An empirical study of players’ emotions in VR racing
games based on a dataset of physiological data

Marco Granato' © . Davide Gadia' - Dario Maggiorini' - Laura A. Ripamonti’

Received: 4 April 2019 / Revised: 29 October 2019 / Accepted: 11 December 2019/
Published online: 02 March 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

A video game is an interactive software able to arouse intense emotions in players. Conse-
quentially, different theories have been proposed to understand which game aspects are able
to affect the players’ emotional state. However, only few works have tried to use empiri-
cal evidence to investigate the effects of different game aspects of the players’ emotions.
In this paper, we present the results of a set of experiments aimed at predicting the play-
ers’ emotions during video games sessions using their physiological data. We have created
a physiological dataset from the data acquired by 33 participants during video game fruition
using a standard monitor and a Virtual Reality headset. The dataset contains information
about electrocardiogram, 5 facials electromyographies, electrodermal activity, and respi-
ration. Furthermore, we have asked the players to self-assess their emotional state on the
Arousal and Valence space. We have then analyzed the contribution of each physiologi-
cal signal to the overall definition of the players’ mental state. Finally, we have applied
Machine Learning techniques to predict the emotional state of players during game sessions
at a precision of one second. The obtained results can contribute to define game devices and
engines able to detect physiological data, as well to improve the game design process.
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1 Introduction

Huizinga [51] defines the action to play a game as “a voluntary activity or occupation exe-
cuted within certain fixed limits of time and place, according to rules freely accepted but
absolutely binding, having its aim in itself and accompanied by a feeling of tension, joy
and the consciousness that it is ‘different’ from ‘ordinary life”. Thus, generally, the devel-
opment of a game is focused on the players, with the main goal of inducing entertainment
and engagement. A video game uses audio/visual information presented through electronic
devices in order to communicate the game structure. It considers all the peculiar features
of a game, including the ability to solicit players’ emotions [42, 43, 52]. Spatial Presence
[24] and Flow [18] are two theories of positive psychology that are commonly used to iden-
tify how a video game, or a generic entertainment product (e.g., a movie), interacts with
the human emotions. Spatial Presence is a psychological condition describing how much a
player has the illusion to be transported in a virtual environment. This condition can be bet-
ter elicited by immersive technologies (e.g., Virtual Reality). Researchers have suggested
that a high sense of Spatial Presence can improve players’ entertainment and it may also
facilitate the players’ performance [68]. The theory of Flow tries, instead, to define a men-
tal state where a user is completely absorbed in a task. This theory describes a balanced
channel between challenge and ability: when in the Flow state, a person can benefit of an
experience of achievement and happiness. In a video game session, the sensation of Flow
seems to be connected with an increase of dopamine level, a neurotransmitter that increases
human attention [56].

In this paper, we present a set of experiments, where a number of participants have played
at 2 racing games in two different contexts, with and without Virtual Reality (VR). During
the experiments, we have recorded physiological signals of the players: electromyography
(EMG) on the players’ face, in order to include the facial expressions in the analysis, elec-
trocardiogram (ECG), galvanic skin response (GSR), and respiration intensity/rate (RESP).
We have also collected, after game session, the players’ self-assessment information about
their emotional state during the game fruition. The self-assessment data and the physiologi-
cal dataset have been used in order to infer the emotional state of the players in each moment
of the game sessions, and to build a prediction model of players’ emotions using Machine
Learning (ML) techniques. Therefore, the three main contributions of this paper are: to cre-
ate an affective dataset using video games as stimuli, to understand which physiological
conditions are the most relevant in order to determine the players’ emotions, and to propose
a method for the real-time prediction of a player’s mental state during a video game session.

The remainder of this paper is organized as follows: in Section 2, we present a brief
overview of related works; in Section 3, we describe the affective database and the method-
ology used to acquire the data. Then, in Section 4, we explain the experimental setup,
providing information about the study sample, the procedure, and the algorithm used for
emotions assessment. The paper proceeds with the signals analysis in Section 5, focusing
on filtering, features creation and selection, and with the application of ML techniques. In
Section 6, we present the results and we also briefly discuss their connection with the Spa-
tial Presence and Flow theories. Lastly, we provide conclusions and final considerations for
future works in Section 8.

2 Background and related works

In the game design field, some studies have been proposed to understand which game com-
ponents could be used to raise the players’ engagement. Koster has stated [56] “the destiny
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of games is to become boring, not to be fun”, because the enjoyment in video games persists
until the player has the feeling to have learned something new that helps her to master the
game mechanics. Lazzaro [58], through the observation of subjects playing their favorite
video games, has identified 4 elements able to arouse emotions without an explicit narrative:
Hard Fun, Easy Fun, Altered States, and The People Factor. The author chose to not con-
sider the explicit narrative, since it may modify the emotions aroused in player in a similar
way of a movie or a book. Instead, her main goal was to investigate the relationship between
emotions and game mechanics. Freeman [34] has listed 33 game design techniques useful
to elicit players’ emotions during the games’ fruition.

Since video games are media able to arouse emotions, several studies have been proposed
to understand the sensations elicited by these entertainment products. These researches are
based mainly on two approaches: the definition of a set of parameters which describes the
players’ behavior, and the direct analysis of users during a game session. Modeling the
players’ characteristics allows to understand their behavior and, consequentially, to suppose
the emotions elicited by a specific video game feature through simulations. In [21, 71] the
researchers have studied the players’ satisfaction regarding the game rewards (Looting Sys-
tem) in Massive Multiplayer Online (MMO) and Multiplayer Online Battle Arena (MOBA)
games, through a set of simulations where different agents have peculiar features (like, e.g.,
Bartle type [3], time usually spent playing video games, etc.). The analysis of a player dur-
ing a game session can be performed in two ways: studying the player’s behavior in a video
game, or using her physiological information to infer her emotions. The former is usually
considered in several moments during the development of the game, and sometimes also
after the game release to the market. This procedure is called playtest, and it has the main
purpose to have an overview of “the entire design process to gain an insight into whether
the game is achieving your player experience goals” [35]. Playtesting is widely used in the
industry, but, usually, it is not useful to extract quantitative data about the players. Instead,
the second approach provides to the researchers quantitative results based on players’ phys-
iological conditions. The emotions have a physiological reaction in humans. Dalgleish [19]
has presented an overview of theories on the relation between emotions and physiolog-
ical conditions. Thus, physiologic reactions to emotions can be described and acquired
by at least three human output systems [61]: self-report measure (e.g., through verbal
expressions), behaviors (e.g., facial expressions), and physiological reactions of Autonomic
Nervous System (ANS), like, e.g., Heart Rate, Brain Activity, etc. The physiological infor-
mation can be used to identify the user’s emotions [32], or to provide an input to a software
or a device (e.g., [8, 31]). This is one well-known application of the Affective Computing
field. However, to our knowledge, this research field, applied to video games, is not deeply
investigated.

Two studies [65, 86] have used physiological data for the interaction with video games:
in particular, they have considered the respiration signal to infer players’ emotions and to
adapt accordingly the video game status. A different signal ascribed to the players’ emo-
tions is the electrocardiogram. For the sake of brevity, we can define the electrocardiogram
as a technique that provides information about electrical response conforming with the heart
contractions. This kind of information has been adopted to provide an input in a video game
[30] and to expand the game log during the playtest [12]. Hazlett [47] has applied, during
a racing game session, two EMG sensors on the face of 13 teenage players. Through this
study, the author has shown that the Zygomaticus muscle is more involved during positive
events, while the Corrugator muscle is involved in the negative ones. Also, Tognetti et al.
[80] have considered a racing game in order to understand the players’ emotion under dif-
ferent game events. They have recorded 5 physiological signals - Blood Volume Pressure
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(BVP), ECG, GSR, Respiration, and Temperature - and they have used them to classify
the information collected using a survey. Unfortunately, none of the mentioned works have
made publicly available the collected database.

In [39], the authors of this paper have proposed a preliminary framework to deter-
mine the players’ emotions through physiological data. In this work, we have extended the
results obtained in [39], carrying out a more rigorous experimental setup and proposing
an enhanced hardware architecture to collect the physiological signals. Moreover, we have
studied the emotions in players during game sessions in VR.

3 Methodology and tools

In the following sub-sections, we present the methodology and tools used to collect the
physiological RAcing GAme dataset (RAGA). Then, we discuss the different typologies
of emotion identification, and the methodologies used for the selection of the stimuli and
physiological signals that we have considered as the most informative to infer emotions
from video games players.

3.1 Available affective datasets

The reason for the creation of a novel physiological dataset is given mainly to the lack of
affective data regarding video game players. In fact, the most common available datasets [1,
6, 54, 67,70, 72, 78] are mainly based on different kind of stimuli, like, e.g., video, images,
etc. They provide info on the physiological signals acquired from the subjects, the method of
the emotions annotation (self-assessed or using external annotators), and the representation
of emotions in a 2D or 3D vector space. At the best of our knowledge, RAGA is the first
freely available dataset, developed for academic research, based on the use of video games
as stimuli: in particular, we have considered game sessions based on a standard monitor and
a VR headset.

3.2 Physiological data acquisition for RAGA

For each player participating to the experimental setup (described in Section 4), we have
acquired 4 groups of physiological signals: electrocardiography (ECG), electromyography
(EMG) on 5 facial muscles, Galvanic Skin Response (GSR), and Respiration Rate. We have
acquired signals produced by the EMGs sensors, rather than the implementation of others
camera-based face expression recognition techniques (e.g., [44]), in order to permit the
game fruition also with emergent video game technologies (i.e., VR) that cover a relevant
area of the players’ face. These analogical data are collected using an Arduino Due that
uses its built-in ADC to perform a 12-bit quantization at 556 Hz. The data is sent through
Bluetooth protocol (using the HC-06 peripheral) to a computer. We have used a wireless
protocol in order to remove the noise produced by the power grid, and we have provided
power to the Arduino and the sensors through a stand-alone 5 V battery.

Thus, for ECG and EMG signals acquisition, we have involved six Olimex-EKG-EMG
shields, a device compatible with Arduino, already used in biomedical engineering [79].
It is able to read a 3-lead electrode connector via 3.5 jack. One Olimex is used to acquire
the ECG data connecting three disposable electrodes Fiab F9079/100 (36x40 mm) on clean
skin, following the Einthoven triangle guidelines [16]: two at both wrists and one at the left
ankle. The other 5 Olimex sensor are used to collect the data on 5 different areas on the right
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side of participants’ face using disposable electrodes of size 32x32 mm, (Fiab FO053N)
as illustrated in Fig. 1: on Zygomaticus Major (EMG1), Corrugator Supercilii (EMG?2),
Nasalis (EMG3), Orbicularis Oculi (EMG4), and Temporalis (EMGS5) muscles. These pairs
of electrodes used to acquire the EMG signals have a common reference electrode, placed
on the forehead, near the hair border, as suggested in [81].

The GSR signal, also named Electrodermal Activity (EDA), is acquired by placing two
electrodes (Fiab F9053N) on two distal phalanxes of the left hand. Usually, the players
control racing games with the left area of a gamepad, using the left-hand thumb to steer
through an analog joystick and the left index to brake using a trigger. Thus, we have con-
nected the electrodes on two fingers, middle and ring, which usually are not used to control
racing games. The potential difference is amplified using an LM324 Surface Mount Device
(SMD) installed on a Grove GSR sensor. GSR can be considered as a reflection of the sym-
pathetic axis that produces an eccrine sweat gland [17]. In humans, research has shown that
the sweating has also a function of emotional expression [20]. Thus, the sympathetic activ-
ity can be considered linked to emotions and, therefore, GSR is often suggested as emotions
index [82].

Finally, we have acquired the respiration intensity/rate signal placing an NTC Ther-
mistor (NTCLE203E3 SBO0) under the participant’s nose. The base of the sensor has been
isolated using insulating tape and it has been placed avoiding contact with the user’s skin
in order to limit the noise involved with the epidermal temperature. Thus, when the user
exhales, she increases the temperature under the nose area and, as a consequence, reduces
the tension information acquired by the sensor (vice versa when she inhales). The thermis-
tor has an accuracy of 0.5 Cxo in a range between 25 Cxo and 85 Cxo, as declared by the
manufacturer [83].

Corrugator
supercilii (EMG2)

Common Reference
/ Electrode
(at border of hair line)

Levator labii
superioris
alaeque nasi (EMG3)

W7

]

Orbicularis
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Fig. 1 Position of facial electrodes used to acquire the EMG signals. Original medical illustration from
Patrick J. Lynch (https://goo.gl/ttgxo6)
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All these sensors have received a tension of 3.3V directly by the Arduino Due, thus the
ADC step is equal to 805.66 1V /bit. An architecture overview is presented in Fig. 2.

3.3 Emotion definition and tagging in RAGA

During the experiments, we need also to acquire information about players emotions. After
the game session, we directly ask the participants to self-assess their emotional states during
the video game fruition. Thus, an important decision to take is the type of emotion markers
that must be applied.

We have considered acquiring the emotion self-assessment values in a continuous time
over all the game levels. This has created a novel challenge in the video game experimen-
tal design, since the majority of the researches in affective video game field have identified
the emotions in the discrete time, labeling the game sessions (or highlights) through a
final survey (e.g., [80]). We agree that using a discrete time can provide a greater amount
of data able to predict the emotional state, allowing an overall better accuracy on the
ML model. However, to self-assess the overall game session with a single evaluation can
be reductive, since a game stage can provide different and conflicting emotions. In con-
trast, if the research provides different evaluations using the game highlights, they may
lose the focus on the overall emotions elicited by all the game session. In addition, defin-
ing the highlights as the parts of the game able to arouse emotions may be reductive for
mainly two reasons: the game highlights may not affect the mental state of the player, and

Signals:

—>» Analog
_____ » Digital Cabled
................ » Digital Wireless

Fig.2 Overview of the hardware architecture used to acquire physiological information for RAGA
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not all the games have emotional highlights. For example, some repeated mechanics in
a game may affect the game ability to elicit emotions in players, and as a consequence,
may not provide the desired emotion. Moreover, to evaluate only the salient parts of the
game (excluding the context) can induce the player to assess the emotion following what
he thinks it is “expected”, to the emotional bias [2] and response bias [36], or to confuse
the events if they are similar. Considering, for example, a basketball video game, where the
player makes and receives several points. This example describes the importance to exam-
ine the overall match, since if only the most salient moments of the match are shown to
the player, she looses the context. Consequentially, an annotator may confuse the affec-
tive state elicited by a particular action, due to the similarity of the different events. Thus,
to consider only the highlights may make the whole vision of the game lost. On the other
side, some emotional games may not provide game highlights, but the implicit narrative
and the environment are able to elicit the players’ emotions. For example, Journey (devel-
oped by Thatgamecompany) does not provide any particular game highlight, however it is
able to provide strong emotions to players [76]. A novel approach for the emotion clas-
sification may be to evaluate the physiological changes rather than game highlights. Of
course, it does not resolve the issues based on biases and on the loss of the overall vision
of the game stage, however it may assess the relevant information with the player point
of view.

The most common way to describe an emotion is to identify it among a discrete set
of labels (e.g., joy, boredom, etc.). Scientific researches have identified several markers,
anyway, they are often not uniformly defined across the different cultural background.
Ekman [27] has defined six basic and universal human emotions: anger, fear, sadness,
happiness, disgust, and surprise. These emotions have the same intrinsic meaning and
physiological outcome across the different cultures. Despite the interesting results, Rus-
sell [73] has underlined the gaps of Ekman’s research by showing that the names of
different emotions have an overlapped meaning in some languages. Therefore, psycholo-
gists have developed an alternative methodology to identify the emotions, by distributing
them on an n-dimensional space. The most common approach is to map the emotions
into a 3D vector space, considering Pleasure(Valence)-Arousal-Dominance (PAD), as
axes [74]. Following the approach of other datasets [6, 70, 72], in the present work
we have considered, for the emotions identification, only the Valence and Arousal vec-
tors (VA). The former defines the emotion “quality” (from averseness to attractiveness)
and the latter defines the emotion “intensity” (from very calm to very excited). This
helps to reduce the time of the experimental sessions, and to minimize the participants’
bias.

A common practice to allow the players to self-assess their emotions is to use the
Self-Assesment Manikins (SAM) [9], which are structured by a series of anthropomorphic
figures representing different human emotions. They are able to map the 2-dimensional
space defined by the Valence and Arousal vectors. Betella and Verschure [5] have devel-
oped the Affective Slider (AS) as an alternative to the SAM. AS is structured by a set of
emoticons that represent the emotions limits of PAD vectors. It also uses a bow-tie graph
where the narrow area indicates a neutral emotion. Through their research, the authors
have shown that AS can be a valid alternative to SAM. In our work, we have used a com-
bination of SAM and AS in order to maximize the user precision in the labeling phase
(see Fig. 3). By moving the AS slider, a square indicator moves over the corresponding
SAM, as a reinforcement tool for self-assessment. A detailed explanation on the hard-
ware architecture and the software developed for the experimental setup can be found
in [41].
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Fig.3 SAM and AS self assessment tools used for RAGA dataset

3.4 Game genre used for RAGA stimuli

One of the first decision to take, when designing the creation of a physiological dataset
based on video games, is which kind of game is the more adequate for the final purpose.
To focus only on the influence of the game mechanics, and to avoid the emotional effect
of narrative elements (like e.g., cinematic sequences), we have decided to consider racing
video games. In racing video games, the users start from a point A, and they must arrive at a
point B, usually driving vehicles, in the shortest possible time or overcoming the opponents.
Racing games usually have a set of possible events that can arouse players’ emotions. In
fact, players are involved in high-speed races where usually: accidents, overtaking, high-
speed corners, etc. can occur. Therefore, we have hypothesized a high variability of players
emotions during a racing game and, as a consequence, of the corresponding VA values.
This genre can be further divided in three sub-categories: arcade racing games, where the
priority is given to fun and feel of speed; simulation games, designed to guarantee a user
experience similar to the reality (goal of the game engine is to simulate a truthful vehicles
physics); and kart games, based on a simplified driving mechanic characterized by features
that usually do not appear in other racing sub-genres (e.g., obstacles, weapons, possibility
to jump, power-up, etc). We have decided to consider 2 racing games from different sub-
genres. We have defined a set of constraints for the games’ selection: they should have an
intuitive and straightforward game mechanic and environment; they must have comparable
input controls and level length; they can be played either in VR or using a standard monitor.
Thus, we have selected a simulation driving game, Project Cars! (PCars from now on),
and an arcade driving game, RedOut? (RO). PCars, a game released to the market in 2015,
is developed by Slightly Mad Studios and published by Bandai Namco. 1t is a simulation
game, where the drivers are involved in races on virtual reproductions of existing cars that
compete on famous circuits. RO is a futuristic racing game developed by an Italian company
(34BigThings) and released in September 2016. It is an independent game where futuristic
shuttles compete in full acrobatics tracks. The main inputs for the above-mentioned games

Uhttps://www.projectcarsgame.com
Zhttps://34bigthings.com/portfolio/redout/
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are quite simple and symmetrical: a steering input, an input to accelerate, and an input to
brake. RO, due to its arcade nature, has two other inputs: the first dedicated to control the
shuttle inclination, and the second used to activate the turbo speed. Both games can be
played from the driver point of view, with or without VR headset.

4 Experimental setup

The group of participants was composed of 33 players (29 males and 4 females), between
18 and 40 (u = 24.66 and o = 5.15) years old. They usually play video games in average
3.6 days per week (o = 2.16), and the games session of more than half of participants are
longer than 2 hours. All participants were Italian, and they have not received any monetary
contribution for the experiment.

4.1 Procedure

Upon arrival in the laboratory, the participants have been invited to sit on a comfortable
chair. They have been informed about the experimental procedure and they have been invited
to read and sign an informed consent, and a permission to use the data and video recorded
during the experiment for research and academic purposes. The acquired data have been
collected anonymously, and we have assigned, at each participant, an incremental identi-
fier for the analysis and for future experiments. The participants with ID lower than 10 are
the same users who participated at our previous experiment [39]. Lastly, each user has per-
formed the test in a single daily session. During the experiment, a 5 MP camera has been
placed under the 32” display used during the gaming sessions. The games have been played
using a gamepad on a computer with Windows 10 OS, i7 6700k CPU, 32gb RAM (DDR4),
and NVIDIA GeForce GTX 1080 GPU. For the experiment, we have also used the headset
Oculus Rift DK2 for the VR sessions.

The experiment has consisted of three stages: electrodes placement and test presenta-
tion, main test, and final survey. We have connected the electrodes and the thermometer on
the participant’s skin, taking care to not bother her view or attention. After the electrodes’
placement, we have powered the Arduino Due and, as a consequence, all the sensors. After
checking that all the sensors were working, we have checked the signal and communication
quality asking the participants to perform facial movements, in order to check the EMGs
signals, and to have a deep breath, which usually causes a sweating alteration, to check the
GSR signal.

A video with the demo of the games, the tracks, and the vehicles have been also shown
to the participants. For all the gaming session, we have selected a McLaren, 12C in the
California Highway Stage 2 track for PCars, while we have used Asera, Yoshinobu shuttle
on Alaska, Airbone on RO. Furthermore, a member of the laboratory staff has explained the
game mechanics for both games and he made sure that the participant has understood how
to interact with the games.

The software for the emotion annotation has been presented to each participant, and
a short training to familiarize with the input system have been conducted. The assess-
ment software shows to the participant a video with the information of the player’s face,
a video of the gameplay, and a data synchronization graph. We have asked the partici-
pants to identify their emotions during the entire video playback using the SAM/AS tool
described in Section 3.3. In Fig. 4, we show the six different areas of the application
GUIL:
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(b)
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the bottom left bar indicates the Valence values: the participant has to move the green
rod using the gamepad left analog joystick to self-assess her own emotional state

the bottom right bar is used to collect the Arousal values. In this case, the player uses
the right analog joystick to move the rod

In the bottom right area, the player’s face during the game session is shown: we
have asked the participant to focus on this area in order to re-evoke the emotions
experienced during the game session

In the top right area, the gameplay useful to support the emotions recall is shown

In the top left area, the acquired physiological information is shown. It is used only to
synchronize, through its top and bottom bars, the collected data with the Valence and
Arousal information acquired by the software

Lastly, the red bar indicates the time position within the video.

The main test has been structured in two stages, each repeated two times (i.e., with and

without VR): game session and emotion tagging. Randomly, the participants have started
the game session with or without VR: 14 participants have started with VR, while 19 have
performed the first game session without VR. Each player, whether she has used VR or not,
played to PCars as the first game. The beginning and end of each race have been synchro-
nized to physiological and assessment data by pressing two different buttons, connected to
the Arduino Due. The synchronization starts/ends at the beginning of the Arduino clock
cycle. The first button pressure inserts in a specific column of the physiological dataset the
value 14 (a number used only to identify the session beginning), and, at the same time, it

Fig.4 GUI of the emotion tagging software used after game session
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switches the color of the two bars (e) to green. In the same way, the second button pressure
is used to insert the value 15 and to switch the color of the bars to red. Thus, the two but-
tons are used to synchronize the physiological data with the first emotion tagging performed
immediately after the game session. The second game session has been performed right after
the first, followed by another emotion tagging stage. Before the VR stage, the laboratory
staff has explained the potential risks related to the device. The possible motion sickness
deriving from the VR device may arise due to a not accurate settings of the VR parameters
[38, 84] (like e.g., the inter-ocular distance considered in the virtual scene, or the field of
view of the virtual camera), or to physiological issues of the players with stereoscopic vision
[37].

Lastly, we have asked the participants to fill a survey with questions about their habits
and game skills, and regarding the overall experiment considerations.

4.1.1 Practical consideration

Albeit the experiments have been conducted on 36 people, we have not considered in the
analysis the data of participants with ID 11, 12 and 15 due to technical issues. Furthermore,
the participants 20, 23, and 40 have experienced sickness during the VR session, although
they have completed the experiment and their data have been considered during the data
analysis. The acquired RAGA dataset and the data analysis source code are freely available
to the academic community.?

5 Data analysis

The data analysis has consisted in four main steps: data filtering, extraction of features from
raw data, selection of the most informative features, and application of an algorithm of
supervised learning, in order to understand if these data can be used to predict the players’
emotions during the game sessions.

Since the physiological data and the emotions self-assessment information have been
acquired at two different frequencies (respectively 556Hz and 60Hz), it has been nec-
essary to uniform the number of instances. We have decided to consider as final
frequency the same frequency used to acquire physiological data (i.e., 556Hz). Thus,
let ay and vy be respectively the values of Arousal and Valence at the instance
f e {1,2,3,.., F}, where F is the length of Arousal/Valence arrays, and let N
the number of instances of their corresponding physiological data, we have calcu-
lated the new points in the interval [1, F] to have a length equal to N. Conse-
quentially, let nl1 be a set of integers {0,1,2,..,N — 1}, the new set of points
nf =[1, Flis:

nf=14+nl0(F-1)@(N—-1)) (1)

Where the ® and @ are an Hadamard, respectively, product and division.

As a consequence, we have two arrays: f € N of length F, and nf € Q of length
N, with values in [1, F]. Thus, we have applied a linear interpolation on each Arousal and
Valence data in nf. For each element in nf, we have considered the integer neighbors in f

3https://github.com/grano00/GameVRRacingPhysioDB
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such that f; < nf; < fi. Lastly, we have generated the new Arousal (an) and Valence (vn)
points for every i in {1, 2, 3, ...N}.
aj(fx —nf;) +ar(nf; — ;)

an; = 2
Je—Tfj

on; = vi(fe —nfi) +u(nfi — f) 3)
Je—fj

Where a;/v; and ai /vy are the annotation values in the corresponding position of the
elements in f vector (i.e., fj, fi).

As a consequence, we have calculated two new sets of values with the same length,
and frequency, of the physiological data. Through these operations, we have aligned the
self-assessment vectors with the acquired physiological signals. Having the same sample
frequency, we can process the features (i.e., the information extracted from the physiological
signal) and the ground truth (i.e., the arousal and valence vector) coherently. Consequen-
tially, in the following session, we will refer with the term SampleRate at the frequency of
both kind of vectors, i.e. 556 Hz.

5.1 Data filtering

All the physiological and emotional tagging data have been separated for each game, thus
getting 4 sets of data for each participant: RO, PCars, RO in VR, PCars in VR. Thus, we
have filtered the groups of data separately in order to minimize the probability to introduce
data patterns that may alter the future analysis. For each type of physiological information,
we have centered and scaled, using the standard deviation, the acquired data [57]. Let x
be a set of physiological data (e.g., ECG signal). The centered and scaled of a generic
physiological signal x will be equal to the outcome of the function cs(x):

x — pu(x)

[ iy Nxi—p(x))?
N—-1
where u(x) = & YN x5 x € [1, N].

The emotional tagging data is expressed as an integer value from O to 100. Thus, the
value 50 underlines a neutral emotion and, as a consequence, we have centered the data
at this value, scaling them in order to create a signal in the interval [-1,1]. Furthermore,
we have filtered some frequencies of the physiological data in order to remove the noise
generated by data acquisition. Starting from ECG data, we were interested to collect the
Heart Rate (HR) of the players during video games fruition. As suggested by Fedotov [29],
the most informative frequencies to understand the HR are between 5 to 30 Hz. We have
considered an upper band frequency of 35 Hz, filtering the data using an Equiripple FIR
band-pass [48], in order to consider also a possible excessive increase of heartbeats. All the
EMG signals have been filtered using a high-pass Equiripple FIR with the cut-off band at
20Hz as suggested in [7]. As breathing produces a low-frequency signal alteration, we have
applied a moving average filter [60] with a window length equal to Sample Rate (1 second
in time domain). This value has been selected to not deeply alter the signal and, at the
same time, to be able to smooth it in the high frequencies (i.e., noise). As a consequence,
we have obtained the average temperature, under the participants’ nose, over a period of
1 second. For the GSR, we have applied a 1°" order Butterworth low-pass filter with 5Hz
cutoff. Through Ledalab [4], we have also extracted the Tonic (SCL) and Phasic (SCR)
information [59], and we have added them to the set of physiological signals in RAGA.

“4)

cs(x) =
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Furthermore, as said in Section 4.1, the emotion tagging phase have been performed
during the video playback. In order to improve the emotion recall, we have suggested to
the users to not stop or rollback the video. Anyway, in some cases, some participants have
performed a wrong assessment, and they have quickly corrected the mistake by moving
back the SAM/AS slider pointer. This action has produced high-frequency noise in the
final assessment data as in the respiration signal. Consequentially, we have removed this
high-frequency information applying a moving average filter with a coefficient equal to
1/Samplerate.

5.2 Features extraction

After the data filtering, we have proceeded to extract features from the physiological data.
We have considered to analyze and to predict the data at 1-second precision, thus the vari-
ables output have been structured considering 1 data per second. The ECG data presents
three signal deflections that repeat over time and occur in rapid succession. They corre-
spond to the depolarization of the heart ventricles. The name of these signal deflections
is ORS complex [26], where Q wave is a downward deflection, followed by R wave, an
upward deflection, and in turn followed by a second downward deflation, the S wave. The
distance between two equal points in two repetitions of QRS complex provides the neces-
sary information to calculate the HR. Usually, the R wave is used for this purpose, thus we
have detected the RR interval on ECG signal using OSEA algorithm [45]. The algorithm
returns the points where the QRS waves are located, we have thus selected only the fidu-
ciary points of R waves. Anyway, the algorithm is not able to identify the RR information
in noisy signals, and ECG information can be subject to noise generated by motion arti-
facts. Usually, during the ECG, the clinical staff ask to reduce the movement in the specific
locations where the electrodes are placed; anyway, this is not applicable to our experiments
because the participants should not have movements limitations in order to better interact
with the games. Thus, we have designed an algorithm aimed at creating or removing the R
points on noisy signals according to the RR interval dimension. We have set a score for each
RR interval (rr) according to:

rrscore = ||rr/u(rr)| — 1 %)

where rrscore = 0 indicates a correct interval dimension, rrscore > 0 means an underes-
timation, and rrscore < 0 underlines an overestimation (Fig. 5). Thus, we have removed
the overestimated points, and we have created new points in the underestimated area. To
add new points, we have controlled each rrscore, adding virtual points when rrscore > 0
and deleting the points when rrscore < 0. In particular, the number of points added or
deleted are in accordance with the rrscore value. If the score is greater than 0, we add
rrscore points with the following position:

Fnew =11+ ((r2 —r1) * (. + 1)/ (rrscore 4 1))) (6)

Where: ri = r point at beginning of the rr interval; », = r point at the end of the rr
interval; i is an incremental counter in [1, 2, ..rrscore]. On the contrary, if the score is less
than 0, we removed n points at the beginning of r;.

To have RR data in a more understandable measure unit, we have converted the RR
distances in second domain, and we have multiplied the result by 60 in order to obtain
Beats Per Minute (BPM): bpm = 60 x SampleRate/rr. Lastly, we have applied a moving
average filter with a coefficient equal to 1/4 on the BPM data, and we have acquired the
information at second precision extracting the average BPM value.


Davide Gadia


Davide Gadia



R wave, Errors ldentification

ECG Amplitude
o

! ! ! ! !
15 20 25 30 35

Seconds

Fig. 5 Example of overestimation points due to noise in ECG signal. The red points are considered as
overestimated

For the respiration, we were interested in the ratio between the exhalation and inhala-
tion. Thus, we have analyzed the breath signal, and we have extracted all the upper and
lower peaks. The difference between the peaks gives the time spent between one breath and
another.

Finally, we have extracted a set of features from the EMGs, GSRs (Raw, Tonic, and
Phasic), and respiration data using the previous information. Usually, this kind of analysis
is focused on the central area of an approximation window, anyway, we were interested to
understand if it is possible to predict the players’ emotion during the game session, thus only
the past information of these signals was available. As a consequence, we have designed
an approximation window of 3 seconds in order to analyze the last window area. We have
grouped the extracted features in Table 1. In literature [28, 46, 50, 64, 66, 69], these features
are used for the EMG signal analysis, anyway, most of them can be considered also for other
physiological signals. For sake of brevity, we present only the features that are not explained
in the above-mentioned papers or those extended to fit with the experiments purpose. A
detailed explanation of each feature is available in [40].

For each approximation window in EMGs, GSRs, and Respiration data, we have acquired
the average spectrum power, and we have also extracted the average power in a subset of
the frequency range, in particular in steps of SHz regarding EMGs, and 0.05Hz for GSRs
and Respiration. Let x € [x1, x2, .., xy] a generic physiological signal with N samples, we
have also calculated two different Modified Mean Absolute Value (ModMAYV) functions.
ModMAV is comparable to the mean of absolute values (MAV (x) = 1/N 2111\7:1 |xn ), but
it is applied to the results of an elaboration of the original data. Considering an approxima-
tion window of length N, the first modified function (Mod M AV 1(x1,)) implements a fade
in, where:

xp/2 ifn < 0.75N
Xl = { X,  otherwise )
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Table 1 Features extracted by raw data

Feature Collected without Approximation Window
ECG

Respiration

EMGs, GSRs, and Respiration

Features Collected with 3 sec Approximation Window

Common Features for EMGs,

GSRs, and Respiration data

BPM
Breath Rate
Raw Data

Band Power, Power, Integral [50],
Mean Amplitude, Mean Absolute

Value MAV [28], Precise Mean,
Mod MAV 1 [66], Mod MAV 2
[66], MAV Slope MAVS [66],
Root Mean Square RMS [66],
Variance o2 [64], Waveform
Length WL [28], Zero Crossings
ZC [28], Slope Sign Changes
SSC [28], Willison Amplitude
WAMP [66], Simple Square Inte-
gral SSI [66], Frequency Median
FMD [64], Frequency Mean FMN
[64], Modified Frequency Median
MFMD [66], Modified Frequency
Mean MFMN [66], Frequency
Ratio FR [46]

Features of GSRs data MIN, MAX, # of Peaks, Mean Amplitude of Peaks

while, the second modified function (Mod M AV2(x2,)) implements a more gradual fade
in applying an incremental weight between 0 to 1, with:

®)

S B *n/0.75N ifn < 0.75N
Aen = X otherwise

Lastly, only for GSRs data, we have collected the minimum and maximum values, the
number of peaks, and their average amplitudes as suggested in [10].

After the feature extraction process, we have thus collected: 1 feature for ECG, 38 fea-
tures for Respiration, 62 features for each GSR signals, and 77 features for each EMG
signal. Therefore, for each experiment, we have a set of 610 variables.

5.3 Machine learning approach: feature selection and supervised learning

For each participant, we have consider 9 groups of analysis:

RONOVR : RO game session with a standard monitor
PCarsNOVR : PCars game session with a standard monitor
ROVR : RO game session in VR
PCarsVR : PCars game session in VR
NOVR : the merged data of game sessions with a standard monitor
VR : the merged data of game sessions in VR
RO : the merged data of RO in both configurations
PCars : the merged data of PCars in both configurations

Player : all the data collected on each participant
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For each group, we have selected a subgroup of the extracted features, and we have used
them to train a Machine Learning (ML) algorithm that uses as target variable the Arousal
and Valence values, provided by participants during the emotional tagging to produce a
regression hypothesis.

We have decided to consider only a subgroup of features, in order to avoid the curse
of dimensionality [23]. In addition, we have removed redundant or irrelevant variables to
improve the ML algorithm performance. In order to not manipulate the data, we have
designed an automatic procedure to select, for each analysis, the most informative features.
As a first step to remove features that are not relevant for the ML method, we have cal-
culated the Pearson linear correlation between each feature and the Arousal and Valence
arrays. Thus, we have tested the hypothesis of no correlation and we have stored only the
features rejecting the hypothesis (p-value < 0.05) in F. On the subgroup of features that
respect this constraint, we have applied a method able to identify only a restricted number
of variables identified as most informative. Our algorithm is a modified Sequential Floating
Forward Selection (SFES) [14] method, which returns the set of features able to minimize
the regression error. The pseudo-code of the method is shown in Algorithm 1. In the algo-
rithm, the ERR(x) function returns the error value of a generic predictor method. In our
specific case, we have used a 10 Cross Validation (10CV) [55], where a set of Random For-
est (RF) [49] are trained: we have used 100 trees, as suggested in [63], with 1/3 of features
for each decision split. For each fold, we have extracted the RMSE index, and we have
divided it by the number of the elements available in the test set.

Algorithm 1 Modified version of SFFS. F is the subset of features selected in the first
step of feature selection.
let Y = {0}
let F = {ExtractedFeatures with corr. p-value < 0.05 }
let oldY an empty set of Y
while length(Y) < length(F) do
ERRListOne = {#}

foreach Ve (F—Y)do
| ADD ERR({Y U V}) to ERRListOne

end
Y = FEATURES that MIN(ERRListOne)
if Y € oldY OR
ERR(Y) = 0OR
ERR(Y) is a local minimum then
| RETURNY
end
ADD new line in oldY with Y features

ERRListTwo = {/}
for each V = element € Y do

| ADD ERR({Y — V}) to ERRListTwo
end

if MIN(ERRListTwo) < MIN(ERRListOne) then
| 'Y =FEATURES that MIN(ERRListTwo)

end

end
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This algorithm starts with an empty set of features Y. It trains a different model for each
feature in F (using only one feature at time), and it collects in the Y array the features
that minimize ERR(x). The method then dynamically adds and removes a feature at time,
collecting the subset which minimizes the regression error. The algorithm stops when finds
a local minimum error, or if, in the process, it collects a subset of features already used in
previous iterations.

Considering only the selected features, acquired through the feature selection process, we
have tested different supervised learning techniques in order to verify which one performs
better on our dataset. This preliminary comparison has been performed on the group which
consider all the player’s data (i.e., group 9). As a consequence, we have listed a set of
potential regression algorithms:

—  Support Vector Machines [25] with Linear kernel

—  Support Vector Machines [25] with Gaussian kernel
— Random Forest (RF) [11]

—  Gradient Boosting [33] of trees (GBoT)

—  Gaussian Process Regression (GPR) [85]

Each algorithm has been tested using a SCV (5 fold Cross Validation) on each group of
analysis. Thus, we have used the algorithm which, in average, has provided a model reaching
a better accuracy on the depended variables prediction (i.e., VA self-assessment values) to
infer the players’ emotions. If the error levels of the subgroup of models that provide the
better accuracy do not present a significant difference, all the models have been trained n
times, and the algorithm with the average better accuracy have been selected.

In our specific case, the GPR, also known as Kriging, has provided the better results
(Fig. 7). Moreover, it is a different method than the ML algorithm used in the second step
of feature selection: this should minimize the probability to obtain biased results. Although
the GPR computational cost is quite high (0 (n3)), the limited number of instances for
each experiment does not affect excessively the overall performances of the method. In our
approach, to reduce computational time, we have lowered the number of cross-validation
folds from 10, used for the feature selection, to 5. Reducing the number of folds, we have
increased the number of elements in the test set and, consequentially, the algorithm returns
a more pessimistic error. For each experiment, the average time required for a single core
to train the Kriging algorithm, on the computer configuration presented in Section 4.1, is
~ 4 seconds, and the 5CV, computed in multi-thread, requires in average ~ 12 seconds.
Anyway, as we discuss in Section 6, the final results show how this choice does not affect
excessively the accuracy of the prediction of Kriging.

6 Data analysis results

In the following subsections, we present the data analysis outcomes. In Section 6.1, we com-
pare the importance of the different signals, and their related features. Lastly, in Section 6.2,
we present the results of the different prediction models, with a particular attention on the
results of the final model.

6.1 Features for players’ emotions prediction

In literature, there are some feature selection models able to define, for each feature, which
is more effective in the computation of an accurate prediction. For example, RF provides
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Fig. 6 The figure presents, for each feature, the number of occurrences, grouped by their original signals.
On the top of each bar is presented the percentage of features involved in the process. The correspondence of
EMGs number are shown in Fig. 1

an index for each feature, considering which split of the tree will be the most effective to
distinguish the classes, and reporting the importance through a standard index, like e.g., Gini
index [62]. Unfortunately, the feature selection algorithm designed starting from SFFS does
not provide an importance ranking of each feature using a standard index. As a consequence,
we are not able to identify accurately which feature is the most important. Anyway, we are
able to obtain the information about the features more involved in emotions recognition
during racing video games, considering the number of times that a particular feature is
selected by our algorithm. In particular, the proposed method selects an average of 6.46
features to analyze the Arousal data, and 6.89 for the Valence, for a total of, respectively, 185
and 206 variables involved in the prediction process. In Fig. 6 the number of occurrences of
each feature is shown, grouped by the signal of origin.

6.2 Emotions prediction outcomes

We have also evaluated the efficacy of the ML algorithm to predict the emotions, in the
Valence and Arousal space, during the video games sessions. As stated in Section 5.3, after
a comparison of the prediction errors between different ML algorithms (see Fig. 7), we have
selected the model which has minimized the regression error (i.e., GPR).

Considering the GPR, we have designed a hypothesis testing a set of o, values in a
range [1073, o (x)] for each participant and experiment as suggested in [77]. Then, we have
calculated the results of 5CV, and we have acquired the Root Mean Square Error (RMSE)
between observed and estimated data. Thus, we have calculated the Normalized RMSE
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Fig.7 The box plots present the NRMSE distribution across the experiment “Player” (see Section 5.3) using
different ML algorithms. The cross inside the boxes underlines the average value, while the outliers are
represented with the stars

(NRMSE), presented in (9), in order to have scale-free results.

NRMSE(y, §) = — oo B0 D) ©)
max(y) —min(y)
Where y are the predicted values, while y is the observed array (i.e., the ground truth).

In Fig. 8 and in Table 2 are shown, respectively, the box plots that indicate the NRMSE
dispersion of Valence and Arousal, and the experiments numerical results.

The NRMSE may vary between 0.0, that indicates a perfect overlap between the estima-
tor (y) and estimated (y) sets (i.e., a perfect prediction, where $ = y), and 1.0 that indicates
two divergent sets of data. In latter case, we can consider, in a simplified example, that y
and y may have only two values (e.g., 0 and 1). If, for each element of the sets, y # y,
the NRMSE will be equal to 1.0. This range is respected only under two constraints: if
max(y) > max(y) and min(y) < min(y), which are satisfied in our case study. In Fig. 8,
we present the box plots of the acquired NRMSE data for each kind of experiment. Plots

Table2 NMRSE results for each experiment

Experiment Arousal Valence

Mean Sigma MIN MAX Mean Sigma MIN MAX

PCars with Monitor 0.090 0.037 0.036 0.241 0.095 0.036 0.041 0.236

RO with Monitor 0.089 0.032 0.034 0.152 0.097 0.033 0.037 0.162
Monitor 0.086 0.030 0.045 0.195 0.090 0.024 0.050 0.158
PCars in VR 0.091 0.035 0.036 0.189 0.096 0.045 0.028 0.195
ROin VR 0.091 0.031 0.041 0.167 0.093 0.029 0.045 0.165
VR 0.087 0.034 0.042 0.187 0.080 0.028 0.051 0.176
PCars 0.079 0.026 0.035 0.135 0.082 0.025 0.044 0.147
RO 0.082 0.032 0.034 0.192 0.089 0.028 0.037 0.161
Player 0.073 0.020 0.046 0.125 0.078 0.021 0.050 0.121
AVERAGE 0.085 0.031 0.039 0.176 0.089 0.030 0.043 0.169
MIN 0.073 0.020 0.039 0.125 0.078 0.021 0.028 0.121

MAX 0.091 0.037 0.046 0.241 0.097 0.045 0.051 0.236
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Fig. 8 The box plots present the NRMSE distribution between the estimated data collected using the GPR
(trained with different hyperparameters) and the observed self-assessment data across the experiments (see
Section 5.3). The cross inside the boxes underlines the average value, while the outliers are represented with
the stars

related to each single prediction or box plots that use different indexes are available on the
RAGA homepage presented in Section 4.1.1.

7 Discussion

In the following subsections, we discuss about the different experiment results. In
Section 7.1, we focus on the outcome of the dataset and on the analysis about the data
acquired by the survey, evaluating the reliability of the emotion self-assessment provided
by the participants. In Section 7.2, we discuss about the important features acquired by
the physiological signals. Finally, in Section 7.3, we provide an interpretation of the model
outcome.

7.1 RAGA dataset and overall experiment outcomes

Summarizing, RAGA is a public dataset, available to the scientific community, which can
be adopted as a benchmark or for research proposes. It contains physiological information
(see Section 3.2 and Table 4 for the complete description and the list of the collected data)
and a ground truth, represented in a 2-dimensional space (valence and arousal). Albeit the
physiological signals, and the self-assessment have been acquired at different sample fre-
quencies, respectively 556 Hz and 60 Hz, we have aligned they and we have provided both,
aligned and raw data, in the dataset.

Table 3 presents a comparison of different datasets, considering the features (i.e., kind
of stimuli, physiological data acquired, type of emotions identification) and the annotation
methods between RAGA and the datasets mentioned in Section 3.1.

After each session, we have asked each participant to evaluate the overall experience
of the experiment. Almost no participant has reported a significant discomfort due to the
motion sickness (u = 2.85, 0 = 2.59, in a rank between 1 to 10), and the 82% have
claimed they have not been disturbed by the sensors used in the experiment. One of the
crucial hypothesis at the basis of the proposed method is that the affective self-assessment
performed by the participants, using the video tagging procedure described in Section 4, is
reliable. Since the self-assessment values have been collected in continuous, over all the


Davide Gadia


Davide Gadia



Table 3 Comparison among available affective datasets and RAGA dataset. The physiological signals con-
sidered are: EEG = electroencephalography (with the number of channels), ECG = electrocardiogram, BVP
= blood volume pulse, GSR = galvanic skin response, Facial EMG = electromyography placed on participant
face (with the number of muscles considered), Resp = respiration, Temp = temperature, Gaze = eye gaze
tracking. The last 3 columns define the type of emotion identification, where: ES = Emotion Space, in type
column D = Discrete, C = Continuous, and in Annotator column S = Self Report, E = External Report with,
in brackets, the number of annotators

Eight-

Dataset fomotion le(gl\g%?' DEAP® [53] RECOLA [70]

Data [67]

Stimulus Sentic [14] Video, Images Music Video COH?;;S:SHVC
Subj. 1 30 33 16
EEG - 32 Ch. 32 Ch. -
ECG v’ v’

BVP v’ - v’ .
GSR v’ v’ v’

Facial EMG 1 - 1 -
Resp v’ v’ -
Temp - v’ v’ ;
Gaze - v’ - -

ES 8-D emot. PAD PAD + Liking VA
Type D D D C
Annotator S S S 6(E) + S
OPEN

Dataset DECAF [1]* EmoRec AMHUSE [6] RAGA

II [72]
Stimulus Cligi(/)iilisic gﬁ;ﬁi Movie Clips gz(;:;i; ;/lic\l;elg
Movie
Subj. 30 30 36 33
EEG . - . :
ECG v’ - -
BVP - v’ v’ -
GSR - v v’

Facial EMG - 2 - 5
Resp - N - N
Temp - - N -
Gaze - - - -

ES PAD VA VA VA
Type D D C+D C
Annotator S 4(E) + S 4(E) + S S

*The dataset provides also the signals of: EMG on Trapezius muscle, MEG in order to measure the brain
activity, and EOG to investigate the eye movements

°The dataset provides also the signals of: EMG on Trapezius muscle, and EOG to investigate the eye
movements
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gameplay session, we designed a set of discrete markers in order to determine if the partici-
pants were able to label accurately their emotions. It has been performed as post-experiment
evaluation of the participants’ self-assessment accuracy. Actually, we have asked the partic-
ipants to fill a survey with a set of questions aimed to evaluate how accurate they think they
have been during the emotion tagging stage. From the data of these surveys, their perceived
precision during the self-assessment emotion tagging has been equal to 7.48 for Arousal
data, and 7.30 regarding Valence data (in a rank between 1 to 10). Furthermore, the par-
ticipants have ranked their concentration (Arousal) during racing games equal to 0.56 (in a
rank between -1.0 and 1.0). They have also evaluated the games ability to arouse emotions
(Valence) equal to 0.28. The ability of the games to raise a positive emotion has been evalu-
ated 0.34, while 0.14 is the evaluation for a negative emotion. Considering the data acquired
from each participant during the emotions tagging phase, the mean value of Arousal is
0.41 (o = 0.44), and for Valence is 0.18 (6 = 0.49). Thus, we can consider the answers,
although slightly overestimated, in line with the information given by emotion tagging, val-
idating thus the reliability of the self-assessment stage. These scores have been summarized
in Table 4.

The self-assessment data distribution has been reported in Fig. 9. Albeit the self-
assessment data are slightly contracted at the ends of valence and top of arousal, and in
positive values for both type of emotions, we can consider the data balanced in the 2-
dimensional space. For this reason, we were able to investigate accurately almost all type of
players status in the 2-dimensional model.

Lastly, we can propose a potential interpretation between some of the acquired results,
and the Spatial Presence and theory of Flow concepts, introduced in Section 1. In the
final survey, the 88% of participants have reported more intense emotions during the ses-
sions with VR games; however, we have not found a significant difference in the Valence
and Arousal values between the sessions with or without VR. However, some researches
have assumed higher level of Spatial Presence condition when using immersive devices.
Our results seem to suggest that the evaluation of the Spatial Presence condition can not
be defined using the 2-dimensional Valence/Arousal space used in our experiment. As a
consequence, future analysis may investigate the use of a more complex system for the iden-
tification of emotions (like e.g., PAD). Moreover, analyzing the Valence and Arousal values
for each game, we can notice how these values are, in average, quite positive. In fact, PCars
has collected p = 0.38 for Arousal and u© = 0.15 for Valence, while RO has obtained
u = 0.44 for Arousal and u = 0.21 for Valence. Considering the average absence of emo-
tions tending to averseness, and also the high level of positive feedback provided by the
players through the post-experiment survey, we can hypothesize that the players have been
relevantly absorbed (thus, in the Flow state) during the game sessions.

7.2 What the players’ body said

According with the results presented in Section 6.1, the tonic component (Skin Conductance
Level, SCL) of GSR is one of the most informative signals: its features are selected 882

Table 4 Self-Assessment perception of participants compared with the labeled data

Self-assessment Post-experiment evaluation

Average arousal 0.41 0.56
Average valence 0.18 0.28
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Fig.9 Distribution of self-assessment evaluations collected on RAGA participants

times for Arousal and 852 times for Valence analysis. Since the “tonic value stands for
an activity that shows a certain amount of continuity over time” [75] and it “is related
to a person’s overall arousal” [75], we can consider the racing games consistent with the
achieved results, since they are designed to maintain the player’s attention over the time,
increasing stress levels as the player approaches the end of the race.

Focusing, for example, on Player analysis, which considers all the data of each par-
ticipant during the overall experimental session (see “Player” in the list presented in
Section 5.2), the selected variables used to predict the VA target values are in line with
the features occurrences distribution above mentioned (e.g., in Fig. 10 are shown the
occurrences of the different features during the Valence analysis).

The proposed feature selection method can be also used to validate novel features, since
it compares all the features and it extracts only the most interesting. It is also designed to
work autonomously, looking for the best set of features that maximizes the data predic-
tion, and, as a consequence, the ground truth of the hypothesis. Lastly, it provides a history
of the selected variables, structured in the order in which the features are selected. As a
consequence, during the test of a novel feature, the algorithm may provide (with a certain
approximation) an index of informative level which contains the variable, according to its
position in the history, beside the boolean information of feature importance (i.e., considered
or not considered).
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Fig. 10 Valence features occurrences on player analysis. The number of occurrences of each selected features
are shown on the vertical axis. The figure shows only the features that have been selected in 3 or more
occurrences

For a detailed description of the different features and an exhaustive discussion of their
importance see [40].

7.3 Model interpretation

According to the results described in Section 6.2, the average regression error is quite low,
which underlines the ability to design a hypothesis able to predict the values of Arousal and
Valence vectors during a video game session with a precision of 1 second. Moreover, in both
dimensions, the cumulative participant’s data (i.e., the Player analysis) provide, on average,
a smaller regression error. These results suggest that the model is sensitive to the amount of
acquired from a participant data, independently by the context (i.e., VR and Monitor, and
the selected video game). Consequentially, this method should produce better prediction
according to the time employed to play at games of the same genre.

The GPR has a non-parametric approach, which only assumes that similar data points,
defined by a covariance function, are close in the output space. As suggested in [13], GPR is
robust to errors in input sources (e.g., loss of an electrode contact), since it depends directly
on data, and not on the features’ relationship. Consequentially, its characteristics and the
achieved results in the experimental session have supported our decision to consider this
algorithm reliable in our experimental procedure.

8 Conclusion and future works

In this paper, we have presented RAGA, an affective dataset based on the acquisition of
physiological signals from video game players. We have provided an overview of the con-
sidered physiological data and of the hardware setup used to acquire it. We have collected
the physiological signals and self-assessment information from a set of participants playing
racing games. The players have played in two different environments, using a monitor, and a
VR headset. Furthermore, we have provided an analysis of the relevance of each signal and
of their contribution to predict the players’ emotional state. Lastly, we have described the
ML algorithm used to design a hypothesis able to predict the emotions of participants at sec-
ond precision. The results seem to confirm the validity of the experimental framework, since
the ML model obtain low errors in each experiment. Thus, the considered algorithm is able
to predict, with a certain precision, the self-assessment emotion into the Valence/Arousal
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2-dimensional space. Moreover, to the best of our knowledge, there are not freely available
databases of affective annotation using video game as stimuli.

In a future extension of this work, we will design a racing game based on the prediction
features introduced in the current research: this game will adapt its difficulty on the basis
of the players’ emotions, trying to keep the players’ entertainment at a qualitative standard
required by the video game industry. Moreover, future works will address two challenges:
to design an integrated set of gaming devices able to reveal the physiological data of the
players, and to identify game features able to provide the evaluation of players mental state,
avoiding a specific self-assessment for the players. The former can be achieved by the inte-
gration of the sensors in game devices. Almost all the electrodes used in the experiments are
located near the hands and face of the players; therefore, it is possible to design their inte-
gration into, respectively, a gamepad and a VR headset. Considering the second challenge,
currently the prediction model is linked to the individual player, as it has to be trained on
data collected by each player. As a consequence, our algorithm needs to acquire, for each
subject, the self-assessment data in order to provide the target variables to the ML algo-
rithm. Anyway, during the game design process, different options aimed at the acquisition
of the emotion labeling can be considered, for example borrowing gamification elements in
the final game [22, 53]. A possible approach could be the design of a mini-game that asks to
evaluate the emotions on the game highlights, providing, after the identification, an in-game
reward. Another solution can be represented by the adoption of a different ML algorithm,
with a general hypothesis aimed at predicting the emotion on a wide range of players avoid-
ing the limitation to request the self-assessment information by each player. It could be
supported by external annotators in order to decrease the noise due to the emotion tagging
variability. Albeit it is commonly used in affective computing research, the time required
to provide all the evaluations may not comply with industry production standards. Further-
more, an additional difficulty to use external annotators is caused by the VR headset during
some experiment phases. During the experiment, we have curbed the problem asking the
participants to evoke their emotional state immediately after the game session. Anyway, for
an external annotator, it could be a challenge to identify the emotions of players with part of
the face covered. The present work can also contribute to introduce a modality to study the
players’ affective, widely used in Affective Computing, in the video game research field.
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