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Abstract

Here we consider a Cahn-Hilliard-Navier-Stokes system characterized by a nonlocal

Cahn-Hilliard equation with a singular (e.g., logarithmic) potential. This system

originates from a diffuse interface model for incompressible isothermal mixtures of

two immiscible fluids. We have already analyzed the case of smooth potentials with

arbitrary polynomial growth. Here, taking advantage of the previous results, we

study this more challenging (and physically relevant) case. We first establish the

existence of a global weak solution with no-slip and no-flux boundary conditions.

Then we prove the existence of the global attractor for the 2D generalized semiflow

(in the sense of J.M. Ball). We recall that uniqueness is still an open issue even

in 2D. We also obtain, as byproduct, the existence of a connected global attractor

for the (convective) nonlocal Cahn-Hilliard equation. Finally, in the 3D case, we

establish the existence of a trajectory attractor (in the sense of V.V. Chepyzhov

and M.I. Vishik).

Keywords: Navier-Stokes equations, nonlocal Cahn-Hilliard equations, singular
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potentials, incompressible binary fluids, global attractors, trajectory attractors.
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1 Introduction

In [14] we have introduced and analyzed an evolution system which consists of the Navier-

Stokes equations for the fluid velocity u suitably coupled with a non-local convective Cahn-

Hilliard equation for the order parameter ϕ on a given (smooth) bounded domain Ω ⊂ Rd,

d = 2, 3. This system derives from a diffuse interface model which describes the evolution

of an incompressible mixture of two immiscible fluids (see, e.g., [26, 28, 29, 30, 32] and

references therein). We suppose that the temperature variations are negligible and the

density is constant and equal to one. Thus u represents an average velocity and ϕ the

relative concentration of one fluid (or the difference of the two concentrations). Then the

nonlocal Cahn-Hilliard-Navier-Stokes system reads as follows

ϕt + u · ∇ϕ = ∆µ, (1.1)

ut − div(2ν(ϕ)Du) + (u · ∇)u+∇π = µ∇ϕ+ h, (1.2)

µ = aϕ− J ∗ ϕ+ F ′(ϕ), (1.3)

div(u) = 0, (1.4)

in Ω× (0,+∞). We endow the system with the boundary and initial conditions

∂µ

∂n
= 0, u = 0, on ∂Ω, (1.5)

u(0) = u0, ϕ(0) = ϕ0, in Ω, (1.6)

where n is the unit outward normal to ∂Ω. Here ν is the viscosity, π the pressure, h

denotes an external force acting on the fluid mixture, J : Rd → R is a suitable interaction

kernel, a is a coefficient depending on J (see section below for the related assumptions),

F is the configuration potential which accounts for the presence of two phases.

Here we prove the existence of a global weak solution when the double-well potential

F can be singular in (−1, 1), that is, its derivative is unbounded at the endpoints. A

typical situation of physical interest is the following (see [10])

F (s) =
θ

2
((1 + s) log(1 + s) + (1− s) log(1− s))− θc

2
s2, (1.7)

where θ, θc are the (absolute) temperature and the critical temperature, respectively. If

0 < θ < θc then phase separation occurs, otherwise the mixed phase is stable. We recall

that the logarithmic terms are related to the entropy of the system.
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For the existence of a weak solution, we take advantage of our previous analysis for

regular potentials (i.e., defined on the whole R) with polynomially controlled growth of

arbitrary order (see [14]) and we use a suitable approximation procedure inspired by [18].

Then, we extend to potentials like (1.7) the results obtained in [21] for regular potentials.

Such results are concerned with the global longtime behavior of (weak) solutions. More

precisely, in the spirit of [5], we can define a generalized semiflow in 2D and prove that

it possesses a global (strong) attractor by using the energy identity. Then we analyze

the 3D case by means of the trajectory approach introduced in [20] (see also [34]) and

generalized in [11, 12]. In this framework, we show the existence of a trajectory attractor.

We recall that the usual Cahn-Hilliard equation is characterized by the chemical po-

tential µ = −∆ϕ+F ′(ϕ). However, this equation has a phenomenological nature. On the

contrary, the nonlocal one can be rigorously justified, viewing the standard Cahn-Hilliard

equation as its approximation (see [24, 25], cf. also [14] and references therein).

The standard (local) system with a singular potential has been analyzed in [1, 2, 9]

(for regular potentials see, e.g., [22, 23, 35, 37] and references therein). Most of the re-

sults known for the Navier-Stokes equations essentially hold for the (local) Cahn-Hilliard-

Navier-Stokes system as well. On the contrary, in the nonlocal case, due to the weaker

smoothness of ϕ, proving uniqueness and/or getting higher-order estimates seem a non-

trivial task even in dimension two (see [14, 21]). A further interesting and challenging

issue is to analyze the sharp interface limit of the nonlocal system (see [3] for a rigorous

result in the local case). It is worth mentioning that a nonlocal system for liquid-vapour

phase transition has been proposed and analyzed in [33] (see also [27]).

We conclude by observing that the technique we use in 2D can be easily adapted to

show that the 3D (convective) Cahn-Hilliard equation with a singular potential has a

connected global (strong) attractor (for regular potentials see [21] and references therein,

cf. also [4, 17] for results on the local case). To our knowledge this is the first result

on the existence of a global attractor for a nonlocal Cahn-Hilliard equation with singular

potential.

The plan goes as follows. In the next section, we introduce the weak formulation

of our problem. Then we state the existence theorem whose proof is given in Section

3. Section 4 is devoted to the global attractor in 2D, while Section 5 is concerned with

the existence of the trajectory attractor whose structural and attraction properties are

discussed in Section 6.
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2 Weak solutions and existence theorem

Let us set H := L2(Ω) and V := H1(Ω). For every f ∈ V ′ we denote by f the average of

f over Ω, i.e.,

f :=
1

|Ω|
〈f, 1〉.

Here |Ω| stands for the Lebesgue measure of Ω.

Then we introduce the spaces

V0 := {v ∈ V : v = 0}, V ′0 := {f ∈ V ′ : f = 0},

and the operator A : V → V ′, A ∈ L(V, V ′) defined by

〈Au, v〉 :=

∫
Ω

∇u · ∇v ∀u, v ∈ V.

We recall that A maps V onto V ′0 and the restriction of A to V0 maps V0 onto V ′0 isomor-

phically. Let us denote by N : V ′0 → V0 the inverse map defined by

AN f = f, ∀f ∈ V ′0 and NAu = u, ∀u ∈ V0.

As is well known, for every f ∈ V ′0 , N f is the unique solution with zero mean value of

the Neumann problem {
−∆u = f, in Ω
∂u
∂n

= 0, on ∂Ω.

Furthermore, the following relations hold

〈Au,N f〉 = 〈f, u〉, ∀u ∈ V, ∀f ∈ V ′0 , (2.1)

〈f,N g〉 = 〈g,N f〉 =

∫
Ω

∇(N f) · ∇(N g), ∀f, g ∈ V ′0 . (2.2)

We also consider the standard Hilbert spaces for the Navier-Stokes equations (see, e.g.,

[36])

Gdiv := {u ∈ C∞0 (Ω)d : div(u) = 0}
L2(Ω)d

, Vdiv := {u ∈ H1
0 (Ω)d : div(u) = 0}.

We denote by ‖ · ‖ and (·, ·) the norm and the scalar product on both H and Gdiv,

respectively. We recall that Vdiv is endowed with the scalar product

(u, v)Vdiv = (∇u,∇v), ∀u, v ∈ Vdiv.

We shall also use the definition of the Stokes operator S with no-slip boundary condition.

More precisely, S : D(S) ⊂ Gdiv → Gdiv is defined as S := −P∆ with domain D(S) =

H2(Ω)d ∩ Vdiv, where P : L2(Ω)d → Gdiv is the Leray projector. Notice that we have

(Su, v) = (u, v)Vdiv = (∇u,∇v), ∀u ∈ D(S), ∀v ∈ Vdiv
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and S−1 : Gdiv → Gdiv is a self-adjoint compact operator in Gdiv. Thus, according with

classical spectral theorems, it possesses a sequence {λj} with 0 < λ1 ≤ λ2 ≤ · · · and

λj →∞, and a family {wj} ⊂ D(S) of eigenfunctions which is orthonormal in Gdiv. It is

also convenient to recall that the trilinear form b which appears in the weak formulation

of the Navier-Stokes equations is defined as follows

b(u, v, w) =

∫
Ω

(u · ∇)v · w, ∀u, v, w ∈ Vdiv.

We suppose that the potential F can be written in the following form

F = F1 + F2,

where F1 ∈ C(2+2q)(−1, 1), with q a fixed positive integer, and F2 ∈ C2([−1, 1]).

We can now list the assumptions on the kernel J , on the viscosity ν, on F1, F2 and on

the forcing term h.

(A1) J ∈ W 1,1(Rd), J(x) = J(−x), a(x) :=

∫
Ω

J(x− y)dy ≥ 0, a.e. x ∈ Ω.

(A2) The function ν is locally Lipschitz on R and there exist ν1, ν2 > 0 such that

ν1 ≤ ν(s) ≤ ν2, ∀s ∈ R.

(A3) There exist c1 > 0 and ε0 > 0 such that

F
(2+2q)
1 (s) ≥ c1, ∀s ∈ (−1,−1 + ε0] ∪ [1− ε0, 1).

(A4) There exists ε0 > 0 such that, for each k = 0, 1, · · · , 2+2q and each j = 0, 1, · · · , q,

F
(k)
1 (s) ≥ 0, ∀s ∈ [1− ε0, 1),

F
(2j+2)
1 (s) ≥ 0, F

(2j+1)
1 (s) ≤ 0, ∀s ∈ (−1,−1 + ε0].

(A5) There exists ε0 > 0 such that F
(2+2q)
1 is non-decreasing in [1 − ε0, 1) and non-

increasing in (−1,−1 + ε0].

(A6) There exist α, β ∈ R with α + β > −min[−1,1] F
′′
2 such that

F
′′

1 (s) ≥ α, ∀s ∈ (−1, 1), a(x) ≥ β, a.e. x ∈ Ω.

(A7) lims→±1 F
′
1(s) = ±∞.

(A8) h ∈ L2(0, T ;V ′div) for all T > 0.
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Remark 1. Assumptions (A3)-(A7) are satisfied in the case of the physically relevant

logarithmic double-well potential (1.7) for any fixed positive integer q. In particular,

setting

F1(s) =
θ

2
((1 + s) log(1 + s) + (1− s) log(1− s)), F2(s) = −θc

2
s2,

then (A6) is satisfied if and only if β > θc − θ. However, note that other reasonable

potentials satisfy the above assumptions (e.g., the ones which are unbounded at the

endpoints).

Remark 2. The requirement a(x) ≥ β a.e x ∈ Ω is crucial (see [7, Rem.2.1], cf. also

[8]). For example, in the case of the double-well smooth potential F (s) = (s2 − 1)2,

which is usually taken as a fairly good smooth approximation of the singular potential,

the existence result in [14] requires the condition a(x) ≥ β with β > 4.

The notion of weak solution to problem (1.1)-(1.6) is given by

Definition 1. Let u0 ∈ Gdiv, ϕ0 ∈ H with F (ϕ0) ∈ L1(Ω) and 0 < T < +∞ be given. A

couple [u, ϕ] is a weak solution to (1.1)-(1.6) on [0, T ] corresponding to [u0, ϕ0] if

• u, ϕ and µ satisfy

u ∈ L∞(0, T ;Gdiv) ∩ L2(0, T ;Vdiv), (2.3)

ut ∈ L4/3(0, T ;V ′div), if d = 3, (2.4)

ut ∈ L2(0, T ;V ′div), if d = 2, (2.5)

ϕ ∈ L∞(0, T ;H) ∩ L2(0, T ;V ), (2.6)

ϕt ∈ L2(0, T ;V ′), (2.7)

µ = aϕ− J ∗ ϕ+ F ′(ϕ) ∈ L2(0, T ;V ), (2.8)

and

ϕ ∈ L∞(Q), |ϕ(x, t)| < 1 a.e. (x, t) ∈ Q := Ω× (0, T ); (2.9)

• for every ψ ∈ V , every v ∈ Vdiv and for almost any t ∈ (0, T ) we have

〈ϕt, ψ〉+ (∇µ,∇ψ) = (u, ϕ∇ψ), (2.10)

〈ut, v〉+ (2ν(ϕ)Du,Dv) + b(u, u, v) = −(ϕ∇µ, v) + 〈h, v〉; (2.11)

• the initial conditions u(0) = u0, ϕ(0) = ϕ0 hold.
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Remark 3. Note that (2.3)–(2.7) imply u ∈ Cw([0, T ];Gdiv) (u ∈ C([0, T ];Gdiv) if d = 2)

and ϕ ∈ C([0, T ];H), for all T > 0. Therefore, the initial conditions u(0) = u0 and

ϕ(0) = ϕ0 make sense.

Theorem 1. Assume that (A1)-(A8) are satisfied for some fixed positive integer q. Let

u0 ∈ Gdiv, ϕ0 ∈ L∞(Ω) such that F (ϕ0) ∈ L1(Ω). In addition, assume that |ϕ0| < 1.

Then, for every T > 0 there exists a weak solution z := [u, ϕ] to (1.1)-(1.6) on [0, T ]

corresponding to [u0, ϕ0] such that ϕ(t) = ϕ0 for all t ∈ [0, T ] and

ϕ ∈ L∞(0, T ;L2+2q(Ω)). (2.12)

Furthermore, setting

E(u(t), ϕ(t)) =
1

2
‖u(t)‖2 +

1

4

∫
Ω

∫
Ω

J(x− y)(ϕ(x, t)− ϕ(y, t))2dxdy +

∫
Ω

F (ϕ(t)),

the following energy inequality holds

E(u(t), ϕ(t))+

∫ t

s

(
2‖
√
ν(ϕ)Du(τ)‖2 +‖∇µ(τ)‖2

)
dτ ≤ E(u(s), ϕ(s))+

∫ t

s

〈h(τ), u(τ)〉dτ,

(2.13)

for all t ≥ s and for a.a. s ∈ (0,∞), including s = 0. If d = 2, the weak solution

z := [u, ϕ] satisfies

d

dt
E(u, ϕ) + 2‖

√
ν(ϕ)Du‖2 + ‖∇µ‖2 = 〈h, u〉, (2.14)

i.e., equality holds in (2.13) for every t ≥ 0.

On account of [21, Corollary 1], the argument used to prove Theorem 1 also yields an

existence result for the convective nonlocal Cahn-Hilliard equation with a given velocity

field. Note that, in this case, the energy identity holds in 3D as well. In addition,

uniqueness goes as in [21, Proposition 5]. Thus we can summarize the results in the

following

Proposition 1. Assume that (A1) and (A3)-(A7) are satisfied for some fixed positive

integer q. Let u ∈ L2
loc([0,∞);Vdiv ∩ L∞(Ω)d) be given and let ϕ0 ∈ L∞(Ω) such that

F (ϕ0) ∈ L1(Ω). In addition, suppose that |ϕ0| < 1. Then, for every T > 0, there exists

a unique ϕ ∈ L2(0, T ;V ) ∩ H1(0, T ;V ′) which fulfills (2.9) and (2.12), solves (2.10) on

[0, T ] with µ given by (2.8) and initial condition ϕ(0) = ϕ0. In addition, for all t ≥ 0, we

have (ϕ(t), 1) = (ϕ0, 1) and the following energy identity holds

d

dt

(
1

4

∫
Ω

∫
Ω

J(x− y)(ϕ(x, t)− ϕ(y, t))2dxdy +

∫
Ω

F (ϕ(t))

)
+ ‖∇µ‖2 = (uϕ,∇µ).

(2.15)
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Remark 4. Note that, thanks to (2.6), (2.8) and (2.13), we have that

F ′(ϕ) ∈ L2(0, T ;V ), F (ϕ) ∈ L∞(0, T ;L1(Ω)), ∀T > 0.

Remark 5. Assumptions (A3)–(A6) ensure that, thanks to Lemma 1 and Lemma 2,

property (2.12) holds for some fixed q ≥ 1. Indeed, such assumptions allow us to obtain

some estimates for the approximating (regular) potential Fε which are crucial in the

approximation argument of the proof of Theorem 1 (see (3.9) and (3.11) below). Actually,

Theorem 1 states that for each q ≥ 1 there exists a solution satisfying (2.12). Notice

that, since the L∞(0, T ;L∞(Ω))-regularity of ϕ is not guaranteed (since ϕ might not be

measurable with values in L∞(Ω)), we cannot rely on such a regularity in order to choose

some fixed q (e.g., q = 1) for Fε (cf. (3.10) below). Furthermore, (2.12) does not follow

from (2.9). Indeed, recall that L∞(0, T ;L∞(Ω)) ⊂ L∞(Q) with strict inclusion.

3 Proof of Theorem 1

We consider the following approximate problem Pε: find a weak solution [uε, ϕε] to

ϕ′ε + uε · ∇ϕε = ∆µε, (3.1)

u′ε − div(ν(ϕε)2Duε) + (uε · ∇)uε +∇πε = µε∇ϕε + h, (3.2)

µε = aϕε − J ∗ ϕε + F ′ε(ϕε), (3.3)

div(uε) = 0, (3.4)

∂µε
∂n

= 0, uε = 0, on ∂Ω, (3.5)

uε(0) = u0, ϕε(0) = ϕ0, in Ω. (3.6)

Problem Pε is obtained from (1.1)-(1.6) by replacing the singular potential F with the

smooth potential

Fε = F1ε + F 2,

where F1ε is defined by

F
(2+2q)
1ε (s) =


F

(2+2q)
1 (1− ε), s ≥ 1− ε
F

(2+2q)
1 (s), |s| ≤ 1− ε
F

(2+2q)
1 (−1 + ε), s ≤ −1 + ε

(3.7)

and F1ε(0) = F1(0), F ′1ε(0) = F ′1(0),. . . F
(1+2q)
1ε (0) = F

(1+2q)
1 (0), while F 2 is a C2(R)-

extension of F2 on R with polynomial growth satisfying

F 2(s) ≥ min
[−1,1]

F2 − 1, F
′′
2(s) ≥ min

[−1,1]
F ′′2 , ∀s ∈ R. (3.8)

The following elementary lemmas are basic to obtain uniform (w.r.t. ε) estimates for

a weak solution to the approximate problem.
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Lemma 1. Suppose that (A3) and (A4) hold. Then, there exist cq, dq > 0, which depend

on q but are independent of ε, and ε0 > 0 such that

Fε(s) ≥ cq|s|2+2q − dq, ∀s ∈ R, ∀ε ∈ (0, ε0]. (3.9)

Proof. By integrating (3.7) we get

F1ε(s) =


∑2+2q

k=0
1
k!
F

(k)
1 (1− ε)[s− (1− ε)]k, s ≥ 1− ε

F1(s), |s| ≤ 1− ε∑2+2q
k=0

1
k!
F

(k)
1 (−1 + ε)[s− (−1 + ε)]k, s ≤ −1 + ε.

(3.10)

Due to (A4) we have, for ε small enough,

F1ε(s) ≥
1

(2 + 2q)!
F

(2+2q)
1 (1− ε)[s− (1− ε)]2+2q, ∀s ≥ 1− ε,

so that, in particular,

F1ε(s) ≥
1

(2 + 2q)!
F

(2+2q)
1 (1− ε)(s− 1)2+2q, ∀s ≥ 1,

and (A3) implies that (for ε small enough)

F1ε(s) ≥ 2cq(s− 1)2+2q ≥ cqs
2+2q − dq, ∀s ≥ 1,

where cq = c1/2(2 + 2q)! and dq is another constant depending only on q. Furthermore,

we have F1ε(s) = F1(s) ≥ 0 ≥ cqs
2+2q − dq for 0 ≤ s ≤ 1− ε, provided we choose dq ≥ cq,

while for 1 − ε ≤ s ≤ 1 we have F1ε ≥ 2cq[s − (1 − ε)]2+2q ≥ 0 ≥ cqs
2+2q − dq. Summing

up, we deduce that there exists ε0 > 0 such that F1ε(s) ≥ cqs
2+2q − dq, for all s ≥ 0 and

for all ε ∈ (0, ε0]. By using (3.8) we also get (3.9) for s ≥ 0. Similarly we obtain (3.9) for

s ≤ 0.

Lemma 2. Suppose (A4) and (A6) hold. Then, setting c0 := α + β + min[−1,1] F
′′
2 > 0,

there exists ε1 > 0 such that

F ′′ε (s) + a(x) ≥ c0, ∀s ∈ R, a.e. x ∈ Ω, ∀ε ∈ (0, ε1]. (3.11)

Proof. From (3.10) we have

F ′′1ε(s) =


∑2q

k=0
1
k!
F

(k+2)
1 (1− ε)[s− (1− ε)]k, s ≥ 1− ε

F ′′1 (s), |s| ≤ 1− ε∑2q
k=0

1
k!
F

(k)
1 (−1 + ε)[s− (−1 + ε)]k, s ≤ −1 + ε.

(3.12)

Assumption (A4) implies that for ε small enough F ′′1ε(s) ≥ F ′′1 (1 − ε) for s ≥ 1 − ε and

F ′′1ε(s) ≥ F ′′1 (−1 + ε) for s ≤ −1 + ε. Since F ′′1ε(s) = F ′′1 (s) for |s| ≤ 1 − ε, (A6) implies

that there exists ε1 > 0 such that

F ′′1ε(s) ≥ α, ∀s ∈ R, ∀ε ∈ (0, ε1]. (3.13)

This estimate together with (3.8) and (A6) imply (3.11).
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Due to the existence result proved in [14], for every T > 0, Problem Pε admits a weak

solution zε := [uε, ϕε] such that

uε ∈ L∞(0, T ;Gdiv) ∩ L2(0, T ;Vdiv), (3.14)

u′ε ∈ L4/3(0, T ;V ′div), if d = 3, (3.15)

u′ε ∈ L2(0, T ;V ′div), if d = 2, (3.16)

ϕε ∈ L∞(0, T ;L2+2q(Ω)) ∩ L2(0, T ;V ), (3.17)

ϕ′ε ∈ L2(0, T ;V ′), (3.18)

µε ∈ L2(0, T ;V ). (3.19)

Indeed, it is immediate to check that all the assumptions of [14, Theorem 1] and of

[14, Corollary 1] are satisfied for Problem Pε. In particular, we use Lemma 1, Lemma 2

and the fact that, due to the definition of F1ε and to the polynomial growth assumption

on F 2, assumption (H5) of [14, Theorem 1] is trivially satisfied for each ε > 0 (with some

constants depending on ε).

Furthermore, according to [14, Theorem 1] and using (A2), the approximate solution

zε := [uε, ϕε] satisfies the following energy inequality

1

2
‖uε(t)‖2 +

1

4

∫
Ω

∫
Ω

J(x− y)(ϕε(x, t)− ϕε(y, t))2dxdy +

∫
Ω

Fε(ϕε(t))

+

∫ t

0

(ν1‖∇uε‖2 + ‖∇µε‖2)dτ ≤ 1

2
‖u0‖2 +

1

4

∫
Ω

∫
Ω

J(x− y)(ϕ0(x)− ϕ0(y))2dxdy

+

∫
Ω

Fε(ϕ0) +

∫ t

0

〈h, uε〉dτ, ∀t ∈ [0, T ]. (3.20)

From (A5) it is easy to see (cf. (3.33) and (3.34) below) that there exists ε1 > 0 such that

F1ε(s) ≤ F1(s), ∀s ∈ (−1, 1), ∀ε ∈ (0, ε1]. (3.21)

Therefore, using the assumptions on ϕ0, u0 and Lemma 1, from (3.20) we get the following

estimates

‖uε‖L∞(0,T ;Gdiv)∩L2(0,T ;Vdiv) ≤ c, (3.22)

‖ϕε‖L∞(0,T ;L2+2q(Ω)) ≤ c, (3.23)

‖∇µε‖L2(0,T ;H) ≤ c. (3.24)

Henceforth c will denote a positive constant which depends on the initial data (i.e., on

‖u0‖, ‖ϕ0‖,
∫

Ω
F (ϕ0)) and on ‖h‖L2(0,T ;V ′

div), F , Ω, J , ν1, but is independent of ε.

We then take the gradient of (3.3) and multiply the resulting identity by∇ϕε in L2(Ω).

Arguing as in [14, Proof of Theorem 1] and using (3.11), we get

‖∇µε‖2 ≥ c2
0

4
‖∇ϕε‖2 − k‖ϕε‖2,
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with k = 2‖∇J‖2
L1 . This last estimate together with (3.23) and (3.24) yield

‖ϕε‖L2(0,T ;V ) ≤ c. (3.25)

As far as the bounds on the time derivatives {u′ε} and {ϕ′ε} are concerned, on account of

(3.1) and (3.2), arguing by comparison as in [14, Proof of Theorem 1], one gets

‖ϕ′ε‖L2(0,T ;V ′) ≤ c, (3.26)

‖u′ε‖L2(0,T ;V ′
div) ≤ c, d = 2 (3.27)

‖u′ε‖L4/3(0,T ;V ′
div) ≤ c, d = 3. (3.28)

In order to obtain an estimate for {µε} we need to control the sequence of averages {µε}.
To this aim observe that equation (3.1) can be written in abstract form as follows

ϕ′ε + uε · ∇ϕε = −Aµε in V ′. (3.29)

Let us test (3.29) by N (F ′ε(ϕε)− F ′ε(ϕε)) to get

〈F ′ε(ϕε)− F ′ε(ϕε),Nϕ′ε〉+ 〈N (uε · ∇ϕε), F ′ε(ϕε)− F ′ε(ϕε)〉
= −〈µε, F ′ε(ϕε)− F ′ε(ϕε)〉. (3.30)

Recall that uε · ∇ϕε = 0. On the other hand, we have

〈µε, F ′ε(ϕε)− F ′ε(ϕε)〉 = 〈aϕε − J ∗ ϕε + F ′ε(ϕε)− F ′ε(ϕε), F ′ε(ϕε)− F ′ε(ϕε)〉

≥ 1

2
‖F ′ε(ϕε)− F ′ε(ϕε)‖2 − 1

2
‖aϕε − J ∗ ϕε‖2 ≥ 1

2
‖F ′ε(ϕε)− F ′ε(ϕε)‖2 − CJ‖ϕε‖2. (3.31)

Therefore, by means of (3.31) and (3.23), from (3.30) we deduce

‖F ′ε(ϕε)− F ′ε(ϕε)‖ ≤ c(‖Nϕ′ε‖+ ‖N (uε · ∇ϕε)‖+ 1)

≤ c(‖ϕ′ε‖V ′
0

+ ‖uε · ∇ϕε‖V ′
0

+ 1). (3.32)

Observe now that, due to (A4) and (A5), there holds

|F ′1ε(s)| ≤ |F ′1(s)|, ∀s ∈ (−1, 1), ∀ε ∈ (0, ε1], (3.33)

for some ε1 > 0. Indeed, for s ∈ [1− ε, 1) we have

F ′1(s) =

2q∑
k=0

1

k!
F

(k+1)
1 (1− ε)[s− (1− ε)]k +

1

(2q + 1)!
F

(2q+2)
1 (ξ)[s− (1− ε)]1+2q

≥
1+2q∑
k=0

1

k!
F

(k+1)
1 (1− ε)[s− (1− ε)]k = F ′1ε(s), (3.34)
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for ε small enough, where ξ ∈ (1−ε, s) and where we have used the fact that, due to (A5),

F
(2+2q)
1 (ξ) ≥ F

(2+2q)
1 (1− ε). Arguing similarly, we get F ′1ε(s) ≥ F ′1(s) for s ∈ (−1,−1 + ε]

and for ε small enough. However, due to (A4) and (A7), for ε small enough we have that

F ′1ε(s) ≥ F ′1(1− ε) ≥ 0 for s ≥ 1− ε and F ′1ε(s) ≤ F ′1(−1+ ε) ≤ 0 for s ≤ −1+ ε. Recalling

also that F ′1ε(s) = F ′1(s) for |s| ≤ 1− ε, we obtain (3.33).

Let s0 ∈ (−1, 1) be such that F ′(s0) = 0 (cf. (A7)) and introduce

H(s) := F (s) +
a∞
2

(s− s0)2, Hε(s) := Fε(s) +
a∞
2

(s− s0)2, (3.35)

for every s ∈ (−1, 1) and every s ∈ R, respectively. We have set a∞ := ‖a‖L∞(Ω). Observe

that, owing to (3.11), H ′ε is monotone and (for ε small enough) H ′ε(s0) = F ′(s0) = 0.

Since ϕ0 ∈ (−1, 1), we can apply an argument devised by Kenmochi et al. [31] (see also

[15]) and deduce the following estimate

δ‖H ′ε(ϕε)‖L1(Ω) ≤
∫

Ω

(ϕε − ϕ0)(H ′ε(ϕε)−H ′ε(ϕε)) +K(ϕ0) (3.36)

where δ depends on ϕ0 and K(ϕ0) depends on ϕ0, F , |Ω| and on a∞. For the reader’s

convenience let us recall briefly how (3.36) can be deduced. Fix m1,m2 ∈ (−1, 1) such

that m1 ≤ s0 ≤ m2 and m1 < ϕ0 < m2. Introduce, for a.a. fixed t ∈ (0, T ), the sets

Ω0 := {m1 ≤ ϕε(x, t) ≤ m2}, Ω1 := {ϕε(x, t) < m1}, Ω2 := {ϕε(x, t) > m2}.

Setting δ := min{ϕ0 −m1,m2 − ϕ0} and δ1 := max{ϕ0 −m1,m2 − ϕ0}, then for ε small

enough we have

δ‖H ′ε(ϕε)‖L1(Ω) = δ

∫
Ω1

|H ′ε(ϕε)|+ δ

∫
Ω2

|H ′ε(ϕε)|+ δ

∫
Ω0

|H ′ε(ϕε)|

≤
∫

Ω1

(ϕε(t)− ϕ0)H ′ε(ϕε) +

∫
Ω2

(ϕε(t)− ϕ0)H ′ε(ϕε) + δ

∫
Ω0

|H ′ε(ϕε)|

≤
∫

Ω

(ϕε(t)− ϕ0)H ′ε(ϕε) + (δ1 + δ)

∫
Ω0

|H ′ε(ϕε)|

≤
∫

Ω

(ϕε(t)− ϕ0)H ′ε(ϕε) + (δ1 + δ)

∫
Ω0

{
|F ′1(ϕε)|+ |F ′2(ϕε)|+ a∞|ϕε − s0|

}
,

where we have used (3.33). We therefore get (3.36) with K(ϕ0) given by

K(ϕ0) = (δ1 + δ)|Ω|
(

max
[m1,m2]

(|F ′1|+ |F ′2|) + a∞δ2

)
,

with δ2 := max{s0−m1,m2− s0}. On account of the definition of Hε and recalling (3.32)

we obtain

‖H ′ε(ϕε)−H ′ε(ϕε)‖ ≤ c(‖ϕ′ε‖V ′
0

+ ‖uε · ∇ϕε‖V ′
0

+ 1) + a∞‖ϕε − ϕ0‖. (3.37)
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Therefore, by means of (3.36)-(3.37) and using the following bound (cf. (3.22) and

(3.23), see [14, Proof of Corollary 1])

‖uε · ∇ϕε‖L2(0,T ;V ′
0) ≤ c,

we infer that there exists

a constant L(ϕ0) depending on ϕ0 such that

‖F ′ε(ϕε)‖L2(0,T ;L1(Ω)) ≤ L(ϕ0). (3.38)

Since
∫

Ω
µε =

∫
Ω
F ′ε(ϕε), then ‖µε‖L2(0,T ) ≤ c. Hence by Poincaré-Wirtinger inequality

and (3.24) we get

‖µε‖L2(0,T ;V ) ≤ c. (3.39)

Estimates (3.22), (3.23), (3.25)-(3.28), (3.39) and well-known compactness results

allow us to deduce that there exist functions u ∈ L∞(0, T ;Gdiv) ∩ L2(0, T ;Vdiv), ϕ ∈
L∞(0, T ;L2+2q(Ω)) ∩ L2(0, T ;V ) ∩ H1(0, T ;V ′), and µ ∈ L2(0, T ;V ) such that, up to a

subsequence, we have

uε ⇀ u weakly∗ in L∞(0, T ;Gdiv), weakly in L2(0, T ;Vdiv), (3.40)

uε → u strongly in L2(0, T ;Gdiv), a.e. in Ω× (0, T ), (3.41)

u′ε ⇀ ut weakly in L4/3(0, T ;V ′div), d = 3, (3.42)

u′ε ⇀ ut weakly in L2(0, T ;V ′div), d = 2, (3.43)

ϕε ⇀ ϕ weakly∗ in L∞(0, T ;L2+2q(Ω)), weakly in L2(0, T ;V ), (3.44)

ϕε → ϕ strongly in L2(0, T ;H), a.e. in Ω× (0, T ), (3.45)

ϕ′ε ⇀ ϕt weakly in L2(0, T ;V ′), (3.46)

µε ⇀ µ weakly in L2(0, T ;V ). (3.47)

In order to pass to the limit in the variational formulation for Problem Pε and hence

prove that z = [u, ϕ] is a weak solution to the original problem, we need to show that

|ϕ| < 1 a.e. in Q = Ω × (0, T ). To this aim we adapt an argument devised in [17] (cf.

also [19]).

Thus, we introduce the sets

Eε
1,η := {(x, t) ∈ Q : ϕε(x, t) > 1− η}, Eε

2,η := {(x, t) ∈ Q : ϕε(x, t) < −1 + η},

where η ∈ (0, 1) is chosen so that s0 ∈ (−1 + η, 1− η) with s0 such that F ′(s0) = 0. For

ε small enough, recalling that H ′ε(s) ≥ 0 for s ∈ [s0, 1) and H ′ε(s) ≤ 0 for s ∈ (−1, s0], we

can write

H ′ε(1− η)|Eε
1,η|d+1 ≤ ‖H ′ε(ϕε)‖L1(Q), |H ′ε(−1 + η)||Eε

2,η|d+1 ≤ ‖H ′ε(ϕε)‖L1(Q), (3.48)
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where | · |d+1 is the d + 1-Lebesgue measure in Q, and observe that ‖H ′ε(ϕε)‖L1(Q) ≤
cL(ϕ0) + c (cf. (3.23) and (3.38)). Furthermore, as a consequence of the pointwise

convergence (3.45) and by using Fatou’s lemma, it is easy to see that we have

|E1,η|d+1 ≤ lim inf
ε→0

|Eε
1,η|d+1, |E2,η|d+1 ≤ lim inf

ε→0
|Eε

2,η|d+1, (3.49)

where

E1,η := {(x, t) ∈ Q : ϕ(x, t) > 1− η}, E2,η := {(x, t) ∈ Q : ϕ(x, t) < −1 + η}.

Hence, due to the pointwise convergence H ′ε(s) → H ′(s), for every s ∈ (−1, 1), we get

from (3.48) and (3.49)

|E1,η|d+1 ≤
cL(ϕ0) + c

H ′(1− η)
, |E2,η|d+1 ≤

cL(ϕ0) + c

|H ′(−1 + η)|
. (3.50)

Letting η → 0 and using (A7) we obtain |{(x, t) ∈ Q : |ϕ(x, t)| ≥ 1}| = 0 and therefore

|ϕ(x, t)| < 1 for a.e. (x, t) ∈ Q.

This bound, the pointwise convergence (3.45) in Q and the fact that F ′ε → F ′ uniformly

on every compact interval included in (−1, 1), entail that

F ′ε(ϕε)→ F ′(ϕ) a.e. in Q. (3.51)

Convergences (3.40)-(3.47) and (3.51) allow us, by a standard argument, to pass to

the limit in the variational formulation of Problem Pε and hence to prove that z = [u, ϕ]

is a weak solution to (1.1)-(1.6).

Let us now establish the energy inequality (2.13). Let us first show that (2.13) holds

for s = 0 and t > 0. Indeed, the energy inequality satisfied by the approximate solution

zε = [uε, ϕε] can be written as follows

1

2
‖uε(t)‖2 +

1

2
‖
√
aϕε(t)‖2 − 1

2
(ϕε(t), J ∗ ϕε(t)) +

∫
Ω

Fε(ϕε(t))

+

∫ t

0

(
2‖
√
ν(ϕε)Duε‖2 + ‖∇µε‖2

)
dτ ≤ 1

2
‖u0‖2 +

1

2
‖
√
aϕ0‖2 − 1

2
(ϕ0, J ∗ ϕ0)

+

∫
Ω

Fε(ϕ0) +

∫ t

0

〈h, uε〉dτ, ∀t > 0. (3.52)

We now use the strong convergences (3.41) and (3.45), the weak convergences (3.40) and

(3.47), the bound (3.21) for the approximate potential F1ε, the fact that Fε(ϕε(t)) →
F (ϕ(t)) a.e. in Ω and for a.e. t ∈ (0, T ) (see (3.51)) and Fatou’s lemma. Observe that,

as a consequence of the uniform bound ‖
√
ν(ϕε)‖∞ ≤

√
ν2 (cf. assumption (A2)), of the

strong convergence
√
ν(ϕε)→

√
ν(ϕ) in L2(0, T ;H) and of the weak convergence (3.40),

we have (see, e.g., [14, Lemma1])√
ν(ϕε)Duε ⇀

√
ν(ϕ)Du, weakly in L2(0, T ;H). (3.53)
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By letting ε → 0, from (3.52) we infer that (2.13) holds for almost every t > 0. Fur-

thermore, due to the regularity properties of the solution, there exists a representative

z = [u, ϕ] such that u ∈ Cw([0,∞);Gdiv) and ϕ ∈ C([0,∞);H) (henceforth we shall

always choose this representative). Therefore, (2.13) holds for all t ≥ 0 since the func-

tion E(z(·)) : [0,∞) → R is lower semicontinuous. The lower semicontinuity of E is a

consequence of the fact that F is a quadratic perturbation of a (strictly) convex func-

tion in (−1, 1). Indeeed, by (A6) we have that F ′′(s) ≥ α∗, for all s ∈ (−1, 1), with

α∗ = α + min[−1,1] F
′′
2 . Then F can be written in the form

F (s) = G(s) +
α∗
2
s2, (3.54)

with G convex on (−1, 1) (see [21, Lemma 2]).

Let us now prove that the energy inequality (2.13) also holds between two arbitrary

times s and t. Indeed, setting

Eε(zε(t)) =
1

2
‖uε(t)‖2 +

1

2
‖
√
aϕε(t)‖2 − 1

2
(ϕε(t), J ∗ ϕε(t)) +

∫
Ω

Fε(ϕε(t)), (3.55)

and applying [21, Lemma 3], we deduce (see Remark 6) that the approximate solution

zε = [uε, ϕε] satisfies

Eε(zε(t)) +

∫ t

s

(
2‖
√
ν(ϕε)Duε‖2 + ‖∇µε‖2

)
dτ ≤ Eε(zε(s)) +

∫ t

s

〈h, uε〉dτ, (3.56)

for every t ≥ s and for a.e. s ∈ (0,∞), including s = 0.

Define Gε in such a way that

Fε(s) = Gε(s) +
α∗
2
s2, (3.57)

with α∗ as in (3.54). Since, due to (3.13), Gε is convex on (−1, 1), then we can write

Gε(ϕε) ≤ Gε(ϕ) +G′ε(ϕε)(ϕε − ϕ).

Hence, for every non-negative ψ ∈ D(0, t), we have∫
Qt

Gε(ϕε)ψ ≤
∫
Qt

Gε(ϕ)ψ +

∫
Qt

G′ε(ϕε)(ϕε − ϕ)ψ,

where Qt := Ω× (0, t). Thus, thanks to (3.39) and (3.41), we get∣∣∣ ∫
Qt

G′ε(ϕε)(ϕε − ϕ)ψ
∣∣∣ ≤ c‖G′ε(ϕε)‖L2(0,T ;H)‖ϕε − ϕ‖L2(0,T ;H) ≤ c‖ϕε − ϕ‖L2(0,T ;H) → 0,

as ε → 0. Here we have used the fact that, since ‖F ′ε(ϕε)‖L2(0,T ;H) ≤ c and G′ε(ϕε) =

F ′ε(ϕε)−α∗ϕε, then ‖G′ε(ϕε)‖L2(0,T ;H) ≤ c. Therefore, by using Lebesgue’s theorem (recall

(3.21) and the fact that |ϕ| < 1 a.e. in Q) we find

lim sup
ε→0

∫
Qt

Gε(ϕε)ψ ≤ lim
ε→0

∫
Qt

Gε(ϕ)ψ =

∫
Qt

G(ϕ)ψ.
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On the other hand, thanks to Fatou’s lemma and to the pointwise convergence Fε(ϕε)→
F (ϕ), we also have the liminf inequality. Then, on account of (3.54) and (3.57), we deduce

that ∫
Qt

Fε(ϕε)ψ →
∫
Qt

F (ϕ)ψ, ∀ψ ∈ D(0, t), ψ ≥ 0. (3.58)

Let us multiply (3.56) by a non-negative ψ ∈ D(0, t) and integrate the resulting inequality

w.r.t. s from 0 and t, where t > 0 is fixed. We obtain

Eε(zε(t))
∫ t

0

ψ(s)ds+

∫ t

0

ψ(s)

∫ t

s

(
2‖
√
ν(ϕε)Duε‖2 + ‖∇µε‖2

)
dτds

≤
∫ t

0

Eε(zε(s))ψ(s)ds+

∫ t

0

ψ(s)

∫ t

s

〈h, uε〉dτds.

By using strong and weak convergences for the sequence {zε} and (3.58), passing to the

limit as ε→ 0 in the above inequality, we infer

E(z(t))

∫ t

0

ψ(s)ds+

∫ t

0

ψ(s)ds

∫ t

s

(
2‖
√
ν(ϕ)Du‖2 + ‖∇µ‖2

)
dτ

≤
∫ t

0

E(z(s))ψ(s)ds+

∫ t

0

ψ(s)ds

∫ t

s

〈h, u〉dτ,

which can be rewritten as follows

Vz(t)

∫ t

0

ψ(s)ds ≤
∫ t

0

Vz(s)ψ(s)ds,

where

Vz(t) := E(z(t)) +

∫ t

0

(
2‖
√
ν(ϕ)Du‖2 + ‖∇µ‖2

)
dτ −

∫ t

0

〈h, u〉dτ.

Thus we have ∫ t

0

(Vz(s)− Vz(t))ψ(s)ds ≥ 0, ∀ψ ∈ D(0, t), ψ ≥ 0,

which implies that Vz(t) ≤ Vz(s) for a.e. s ∈ (0, t). Therefore, (2.13) is proven.

Finally, for d = 2, we can choose

µ and u as test functions in (2.10) and (2.11), respectively,

due to their regularity properties,

and then we can proceed as in [14, Proof of Corollary 2] to deduce (2.14). Indeed,

when we consider the duality product 〈ϕt, µ〉, we are led to the duality 〈ϕt, G′(ϕ)〉, with

the convex function G given by (3.54). Now, define the functional G : H → R∪{+∞} as

G(ϕ) :=

{ ∫
Ω
G̃(ϕ) ∀ϕ ∈ H s.t. G(ϕ) ∈ L1(Ω)

+∞ otherwise,
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where G̃ : R → R ∪ {+∞} is given by G̃(s) := G(s) for all s ∈ dom(G), and G̃(s) =

+∞ for all s ∈ R − dom(G). The function G̃ is a lower-semicontinuous proper convex

function on R and, due to (A7), its subdifferential is given by ∂G̃(s) = G′(s) for all

s ∈ int(dom(G)) = (−1, 1), and ∂G̃(s) = ∅ for all s /∈ (−1, 1). Then, [6, Proposition

2.8, Chap. II] entails that G is lower-semicontinuous and convex on H, and that ξ ∈
∂G(ϕ) iff ξ(x) ∈ ∂G̃(ϕ(x)) for a.a x ∈ Ω. Notice that, if |ϕ| < 1 a.e. in Ω, the last

condition is satisfied if and only if ξ(x) = G′(ϕ(x)) for a.a. x ∈ Ω. Let us now apply [16,

Proposition 4.2] to the functional G and to the ϕ component of the weak solution z to

(1.1)–(1.6). All conditions of this proposition are fulfilled, since, in particular, we have

G′(ϕ) ∈ L2(0, T ;V ). Hence, we infer that G(ϕ(·)) is absolutely continuous on [0, T ] and

that
d

dt
G(ϕ(t)) =

d

dt

∫
Ω

G(ϕ(t)) = 〈ϕt(t), G′(ϕ(t))〉, a.a. t ∈ (0, T ).

By exploiting this identity, the energy equation (2.14) can be obtained without difficulties.

Remark 6. In [21, Lemma 3] a growth assumption is made on the regular potential (poly-

nomial growth less then 6 when d = 3). Therefore, the application of [21, Lemma 3] to

obtain the approximate energy inequality (3.56) would require the condition q = 1 (recall

that the approximate potential Fε has polynomial growth of order 2 + 2q). Nevertheless,

by exploiting an argument of the same kind as above and by suitably approximating reg-

ular potentials of arbitrary polynomial growth by a sequence of potentials of polynomial

growth of order less then 6, it is not difficult to improve [21, Lemma 3] and remove such

growth assumption. Therefore [21, Lemma 3] can be extended to regular potentials of

arbitrary polynomial growth and (3.56) also holds for q > 1.

4 Global attractor in 2D

In this section we first prove that in 2D we can define a generalized semiflow on a suitable

metric space Xm0 which is point dissipative and eventually bounded. Furthermore, we

show that such generalized semiflow possesses a (unique) global attractor, provided that

the potential F is bounded in (−1, 1) (like, e.g., (1.7)). The argument is a generalization

of the one used in [21] and based on [5]. Henceforth, we refer to [5] for the basic definitions

and results on the theory of generalized semiflows.

Consider system (1.1)-(1.4) endowed with (1.5) for d = 2 and assume that the external

force h is time-independent, i.e.,

(A9) h ∈ V ′div.

The first step is to define a suitable metric space for the weak solutions and conse-

quently to construct a generalized semiflow. To this aim, fix m0 ∈ (0, 1) and introduce
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the metric space

Xm0 := Gdiv × Ym0 , (4.1)

where

Ym0 := {ϕ ∈ L∞(Ω) : |ϕ| < 1 a.e. in Ω, F (ϕ) ∈ L1(Ω), |ϕ| ≤ m0}. (4.2)

The space Xm0 is endowed with the metric

d(z1, z2) := ‖u1 − u2‖+ ‖ϕ1 − ϕ2‖+
∣∣∣ ∫

Ω

F (ϕ1)−
∫

Ω

F (ϕ2)
∣∣∣1/2, (4.3)

for every z1 := [u1, ϕ1] and z2 := [u2, ϕ2] in Xm0 . Let us denote by G the set of all weak

solutions corresponding to all initial data z0 = [u0, ϕ0] ∈ Xm0 . We prove that G is a

generalized semiflow on Xm0 .

Proposition 2. Let d = 2 and suppose that (A1)-(A7) and (A9) hold. Then G is a

generalized semiflow on Xm0.

Proof. It can be seen immediately that hypotheses (H1), (H2) and (H3) of the definition

of generalized semiflow [5, Definition 2.1] are satisfied. It remains to prove the upper

semicontinuity with respect to initial data, i.e., that G satisfies (H4) of [5, Definition 2.1].

We can argue as in [21, Proposition 3]. Thus we only give the main steps of the proof.

Consider a sequence {zj} ⊂ G, with zj := [uj, ϕj] such that zj(0) := [uj0, ϕj0] → z0 :=

[u0, ϕ0] in Xm0 . We have to show that there exist a subsequence {zjk} and a weak solution

z ∈ G with z(0) = z0 such that zjk(t)→ z(t) for each t ≥ 0. Now, every weak solution zj

satisfies the energy identity (2.14) so that

E(zj(t)) +

∫ t

0

(
2‖
√
ν(ϕj)Duj(τ)‖2 + ‖∇µj(τ)‖2

)
dτ = E(zj0) +

∫ t

0

〈h, uj(τ)〉dτ, (4.4)

where zj0 := zj(0). From this identity and using the assumptions on F we deduce esti-

mates of the form (3.22)-(3.28). Furthermore, since |ϕ0j| ≤ m0 and m0 ∈ (0, 1) is fixed,

we can repeat the argument used in the existence proof to control the sequence of the

averages of the approximated chemical potentials (see (3.29)-(3.38)) and get

‖F ′(ϕj)‖L2(0,T ;L1(Ω)) ≤ L(m0), (4.5)

where L(m0) is a positive constant depending on m0. Hence, an estimate of the form

(3.39) for µj holds. From these estimates we deduce the existence of a couple z = [u, ϕ]

and of a function µ with u, ϕ and µ having the regularity properties (2.3)-(2.8) and such

that (3.40)-(3.47) hold for suitable subsequences of {uj}, {ϕj} and {µj}. In order to prove
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that z = [u, ϕ] is a weak solution by passing to the limit in the variational formulation for

zj we need to know that (2.9) is satisfied for ϕ. To this aim we use the same argument

we applied to the sequence of approximate solutions {ϕε} (cf. proof of Theorem 1).

More precisely, for η ∈ (0, 1) fixed

we can introduce the sets

Ej
1,η := {(x, t) ∈ Q : ϕj(x, t) > 1− η}, Ej

2,η := {(x, t) ∈ Q : ϕj(x, t) < −1 + η},

and so we have

H ′(1− η)|Ej
1,η|d+1 ≤ ‖H ′(ϕj)‖L1(Q), |H ′(−1 + η)||Ej

2,η|d+1 ≤ ‖H ′(ϕj)‖L1(Q),

where H is defined as in (3.35). Therefore, recalling (4.5), by first letting j → ∞ and

then η → 0 we can deduce that

|ϕ(x, t)| < 1 for a.e. (x, t) ∈ Q.

On the other hand, since we also have

uj(t) ⇀ u(t) weakly in Gdiv, ϕj(t) ⇀ ϕ(t) weakly in H, ∀t ≥ 0,

then z(0) = z0. It remains to prove the convergence of the sequence {zj(t)} to z(t) in

Xm0 for each t ≥ 0. Reasoning as in [21], we represent the singular potential F as follows

F (s) = G(x, s)−
(
a(x)− c0

2

)s2

2
,

where c0 = α + β + min[−1,1] F
′′
2 > 0. Here, due to (A6), the function G(x, ·) is strictly

convex in (−1, 1) for a.e. x ∈ Ω. Therefore, the energy E can still be written as

E(z) =
1

2
‖u‖2 +

c0

4
‖ϕ‖2 − 1

2
(ϕ, J ∗ ϕ) +

∫
Ω

G(x, ϕ(x))dx, ∀z = [u, ϕ] ∈ Xm0 ,

and the same argument used in [21, Proposition 3] applies.

As done for regular potentials (see [21]), a dissipativity property of the generalized

semiflow G can be proven in the case of singular (bounded) potentials.

Proposition 3. Let d = 2 and suppose that (A1)-(A7), (A9) hold. Then G is point

dissipative and eventually bounded.

Proof. Recalling the proof of [14, Corollary 2] a dissipative estimate can be established,

namely,

E(z(t)) ≤ E(z0)e−kt + F (ϕ0)|Ω|+K, ∀t ≥ 0, (4.6)
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where k, K are two positive constants which are independent of the initial data, with K

depending on Ω, ν1, J , F , ‖h‖V ′
div

. From (4.6) we get (see [21, Proposition 4])

d2(z(t), 0) ≤ cE(z0)e−kt + cMm0 + c, ∀t ≥ 0,

which entails that the generalized semiflow G is point dissipative and eventually bounded.

We can now state the main result of this section.

Proposition 4. Let d = 2 and suppose that (A1)-(A7), (A9) hold. Furthermore, assume

that F is bounded in (−1, 1). Then G possesses a global attractor.

Proof. In light of Proposition 3 and by [5, Proposition 3.2] and [5, Theorem 3.3] we only

need to show that G is compact. Let {zj} ⊂ G be a sequence with {zj(0)} bounded in

Xm0 . We claim that there exists a subsequence {zjk} such that zjk(t) converges in Xm0

for every t > 0. Indeed, the energy identity (4.4) entails the existence of a subsequence

(not relabeled) such that (see the proof of Proposition 2) for almost all t > 0

uj(t)→ u(t) strongly in Gdiv, ϕj(t)→ ϕ(t) strongly in H and a.e. in Ω,

where z = [u, ϕ] is a weak solution. Since F is bounded in (−1, 1), by Lebesgue’s theorem

we therefore have ∫
Ω

F (ϕj(t))→
∫

Ω

F (ϕ(t)), a.e. t > 0.

Hence E(zj(t)) → E(z(t)) for almost all t > 0. Thus, arguing as in [21, Theorem 3,

Proposition 3], we deduce that zj(t) → z(t) in Xm0 for all t > 0, which yields the

compactness of G.

We can also prove the existence of the global attractor for the convective nonlocal

Cahn-Hilliard equation with u ∈ L∞(Ω)d ∩ Vdiv, d = 2, 3. Indeed, thanks to Proposition

1, we can define a semigroup S(t) on Ym0 (cf. (4.2)) endowed the metric

d̄(ϕ1, ϕ2) = ‖ϕ1 − ϕ2‖+
∣∣∣ ∫

Ω

F (ϕ1)−
∫

Ω

F (ϕ2)
∣∣∣1/2, ∀ϕ1, ϕ2 ∈ Ym0 .

Then we have

Theorem 2. Let u ∈ L∞(Ω)d ∩ Vdiv be given. Suppose that (A1), (A3)-(A7) are satisfied

and assume that F is bounded in (−1, 1). Then the dynamical system (Ym0 , S(t)) possesses

a connected global attractor.

The proof goes as in [21, Proof of Theorem 4]. Note that, due to uniqueness, the

global attractor is connected.
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5 Existence of a trajectory attractor

In this section, by relying on the theory developed in [11, 12] (see also [34]), we prove

that a trajectory attractor can be constructed for the nonlocal Cahn-Hilliard-Navier-

Stokes system (1.1)-(1.4) subject to (1.5) with F satisfying (A3)-(A7). The construction

of the trajectory attractor for problem (1.1)-(1.5) in the case of regular potentials with

polynomial growth has been done in [21]. We concentrate on the 3D case.

Let us first resume some basic definitions and results from the theory of trajectory

attractors for non-autonomous evolution equations (see [12, Chap. XI and Chap. XIV]

and [11] for details).

Consider an abstract nonlinear non-autonomous evolution equation with symbol σ in

a set Σ. The symbol σ is a functional parameter which represents all time-dependent

terms (like external forces) and coefficients of the equation.

For every M > 0, the solutions are sought in a topological (usually Banach) space FM
which consists of vector-valued functions z : [0,M ]→ E, where E is a given Banach space.

The space FM is endowed with a given topology ΘM , such that (FM ,ΘM) is a Hausdorff

topological space with a countable base. By means of FM the space F+
loc is defined as

F+
loc := {z : [0,∞) → E : Π[0,M ]z ∈ FM , for all M > 0}, where Π[0,M ] is the restriction

operator on the interval [0,M ]. The space F+
loc is endowed with a local convergence

topology Θ+
loc, i.e., the topology that induces the following definition of convergence for a

sequence {zn} ⊂ F+
loc to z ∈ F+

loc

zn → z in Θ+
loc if Π[0,M ]zn → Π[0,M ]z in ΘM ,

for every M > 0. It can be seen that the space (F+
loc,Θloc) is a Hausdorff topological space

with a countable base. On the space F+
loc the translation semigroup {T (t)}t≥0 is defined,

for every z ∈ F+
loc, as

T (t)z := z(·+ t), ∀t ≥ 0.

The semigroup {T (t)} is continuous in the topology Θ+
loc (see, e.g., [11, Proposition 2.2]).

For each σ ∈ Σ let us denote by KMσ the set of some solutions from FM and by K+
σ

the set of some solutions from F+
loc. The set K+

σ is said to be a trajectory space of the

evolution equation corresponding to the symbol σ ∈ Σ.

We shall need a slightly more general functional setting than the one devised in [11].

Indeed, in order to construct a trajectory attractor without any boundedness assumption

on the potential F , we must define a family of bounded sets of trajectories with a suitable

attraction property. The idea is to take a subspace F+
b of the space F+

loc on which a metric

dF+
b

is given and assume that the trajectory space K+
σ corresponding to the symbol σ ∈ Σ

satisfies K+
σ ⊂ F+

b , for every σ ∈ Σ. This approach is in the spirit of the theory of
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(M, T )−attractors in [12, Chap. XI, Section 3], where T is a topological space where

some metric is defined and M is the corresponding metric space.

Consider the united trajectory space K+
Σ := ∪σ∈ΣK+

σ of the family {K+
σ }σ∈Σ. We have

K+
Σ ⊂ F

+
b . Recall that the family {K+

σ }σ∈Σ is said to be translation-coordinated if for any

σ ∈ Σ and any z ∈ K+
σ we have T (t)z ∈ K+

T (t)σ, for all t ≥ 0. If {K+
σ }σ∈Σ is translation-

coordinated, then we have T (t)K+
Σ ⊂ K

+
Σ , for every t ≥ 0, i.e., the translation semigroup

{T (t)} acts on K+
Σ . Introduce now the family

B+
Σ :=

{
B ⊂ K+

Σ : B bounded in F+
b w.r.t. the metric dF+

b

}
.

We shall refer to this family in the definition of a uniformly (w.r.t σ ∈ Σ) attracting set

P ⊂ F+
loc for {K+

σ }σ∈Σ in the topology Θ+
loc and in the definition of the uniform (w.r.t.

σ ∈ Σ) trajectory attractor AΣ of the translation semigroup {T (t)}.

Definition 2. A set P ⊂ F+
loc is said to be a uniformly (w.r.t. σ ∈ Σ) attracting set for

the family {K+
σ }σ∈Σ in the topology Θ+

loc if P is uniformly (w.r.t. σ ∈ Σ) attracting for

the family B+
Σ , i.e. for any B ∈ B+

Σ and for any neighbourhood O(P ) in Θ+
loc there exists

t1 ≥ 0 such that T (t)B ⊂ O(P ), for every t ≥ t1.

Definition 3. A set AΣ ⊂ F+
loc is said to be a uniform (w.r.t. σ ∈ Σ) trajectory attractor

of the translation semigroup {T (t)} in the topology Θ+
loc if AΣ is compact in Θ+

loc, AΣ is a

uniformly (w.r.t. σ ∈ Σ) attracting set for {K+
σ }σ∈Σ in the topology Θ+

loc, and AΣ is the

minimal compact and uniformly (w.r.t. σ ∈ Σ) attracting set for the family {K+
σ }σ∈Σ in

the topology Θ+
loc, i.e., if P is any compact uniformly (w.r.t. σ ∈ Σ) attracting set for the

family {K+
σ }σ∈Σ, then AΣ ⊂ P .

From the definition it follows that, if the trajectory attractor exists, then it is unique.

To prove some properties of the trajectory attractor we need that the set K+
Σ be closed

in Θ+
loc. Assume that Σ is a complete metric space. Recall that the family {K+

σ }σ∈Σ is

called (Θ+
loc,Σ)−closed if the graph set ∪σ∈ΣK+

σ × {σ} is closed in the topological space

Θ+
loc×Σ. If {K+

σ }σ∈Σ is (Θ+
loc,Σ)−closed and Σ is compact, then K+

Σ is closed in Θ+
loc (see,

e.g., [11, Proposition 3.2]).

Remark 7. We shall see that (cf. Proposition 6), although by means of the topological-

metric scheme above the boundedness assumption on the potential F can be avoided as

far as the construction of the trajectory attractor for system (1.1)-(1.5) with singular

potential is concerned, it seems difficult to get rid of such an assumption when one wants

to prove the closedness of the trajectory space K+
Σ .

We now state the main abstract result which can be established by applying [12, Chap.

XI, Theorem 2.1] to the topological space F+
loc, to the family B+

Σ and to the family

B+
ω(Σ) :=

{
B ⊂ K+

ω(Σ) : B bounded in F+
b w.r.t. the metric dF+

b

}
,
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where K+
ω(Σ) := ∪σ∈ω(Σ)K+

σ and where ω(Σ) is the ω−limit set of Σ, defined as

ω(Σ) :=
⋂
t≥0

[⋃
h≥t

T (h)Σ
]

Σ
=
{
σ ∈ Σ : ∃hn →∞,∃σn ∈ Σ s.t. T (hn)σn → σ

}
.

We also refer the reader to [11, Theorem 3.1].

Theorem 3. Let the spaces (F+
loc,Θ

+
loc) and (F+

b , dF+
b

) be as above, and the family of

trajectory spaces {K+
σ }σ∈Σ corresponding to the evolution equation with symbols σ ∈ Σ be

such that K+
σ ⊂ F+

b , for every σ ∈ Σ. Assume there exists a subset P ⊂ F+
loc which is

compact in Θ+
loc and uniformly (w.r.t. σ ∈ Σ) attracting in Θ+

loc for the family {K+
σ }σ∈Σ

in the topology Θ+
loc. Then, the translation semigroup {T (t)}t≥0, which acts on K+

Σ if the

family {K+
σ }σ∈Σ is translation-coordinated, possesses a (unique) uniform (w.r.t. σ ∈ Σ)

trajectory attractor AΣ ⊂ P which is strictly invariant

T (t)AΣ = AΣ, ∀t ≥ 0.

In addition, if the family {K+
σ }σ∈Σ is translation-coordinated and (Θ+

loc,Σ)−closed, with

Σ a compact metric space, then AΣ ⊂ K+
Σ and

AΣ = Aω(Σ),

where Aω(Σ) is the uniform (w.r.t. σ ∈ ω(Σ)) trajectory attractor for the family B+
ω(Σ) and

Aω(Σ) ⊂ K+
ω(Σ).

Suppose that for a given abstract nonlinear non-autonomous evolution equation a

dissipative estimate of the following form can be established

dF+
b

(T (t)w,w0) ≤ Λ0

(
dF+

b
(w,w0)

)
e−kt + Λ1, ∀t ≥ t0, (5.1)

for every w ∈ K+
Σ , for some fixed w0 ∈ F+

b and for some Λ0 : [0,∞) → [0,∞) locally

bounded and some constants Λ1 ≥ 0, k > 0, where k, Λ0 and Λ1 are independent of w.

Furthermore, assume that the ball

BF+
b

(w0, 2Λ1) := {w ∈ F+
b : dF+

b
(w,w0) ≤ 2Λ1}

is compact in Θ+
loc. By virtue of (5.1) such ball is a uniformly (w.r.t. σ ∈ Σ) attracting set

for the family {K+
σ }σ∈Σ in the topology Θ+

loc (actually, BF+
b

(w0, 2Λ1) is uniformly (w.r.t.

σ ∈ Σ) absorbing for the family B+
Σ). Theorem 3 therefore entails that the translation

semigroup {T (t)}t≥0 possesses a (unique) uniform (w.r.t. σ ∈ Σ) trajectory attractor

AΣ ⊂ BF+
b

(w0, 2Λ1).
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Let us now turn to (1.1)-(1.5) and apply to this system the scheme described above.

For q ≥ 1, m0 ∈ (0, 1) and for any given M > 0 we set

FM =
{

[v, ψ] ∈ L∞(0,M ;Gdiv × L2+2q(Ω)) ∩ L2(0,M ;Vdiv × V ) :

vt ∈ L4/3(0,M ;V ′div), ψt ∈ L2(0,M ;V ′),

ψ ∈ L∞(QM), |ψ| ≤ 1 a.e. in QM , |ψ| ≤ m0

}
,

where QM = Ω × (0,M). We endow FM with the weak topology ΘM which induces the

following notion of weak convergence: a sequence {[vm, ψm]} ⊂ FM is said to converge to

[v, ψ] ∈ FM in ΘM if

vn ⇀ v weakly∗ in L∞(0,M ;Gdiv) and weakly in L2(0,M ;Vdiv),

(vn)t ⇀ vt weakly in L4/3(0,M ;V ′div),

ψn ⇀ ψ weakly∗ in L∞(0,M ;L2+2q(Ω)) and weakly in L2(0,M ;V ),

(ψn)t ⇀ ψt weakly in L2(0,M ;V ′).

Then, we can define the space

F+
loc =

{
[v, ψ] ∈ L∞loc([0,∞);Gdiv × L2+2q(Ω)) ∩ L2

loc([0,∞);Vdiv × V ) :

vt ∈ L4/3
loc ([0,∞);V ′div), ψt ∈ L2

loc([0,∞);V ′),

ψ ∈ L∞(QM), |ψ| ≤ 1 a.e. in QM , ∀M > 0, |ψ| ≤ m0

}
,

endowed with the inductive limit weak topology Θ+
loc. In F+

loc we consider the following

subset

F+
b =

{
[v, ψ] ∈ L∞(0,∞;Gdiv × L2+2q(Ω)) ∩ L2

tb(0,∞;Vdiv × V ) :

vt ∈ L4/3
tb (0,∞;V ′div), ψt ∈ L2

tb(0,∞;V ′),

ψ ∈ L∞(Q∞), |ψ| < 1 a.e. in Q∞, |ψ| ≤ m0, F (ψ) ∈ L∞(0,∞;L1(Ω))
}
,

where Q∞ := Ω× (0,∞), endowed with the following metric

dF+
b

(z2, z1) : = ‖z2 − z1‖L∞(0,∞;Gdiv×L2+2q(Ω)) + ‖z2 − z1‖L2
tb(0,∞;Vdiv×V )

+ ‖(v2)t − (v1)t‖L4/3
tb (0,∞;V ′

div)
+ ‖(ψ2)t − (ψ1)t‖L2

tb(0,∞;V ′)

+
∥∥∥∫

Ω

F (ψ2)−
∫

Ω

F (ψ1)
∥∥∥1/2

L∞(0,∞)
, (5.2)

for all z2 := [v2, ψ2], z1 := [v1, ψ1] ∈ F+
b . If X is a Banach space and τ ∈ R, we denote by

Lptb(τ,∞;X), 1 ≤ p < ∞, the space of functions f ∈ Lploc([τ,∞);X) that are translation

bounded in Lploc([τ,∞);X), i.e. such that (see, e.g., [12])

‖f‖p
Lptb(τ,∞;X)

:= sup
t≥τ

∫ t+1

t

‖f(s)‖pXds <∞. (5.3)
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For the trajectory space K+
h corresponding to a symbol h we mean

Definition 4. For every h ∈ L2
loc([0,∞);V ′div) the trajectory space K+

h is the set of all

weak solutions z = [v, ψ] to (1.1)-(1.5) with external force h which belong to the space F+
loc

and satisfy the energy inequality (2.13) for all t ≥ s and for a.a. s ∈ (0,∞).

Remark 8. Notice that in the definition of the trajectory space K+
h we do not assume

that the energy inequality (2.13) is satisfied also for s = 0. In this way the family {K+
h }h∈Σ

(Σ is a generic symbol space included in L2
loc([0,∞);V ′div)) is translation-coordinated and

therefore the semigroup {T (t)} acts on K+
Σ .

According to Theorem 1, if (A1)-(A7) hold, then for every z0 = [v0, ψ0] such that

v0 ∈ Gdiv, ψ0 ∈ L∞(Ω), ‖ψ0‖∞ ≤ 1, F (ψ0) ∈ L1(Ω), |ψ0| ≤ m0,

and every h satisfying (A8) there exists a trajectory z ∈ K+
h for which z(0) = z0.

Let us consider now

h0 ∈ L2
tb(0,∞;V ′div),

and observe that h0 is translation compact in L2
loc,w([0,∞);V ′div). Then, by definition, the

hull

H+(h0) :=
[{
T (t)h0 : t ≥ 0

}]
L2
loc,w([0,∞);V ′

div)
,

where [·]X denotes the closure in the space X, is compact in L2
loc,w([0,∞);V ′div) (see, e.g.,

[12, Section 6] and [11, Proposition 6.8]).

As symbol space Σ we take the compact metric space given by Σ = H+(h0). Recall

that every h ∈ H+(h0) is translation compact in L2
loc,w([0,∞);V ′div) as well (see [11,

Proposition 6.9]) and

‖h‖L2
tb(0,∞;V ′

div) ≤ ‖h0‖L2
tb(0,∞;V ′

div), ∀h ∈ H+(h0). (5.4)

Hence we can state the main result of this section.

Theorem 4. Let (A1)-(A7) hold and assume h0 ∈ L2
tb(0,∞;V ′div). Then, the translation

semigroup {T (t)} acting on K+
H+(h0) possesses the uniform (w.r.t. h ∈ K+

H+(h0)) trajectory

attractor AH+(h0). This set is strictly invariant, bounded in F+
b and compact in Θ+

loc.

In addition, if the potential F is bounded on (−1, 1) and h0 ∈ L2
tb(0,∞;Gdiv) or h0 is

translation-compact in L2
loc([0,∞);V ′div),

then K+
H+(h0) is closed in Θ+

loc, AH+(h0) ⊂ K+
H+(h0) and we have

AH+(h0) = Aω(H+(h0)).

The proof of Theorem 4 is based on two propositions. The first one establishes a

dissipative estimate of the form (5.1) for weak solutions to (1.1)-(1.5).
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Proposition 5. Let (A1)-(A7) hold and let h0 ∈ L2
tb(0,∞;V ′div). Then, for all h ∈

H+(h0), we have K+
h ⊂ F

+
b and the following dissipative estimate holds

dF+
b

(T (t)z, 0) ≤ Λ0

(
dF+

b
(z, 0)

)
e−kt + Λ1, ∀t ≥ 1, (5.5)

for all z ∈ K+
h . Here Λ0 : [0,∞) → [0,∞) is a nonnegative monotone increasing contin-

uous function, k and Λ1 are two positive constants with k = min(1/2, λ1ν1), λ1 being the

first eigenvalue of the Stokes operator S. Moreover, Λ0, Λ1 depend on ν1, ν2, λ1, F, J, |Ω|,
and Λ1 also depends on ‖h0‖L2

tb(0,∞;V ′
div) and on m0.

Proof. The following estimate can be obtained by arguing as in the proof of [14, Corollary

2] (see also the proof of [21, Theorem 5]). There exist two positive constants k1, k2 such

that

E(z) ≤ k1

(ν1

2
‖∇v‖2 + ‖∇µ‖2

)
+ k2, (5.6)

for every weak solution z = [v, ψ] to (1.1)-(1.5) satisfying ψ = 0. Furthermore, it can be

shown that k1 = max(2, 1/λ1ν1).

Take now z = [v, ψ] ∈ K+
h with h ∈ H+(h0) and set z̃ = [v, ψ̃], where ψ̃ := ψ − ψ.

Recall that ψ = ψ0. It is easily seen that z̃ is a weak solution to the same system where

the potential F and the viscosity ν are replaced by, respectively,

F̃ (s) := F (s+ ψ0)− F (ψ0), ν̃(s) := ν(s+ ψ0).

Since z satisfies (2.13) for all t ≥ s and for a.a. s ∈ (0,∞), then an energy inequality of

the same form as (2.13) also holds for z̃, namely,

Ẽ(z̃(t)) +

∫ t

s

(2‖
√
ν̃(ψ̃)Dv‖2 + ‖∇µ̃‖2)dτ ≤ Ẽ(z̃(s)) +

∫ t

s

〈h(τ), v(τ)〉dτ, (5.7)

for all t ≥ s and for a.a. s ∈ (0,∞), where we have set

Ẽ(z̃(t)) :=
1

2
‖v(t)‖2 +

1

4

∫
Ω

∫
Ω

J(x− y)(ψ̃(x, t)− ψ̃(y, t))2dxdy +

∫
Ω

F̃ (ψ̃(t))

and µ̃ := aψ̃ − J ∗ ψ̃ + F̃ ′(ψ̃) = aψ − J ∗ ψ + F ′(ψ) = µ. The weak solution z̃ fulfills

(ψ̃, 1) = 0 and therefore (5.6) can be applied to z̃. Such estimate and (5.7) entail the

inequality

Ẽ(z̃(t)) +
1

k1

∫ t

0

Ẽ(z̃(τ))dτ ≤ k2

k1

(t− s) +
1

2ν1

∫ t

s

‖h(τ)‖2
V ′
div
dτ

+ Ẽ(z̃(s)) +
1

k1

∫ s

0

Ẽ(z̃(τ))dτ, ∀t ≥ s, a.a. s ∈ (0,∞).
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By means of the identity

Ẽ(z̃(t)) = E(z(t))− F (ψ0)|Ω|,

from the previous inequality we get

E(z(t)) + k

∫ t

0

E(z(τ))dτ ≤ l(t− s) +
1

2ν1

∫ t

s

‖h(τ)‖2
V ′
div
dτ + E(z(s)) + k

∫ s

0

E(z(τ))dτ,

(5.8)

for all t ≥ s and for a.a. s ∈ (0,∞), where k = 1/k1 and l = k2/k1 + F (ψ0)|Ω|/k1. By

applying [21, Lemma 1] from (5.8) we deduce that

E(z(t)) ≤ E(z(s))e−k(t−s) +
1

2ν1

∫ t

s

e−k(t−τ)
(
‖h(τ)‖2

V ′
div

+ 2ν1l
)
dτ

≤ ek sup
s∈(0,1)

E(z(s))e−kt +K2, (5.9)

for all t ≥ 1, where

K2 =
l

k
+

l

2ν1(1− e−k)
‖h0‖2

L2
tb(0,∞;V ′

div).

Here we have used (5.4). Note that |ψ0| ≤ m0 and therefore K can be estimated by a

constant depending on ν1, λ1, F, J, |Ω| and on h0, m0. Observe now that we have

C1

(
‖v(s)‖2 + ‖ψ(s)‖2+2q

L2+2q(Ω) +

∫
Ω

F (ψ(s))− 1
)

≤ E(z(s)) ≤ C2

(
‖v(s)‖2 + ‖ψ(s)‖2+2q

L2+2q(Ω) +

∫
Ω

F (ψ(s)) + 1
)
, (5.10)

and therefore

sup
s∈(0,1)

E(z(s)) ≤ C2

(
‖v‖2

L∞(0,1;Gdiv) + ‖ψ‖2+2q
L∞(0,1;L2+2q(Ω)) + sup

s∈(0,1)

∫
Ω

F (ψ(s)) + 1
)

≤ C3d
2+2q

F+
b

(z, 0). (5.11)

By combining (5.9) with (5.10) and (5.11) we get

‖v(t)‖2 + ‖ψ(t)‖2+2q
L2+2q(Ω) +

∫
Ω

F (ψ(t)) ≤ cd2+2q

F+
b

(z, 0)e−kt +K2 + c, ∀t ≥ 1, (5.12)

which yields

‖T (t)v‖2
L∞(0,∞;Gdiv) + ‖T (t)ψ‖2+2q

L∞(0,∞;L2+2q(Ω)) +
∥∥∥∫

Ω

F (T (t)ψ)
∥∥∥
L∞(0,∞)

≤ cd2+2q

F+
b

(z, 0)e−kt +K2 + c, ∀t ≥ 1. (5.13)
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On account of the definition of the metric dF+
b

, (5.13) allows to estimate three terms

on the left hand side of (5.5). The remaining four terms on the left hand side of (5.5)

can be handled by performing the same kind of calculations done in the proof of [21,

Proposition 7]. In particular, the two terms in the L2
tb(0,∞;Vdiv)-norm of T (t)v and in

the L2
tb(0,∞;V )-norm of T (t)ψ can be estimated by writing the energy inequality between

t and t+ 1 and by using the estimate

‖∇µ‖2 ≥ k3‖∇ψ‖2 − k4‖ψ‖2,

where k3 = c4
0/2 and k4 = 2‖∇J‖2

L1 , with c0 = α+β+min[−1,1] F
′′
2 > 0. This last estimate

has been obtained in [14] for the case of regular potentials, but it still holds for singular

potentials satisfying assumption (A6). Finally, the two terms in the L
4/3
tb (0,∞;V ′div)-norm

of T (t)vt and in the L2
tb(0,∞;V ′)-norm of T (t)ψt can be estimated by comparison on

account of (5.12), using also the estimates for the L2
tb(0,∞;Vdiv)-norm of T (t)v and the

L2
tb(0,∞;V )-norm of T (t)ψ. We refer to [21, Proposition 7] for the details.

The next proposition, which concerns with the (ΘM , L
2(0,M ;V ′div))-closedness prop-

erty of the family {KMh }h∈L2(0,M ;V ′
div) of trajectory spaces on [0,M ], requires a boundedness

assumption on the potential F .

Proposition 6. Let (A1)-(A7) hold and assume that the potential F is bounded on

(−1, 1). Let hm ∈ L2(0,M ;V ′div) and consider [vm, ψm] ∈ KMhm such that {[vm, ψm]}
converges to [v, ψ] in ΘM and {hm} converges to h strongly in L2(0,M ;V ′div). Then

[v, ψ] ∈ KMh .

Proof. Observe that [vm, ψm] ∈ K+
hm

(i) belongs to FM with µm satisfying (2.8);

(ii) fulfills (2.10)-(2.11) together with µm = aψm − J ∗ ψm + F ′(ψm) and h = hm;

(iii) satisfies the energy inequality

E(zm(t)) +

∫ t

s

(2‖
√
ν(ψm)Dvm‖2 + ‖∇µm‖2)dτ ≤ E(zm(s)) +

∫ t

s

〈hm(τ), vm(τ)〉dτ,

(5.14)

for each m ∈ N, for a.a. s ∈ [0,M ] and for all t ∈ [0,M ] with t ≥ s. Thus, due to the

convergence assumption on the sequence {[vm, ψm]} and to the boundedness of F , it is

immediate to see that there exists a constant c > 0 such that

|E(zm(s))| ≤ c, ∀m, a.a. s ∈ [0,M ]. (5.15)
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Therefore, (5.14) and the convergence assumption on the sequence {hm} imply the control

‖∇µm‖L2(0,M ;H) ≤ c. On the other hand, by exploiting the argument used in the proof of

Theorem 1 it is easy to find the bound

‖F ′(ψm)‖L2(0,T ;L1(Ω)) ≤ L(ψm),

with some constant L(ψm) depending on ψm, and furthermore we also have |ψm| ≤
m0, with m0 ∈ (0, 1). Therefore, noting that

∫
Ω
µm =

∫
Ω
F ′(ψm), we deduce that

‖µm‖L2(0,M) ≤ c, with the constant c depending on the fixed parameter m0. The Poincaré-

Wirtinger inequality then implies

‖µm‖L2(0,M ;V ) ≤ c. (5.16)

As a consequence, there exists µ ∈ L2(0,M ;V ) such that up to a subsequence we have

µm ⇀ µ, weakly in L2(0,M ;V ). (5.17)

Since, as a consequence of the convergence assumption on {[vm, ψm]}, for a subsequence

we have [vm, ψm]→ [v, ψ] strongly in L2(0,M ;Gdiv ×H) and hence ψm → ψ also almost

everywhere in Ω× (0,M), then we get µ = aψ−J ∗ψ+F ′(ψ). Using now the convergence

assumptions on {[vm, ψm]} and on {hm}, the above mentioned strong convergence and

(5.17), we can pass to the limit in the variational formulation for the weak solution

[vm, ψm] with external force hm and deduce that [v, ψ] is a weak solution with external

force h.

Finally, in order to prove that the weak solution [v, ψ] satisfies the energy inequality

on [0,M ] with external force h we let m → ∞ in (5.14). In particular, we rely on

the convergence
√
ν(ψm)Dvm ⇀

√
ν(ψ)Dv weakly in L2(0,M ;H) (cf. (3.53)) and on

Lebesgue’s theorem to pass to the limit in the nonlinear term
∫

Ω
F (ψm(s)). Hence we

conclude that [v, ψ] ∈ KMh .

Remark 9. It is not difficult to see, by arguing as in [12, Chap. XV, Prop. 1.1], that the

same conclusion of Proposition 6 holds if the convergence assumption on {hm} is replaced

with the weak convergence hm ⇀ h in L2(0,M ;Gdiv).

Proof of Theorem 4. In virtue of Proposition 5 the ball BF+
b

(0, 2Λ0) := {z ∈ F+
b :

dF+
b

(z, 0) ≤ 2Λ0} is a uniformly (w.r.t. h ∈ H+(h0)) absorbing set for the family

{K+
h }h∈H+(h0). Such a ball is also precompact in Θ+

loc. By applying the first part of

Theorem 3 we deduce the existence of the uniform (w.r.t. h ∈ H+(h0)) trajectory at-

tractor AH+(h0) ⊂ BF+
b

(0, 2Λ0), which is compact in Θ+
loc and, since T (t) is continuous

in Θ+
loc, strictly invariant. Proposition 6 and the fact that H+(h0) is a compact metric

space imply that the united trajectory space K+
H+(h0) is closed in Θ+

loc. The second part

of Theorem 3 allows us to conclude the proof.
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6 Further properties of the trajectory attractor

Let us discuss first some structural properties of the trajectory attractor.

Denote by Z(h0) := Z(H+(h0)) the set of all complete symbols in ω(H+(h0)). Recall

that a function ζ : R → V ′div with ζ ∈ L2
loc(R;V ′div) is a complete symbol in ω(H+(h0)) if

Π+T (t)ζ ∈ ω(H+(h0)) for all t ∈ R, where Π+ is the restriction operator on the semiaxis

[0,∞). It can be proved (see [11, Section 4] or [12, Chap. XIV, Section 2]) that, due to

the strict invariance of ω(H+(h0)), given a symbol h ∈ ω(H+(h0)) there exists at least

one complete symbol ĥ (not necessarily unique) which is an extension of h on (−∞, 0] and

such that Π+T (t)ĥ ∈ ω(H+(h0)) for all t ∈ R. Note that we have Π+Z(h0) = ω(H+(h0)).

To every complete symbol ζ ∈ Z(h0) there corresponds by [12, Chap. XIV, Definition

2.5] (see also [11, Definition 4.4]) the kernel Kζ in Fb which consists of the union of all

complete trajectories which belong to Fb, i.e., all weak solutions z = [v, ψ] : R→ Gdiv×H
with external force ζ ∈ Z(h0) (in the sense of Definition 1 with T ∈ R) satisfying (2.13)

on R (i.e., for all t ≥ s and for a.a. s ∈ R) that belong to Fb. We recall that the space

(Fb, dFb) is defined as the space (F+
b , d

+
Fb) with the time interval (0,∞) replaced by R in

the definitions of F+
b and dF+

b
. The space (Floc,Θloc) can be defined in the same way.

Set

KZ(h0) :=
⋃

ζ∈Z(h0)

Kζ .

Then, if the assumptions of Theorem 4 hold with F bounded in (−1, 1) and h0 ∈
L2
tb(0,∞;Gdiv) or h0 is translation-compact in L2

loc([0,∞);V ′div), we also have (see, e.g.,

[11, Theorem 4.1])

AH+(h0) = Aω(H+(h0)) = Π+KZ(h0),

and the set KZ(h0) is compact in Θloc and bounded in Fb.
On the other hand, it is not difficult to see that, under the assumptions of Theorem 4,

Kζ 6= ∅ for all ζ ∈ Z(h0). Indeed, by virtue of [11, Theorem 4.1] (see also [12, Chap. XIV,

Theorem 2.1]), this is a consequence of the fact that the family {K+
h }h∈H+(h0) of trajectory

spaces satisfies the following condition: there exists R > 0 such that BF+
b

(0, R)∩K+
h 6= ∅

for all h ∈ H+(h0). In order to check this condition fix an initial datum z∗0 = [v∗0, ψ
∗
0], with

v∗0, ψ
∗
0 taken as in Theorem 1. We know that for every h ∈ H+(h0) there exists a trajectory

z∗h ∈ K+
h such that z∗h(0) = z∗0 and such that the energy inequality (2.13) holds for all t ≥ s

and for a.a. s ∈ (0,∞), including s = 0. Arguing as in Proposition 5 (cf. (5.9) written

for s = 0 and all t ≥ 0) we get an estimate of the form dF+
b

(z∗h, 0) ≤ Λ(z∗0 , h0) (see also

(5.4)), where the positive constant Λ depends on E(z∗0) and on the norm ‖h0‖L2
tb(0,∞;V ′

div).

The above condition is thus fulfilled by choosing R = Λ(z∗0 , h0).

As far as the attraction properties are concerned, we observe that, due to compactness

results, the trajectory attractor attracts the subsets of the family B+
H+(h0) in some strong
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topologies. Indeed, setting

Xδ1,δ2 := Hδ1(Ω)d ×Hδ2(Ω), Yδ1,δ2 := H−δ1(Ω)d × (Hδ2(Ω))′, (6.18)

where 0 ≤ δ1, δ2 < 1 and using the compact embeddings

L2(0,M ;Vdiv × V ) ∩W 1,4/3(0,M ;V ′div × V ′) ↪→↪→ L2(0,M ;Xδ1,δ2),

L∞(0,M ;Gdiv ×H) ∩W 1,4/3(0,M ;V ′div × V ′) ↪→↪→ C([0,M ];Yδ1,δ2),

then Theorem 4 implies the following (see [12, Chap. XIV, Theorem 2.2])

Corollary 1. Let (A1)-(A7) hold and assume h0 ∈ L2
tb(0,∞;V ′div). Then, for every 0 ≤

δ1, δ2 < 1 the trajectory attractor AH+(h0) from Theorem 4 is compact in L2
loc([0,∞);Xδ1,δ2)∩

C([0,∞);Yδ1,δ2), bounded in L2
tb(0,∞);Xδ1,δ2) ∩ Cb([0,∞);Yδ1,δ2), and for every B ∈

B+
H+(h0) and every M > 0 we have

distL2(0,M ;Xδ1,δ2 )

(
Π[0,M ]T (t)B,Π[0,M ]AH+(h0)

)
→ 0,

distC([0,M ];Yδ1,δ2 )

(
Π[0,M ]T (t)B,Π[0,M ]AH+(h0)

)
→ 0,

as t → +∞, where distX(A,B) denotes the Hausdorff semidistance in the Banach space

X between A,B ⊂ X, and Π[0,M ] is the restriction operator to the interval [0,M ].

Let us now define, for every B ⊂ K+
H+(h0), the sections

B(t) :=
{

[v(t), ψ(t)] : [v, ψ] ∈ B
}
⊂ Yδ1,δ2 , t ≥ 0.

Similarly we set

AH+(h0)(t) :=
{

[v(t), ψ(t)] : [v, ψ] ∈ AH+(h0)

}
⊂ Yδ1,δ2 , t ≥ 0,

KZ(h0)(t) :=
{

[v(t), ψ(t)] : [v, ψ] ∈ KZ(h0)

}
⊂ Yδ1,δ2 , t ∈ R.

Then, as a further consequence of Theorem 4 we have (see [12, Chap. XIV, Definition

2.6, Corollary 2.2]) the following

Corollary 2. Let (A1)-(A7) hold and assume h0 ∈ L2
tb(0,∞;Gdiv) or h0 translation-

compact in L2
loc([0,∞);V ′div). Then the bounded subset

Agl := AH+(h0)(0) = KZ(h0)(0)

is the uniform (w.r.t. h ∈ H+(h0)) global attractor in Yδ1,δ2, 0 ≤ δ1, δ2 < 1, of system

(1.1)–(1.5), namely (i) Agl is compact in Yδ1,δ2, (ii) Agl satisfies the attracting property

distYδ1,δ2 (B(t),Agl)→ 0, t→ +∞,

for every B ∈ B+
H+(h0), and (iii) Agl is the minimal set satisfying (i) and (ii).
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Remark 10. In the 2D case the energy identity might be exploited to show the conver-

gence to the trajectory attractor in the strong topology of the original phase space. This

was done in [13] for a reaction-diffusion system without uniqueness.
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