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The newly developed Gorkov-Green’s function approach represents a promising path to the ab
initio description of medium-mass open-shell nuclei. We discuss the implementation of the method
at second order with a two-body interaction, with particular attention to the numerical solution of
Gorkov’s equation. Different sources of theoretical error and degrees of self-consistency are investi-
gated. We show that Krylov projection techniques with a multi-pivot Lanczos algorithm efficiently
handle the growth of poles in the one-body Green’s function when Gorkov’s equation is solved self-
consistently. The end result is a tractable, accurate and gently scaling ab initio scheme applicable
to full isotopic chains in the medium-mass region.

I. INTRODUCTION

In the last decade nuclear structure theory has been
characterized by remarkable developments in ab ini-
tio calculations beyond the lightest isotopes. Differ-
ent approaches like coupled cluster (CC) [1–3], Dyson
self-consistent Green’s functions (SCGF) [4–6] and in-
medium similarity renormalization group (IM-SRG) [7, 8]
are nowadays able to successfully describe the properties
of nuclei in the region A ∼ 15 − 50 starting solely from
the knowledge of the underlying two- and three-nucleon
forces. Such methods, while differing in the way of solv-
ing the many-body Schrödinger equation, have proven
capable of calculations with a similar degree of accuracy,
e.g. for ground-state energies in the oxygen chain [1, 6, 8].

Compared to CC and IM-SRG, SCGF has the added
advantage of providing insight into the the many-body
dynamics since it explicitly processes information on the
spectral distribution of nucleons and their in-medium be-
havior [9–11]. So far, applications of SCGF to finite
nuclei have been typically limited to doubly closed-shell
isotopes. In few cases superfluid systems have been ad-
dressed within the Nambu-Gorkov formalism by includ-
ing quasiparticle-phonon couplings in the self-energy, ei-
ther phenomenologically [12] or in the framework of nu-
clear field theory [13]. Recently, we have introduced a
fully ab initio approach based on the Gorkov ansatz that
extends the SCGF formalism to open-shell nuclei [14, 15].
Together with the latest advances at the level of nucleon
interactions, such development paves the way for an ab
initio description of full isotopic chains in the medium-
/heavy-mass region in the near future.
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A crucial issue for ab initio approaches concerns the
ability of performing numerical calculations in increas-
ingly large model spaces, with the aim of thoroughly
checking the convergence and consequently accessing
heavier systems. More in general, ab initio methods
should aim at assessing all sources of theoretical uncer-
tainties and eventually include theoretical error bands in
their results. The intent of the present work is to discuss
in details the implementation of Gorkov-Green’s func-
tion techniques in finite nuclei and study the uncertain-
ties associated with different observables. In particular
errors coming from model space truncations and from
the numerical algorithms used in solving Gorkov’s equa-
tion are investigated. Other sources of error, including
the uncertainties related to nuclear interactions and to
many-body truncations have already been discussed in
the literature [6, 8] and will be addressed thoroughly for
Gorkov theory in future works.

A long-established problem with the self-consistent cal-
culation of single-particle propagators in finite systems
concerns the rapid increase of the number of poles that
are generated at each iterative step. The fast growth is
not surprising since, as one approaches the limit of exact
self-energy, the Lehmann expressions for the one-body
Green’s functions (see Eqs. (3) and (12) in the following)
develop a continuous cut along the real energy axis in cor-
respondence of unbound states. In practical calculations,
a truncation of the model space implies a discretization of
the self-energy and self-bound systems can be accurately
calculated by reducing the continuous cut to a tractable
number of effective poles. Generally this has been done
by either binning the self-energy poles along the energy
axis or by employing Lanczos algorithms to project the
energy denominators onto smaller Krylov spaces [16–21].
The latter approach is preferable since the original self-
energy is retrieved in the limit of increasing Krylov ba-
sis. However, the above calculations relied on the fur-
ther approximation of making the self-energy diagonal in
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the one-body Hilbert space. Ref. [22] reported that this
approximation leads to inaccuracies and that different
pivots are necessary in order to correctly reproduce the
off-diagonal features of the self-energy, leading to a block
Lanczos algorithm. Other works have avoided Krylov
projections and performed self-consistent calculations by
manually selecting the most relevant poles of the propa-
gator, and collecting the others into few effective poles.
This has led to successful investigations [23, 24]. How-
ever, it implies ad hoc procedures that might hinder sys-
tematic estimations of the errors involved.

In our recent studies based on SCGF [6, 15, 25, 26] we
have followed Ref. [22] and implemented modified Lanc-
zos and Arnoldi algorithms to perform block reduction to
Krylov spaces defined by multiple pivots. This approach
guarantees convergence to the full original self-energy in
the limit of increasing Krylov space and, hence, it is suit-
able for application in ab initio calculations. However, no
account has been given so far of the performance and ac-
curacy of this method in nuclear structure applications.
One aim of the present work is to fill this gap.

The paper is organized as follows. In Sec. II the the-
ory of Gorkov-Green’s functions is briefly reviewed, with
focus on the aspects inherent to the solution of Gorkov’s
equation. In Sec. III the numerical implementation of
Gorkov’s equation is discussed, with particular emphasis
on the modified Lanczos algorithm employed in the di-
agonalization. A remainder of the relevant Lanczos for-
mulae as well as details on the treatment of chemical
potentials can be found in the Appendix. The perfor-
mance of the Krylov projection is analyzed in Sec. IV.
In Sec. V different degrees of self-consistency in the iter-
ative solution of Gorkov’s equations are compared. The
dependence on the model space is then investigated in
Sec. VI, followed by final remarks in Sec. VII.

II. GORKOV-GREEN’S FUNCTION THEORY

A. Gorkov’s equation

Given the intrinsic Hamiltonian

Hint ≡ T + V − TCM , (1)

Gorkov-SCGF theory targets the ground state |Ψ0〉 of the

grand-canonical-like potential Ω ≡ Hint − µp Ẑ − µn N̂ ,
having the correct average number of protons, Z =
〈Ψ0|Ẑ|Ψ0〉, and neutrons, N = 〈Ψ0|N̂ |Ψ0〉. Here, µp
(µn) is the proton (neutron) chemical potential and Ẑ

(N̂) the proton- (neutron-)number operator.

The complete one-body dynamics with respect to the
state |Ψ0〉 is embodied in a set of four Green’s functions

known as Gorkov propagators [27]1

G(ω) =

(
G11(ω) G12(ω)
G21(ω) G22(ω)

)
. (2)

Their matrix elements read in the Lehmann representa-
tion as

G11
ab(ω) =

∑
k

{
Uka Uk∗b

ω − ωk + iη
+

V̄k∗a V̄kb
ω + ωk − iη

}
, (3a)

G12
ab(ω) =

∑
k

{
Uka Vk∗b

ω − ωk + iη
+

V̄k∗a Ūkb
ω + ωk − iη

}
, (3b)

G21
ab(ω) =

∑
k

{
Vka Uk∗b

ω − ωk + iη
+

Ūk∗a V̄kb
ω + ωk − iη

}
, (3c)

G22
ab(ω) =

∑
k

{
Vka Vk∗b

ω − ωk + iη
+

Ūk∗a Ūkb
ω + ωk − iη

}
. (3d)

The poles of the propagators are given by ωk ≡ Ωk−Ω0,
where the index k refers to normalized eigenstates of Ω
that fulfill

Ω |Ψk〉 = Ωk |Ψk〉 . (4)

The residue of G(ω) associated with pole ωk relates to
the probability amplitudes Uk (Vk) to reach state |Ψk〉 by
adding (removing) a nucleon to (from) |Ψ0〉 on a single-
particle state2.

The one-body propagators of Eq. (3) are solutions of
the Gorkov’s equation of motion(
T + Σ11(ω)− µk Σ12(ω)
Σ21(ω) − T + Σ22(ω) + µk

)∣∣∣∣
ωk

(
Uk
Vk
)

= ωk

(
Uk
Vk
)
,

(5)
whose output is the set of vectors (Uk,Vk) and energies
ωk. The chemical potential µk = µp or µn depending
on the particular charge quantum number carried by the
pole k. Eq. (5) reads as a one-body eigenvalue problem
in which the normal [Σ11(ω) and Σ22(ω)] and anoma-
lous [Σ12(ω) and Σ21(ω)] irreducible self-energies act as
energy-dependent potentials. Eventually, the total bind-
ing energy of the A-body system is computed via the
Koltun-Galitskii sum rule [28]:

EA
0 =

1

4πi

∫
C↑
dωTrH1

[
G11(ω) [T + (µ+ ω)]

]
, (6)

which is exact for the case of two-body Hamiltonians.

1 Two-dimensional matrices in Gorkov space are denoted in bold-
face throughout the paper. Non-boldface quantities are used for
vectors and matrices defined on the one-body Hilbert space H1.
The matrix elements of the lattes are denoted by latin letter
subscripts {a, b, . . .}, which label the single particle basis of H1.

2 The component of vector Uk associated with a single-particle
state a is denoted by Uka . Correspondingly, the component as-
sociated with the time-reversed state ā (up to a phase ηa) is
denoted by Ūka [14].
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Separation energies between the A-body ground state
and eigenstates of A± 1 systems are related to the poles
ωk through
THOMAS: this equations was originally written
in terms of ‘A’ and I have changed it to N̂ and
Ẑ separated, for consistency with the discussion
below Eq. (1). I am not sure it is right though:
please check it!

E±k ≡ µk ± ωk = ± [〈Ψk|Hint|Ψk〉 − 〈Ψ0|Hint|Ψ0〉]

∓µk
[
〈Ψk|Ẑ + N̂ |Ψk〉 − (A± 1)

]
, (7)

where last term takes care of the error associated with
the difference between the average number of particles
in state |Ψk〉 and the targeted particle number A ± 1.
Spectroscopic factors associated with the direct addition
and removal of a nucleon are defined as

SF+
k ≡ TrH1

[
Uk(Uk)†

]
and SF−k ≡ TrH1

[
Vk ∗(Vk)T

]
.

(8)

In open-shell nuclei, the odd-even staggering of nuclear
masses is a fingerprint of pairing correlations and of-
fers, through finite odd-even mass difference formulae,
the possibility to extract the pairing gap. The most
commonly used [29] three-point-mass difference formula

∆
(3)
n (A) equates the pairing gap with the Fermi gap

in the one-nucleon addition/removal spectra E±k , e.g.

∆
(3)
n (A) ≡ (−1)A[E+

0 − E−0 ]/2. One-body observables
such as mass or charge radii can be easily computed
from G11(ω) [14]. Moreover, effective single-particle en-
ergies (ESPE) introduced by Baranger as centroids ecent

a

of one-nucleon addition and removal spectra E±k can be
naturally computed in the present context [14, 30]. The
normal self-energy Σ11(ω) appearing in Eq. (5) is also
identified with the microscopic nucleon-nucleus optical
potential [26, 31], allowing for the computation of scat-
tering states [32].

B. Self-energy expansion

The solution of the eigenvalue problem in Eq. (5) yields
the complete set of {Uk,Vk, ωk} from which one can fully
reconstruct the Gorkov propagators. This requires the
knowledge of the self-energy, which can always be written
as the sum of a static (that is, energy independent) and
a dynamic term:

Σ(ω) = Σ(∞) + Σ(dyn)(ω) . (9)

The four static self-energies read

Σ
11 (∞)
ab = +

∑
cd

Vacbd ρdc ≡ +Λab = +Λ†ab (10a)

Σ
22 (∞)
ab = −

∑
cd

Vb̄dāc ρ
∗
cd = −Λ∗āb̄ , (10b)

Σ
12 (∞)
ab =

1

2

∑
cd

Vab̄cd̄ ρ̃cd ≡ +h̃ab , (10c)

Σ
21 (∞)
ab =

1

2

∑
cd

V ∗bācd̄ ρ̃
∗
cd = +h̃†ab , (10d)

where Vacbd represent antisymmetrized matrix elements
of the two-body interaction of Eq. (1) and ρab and ρ̃ab are
respectively the normal and anomalous density matrices

ρab ≡ 〈Ψ0|a†baa|Ψ0〉 =
∑
k

V̄kb V̄k∗a , (11a)

ρ̃ab ≡ 〈Ψ0|ābaa|Ψ0〉 =
∑
k

Ūkb V̄k∗a . (11b)

Note that Eqs. (10) are formally at first order in Vacbd and
represent the Hartree-Fock and Bogoliubov diagrams.
However, they are expressed in terms of the spectro-
scopic amplitudes of the exact (fully dressed) propaga-
tors. Thus, they implicitly resum all static higher order
diagrams in perturbation theory. Eqs. (10) are also exact
and complete for a two-body Hamiltonian. In the pres-
ence of three- or higher many-body interactions, they
remain unchanged but acquire further contributions due
to additional interaction reducible diagram [33].

If only first-order contribution to the self-energy are
retained, Eqs. (5), (10) and (11) reduce to an ab initio
Hartree-Fock-Bogoliubov (HFB) problem. At second and
higher orders, the self-energy acquires energy dependent
contributions to Σ(dyn)(ω) and the solution of Eq. (5)
complicates. The dynamical part of the self-energy can
be expressed through its Lehmann representation as fol-
lows

Σ
11 (dyn)
ab (ω) =

∑
κ

{
Cκa (Cκb )∗

ω − Eκ + iη
+

(D̄κa)∗ D̄κb
ω + Eκ − iη

}
,(12a)

Σ
12 (dyn)
ab (ω) =

∑
κ

{
Cκa (Dκb )∗

ω − Eκ + iη
+

(D̄κa)∗ C̄κb
ω + Eκ − iη

}
,(12b)

Σ
21 (dyn)
ab (ω) =

∑
κ

{
Dκa (Cκb )∗

ω − Eκ + iη
+

(C̄κa )∗ D̄κb
ω + Eκ − iη

}
, (12c)

Σ
22 (dyn)
ab (ω) =

∑
κ

{
Dκa (Dκb )∗

ω − Eκ + iη
+

(C̄κa )∗ C̄κb
ω + Eκ − iη

}
,(12d)

where C and D account for couplings of single quasipar-
ticle excitations to configurations involving 2n+ 1 quasi-
particles, with n ≥ 1, and Eκ labels the corresponding
energies. The structure of Eqs. (12) is the same as for
the exact self-energy and does not change if additional
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many-body interactions enter the Hamiltonian. Up to
this point no approximation has been made, if the ex-
act self-energy is employed for (10) and (12) then the
Gorkov’s Eq. (5) is equivalent to solving the exactA-body
Schrödinger equation.

In actual calculations, a truncation in the expansion of
Σ(ω) has to be adopted to approximate the coupling am-
plitudes (Cκ, Dκ) and their poles Eκ. In the present work
first- and second-order self-energy contributions are con-
sidered in the solution of Gorkov’s equations. By sum-
ming all eight second-order skeleton diagrams in terms
of correlated propagators, one obtains an approximation
for Σ(dyn)(ω) with the same form of Eqs. (12) where the
label κ runs over all possible three-quasiparticles (3QP)
excitations κ = {k1, k2, k3}. The corresponding poles are
then [14]

Eκ = Ek1k2k3 ≡ ωk1 + ωk2 + ωk3 (13)

and the total coupling amplitude read

Ck1k2k3a ≡ 1√
6

[
Mk1k2k3

a +Mk2k3k1
a +Mk3k1k2

a

]
,(14a)

Dk1k2k3a ≡ 1√
6

[
N k1k2k3
a +N k2k3k1

a +N k3k1k2
a

]
, (14b)

where

Mk1k2k3
a ≡

∑
ijk

Vakij Uk1i U
k2
j V̄

k3
k , (15a)

and

N k1k2k3
a ≡

∑
ijk

Vakij Vk1i V
k2
j Ū

k3
k . (15b)

In the above formulation, both Σ(∞)(ω) and Σ(dyn)(ω)
depend on the spectroscopic amplitudes (Uk,Vk) and
poles ωk. This implies an iterative diagonalization of
Gorkov’s equation to achieve of self-consistency solutions.

C. Energy-independent form of the Gorkov’s equation

Using the explicit energy dependence of the Lehmann representation, one can derive an alternative formulation
of Gorkov’s equation. Considering the second-order truncation of the self-energy expansion described above, one
introduces the two additional amplitudes W and Z that describe the admixtures of 3QP configurations

(ωk − Ek1k2k3)Wk1k2k3
k ≡

∑
a

[
(Ck1k2k3a )∗ Uka + (Dk1k2k3a )∗ Vka

]
, (16a)

(ωk + Ek1k2k3)Zk1k2k3k ≡
∑
a

[
D̄k1k2k3a Uka + C̄k1k2k3a Vka

]
, (16b)

and rewrites Eq. (5) as

ωk Uka =
∑
b

[
(Tab − µ δab + Λab)Ukb + h̃ab Vkb

]
+
∑
k1k2k3

[
Ck1k2k3a Wk1k2k3

k + (D̄k1k2k3a )∗Zk1k2k3k

]
, (17a)

ωk Vka =
∑
b

[
h̃†ab U

k
b − (Tab − µ δab + Λ∗āb̄)V

k
b

]
+
∑
k1k2k3

[
Dk1k2k3a Wk1k2k3

k + (C̄k1k2k3a )∗Zk1k2k3k

]
. (17b)

The four relations above provide a set of coupled equations for unknowns U , V, W and Z that can be recast in a
matrix form

ωk

 UVW
Z


k

=


h h̃ C D̄∗
h̃† −h̄∗ D C̄∗
C† D† E 0
D̄T C̄T 0 −E


 UVW
Z


k

≡ Ξ

 UVW
Z


k

, (18)

where h ≡ T − µ + Λ and E ≡ diag{Eκ}. The deriva-
tion of an energy-independent matrix Ξ can be general-
ized to higher-order truncations of self-energy as long as
these can be expressed through the Lehmann represen-
tation (12).

III. NUMERICAL ALGORITHM

Exactly the same solutions are associated with
Gorkov’s equations in the form (5) or (18). For numerical
implementations, however, the treatment of an energy-
dependent eigenvalue equation might not be particularly
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desirable. Attempts of solving directly the Eq. (5) have
revealed problematic due to the energy denominators in
Σ(ω) that impliy drastic variations of the self-energy near
its poles [34]. Even with very fine meshes in energy, this
issue can still severely limit the resolution of the calcu-
lations [35]. Alternatively, each pole can be searched for
individually [23, 36, 37]. But this involves a lengthy nu-
merical procedure that does not guarantee obtaining all
solutions of Eq. (5). In other words, a sizeable fraction of
the spectral strength could be neglected. Working with
Eq. (18), on the other hand, avoids the danger of diver-
gences and automatically guarantees to extract all poles
at once. The price to pay is a severe growth in the di-
mension of Gorkov’s matrix, with consequent limitations
on its diagonalization and high requirements in memory
storage. Nevertheless, this eventually results in a gain of
more than an order of magnitude in computational time
with respect to solving directly for the poles of Eq. (5).
As discussed in the following, the large dimensions of Ξ
do not preclude convergence in model spaces that are
large enough for modern ab initio nuclear structure cal-
culations.

A. Self-consistency and dimensionality

Gorkov’s matrix depends on the eigenvalues ωk and
amplitudes (Uk,Vk), which implies that the solution must
be searched for iteratively. To see how the energy-
independent form, Eq. (18), involves a drastic increase
of the dimensionality of the problem at each iteration, let
us separate the matrix Ξ as follows

Ξ =


h h̃ C D̄∗
h̃† −h̄∗ D C̄∗
C† D† E 0
D̄T C̄T 0 −E

 ≡ ( Ξ(1) Ξ(2)

Ξ(2) † E

)
.

(19)
The number of states in the single-particle basis, Nb,
defines the dimension of the first-order block Ξ(1) (see
Fig. 1). Each of the four sub-blocks in Ξ(1) is Nb × Nb,
for a total of 2Nb × 2Nb matrix elements. The matrix
E is diagonal for second-order self-energies and its el-
ements are all possible combinations of three energies
{ωk1 , ωk2 , ωk3}. Typically, a (mean-field) reference state
is chosen as starting point so that only unperturbed
quasiparticle states are present at the first iteration. In
this situation, the number of quasiparticle states equals
the dimension of the basis Nb and the number of poles
in Eq. (12) is

Ns ≈
(
Nb
3

)
≈ N3

b

6
. (20)

Since Nb � (Nb)
3 it follows that dim(Ξ) = Ntot×Ntot ∝

N3
b /3 × N3

b /3. In most cases, one can exploit spheri-
cal symmetry to split Gorkov’s equations into uncoupled
partial waves which equivalent to have a reduced effec-

tive number basis states to Neft
b ≈10-20. However, Nb

2Ns︷ ︸︸ ︷
Ns︷ ︸︸ ︷

2Nb

 Nb
{

h h̃ C D̄∗


Ntot

h̃† −h D C̄∗

C† D† E 0

D̄T C̄T 0 −E

FIG. 1. Dimension scheme for the Gorkov matrix Ξ.

of order of a few hundreds are typically needed in or-
der to achieve convergence for the most general cases.
Thus, the full diagonalization of Gorkov’s matrix for large
model spaces may become unfeasible with current com-
putational resources, even for the first iteration.

After Ξ is diagonalized, a number ≈ (Nb)
3/6 of

new quasiparticle states appear, which can be seen as
new fragments carrying a fraction of the single-particle
strength. Those are new poles in the one-body prop-
agators. In the second iteration, the possible combi-
nations of three single-particle energies have then in-
creased, resulting in Ns ≈ N9

b /216/6, which leads to
dim(Ξ) ∝ N9

b /1000×N9
b /1000. In the n-th iteration the

matrix Ξ will have expended to dimensions of the order
of N3n

b ×N3n

b . Such a growth clearly prevents the exact
treatment of all quasiparticle poles in an actual (self-
consistent) calculation, where one has to keep dim(Ξ)
below a threshold that is computationally tractable.

B. Krylov projection

In the present work we follow Ref. [22] and project the
energy denominators of Σ(dyn)(ω) to a smaller Krylov
subspace. This allows to contain the dimensional growth
of the Gorkov matrix and to develop a sustainable com-
putational procedure.

In terms of the Gorkov matrix of Eq. (18), we generate
a set of pivot vectors pi with elements

piκ =
∑
a

CκaU ia +
∑
a

DκaV ia , (21)

where (U i, V i) are linearly independent vectors in the
HFB one-body Hilbert space. In general, one needs a
pivot for each single-particle orbit in the model space
to properly converge all the off-diagonal elements of
Eqs.(12) [22]. Up to 2Nb starting pivots are then used to
generate a Krylov subspace K associated with the subma-
trix E in Eq. (18). Our particular implementation uses
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a Lanczos-type algorithm that starts from one pivot at a
time and iterates it N` times, independently of the oth-
ers. Each time iterations are started with a new pivot,
pi, this is first orthogonalised with respect to the ba-
sis vectors already generated. This is equivalent to a
block Lanczos reduction based on a slightly modified set
of pivots {pi′}. Eventually, the dimension of the Krylov
space is the number of total Lanczos iterations, NL =
dim(K) = N` ×Npivots. Full details of the algorithm are
given in Appendix A.

The block E in Eq. (19) thus reduces to a matrix of
lower dimensions

E −→ E ′ =

(
L†E L

−L†E L

)
, (22)

where L is the collection of vectors generated by the
Lanczos procedure. The two off-diagonal blocks Ξ(2) and
Ξ(2) † are transformed accordingly:

Ξ(2) −→ Ξ′(2) = Ξ(2)

(
L
L

)
, (23a)

Ξ(2) † −→ Ξ′(2) † =
(
L† L†

)
Ξ(2) † . (23b)

These projected blocks are inserted in the original Gorkov
matrix

Ξ −→ Ξ′ =

(
Ξ(1) Ξ′(2)

Ξ′(2) † E ′
)
, (24)

whose dimensions are now dim(Ξ′) = 2Nb + 2NL. The
Gorkov-Krylov matrix Ξ′ is finally (fully) diagonalized
with standard diagonalization routines. In terms of
Lehmann representation, Eq. (12), the Krylov projected
quantities results in approximating the exact self-energy
as

Σ(2) = C 1

1ω − E
C† −→ Σ′(2) = C L 1

1ω − L†E L
L† C† ,

(25)
where only the first term in Eq. (12a) has been considered
schematically. The other terms follow accordingly.

The number of Lanczos iterations NL controls the
dimension of the matrix Ξ′ that undergoes diagonal-
ization. For a sufficiently large number of iterations
dim(K) −→ dim(E) and the exact results is recovered.

Notice that the technique outlined here differs in spirit
from the standard use of Lanczos or Arnoldi algorithms
in large-scale shell-model diagonalizations. In fact, while
these methods aim at excellent estimates of the first lower
eigenvalues of a large-matrix, in Green’s function calcu-
lations one is rather interested in reproducing most of
the key features of the spectral distribution. The Krylov
subspace projection of a matrix ensures a fast conver-
gence at the extremes of its eigenvalue spectrum. Thus,
it is important that the Lanczos algorithm is applied sep-
arately to both sub-blocks E and −E of Eq. (19), which
are mirrored across the Fermi energy. In this way the
quasiparticle spectrum near the Fermi surface is recov-
ered accurately upon diagonalizing Eq. (24). The other

important property of Krylov subspace techniques is that
the first 2N` moments of each pivot are conserved during
the projection. This ensures that the overall distribution
of single-particle strength converges quickly, which is im-
portant for achieving good estimates for all observables
after a relatively small number of Lanczos iterations.

C. Calculation scheme

As mentioned above, a typical Gorgov Green’s function
calculation involves an iterative procedure that leads to a
self-consistent solution for the four Gorkov propagators.
In practice, the following steps are performed:

1. A reference single-particle propagator is used as an
initial set of {Uk,Vk, ωk} and {µp, µn}. This is
normally generated by solving the first order HFB
problem.

2. Second order self-energies are computed through
Eqs. (13) to (15).

3. The self-energy is projected to a suitable Krylov
subspace acceding to Eqs. (22) and (23).

4. The energy-independent self-energies that enter
Ξ(1) are computed by means of Eqs. (10).

5. The matrix Ξ′ [Eq. (24)] is constructed and diago-
nalized.

6. The chemical potentials µp and µn are adjusted to
yield the correct number of protons and neutrons of
the targeted nucleus according to Eq. (B2). This
involves several re-diagonalizations of the matrix Ξ′

with adjustments of µp and µn alone.

7. The solution (i.e. a new set of {Uk,Vk, ωk} and
{µp, µn}) constitutes the new single-particle prop-
agator that is used as input for the successive iter-
ations. The calculations is re-started from point 2
for full self-consistency (or point 4 for the partial
“sc0” scheme discussed below).

The above procedure is repeated until convergence is
achieved. This is usually assessed by looking at the
variation of chemical potentials or total binding energy,
which can be computed at each iteration by means of
the Koltun-Galitskii sum rule (6). In the present work
the convergence criterium is set by variations in the total
energy that are smaller than 1 keV. As discussed in the
next section, such value is smaller than the systematic
error on binding energies.

Repeating the points 2–6 above leads to the fully
self-consistent (“sc”) implementation of Gorkov-Green’s
functions. In this case the converged results are com-
pletely independent of the reference states adopted at
point 1. A computationally cheaper alternative—referred
to as “sc0” in the following—consists in iterating only
points 4–6. In other words, self-consistency is limited to
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the energy independent part of the self-energy [Ξ(1) in
Eq. (19)] while the matrix elements of the second order
Σ(dyn)(ω) are computed once and afterwards frozen. In
actual calculations it is common to employ HFB prop-
agators as reference states for generating the second or-
der skeleton diagrams. Thus, a substantial portion self-
energy insertion diagrams (beyond second order) are ef-
fectively recovered. However, the partial self-consistency
in the sc0 approach already retains the most important
features since it implicitly generates all energy indepen-
dent diagrams above first order through the dressing
of propagators in Eqs. (10) and (11). As opposed to
perturbation theory, the key, self-consistent character of
Green’s function methods guarantees the resummation of
self-energy insertions to all orders and makes the method
intrinsically non-perturbative and iterative. Since the
present self-energy is complete at second order, both sc0
and sc generate all diagrams for Σ(∞) are retained up
to third order and all those for Σ(dyn)(ω) up to and sec-
ond order. In both cases, the self-consistency in Σ(∞)

automatically includes all-order resummations of several
diagrams beyond third order.

The two schemes will be compared in details in Sec. V,
where in particular it will be shown that the sc0 degree
of self-consistency is capable of grasping most of the cor-
relations introduced by second-order self-energies.

D. Numerical scaling

An important issue for ab initio approaches concerns
the possibility of performing numerical calculations with
increasingly large model spaces, so that it is possible
to control their convergence and access heavier systems.
Thus, we analyze in some detail the numerical scal-
ing properties of Gorkov-Green’s function calculations.
Provided that a full diagonalization of the unprojected
Gorkov’s matrix is computationally too expensive, we
will directly consider the cost of calculations that use
the Lanczos algorithm.

The benefit of the Krylov projection is the reduction
of dimensionality of the Gorkov eigenvalue problem. At
each iteration, after projecting and before the diagonal-
ization (step 5 in Sec. III C), the size of Gorkov’s matrix is
determined by the total number of Lanczos vectors, NL.
In particular, the projected 3QP matrix, E′ ≡ L†E L,
has the dimension of the Krylov subspace, such that the
dimension of the eigenvalue problem for Ξ′ is

N ′tot = 2Nb + 2NL . (26)

In general, NL � Ns which results in a tremendous re-
duction of dimensionality. Not only dim(E′) � dim(E)
but NL = 2Nb×N` is independent of the number to poles
in the iterated propagator. Thus, dim(E′) remains small
due to the Krylov projections at each iteration, allowing
for self-consistent calculations even for large bases.

Before comparing of the overall costs for the sc0 and
sc calculations, we look at the scaling of separate steps

of the algorithm in Sec. III C. In general, the three main
steps are the calculation of the Gorkov matrix, its Krylov
reduction, and its diagonalization. Only the last step is
iterated in a sc0 calculation. These have different scaling
behaviors when varying model and Krylov spaces:

1. While the matrix E is trivial at second order, Ξ(2)

has 2Nb × 2Ns elements to be computed. For the
first iteration and the sc0 scheme, Ns ≈ N3

b /6 and

the elements of Ξ(2) are simply the interaction ma-
trix elements expressed in the reference (HFB) ba-
sis. For successive iterations, Ns ∝ N3

L while Ξ(2)

requires projecting the interaction on the Gorkov
orbitals [see Eqs. (15)]. This requires number of
operations ∝ Nb×Ns×N3

b . Hence, calculating the
Gorkov matrix scales as follows:

• For the first iteration and sc0: ∝ N4
b ;

• For successive iterations in sc: ∝ N7
b N

3
` .

2. The Lanczos algorithm iteratively generates NL ba-
sis vectors of dimension Ns. Within this procedure,
the most time consuming part is again the projec-
tion of the coupling amplitudes to obtain Ξ′(2) [see
Eqs. (23)], which is a matrix multiplication requir-
ing 2Nb ×Ns ×NL steps. Hence, The Krylov pro-
jection scales as:

• For the first iteration and sc0: ∝ N5
b N`;

• For successive iterations in sc: ∝ N5
b N

4
` .

3. The diagonalization of the Gorkov matrix always
scales like (N ′tot)

3 ∝ N3
b N

3
` , for large values of N`.

All considerations made so far are valid for a gen-
eral choice of the single-particle basis {a†a}, such as the
case of an m-scheme calculation, and represent a worst
case scenario. Our actual implementation considers nu-
clei that are assumed to be in a JΠ = 0+ state, for
which the Gorkov equations naturally decouple into par-
tial waves of definite charge, angular momentum and par-
ity, α ≡ (q, j, π) [14]. In general, the basis of a given
partial wave, α, will have a dimension Nα

b that corre-
sponds to the number of its principal levels included
in the model space. The dimension of the associated
Krylov space, Nα

L = 2Nα
b N`, will vary with α accord-

ingly. This changes the above stated scaling proper-
ties in a non trivial way. The present calculations use
a spherical harmonic oscillator basis with all orbits in-
cluded up to a maximum shell Nmax = max{2nα + `α}.
This basis has Nα

b ≤ Nmax/2 but its sclalings gain an
extra power in Nα

b because the same calculations are
performed separately for all partial waves: more pre-
cisely,

∑
α(Nα

b )γ ∝ (Nmax)γ+1 for large Nmax. Note,
however, that the relevant quantity for the m-scheme
case its the total number of all possible single particle
orbits, N tot

b =
∑
αN

α
b ∝ (Nmax)2, which grows faster

than Nmax. Hence, decoupling all partial waves results
in a high gain in terms of computational times. In ad-
dition, for a fixed Nmax, the dimensions of the Lanczos
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FIG. 2. CPU time spent in parts of a typical sc0 calculation as a function of Nmax and for different values of N`. Left panel:
time needed to calculate the self-energies for all partial waves {α} and projecting them to Krylov subspaces (points 1 and 2 of
Sec. III D). Right panel: time required for diagonalising the Gorkov matrices of all partial wave over 100 sc0 iterations (point
3 of Sec. III D). Dashed lines show scaling of the type (Nmax)γ , with γ =6 and 3.

vectors, Nα
s , are no longer proportional to (Nα

b )3 but it
will have a bell shape with increasing angular momen-
tum, jα, that is due to combinatorics in coupling angu-
lar moments. This also also affects the considerations at
points 1 and 2 above and results in a more gentle scaling.

Since the actual scaling in computer time depends non
trivially on the model space chosen, we tested for our al-
gorithm directly in actual calculations. The results are
shown in Fig. 2 for a series of sc0 runs on a single pro-
cessor. The left panel shows the time required for gen-
erating the Krylov-reduced Gorkov matrix (steps 1 and
2 above) for different model space sizes and different N`.
At large values of N` the computation time is dominated
by the Lanczos procedure and scales as ≈ N6

max, as ex-
pected. The calculation of the second order self-energy
(step 1) is relevant only for very few Lancsoz iterations
(when step 2 is negligible). Hoerver, it increases more
rapidly with respect to Nmax, indicating that for large
model spaces an improvement of our algorithm for step
1 might be in order. The right panel shows the time
required for 100 diagonalizations of the Gorkov matrix
(steps 4-6 of Sec. III C). This is representative to the
typical number of sc0 iterations needed in actual calcula-
tions to converge both the propagator and the chemical
potentials. As expected, the actual step of diagonalising
Eq. (24) becomes dominant for a large N` and scales as
≈ N3

max. Both panels of Fig. 2 reflect the actual com-
puting time of a typical sc0 calculation and indicate that
resources are evenly split between the Krylov subspace
projections and sc0 iterations to reach self-consistency.

From the above scaling properties, it is clear that the
full sc scheme is sensibly more expensive than the corre-
sponding sc0. This is shown in Fig. 3 for typical Gorkov
calculations in different model spaces and Krylov projec-
tions, as determined by the number of Lanczos iterations

per pivot N`. Evidently, the sc implementation is much
more costly than the sc0. In fact, even when projected to
small Krylov spaces, the time required for running the sc
scheme can easily become prohibitive for practical pur-
poses. On the other hand, as discussed in Sec. V, the sc0
scheme already grasps all the relevant physics leading to
accurate results (see also Refs. [6, 15]) and can be applied
to even larger model spaces that are, e.g., necessary to
handle SRG-unevolved realistic interactions. The sc0 is
therefore an optimal choice for practical calculations.
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FIG. 3. Typical CPU time requirements (in minutes) for 100
iterations in the sc and sc0 self-consistency schemes. Times
are shown for different Krylov subspaces (characterized by
the same number of Lanczos iterations per pivot, N`) as a
function of the model space dimensions.
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IV. PERFORMANCE OF KRYLOV
PROJECTION

As already mentioned, we assume the nuclei under
study to be in a JΠ = 0+ state and expand the Gorkov
GFs propagators in a spherical harmonic oscillator basis
with quantum number a = (n, q, j,m, π) ≡ (n, α,m),
where n and m respectively label the principal quan-
tum number and the projection of the third component
of angular momentum. This allows us to simplify the
working equations into a block diagonal form that sep-
arates all the possible partial waves α. Unless other-
wise stated, the two-body potential employed here is a
next-to-next-to-next-to-leading-order (N3LO) 2N chiral
interaction [38, 39] (Λχ =500 MeV) complemented by the
Coulomb force. The resulting isospin-symmetry break-
ing interaction is then softened using free-space similar-
ity renormalization group (SRG) techniques [40] down to
a momentum scale of λ = 2.0 fm−1.

Before discussing numerical results for the Gorkov
propagators and associated quantities, we investigate the
technical steps involved in the Krylov projection to en-
sure that these do not introduce uncontrolled errors.
First, we check the convergence of the Lanczos algorithm
employed with respect to the different choices of pivot
vectors. Second, we investigate the actual dependence
of binding energies and spectral quantities on the size of
the Krylov subspace. This allows us to make statements
on the best compromise between high accuracy and an
affordable computational cost.

A. Choice of Lanczos pivots

In exact arithmetic, the Lanczos algorithm generates
basis vectors that are all orthogonal to each other, un-
til the full original space is spanned. On a computer,
the finite precision of the machine will at some point
spoil such orthogonality, resulting in a set of linearly de-
pendent vectors. This can be usually corrected, e.g., by
means of selective orthogonalization techniques [41]. In
the following we take instead a pedantic approach and
orthogonalize, at the end of each Lanczos iteration, the
new Lanczos vector with respect to all previous ones.
This procedure is increasingly costly in the limit of large
NL, but it is doable and the provedes safest option for
actual calculations where one is interested in relatively
small Krylov spaces. An additional mechanism causing
the sudden loss of orthogonality is related to the conver-
gence of the eigenvalues of the Krylov-projected matrix,
known as Ritz (eigen)values, to machine precision. This
however happens only for extremely large spaces that
approach the dimension of the original space [Eq. (27)
below] and does not affect in practice our Gorkov calcu-
lations. Nevertheless, we still check for sudden losses or-

N` Np NL/Ncrit,∗
L E(νs1/2)

[MeV]

1 4 4 -2.286045527516
5 4 20 -2.285370055029
10 4 40 -2.285503728538
50 4 200 -2.285578135207
100 4 400 -2.285580911804
150 4 600 -2.285580911686
200 4 800 -2.285580911686
297 4 1111∗ -2.285580911686
300 3 1121∗ -2.285580911686
400 3 1113∗ -2.285558373049
800 2 1103∗ -2.285504651650
1000 2 1029∗ -2.285580911687
1188 1 1029∗ -2.215766990937

Exact diagonalization: -2.285580911686

TABLE I. Contribution to the total binding energy from the
neutron s1/2 partial wave in 12C, for different numbers pivot
used (Np) and number of iterations per pivot (N`). Asterisks
(∗) indicate a truncation of the Lanczos iterations atNcrit

L due
to sudden loss of orthogonality. Otherwise, a total number
NL=Np ×N` vectors is generated. The dimension of the full

3QP space is N
νs1/2
s =1188.

N` Np NL E(νs1/2)
[MeV]

600 1 600 -2.109743018672
300 2 600 -2.268918978484
200 3 600 -2.279490387096
150 4 600 -2.285580911686

Exact diagonalization: -2.285580911686

TABLE II. Same as Tab. II but for a fixed total number of
Lanczos vectors and varying the number of linearly indepen-
dent pivots.

thogonality between successive Lancozs vectors3. If such
a case occurs we truncate the projection right before, at
a corresponding N crit

L number of iterations.
A first basic test concerns the limit

NL = dim(E′) −→ dim(E) (27)

[see also Eq. (A2)], where the Krylov subspace coincides
with the initial one and the exact result must be recov-
ered. To this extent, we calculate the partial contribution
of one specific channel to the biding energy of 12C, Eq. 6,
in a small model space where projections can be com-
pared to an exact diagonalization. Tabs. I and II give
the contributions to the Koltun-Galitskii sum rule for a
neutron with jπ = 1/2+ (α=νs1/2) in small model space
of 4 major oscillator shells (Nmax = 3) and for differ-
ent numbers of iterations and pivots used. In this case
N
νs1/2
s =dim(E) = 1188, N

νs1/2
b = 2 and the total dimen-

sion of the HFB space is dim(Ξ(1)) = 4. Thus, only up

3 Following Ref. [41], two vectors v and w are considered orthog-
onal if v ·w <

√
εm, where εm is the machine precision. In the

case of the present calculations εm = 1.11 · 10−16.
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to 4 Lanczos pivots can be generated from linearly inde-
pendent vectors in the HFB space, Eq. 21. As long as
the number of iterations per pivot, N`, is small enough
to allow for all the 2N

νs1/2
b pivots to be used, the Krylov-

projected energy converges to the exact value in the limit
(27). Tab. I shows that 600 iterations, corresponding
to half of the original 3QP configurations, is enough to
recover the exact diagonalization to thirteen significant
digits. Even for N`=50, results are converged to less than
10 eV. However, when N` increases a smaller number of
pivots is exploited before the full space is saturated. The
accuracy gradually worsens as the number of pivots ac-
tually used is decreased, although results close to exact
one are still found for two pivots only. In principle, even
one single pivot should be sufficient to eventually recover
the exact diagonalization in the limit (27). In practice,
however, no more than a few % accuracy is achieved be-
fore the loss of orthogonality kicks in. Conversely, by
adding just a few extra iterations of a second pivot the
calculated energy collapses close to the exact result. The
dependence on the number of pivots used is shown in
Tab. II for a fixed dimension of the final Krylov space.
This shows that the best possible accuracy is obtained
if all possible linearly independent pivots are iterated.
We further found that including all pivots is important
to quickly converge all the off diagonal matrix elements
of the self-energies, Eqs. (12), in accordance with the
finding of Ref. [22]. This dependence on the number of
pivots relates to having enough degrees of freedom to be
able to span the original HFB space and is particularly
important when resolvent operators are involved in the
projection, as it is the case in Green’s function theory.

In general, any set of linearly independent vectors in
the HFB Hilbert space can be used to generate the pivot
for the Krylov space through Eq.(21). In our calculations
we find that the optimal choice is given by the HFB basis,
which was employed in the above tests. Vectors in the
harmonic oscillator basis as well as random basis vectors
lead to worse convergence in all cases considered. Various
calculations with different orbitals, nuclei, interactions or
model spaces confirmed the above considerations. Given
this, 2Nb pivots generated from the HFB basis are used
throughout the following.

B. N` dependence

When going to the large model spaces necessary to
converge calculations with realistic nuclear interactions,
the currently available computational resources set severe
technical limits on the dimensions of the matrix Ξ that
are tractable numerically. A crucial issue concerns how
large should the Krylov subspace be in order to achieve a
satisfactory accuracy in the solution of the Gorkov equa-
tion. In particular, we examine the dependence of the re-
sults on the number of Lanczos iterations per pivot, N`.
We do this by first looking at the dependence on single
partial waves (as already considered in Tab. I). Then,
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FIG. 4. Relative error in the Koltun-Galitskii sum rule con-
tribution from a single orbital α in 12C as a function of Kα.
Results refer to one diagonalization, for two separate partial
waves and different model spaces.

we investigate the convergence for the cases of just one
Gorkov iteration (involving all waves at once) and for
complete self-consistent sc0 calculations.

For a given model space, the dimensions of both the
3QP space, Ns, and the single particle basis, Nb, will
vary with the partial wave α = (q, j, π). Consequently,
for each α block, a fixed number of Lanczos iterations
N` generates a Krylov-projected matrix, E′, that span
different portions of the initial space. To quantify this,
we introduce

Kα ≡ 100 ∗ dim(E′α)

dim(Eα)
=

100 ∗N` ∗ 2Nα
b

dim(Eα)
, (28)

measuring the fraction of the initial 3QP configuration
space retained by the Krylov projection. This should
give a rough estimate of the percentage of the full 3QP
degrees of freedom that enter the diagonalization of the
Gorkov matrix.

Figure 4 shows the convergence of the contribution to
the Koltun-Galitskii sum rule, Eq (6), of two separate
partial waves in 12C as a function of Kα and for model
spaces with Nmax = 3 and Nmax = 5. This gives a
representative way of how the error of partial contribu-
tion decreases by orders of magnitude with increasing
N`. In particular relatively small values of Kα are suffi-
cient to achieve precisions of the order of the keV in both
cases. After this initial transient the error follow a expo-
nentially decreasing trend. The νs1/2 wave reaches the
exact results up to machine precision when half of the
3QP space is projected to the Krylov subspace, as al-
ready pointed out in Table I. For the larger model space
the convergence to the exact result is eventually slower
but, importantly, the transient of the first few iterations
remains.

As discussed before, the use of one (global) value for
N` implies different degrees of approximation (Kα) for
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Nmax αtot
∑
α dim(Eα)

∑
α 2Nα

b K′(N` = 100)[%]

3 7 12 226 20 16.358
4 9 57 029 30 5.260
5 11 411 968 42 1.019
7 15 3 265 512 72 0.220
9 19 16 808 456 110 0.065
11 23 65 305 228 156 0.023
13 27 208 096 960 210 0.010

TABLE III. Values entering Eq. (29) for various model spaces.
The sum over α is limited to neutrons only (including protons
would require a factor 2 in columns 2, 3 and 4 and cancels out
in K′). As an example, K′ values for N` = 100 are displayed
in the last column.
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FIG. 5. Relative error in the total binding energy of 44Ca
after one second-order iteration (with µ adjustment), given
as a function of K′ for two different model spaces.

each partial contribution to the total energy. In gen-
eral Nα

L ∝ Nα
b so that partial waves with lower angular

momentum will be better reproduced on average, since
for given Nmax truncation of the harmonic oscillator
space the number of orbits Nα

b decreases with increas-
ing jα. This is desirable because low angular momen-
tum waves correspond to the most occupied orbits and
give stronger contributions to the total binding energy,
through Eq. (6). To analyze the combined behavior of
all contributions it is convenient to consider the overall
fraction of 3QP degrees of freedom retained,

K ′ ≡ 100 ∗
∑
α dim(E′α)∑
α dim(Eα)

=
100 ∗N` ∗

∑
α 2Nα

b∑
α dim(Eα)

, (29)

where α runs over all partial waves. The values entering
Eq. (29) are displayed in Table III for different Nmax.
Note that for a fixed N` the fraction K ′ becomes progres-
sively very small with increasing size of the model space.
However, the total number of degrees of configurations
still grows with Nα

b , and asymptotically as (Nmax)2.
Fig. 5 demonstrates the accuracy of the total bind-

ing energy as a function of K ′, when all possible partial
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FIG. 6. Converged (sc0) total binding energy of 44Ca for
different model spaces as a function of N`.

waves are accounted for. The 44Ca isotope in considered
here. The Gorkov matrix is diagonalised only once but
with the chemical potentials already adjusted to yield
the correct number of particles. Relative errors are given
with respect to a complete (unprojected) diagonalization.
Errors in both Nmax = 3 and Nmax = 4 models spaces
are comparable for K ′ > 1% and eventually decrease in
a similar fashion as in Fig. 4. On the other hand, con-
vergence to few keV is reached for smaller values of K ′

in the larger model space.

Actual calculations will differ from the above cases for
the fact that several diagonalizations have to be repeated
iteratively to reach self-consistency and that very large
model spaces must be employed. In Fig. 6 converged sc0
energies are displayed for different model model spaces
as a function of N`. One notices that all cases show a
similar dependence on N`: a dip, a steep rise after N` = 2
and a smooth decay towards an asymptotic value. This
behaviour is rather independent of Nmax and indicates
that N` is a much better parameter than K ′ for gauging
the convergence of the Krylov projections. On the other
hand, small fluctuations can still happen for N` > 10,
especially for the larger models spaces, and suggest that
somewhat larger values of N` might be needed to reach
the desired accuracy as Nmax increases. In general, this
behaviour is in accordance with the above observations
that, when enlarging the model space, smaller K ′ frac-
tions are sufficient to reach a few keV accuracy. Ar-
guably, binding energies are well reproduced once one
includes a minimal number of degrees of freedom that is
sufficient to resolve the system’s wave function (or prop-
agator). This is well controlled by N` and happens no
matter how big is the fraction of the 3QP configurations
that are left out. The Krylov projection is a very ef-
ficient way to select such key degrees of freedom since
it specifically preserves the moments of the 3QP matrix
E. The trend observed in Figs. 4 and 5 suggest that K ′

might instead control the exponential convergence to the
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FIG. 7. Density of neutron 1/2+ states in 40Ti for differ-
ent Krylov projections. Due to the symmetry of Gorkov’s
equation, the distribution is symmetric around ω = 0. The
distribution, discretized in the calculation, is convoluted with
Lorentzian curves of 5 MeV width for display purposes.

exact diagonalization. This is the plateau of Fig. 6, after
the initial transient that reconstructs the most important
features of the propagator.

A proper estimate of the error introduced by the pro-
jection into a Krylov subspace should eventually be based
on varying the N` parameter, and it can differ for various
model space sizes and calculated isotopes. From Fig. 6
one sees that the energies reach a plateau in the N` de-
pendence for N` > 30, rather independently of the model
space. By looking at the sc0 values obtained here, we
estimate that the Lanczos procedure up to N`=50 intro-
duces accuracies of roughly 200-300 keV for the largest
model space considered (Nmax = 13).

It is also instructive to look at convergence of spectro-
scopic quantities with respect to the Krylov projections.
To this purpose, the case of the doubly open-shell nu-
cleus 40Ti is considered in a model space of 14 major
shells. In Fig. 7 the density of (quasiparticle) neutron
1/2+ states is displayed as a function of their separation
energy for increasing Lanczos iterations. The exactly cal-
culated density of states (DOS) would have a bell shape
due to the rise of the number of (physical) degrees of free-
dom which is eventually stopped by the truncation of the
model space. From Tab. III, it is obvious that only a very
small fraction of configurations cab be retained. Thus, as
the dimension of the projected Gorkov matrix increases,
only the density of states at the edges of the eigenvalue
spectrum start converging, which is a typical feature of
Krylov methods. Despite of the lack of degrees of free-
dom ad the center of the spectrum, the total spectral
strength is shown to converge rather rapidly everywhere
when increasing N` [42]. This is seen in Fig. 8, where
the one-neutron addition and removal spectral strength
distribution is computed for the same cases of Fig. 7.
This is convoluted with Lorenzians of 5 MeV width, and
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model space. Results are displayed for different neutron and
proton orbitals.

the two N` = 100 and N` = 200 curves are substantially
indistinguishable. We find that the strength distribution
converges to a resolution of 10 MeV (5 MeV) for N`=50
(N` = 100). Even for projections into relatively small
Krylov spaces, the method conserves the overall features
of the strength distribution, which guarantees the quick
convergence of observables and spectroscopic quantities
in general.

Fig. 9 also compares effective single-particle energies
for various orbitals are at different Lanczos truncations
N`. Results are given as deviation to the ESPE for the
case N` = 200 which is the most accurate truncation
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used. Difference between N` = 50 and N` = 200 are al-
ready around 10 keV for all single-particle orbitals, and
decrease to ?? keV for N`=100-200. This is also represen-
tative of the accuracy reached in calculations separation
energy of dominating qp peaks. Similar results are ob-
tained for other nuclei and different model spaces.

Summarizing, the Krylov projection is shown to be re-
liable in all the considered cases. The loss of orthogonal-
ity is well understood for small model spaces and never
occurs in practice for large model spaces, where one is
limited to a small number of Lanczos iterations. Both
total binding energies and single-particle spectra are very
well reproduced after relatively small values of N`, nearly
independently of the original dimensions of Gorkov’s ma-
trix. This indicates that the Krylov-projection tech-
niques employed here are a reliable and computation-
ally affordable tool that can be extended to large model
spaces. In view of these results, for a typical large-scale
calculation a projection with N` = 50 is expected to yield
a sufficient degree of accuracy for most application to
medium mass isotopes. In this case, a conservative es-
timate for the systematic error introduced by the pro-
jection is 500 keV on the converged total energy and 50
keV for what concerns one-nucleon separation energies
and ESPEs. This can be improved by increasing N`.

V. SELF-CONSISTENCY SCHEMES

Section III C outlines two different self-consistent cal-
culation schemes. The sc implementation corresponds to
a fully self-consistent solution of Gorkov’s equations. In-
stead, the sc0 scheme iterates self-consistently only the
static part of Gorkov self-energies, Σ(∞). A priori, there
is no guarantee that one of these two many-body trunca-
tions will give results systematically closer than the other
to the exact binding energy. However, the sc approach
is conceptually superior both because it includes more
diagrams (at very high order) and because it guaran-
tees that solutions will satisfy fundamental conservation
laws. From the computational point of view the two ap-
proaches are very different (see Fig. 3). As discussed in
Sec. III D, the heaviest part of a self-consistent iteration
in the sc scheme is constituted by the computation of
second-order self-energy matrix elements C and D. This
scales as N7

bN
3
` after the first iteration, since a number

Nb+NL of new poles have been generated, and it is much
heavier than the corresponding sc0 case. Even with the
most modern computational resources such a scaling puts
severe limits on the model space and/or the accuracy (in
terms of Krylov projection) that can be reached in actual
calculations. The sc0 case, on the other hand, involves a
much less demanding computational effort: second-order
terms are computed only once in this scheme and for a
propagator involving many Nb poles. Once this is done,
the most costly part of a sc0 calculations is the diag-
onalization of the Krylov-projected Gorkov matrices in
the various partial waves (step 3 in Sec. III D). We also
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FIG. 10. Binding energy of 4He (left) and 20O (right) as
a function of Lanczos iterations per pivot N`, for different
model spaces. Dashed (solid) lines correspond to the sc (sc0)
self-consistent scheme.

note that discrepancies between sc and sc0 are expected
to be reduced once truncations of the Gorkov formalism
beyond second order will be implemented.

The two self-consistency implementations are com-
pared in Fig. 10 for 4He and 20O, using second order self-
energies. Results for total binding energies are displayed
for different model spaces and small Krylov subspace pro-
jections, for which full sc calculations were possible. For
all the cases considered here, the two schemes yield re-
sults that differ at the level of 1%. This is about the
same error estimated for many-body truncation in third-
and higer-order SCGF approaches [6, 43]. Thus, Fig. 10
confirms the excellent performance of the partially self-
consistent sc0 approach, making it the optimal compro-
mise between high accuracy and an affordable computa-
tional cost.

VI. MODEL SPACE CONVERGENCE

The previous discussion has focused on the different
technical steps that enable an efficient numerical solution
of Gorkov’s equation (18). In the present section, let us
turn to the choice of the model space in Gorkov calcu-
lations. A crucial requirement for ab initio approaches
is in fact the convergence with respect to the basis em-
ployed. For the harmonic oscillator model space con-
sidered here, this translates into the independence of the
results on the oscillator spacing ~ω and number of major
shells used Nmax + 1. Fig. 11 demonstrates the conver-
gence of total energy of the open-shell 44Ca. As Nmax is
increased, results become independent of ~ω and quickly
converge to a fixed value. Calculations at first (second)
order in the self-energy expansion vary by only 10 keV
(30 keV) when going from Nmax = 11 to Nmax = 13, well
below the systematic error introduced by the Krylov pro-
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FIG. 11. Binding energies of 44Ca from first-order (upper
panel) and second-order (lower panel) Gorkov calculations as
a function of the harmonic oscillator spacing ~ω and for in-
creasing size Nmax of the single-particle model space. The
insert shows a zoom on the most converged results.

jection. Similar convergence patterns have been found for
closed shell calcium isotopes, as well as heavier systems
such as 74Ni [15]. Similar conclusions can be drawn for
other quantities such as the spectral strength distribu-
tion. In Fig. 12, the one-neutron removal distribution,
at energies below the Fermi level, is plotted for different
values of Nmax. Details of the spectral distributions close
to the Fermi surface are very well converged already at
Nmax = 9. The distribution of Fig. 12 is convoluted with
Lorentzians of 5 MeV, which demonstrates that model
spaces of Nmax = 11 and Nmax = 13 are sufficient to
converge the strength at very high (negative) energies to
within this resolution.

For a given method and implementation, the conver-
gence depends in general on the input NN (and 3N) in-
teraction. In this sense, the robust behavior displayed in
Fig. 11 confirms the softness of SRG-evolved potentials
used in this work, for which 14 major shells are suffi-
cient to ensure well converged calculations. Our present
implementation leaves room for improvement of the al-
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FIG. 12. One-neutron removal spectral strength distribution
in the 1/2+ channel in 40Ti as a function of the model space
dimension Nmax. The distribution, discretized in the calcu-
lation, is convoluted with Lorentzian curves of 5 MeV width
for display purposes.

gorithms and better parallelisation so that the method
can be pushed to larger model spaces. This presents op-
portunities for either going to even heavier systems or
employing interactions with a higher SRG cutoff. Both
paths will be explored in forthcoming works.

VII. CONCLUSIONS

We have presented details of the numerical implemen-
tation of Gorkov-Green’s function method for finite nu-
clear systems. This approach allows to extend the reach
of first-principle calculations to several hundreds of open-
shell nuclei in the medium-mass region that have been
so far unaccessible. The complete Gorkov-Green’s func-
tion formalism up to second order has been detailed in
Ref. [14]. In this work, the numerical solution of these
equations is discussed with particular attention to di-
agonalization, convergence and self-consistency issues.
Presently we focus on an ab initio scheme whose input is
a nucleon-nucleon N3LO chiral interaction, SRG-evolved
to λ = 2.0 fm−1. Work to include three-nucleon forces is
in progress and will be reported in a forthcoming publica-
tion (see also Ref. [6, 33]). The details and performance
of the algorithm discussed in Secs. III and IV are how-
ever of general character, and will not be altered by the
use of a stronger input NN interactions or the inclusion
of three-body forces.

A distinctive feature of Green’s function methods is the
simultaneous generation of both the A+1 and A−1 spec-
tral distributions, when computing the (ground-state)
properties of the A-body system. Self-energy contribu-
tions beyond first order account for dynamical correla-
tions and induce the fragmentation of the single-particle
strength in such distributions. The self-consistent treat-
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ment of the fragmented strength requires particular at-
tention in handling the new poles that are generated at
each iteration. Given the doubling of the effective degrees
of freedom, due to the Bogoliubov ansatz, this is even
more delicate when working in the Gorkov framework.
We adopt a method to control the growth of poles in the
single-particle propagator that makes use of Krylov pro-
jection techniques and it is a variant of methods already
in use in Quantum Chemistry [22]. This is described in
Sec. III, while Sec. IV presents specific details that are
relevant to nuclear physics implementations. This pro-
cedure displays a favorable scaling behavior and can be
executed to arbitrary accuracy, i.e. it recovers the exact
result when the projection space coincides with the orig-
inal one. In Sec. IV, we have studied the performance
of our Krylov-based technique. We have shown that it is
manageable from the numerical point of view, stable and
benchmarked it against the exact result for small model
spaces.

Two different self-consistent schemes have also been
analyzed. With the currently available computational
resources, a fully self-consistent implementation is out
of reach for medium-mass nuclei. Nevertheless, the par-
tially self-consistent sc0 scheme was seen to be already
a satisfactory compromise as it leads to accurate results
and it is also computationally feasible.

We have finally investigated the dependence of our re-
sults on the size of the harmonic oscillator model space,
showing a very fast convergence of different observables
when SRG-evolved interactions are employed.

From the technical point of view, this work demon-
strates that Gorkov-Green’s function calculations are a
solid and viable candidate for the ab initio description of
medium-mass open-shell nuclei. The method has proven
to perform well both on semi-magic and doubly-magic
systems up to the nickel isotopes [15, 25]. Together
with the on-going implementation of three-nucleon in-
teractions, the present work sets the basis for systematic
calculations of full isotopic chains from an ab initio per-
spective.
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Appendix A: Krylov projection

The critical step that allows for Gorkov calculations
in large configuration spaces is the projection of the
3QP configurations space into tractable Krylov subspace.
Here, we present the details of the particular Lanczos-
based algorithm presently employed in calculations of
Gorkov- and Dyson-Green’s functions [6, 15, 25, 26].

When solving Eq. (19), one needs to handle a matrix
E of large dimensions Ns × Ns. Let HLG be the space
spanned by the eigenvalues of E, with dim(HLG) = Ns,
and p a vector of dimension Ns (usually referred to as
the pivot). The Krylov subspace of order r is the linear
subspace of HLG spanned by the images of p under the
first r powers of E, i.e.

K(r) ≡ span
{
p, H p, H2 p, H3 p, . . . ,Hr−1 p

}
. (A1)

Provided that E does not decouple in sub-blocks of sep-
arate symmetry, one has that

K(Ns) = H . (A2)

The Lanczos algorithm is a procedure that generates
an orthonormal basis {vj ; j = 1, 2, . . . r} of K(r) in the
case in which E is Hermitian. The basis vectors vj
are obtained through a recursive procedure that involves
vector-matrix multiplications, as follows:

v1 ≡ p (A3a)

E v1 ≡ e11 v1 + e21 v2 (A3b)

E v2 ≡ e12 v1 + e22 v2 + e32 v3 (A3c)

. . .

E vr−1 ≡ e1(r−1) v1 + · · ·+ er(r−1) vr , (A3d)

where at each step the newly generated vector vj is fur-
ther normalized to 1. Following the above construction
one has

eij = (eji)
∗ = v†iE vj = 0 for |i− j| ≥ 2 , (A4)

such that the projection E′ of the matrix E on K(r) is
tridiagonal.

A similar procedure is applied here to reduce response
operators such as Eq. (25), where E is defined in a
large configuration space HLG and the matrix product
CC† is defined in a smaller space HSM . In this situa-
tion, it becomes necessary to exploit more than a single
pivot vector to quickly converge all degrees of freedom
in HSM . In our Gorkov calculations, HSM is the HFB
one-body Hilbert space, which has twice the dimension
of the single-particle basis employed. Thus, we generate
np = 2Nb different vectors according to Eq. (21).

Let {p(i); i = 1, . . . np} be a set of linearly independent
vectors. The new Krylov space is generated by extend-
ing the definition of Eq. (A1) and the Lanczos proce-
dure (A3) to the case of multiple pivots. Each vector
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p(i) is thus iterated a number of times ri, so that the
total dimension of the basis generated is

NL =

np∑
i=1

ri . (A5)

In our algorithm the Lanczos iterations (A3) are per-
formed in sequence for each starting vector p(i). It if
therefore important that, at the starting of each new set
of iterations, the pivots are orthonormalized to the pre-
viously generated basis vectors.

The first pivot p1 is simply iterated r1 times as follow:

v
(1)
1 ≡ p(1) (A6a)

E v
(1)
1 ≡ e11 v

(1)
1 + e21 v

(1)
2 (A6b)

. . .

E v(1)
r1 ≡ e(r1−1)r1 v

(1)
r1−1 + er1r1 v(1)

r1 + u(1) . (A6c)

Up to this point the projected matrix E′ still maintains
a tridiagonal structure and the vector u(1) is orthogonal

to the first r1 basis vectors {v(1)
1 , . . .v

(1)
r1 }. As already

mentioned, p2 has first to be orthogonalized with respect
to the latters. Hence, one writes

p(2) ≡
r1∑
i=1

c
(1)
i v

(1)
i + d(1) v

(2)
1 , (A7)

imposing ||v(2)
1 || = 1, and takes v

(2)
1 as the new pivot.

Since v
(2)
1 is orthogonal to all previous vectors, using the

hermiticity of H and the tridiagonal form of Eqs. (A6)
one can prove that

v
(1) †
i E v

(2)
1 = 0 ∀ i = 1, . . . , r1 − 1 , (A8a)

v(1) †
r1 E v

(2)
1 = u(1)†v

(2)
1 = hr1(r1+1) . (A8b)

In general, each vector p(i), with i ≥ 2, will be or-
thonormalised to the previously generated portion of the
basis according to

p(i) ≡
i−1∑
j=1

ri∑
k=1

c
(j)
k v

(j)
k + d(i) v

(i)
1 , (A9)

and the vector ||v(i)
1 || = 1 is taken as the new pivot,

which is iterated ri times. If ni is then number of basis
vectors generated from all iterations before the ith pivot,

ni =

i−1∑
j=1

rj , (A10)

E′ =

}
r1 r2

 r3

︸ ︷︷ ︸
NL

FIG. 13. Fishbone-like structure of the Lanczos reduced ma-
trix E′.

the iteration of pivot v
(i)
1 yelds

E v
(i)
1 ≡

i−1∑
j=1

hnj(ni+1) v(j)
rj

+h(ni+1)(ni+1) v
(i)
1 + h(ni+2)(ni+1) v

(i)
2 (A11a)

E v
(i)
2 ≡

i−1∑
j=1

hnj(ni+2) v(j)
rj

+h(ni+1)(ni+2) v
(i)
1

+h(ni+2)(ni+2) v
(i)
2 + h(ni+3)(ni+2) v

(i)
3 (A11b)

. . .

H v(i)
ri ≡ h

i−1∑
j=1

hnj(ni+ri) v(j)
rj

+h(ni+ri−1)(ni+ri) v
(i)
ri−1

+h(ni+ri)(ni+ri) v(i)
ri + u(i) , (A11c)

where u(i) is orthogonal to all previous vectors.

Relations analogous to Eqs. (A8) hold for every change

to a new pivot, which connects the v
(i)
ri vectors (at the

end of each block of iterations) to the remaining basis
vectors. It follows that the tridiagonal form of the pro-
jected matrix E′ is maintained except for the rows and
columns where pivots are changed, which are non-zero
and give rise to the fishbone-like sparse matrix shown in
Fig. 13.

Notice also that the resulting space is not directly gen-
erated by the p(i) vectors of Eq. (21) since these are
othogonalized before they are iterated. Hence, the ac-
tual Krylov space is the one associated with the pivots
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{v(i)
1 ; i = 1, . . . , np} and it is defined as

K(r) ≡span
{

v
(1)
1 , H v

(1)
1 , H2 v

(1)
1 , . . . ,Hr1−1 v

(1)
1 ,

v
(2)
1 , H v

(2)
1 , H2 v

(2)
1 , . . . ,Hr2−1 v

(2)
1 ,

. . .

v
(np)
1 , H v

(np)
1 , . . . , Hrnp−1 v

(np)
1

}
. (A12)

In the present work we choose a fixed number of itera-
tions, i.e. ri = N`, ∀ i = 1, . . . np, except for cases where
a truncation of the Lanczos procedure required a lower
number of iterations for the last pivot (bottom part of
Tab. I).

Appendix B: Adjustment of chemical potentials

During the numerical solution of Gorkov’s equation,
at each iteration proton and neutron chemical potentials
have to be adjusted in order to have, on average, the
desired number of particles (see point 6 of the algorithm
in Sec. III C). After the self-energies have been computed
and Gorkov’s matrix has been diagonalized, the average
numbers of neutron and proton are evaluated through

Nav =

neutrons∑
a

ρaa=

neutrons∑
a,k

∣∣Vka ∣∣2 , (B1a)

Zav =

protons∑
a

ρaa =

protons∑
a,k

∣∣Vka ∣∣2 . (B1b)

The resulting numbers are compared to the expected N
and Z. The corresponding chemical potentials µN and
µZ are then increased (decreased) if the computed num-
ber of particle is smaller (larger) than the required values
according to

µnewN,Z = µoldN,Z + ∆µ
N,Z , (B2)

where

∆µ
N ≡ C

µ
N

N −Nav

N
, (B3a)

∆µ
Z ≡ C

µ
Z

Z − Zav

Z
. (B3b)

The parameters CµN,Z control the speed and pattern of
convergence, and are typically of order of unity. As long
as convergence is reached, the choice of CµN,Z does not
impact the final result.

Notice that subsequent adjustments of the chemical
potentials may be necessary before the required preci-
sion of Nav, Zav is achieved, implying that in practice
the above procedure is repeated several times. However,
one is not interested (at least in the first few iterations)
in having extremely precise neutron and proton num-
bers as the self-consistency process will make the opti-
mal chemical potentials vary until a sufficient degree of
self-consistency is reached.
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