelihood ratio between Labc and the 

last accepted model, here referred to as the current model, Ldef. In this way, a Markov 

chain of models is sampled, where Lg is dependent only on Lg_` and none of the previous 

models (the Markov property). The algorithm will sample models with high probability 

more frequently and thereby converge towards the posterior probability distribution.  

The MCMC algorithm applied for inversion of DCIP data is presented as a pseudo-

algorithm in Table 2. Before the routine is started, the variables �("� and P�"�� are 

initialized (Step 1). These are the number of iterations and a step length constant, which is 

later used to define the model perturbation for the MCMC sampling. A linearized inversion 

is then performed to determine the start model for the MCMC model sampling (Step 2). 

This is done to minimize the burn-in phase of the MCMC algorithm, thereby reducing the 

inversion time. Hereafter the MCMC sampling (Step 4 - Step 13) is started using a scaled 

model proposer (Step 5) to compute the next model, Labc, in a random walk: 

Labc = Ldef + 	h	a	P�"�� (10) 
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where P�"�� is the predefined step length constant, a is a vector of random numbers drawn 

from a Gaussian distribution, and h is the Cholesky decomposition of ^b�i(L�ijfi), so 

^b�i(L�ijfi) = hh/  

The Cholesky decomposition of the matrix is applied to the model perturbation to scale the 

step length between the current model and the proposed new model. By scaling the model 

proposer with ^b�i, the different interval ranges and the uncertainty of the individual Cole-

Cole parameters are taken into account. The scaling lets the algorithm take larger steps for 

parameters with a high uncertainty and therefore leads to a faster convergence. It was found 

that by applying the scaled model proposer, the algorithm converges over 200 times faster 

compared to a standard Gaussian proposer (Madsen et al., 2016). For a homogenous half-

space, this means that the number of iterations necessary to reach convergence is brought 

down from 1,000,000 to 5000 models. Running on ten CPUs, this is a decrease in the 

inversion time from approximately one day to ten minutes. 

The acceptance probability, [�55, of the proposed model is computed as the likelihood ratio 

(Step 6) as given by Mosegaard and Tarantola (1995). When computing the ratio, the 

normalization constant from the likelihood equation (Eq. 9) cancels out because it is present 

in both the numerator and the denominator. If the likelihood of the new model is higher 

than the likelihood of the current model, the new model will always be accepted to the 

Markov chain and will become the new Ldef. If, however, the likelihood of the new model 

is lower than the likelihood of the current model, the new model will only be accepted with 

probability Pacc as outlined in Step 7-12.  

The uncertainty of the model parameters is computed as the standard deviation from the 

mean of each marginal posterior probability distribution. The uncertainties are then 

(11) 
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expressed as STDFs as for the linearized approach. The variation of the standard deviation 

during the sampling is used to check the convergence. When the standard deviations of the 

marginal posterior probability distributions have converged, the probability distribution has 

converged as well and the number of iterations has been sufficient.    

 

RESULTS 

Low and high-resistivity equivalences  

A low-resistivity equivalence (S-type equivalence) arises when a thin layer with a relatively 

low resistivity is embedded in a formation with a higher resistivity. The thickness and the 

resistivity of the embedded layer cannot be resolved whereas the conductance is fairly well-

determined. 

The apparent resistivity data in Figure 1 is the synthetic forward response of a three-layer 

model, which has a low-resistivity layer embedded in a high-resistivity formation where the 

resistivity values are � = [200, 20, 200] Ωm and the associated thicknesses are NℎP = [10, 

5] m. These DC data are inverted with the MCMC algorithm with 200,000 iterations and 

the result is presented in Figure 2 (Panel-DC). Here, the density of the black lines illustrates 

the density of accepted models and is therefore an image of the posterior probability 

distribution. The model found to have the highest probability (yellow dashed line) is not 

consistent with the true model (red line) in the low resistivity layer. The STDFs of the 

model parameters found from the MCMC inversion results are listed in Table 3 (Row 1). 

The STDFs show that the parameters of the top and bottom layer are well-resolved by the 

inversion scheme, but the probability distributions of the thickness and the resistivity of the 

embedded low-resistivity layer do not converge and the parameters can not be determined. 
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The models accepted by the MCMC algorithm spans the space of equivalent models. There 

is a clear negative correlation between the resistivity and the thickness of the embedded 

layer (Figure 2, Panel-DC). In the second layer, as the resistivity of the equivalent models 

decreases the thickness decreases as well keeping the conductance constant. The STDF of 

the conductance is 1.04, which indicates a well-resolved parameter.  

A number of other low-resistivity models with varying layer thicknesses have been inverted 

with the MCMC algorithm to study the respective equivalences. With the resistivity 

contrast presented in Figure 2 (Panel-DC), strong equivalences causing unresolved 

parameters are found to be present until the embedded layer is given a thickness, which is 

three times the thickness of the top layer.   

To study the influence of TDIP data on the resistivity-thickness equivalences, TDIP data 

are added to the existing DC data and a joint inversion performed in terms of Cole-Cole 

parameters. The true model is plotted together with the MCMC inversion result in Figure 2 

(Panel-DCIP) for all three IP parameters. The time constant, τ, and the frequency exponent, 

c, take the same values in all three layers and only a contrast is present in the model space 

chargeability, <B, where the embedded layer has a relatively high chargeability (<B 	 =
	[20, 200, 20]	<./.). The synthetic TDIP data are shown in Figure 3. 

The inversion result of the joint DCIP data shows that adding IP data to the inversion helps 

resolving the thickness of the embedded layer and therefore decreases the amount of 

equivalent models. The thickness and the resistivity are still negatively correlated, but 

because the space of equivalent models is reduced, both the resistivity and the thickness of 

the second layer are now well-resolved with a STDF < 1.2 (Table 3, Row 2).  
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The degree to which the equivalences are resolved depends on the magnitude of the 

contrast in chargeability between the layers. In Figure 2 (Panel-DCIP), the chargeability 

contrast has the same magnitude as the contrast in the resistivity, i.e. a factor of ten, which 

gives us a realistic model for field measurements of a clay layer embedded in a sand 

formation. If this contrast is reduced, the resolution of the model will decrease. MCMC 

analyses of models with different chargeability contrasts indicate that as long as the 

contrast is more than a factor of six (i.e. m0 = [20, 120, 20] mV/V), the MCMC maximum 

probability model corresponds to the true model and the model parameters are resolved. 

The influence of IP has also been studied in models with high-resistivity equivalences (T-

type equivalence), where a high-resistivity layer is embedded in a low-resistivity formation 

(Figure 4). The high-resistivity equivalences in the DC inversion results (Figure 4, Panel-

DC) are similar and of the same magnitude as those observed for models with low-

resistivity equivalences. IP data with a chargeability contrast between the layers were added 

to the inversion and the DCIP data inverted together (Figure 4, Panel-DCIP). The high-

resistivity equivalences are resolved with a contrast in the chargeability similar to the low-

resistivity case, i.e. a factor of six. 

If contrasts are given to any of the other IP parameters in an inversion, the equivalences are 

reduced as well. When the lithology changes between layers, not only do the resistivity and 

the chargeability change, but the value of the time constant, F, and the frequency exponent, 

M, will usually change as well. Therefore, if a contrast is added in τ or c then the contrast in 

the chargeability can be much less than a factor of ten and the equivalences will still be 

resolved. An example of this is shown later with field data.  
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Equivalences and parameter contrasts 

To study possible equivalences in IP data and to determine to what extent IP parameter 

contrasts between layers can resolve layer thicknesses, a three-layer DCIP model is 

constructed with no contrast between the layers, i.e. reassembling a homogenous half space. 

This default model is given the Cole-Cole parameters: �	 = 	200	Ω<, <B 	 = 	100	<./., 

F	 = 	1	=, M	 = 	0.6. The thickness of layer one and two are 10 m and 5 m, respectively. For 

one Cole-Cole parameter at a time, the parameter value of the embedded layer is then 

changed and a MCMC inversion performed in order to study how well this single parameter 

contrast is able to resolve the thickness of the layers. The resulting uncertainty analysis of 

the thickness of the embedded layer is shown in Figure 5. If the STDFs computed over the 

marginal posterior probability distributions are above 2.5, the STDF in the figure is set to 

2.5 indicating an unresolved parameter. 

The blue line in Figure 5 represents a number of models where the resistivity of the second 

layer varies between 20 Ωm and 2000 Ωm in a background formation of 200 Ωm. We see 

that no matter the resistivity contrast, low-resistivity and high-resistivity equivalences are 

present making it impossible to resolve the thickness of the embedded layer. When 

changing the chargeability of the embedded layer (Figure 5, red line), the increase in 

resolution of the layer is larger for a decreasing relative chargeability compared to an 

increasing value. So, for the case studied here, it is easier to resolve the layer thickness of 

an embedded low chargeable layer than from a high chargeable layer. For a contrast 

between the layers in M, only a factor of one half, e.g. M = [0.6, 0.3, 0.6], is required to gain 

a well-resolved layer thickness (Figure 5, purple line). For a contrast in F (Figure 5, yellow 

line), it is only possible to resolve the layer thickness moderately. F is the Cole-Cole 
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parameter with the widest interval range and is often the most poorly resolved parameter, 

which gives rise to the only moderately resolved layer thickness.   

 

Field example 

To show the influence of TDIP data in an analysis of field measurements, two 1D vertical 

soundings (two meters apart) are extracted from a larger 2D profile acquired in Grindsted, 

Denmark, and inverted together. The local geology is dominated by 60 m of Miocene 

sands, but a borehole drilled close to the soundings identifies a thin layer of clay and sandy 

clay (thickness ~ 2 m) close to the surface (depth ~ 1.5 m). To focus on this low-resistivity 

clay layer, only the top 15 meters of the soundings are considered.  

The applied data were acquired with 12 different electrode configurations, where the IP 

decays are measured between 3.5-4000 ms with a 100% duty cycle with the Terrameter LS 

instrument (ABEM instruments AB). The IP decays were extracted from the raw full-

waveform recordings, sampled at 3750 Hz, using the algorithm described in Olsson et al. 

(2016).  

The measured data are shown in Figure 6. The DC data are inverted with the MCMC 

algorithm and then compared to the MCMC inversion results of the combined DCIP data 

(Figure 7). For the DC inversion, the results show strong equivalences and undetermined 

parameters (Figure 7, Panel-DC). The STDFs computed from the MCMC inversion results 

are presented in Table 4. Both the resistivity and the thickness of the clay layer determined 

by the DC inversion are unresolved (Table 4, Row 1). However, as for a classic low-

resistivity equivalence problem, the conductance is resolved. Besides the equivalence 

problem, this poor resolution may also be due to the limited number of DC data points in 
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the top two layers (Figure 6). However, for the DCIP inversion the low-resistivity layer is 

well-resolved (Table 4, Row 2) and fits the borehole information (Figure 7, Panel-DCIP). 

This means that the information given in the IP signals resolves the thickness-resistivity 

equivalences.  

The results of the linearized inversion of the field data, i.e. the linearized inversion applied 

to determine the start model for the MCMC analysis (Table 2, Step 2), are also shown in 

Figure 7 (blue line) and the linearized uncertainty analysis is listed in Table 4 (Row 3-4). 

The linearized inversion of DC data finds the low resistivity layer, but the thickness and the 

resistivity of the layer is unresolved and so is the conductance. The linearized inversion of 

the DCIP data agrees well with the MCMC inversion results for the resistivity and 

thickness of the layer. For this field example, the STDFs in Table 4 show that the linearized 

analysis underestimates the resolution of the parameters compared to the MCMC approach.   

 

DISCUSSION 

In this study, we have used the MCMC inversion approach as a tool to invert TD DCIP data 

in order to study equivalent models and obtain a non-linearized sensitives analysis of the 

model parameters. We do not, however, suggest the MCMC approach as a general scheme 

for inversion of 2D and 3D datasets as the computation time would be immense (at least for 

full-decay modelling). Despite the time reduction gained by applying the posterior 

covariance for scaling the sampling algorithm, the time required to invert a 2D dataset is 

still days with the MCMC scheme compared to up to a few hours for the linearized 

approach. That said, the MCMC approach still has its advantages over gradient-based 

linearized methods when it comes to quantifying model parameter uncertainties and 
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correlations. In difference to gradient-based methods where the inversion result is one “best 

fitting” model, it is possible with the MCMC approach to study the space of models that all 

fit the observed data to a certain degree. Furthermore, it was found that the MCMC 

approach is largely independent on the start model of the inversion, which is not always the 

case for gradient-based inversions.  

In this study, we have chosen to focus on time-domain DCIP data. However, the same 

results are expected for frequency-domain data as preliminary MCMC studies have shown 

that the sensitivity of the Cole-Cole parameters retrieved from time-domain or frequency-

domain are comparable.  

 

CONCLUSION 

By inverting synthetic DC resistivity data with a Metropolis-Hastings MCMC algorithm, 

we have studied well-known resistivity-thickness equivalences present in DC inversion 

results. We have then combined DC data with full-waveform time-domain induced 

polarization (TDIP) data and found that the TDIP data help to resolve the layer thicknesses 

and thereby the resistivities in models with low-resistivity and high-resistivity equivalence 

problems. This is possible because no major thickness equivalences are present for the IP 

parameters. The results show that the increase in resolution depends on the added 

chargeability contrast between the layers (modelled in term of the Cole-Cole IP parameters) 

as well as the settings causing the equivalence, i.e. the layer thicknesses and the resistivity 

contrasts in the model. In the models studied, it was found that a contrast of a factor of six 

in the chargeability (which can easily be expected in the field, e.g. if a clay layer is 

embedded in a sand formation) is enough the resolve strong equivalences. Furthermore, 

inversion of a DCIP field data set shows that a thin clay layer embedded in a sand 
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formation causes strong equivalences and ambiguities in the retrieved models when only 

considering the DC data. However, when the IP data are added to the inversion, the clay 

layer is resolved. This was found to be the case for both a MCMC and a linearized 

inversion approach.  

Combined, the results indicate that equivalent layer sequences can be resolved by adding IP 

data to the inversion. Considering that time-domain IP data can be collected by most 

instruments when collecting DC resistivity data, the DC equivalence problems can be 

significantly reduced at very little additional cost. 
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FIGURE AND FIGURE CAPTION 
 

Figure 1: 

The apparent resistivity forward response and associated error bars computed from a three-

layer model with the parameter values: thk = [10, 5] m and ρ = [200, 20, 200] Ωm. The 

apparent resistivity, ρa, is plotted against a pseudo depth. The error bars correspond to two 

standard deviations. 

 

Figure 2: 

Panel-DC) MCMC inversion results of a model with the resistivity values ρ = [200, 20, 

200] Ωm. The middle layer has a low-resistivity equivalence, where the thickness and the 

resistivity are strongly correlated and unresolved. The black lines are models accepted by 

the MCMC algorithm, and the density of the lines illustrates the posterior probability 

density. The dashed yellow line shows the model, which has the highest probability. Panel-

DCIP) MCMC inversion result of synthetic DCIP data generated from the model: ρ = [200, 

20, 200] Ωm, m0 = [20, 200, 20] mV/V, τ = 1 s, and c = 0.6. 

 

Figure 3: 

Forward response of the IP model given in Figure 2 (Panel DCIP). Each line illustrates the 

data measured in one of the 35 time gates with the earliest time gate at the top of the plot 

(every second time gate is shown here). Examples of the two standard deviation error bars 

are shown for three of the time gates (black lines). 
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Figure 4: 

Panel-DC) MCMC inversion results of a model with the resistivity values ρ = [20, 200, 20] 

Ωm. Panel-DCIP) MCMC inversion result of synthetic DCIP data generated from the 

model: ρ = [20, 200, 20] Ωm, m0 = [20, 200, 20] mV/V, τ = 1 s, and c = 0.6. 

 

Figure 5:  

Standard deviation factors (STDFs) of the thickness of the second layer, thk(2), in a three-

layer model. The STDFs are plotted against the contrast in the Cole-Cole parameter 

between the layers. The default three-layer model has the same Cole-Cole parameters in all 

three layers: ρ = 200 Ωm, m0 = 100 mV/V, τ = 1 s, and c = 0.6. The thickness of the top and 

second layer are 10 m and 5 m, respectively. A parameter contrast between the layers is 

then obtained by changing the value of one of the parameters in the second layer. As an 

example, the STDF of thk(2) is 1.5 for a factor three contrast in the τ (i.e. ρ = 200 Ωm, m
0
 = 

100 mV/V, τ = [1,3,1] s, and c = 0.6). Note: If the STDF of a parameter is above 2.5, i.e. 

completely unresolved, the STDF is put to 2.5 in the figure. 

 

Figure 6: 

DC data (a) and IP data (b) with error bars (two standard deviations) from two vertical 

soundings (red and blue curves) measured in Grindsted, Denmark. For the IP data (b), each 

curve represents a time gate of the measured IP decays. Only four of 29 time gates are 

shown here. 
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Figure 7: 

DC and DCIP inversion results of field data from Grindsted, Denmark. The black lines are 

models accepted to the posterior probability distribution by the MCMC algorithm, the 

yellow dashed line is the model at the maximum of the distribution, and the blue line is the 

model found by a linearized inversion approach. The brown vertical lines mark the top and 

bottom of a clay layer and a sandy clay layer. 

 

Table 1: 

Electrode configuration of the 20 quadrupoles applied for generating synthetic vertical 

soundings. 

 

Table 2: 

Metropolis-Hastings algorithm applied for inversion of DC and DCIP data. 

 

Table 3: 

Standard deviation factors (STDFs) of the models parameters, resistivity and thickness, of a 

three-layer model (Figure 2) determined from a MCMC inversion of DC and DCIP data, 

respectively. Non-values indicate unresolved parameters. 
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Table 4:  

Standard deviation factors (STDFs) computed from inversion results of DC and DCIP field 

data. For the MCMC approach, the STDFs are computed from the mean of the posterior 

probability distributions. For the linearized inversion approach, the STDFs are computed 

from the linearized estimated covariance matrix (Eq. 6). Non-values indicate unresolved 

parameters. 
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The apparent resistivity forward response and associated error bars computed from a three-layer model with 
the parameter values: thk = [10, 5] m and ρ = [200, 20, 200] Ωm. The apparent resistivity, ρa, is plotted 

against a pseudo depth. The error bars correspond to two standard deviations.  
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Panel-DC) MCMC inversion results of a model with the resistivity values ρ = [200, 20, 200] Ωm. The middle 
layer has a low-resistivity equivalence, where the thickness and the resistivity are strongly correlated and 

unresolved. The black lines are models accepted by the MCMC algorithm, and the density of the lines 
illustrates the posterior probability density. The dashed yellow line shows the model, which has the highest 
probability. Panel-DCIP) MCMC inversion result of synthetic DCIP data generated from the model: ρ = [200, 

20, 200] Ωm, m0 = [20, 200, 20] mV/V, τ = 1 s, and c = 0.6.  
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Forward response of the IP model given in Figure 2 (Panel DCIP). Each line illustrates the data measured in 
one of the 35 time gates with the earliest time gate at the top of the plot (every second time gate is shown 
here). Examples of the two standard deviation error bars are shown for three of the time gates (black lines). 
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Panel-DC) MCMC inversion results of a model with the resistivity values ρ = [20, 200, 20] Ωm. Panel-DCIP) 
MCMC inversion result of synthetic DCIP data generated from the model: ρ = [20, 200, 20] Ωm, m0 = [20, 

200, 20] mV/V, τ = 1 s, and c = 0.6.  
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Standard deviation factors (STDFs) of the thickness of the second layer, thk(2), in a three-layer model. The 
STDFs are plotted against the contrast in the Cole-Cole parameter between the layers. The default three-
layer model has the same Cole-Cole parameters in all three layers: ρ = 200 Ωm, m0 = 100 mV/V, τ = 1 s, 

and c = 0.6. The thickness of the top and second layer are 10 m and 5 m, respectively. A parameter 
contrast between the layers is then obtained by changing the value of one of the parameters in the second 
layer. As an example, the STDF of thk(2) is 1.5 for a factor three contrast in the τ (i.e. ρ = 200 Ωm, m0 = 

100 mV/V, τ = [1,3,1] s, and c = 0.6). Note: If the STDF of a parameter is above 2.5, i.e. completely 
unresolved, the STDF is put to 2.5 in the figure.    
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DC data (a) and IP data (b) with error bars (two standard deviations) from two vertical soundings (red and 
blue curves) measured in Grindsted, Denmark. For the IP data (b), each curve represents a time gate of the 

measured IP decays. Only four of 29 time gates are shown here.  
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DC and DCIP inversion results of field data from Grindsted, Denmark. The black lines are models accepted to 
the posterior probability distribution by the MCMC algorithm, the yellow dashed line is the model at the 
maximum of the distribution, and the blue line is the model found by a linearized inversion approach. The 

brown vertical lines mark the top and bottom of a clay layer and a sandy clay layer.  
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Table 1: Electrode configuration of the 20 quadrupoles applied for generating synthetic vertical 

soundings. 

Quadrupole  1 2 3 4 5 6 7 8 9 10 

|AB| (m) 7.5 12.5 17.5 22.5 27.5 32.5 37.5 42.5 47.5 52.5 

|MN| (m) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 

Quadrupole   11 12 13 14 15 16 17 18 19 20 

|AB| (m) 57.5 72.5 92.5 117.5 147.5 192.5 240 305 390 500 

|MN| (m) 2.5 2.5 2.5 15 15 15 15 65 65 65 
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Table 2: Metropolis-Hastings algorithm 

applied for inversion of DC and DCIP data. 

1:     Set Nite, kstep 

2:     Run linearized inversion to determine start model,    

        mstart,  and the covariance matrix, ����(������) 

3:     mcur = mstart 

4:     for i = 1, Nite do  

5:           Compute a new model proposal: 

                    �
�� 	= 	���� 	+ 	�	
	�����  

6:           Compute acceptance probability 

              ���� 	 = 	
�����(�
��)

�����(����)
 

7:           Draw random number (α) from a uniform 

              distribution [0:1] 

8:           if ���� 	> 	  

9:                mcur = mnew 

10:         else 

11:               mcur = mcur 

12:         end if 

13:     end for 
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Table 3: Standard deviation factors (STDFs) of the models parameters, 

resistivity and thickness, of a three-layer model (Figure 2) determined from a 

MCMC inversion of DC and DCIP data, respectively. Non-values indicate 

unresolved parameters. 

 ����(��) ����(�	) STDF(�
) STDF(��
�) ����(��
	) 

DC 1.01 - 1.02 1.03 - 

DCIP 1.01 1.17 1.02 1.01 1.2 
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Table 4: Standard deviation factors (STDFs) computed from inversion 

results of DC and DCIP field data. For the MCMC approach, the STDFs 

are computed from the mean of the posterior probability distributions. For 

the linearized inversion approach, the STDFs are computed from the 

linearized estimated covariance matrix (Eq. 6). Non-values indicate 

unresolved parameters. 

 

Type STDF(ρ2) STDF(thk2) STDF(ρ2/thk2) 

MCMC - DC - - 1.2 

MCMC - DCIP 1.14 1.11 1.17 

Linearized - DC - - - 

Linearized - DCIP 1.3 1.5 1.5 

 

 

Page 37 of 37 Geophysics Manuscript, Accepted Pending: For Review Not Production


