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Three-nucleon forces (3NFs), and in particular terms of the Fujita-Miyazawa type, strongly influence the
structure of neutron-rich exotic isotopes. Ab initio calculations have shown that chiral two- and three-nucleon
interactions correctly reproduce binding energy systematics and neutron driplines of oxygen and nearby iso-
topes. Exploiting the novel Gorkov-Green’s function approach, we present the first ab initio investigation of
Ar, K, Ca, Sc and Ti isotopic chains. Leading chiral 3N interactions are mandatory to reproduce the trend of
binding energies throughout these chains and to obtain a good description of two-neutron separation energies.
At the same time, nuclei in this mass region are systematically overbound by about 40 MeV and the N = 20
magic gap is significantly overestimated. The present results show that ab initio many-body calculations can
now access entire medium-mass isotope chains and provide a critical testing ground for modern theories of
nuclear interactions.

PACS numbers: 21.60.De, 21.30.-x, 21.45.Ff, 27.40.+z

Introduction. Many-body interactions involving more than
two nucleons have been long known to play an important role
in nuclear physics. They arise naturally, due to the internal
structure of the nucleon and are deemed to be necessary to
explain saturation properties of nucleonic matter [1–3]. In fi-
nite systems, three-nucleon forces (3NFs) provide key mech-
anisms that govern the shell evolution and the position of the
driplines. Their explicit treatment is mandatory in ab initio
approaches and is becoming routine in modern nuclear struc-
ture calculations. Studies based on interactions derived from
chiral effective field theory (EFT) [4] have shown that lead-
ing two-pion 3NF terms (of the Fujita-Miyazawa type) induce
changes in the location of traditional magic numbers and ex-
plain the anomalous position of the oxygen neutron dripline
compared to neighbouring elements [5–7]. Microscopic shell
model calculations based on chiral 3NFs have been performed
for isotopes up to calcium [5, 8]. Yet, full-fledged ab initio
approaches have been so far limited to isotopic chains in the
oxygen mass region [6, 7, 9] and are being tested in heavier
systems only for isolated closed-shell cases [10–12]. Here we
present the first ab initio calculation of five complete isotopic
chains around Z = 20, including several truly open-shell sys-
tems. This extends the systematic and model-independent de-
scription of nuclei beyond the light sector of the nuclear chart,
opening up a new significant region in which chiral interac-
tions can be probed.

Ab initio many-body methods currently capable of target-
ing the calcium region include self-consistent Green’s func-
tion (SCGF) [7, 13], coupled cluster [14, 15] and in-medium
similarity renormalisation group (IM-SRG) [10, 16] theo-
ries. Such approaches make use of sophisticated and accurate
many-body schemes that however have been restricted, un-
til not long ago, to the vicinity of doubly-magic systems. To

overcome this limitation, some of the authors have recently
introduced a new method based on the Gorkov reformulation
of SCGF theory [17] and produced proof-of-principle calcu-
lations [18, 19] up to 74Ni. The present work constitutes the
first application of such Gorkov-Green’s function (GGF) tech-
nique with a realistic Hamiltonian. In particular, the effect of
state-of-the-art chiral 3N interactions in mid-madd nuclei is
analyzed. We discuss results for absolute binding energies of
Ar, K, Ca, Sc and Ti and show that employed chiral forces
systematically overbind nuclei in the Ca region, in contrast to
what was seen around oxygen [6, 7]. On the other hand, when
leading 3NFs are incorporated, relative energies (specifically
two-neutron separation energies) are fairly well reproduced.

Formalism. We start from the intrinsic Hamiltonian
Ĥint = T̂ − T̂cm + V̂ + Ŵ, with the kinetic energy of the center
of mass subtracted and V̂ and Ŵ the two-nucleon (NN) and
3N interactions. The Gorkov formalism exploits the break-
ing of particle-number symmetry to effectively account for
the non-perturbative physics associated with pairing correla-
tions. Specifically, it targets the ground state, |Ψ0〉, of the
grand canonical Hamiltonian Ω̂int = Ĥint − µpẐ − µnN̂ un-
der the constraint that the correct particle number A = N + Z
is recovered on average: Z = 〈Ψ0|Ẑ|Ψ0〉 and N = 〈Ψ0|N̂ |Ψ0〉.
The many-body Schrödinger equation is transformed into the
Gorkov equation,(

T + Σ11(ω) − µk Σ12(ω)
Σ21(ω) − T + Σ22(ω) + µk

)∣∣∣∣∣∣
ωk

(
Uk

Vk

)
= ωk

(
Uk

Vk

)
, (1)

whose solutions are the poles of the single-nucleon propa-
gators, ωk ≡ Ωk −Ω0, where the index k refers to normal-
ized eigenstates of Ω̂int that fulfill Ω̂int |Ψk〉 = Ωk |Ψk〉, and
the probability amplitudes Uk (Vk) to reach state |Ψk〉 by
adding (removing) a nucleon to (from) |Ψ0〉. The self-energy
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splits into static (first order) and dynamic terms, Σ(ω) =

Σ(∞) + Σ(dyn)(ω). In the present work we consider all first-
and second-order contributions, which define the many-body
truncation of the method.

The inclusion of 3NFs in standard SCGF formalism is dis-
cussed in depth in [20], with first applications in Refs. [1,
7, 20]. Here we modify the prescription of Ref. [7] to ex-
tend the new Gorkov GF approach [17, 19] to 3NFs for
the first time. The second-order self-energy contains solely
interaction-irreducible diagrams and it is calculated using
only an effective NN interaction, which includes contributions
from Ŵ. However, the static self-energy acquires extra terms
from interaction-reducible diagrams involving 3NFs. Hence,
we calculate Σ(∞) as usual in terms the NN interaction, V̂ , and
then add the following 3NFs corrections:

∆Σ
11,(∞)
αβ = −

[
∆Σ

22,(∞)
ᾱβ̄

]∗
=

1
2

∑
γ δ µ ν

Wαγδ,βµν ρµγ ρνδ , (2a)

∆Σ
12,(∞)
αβ =

[
∆Σ

21,(∞)
βα

]∗
=

1
2

∑
γ δ µ ν

Wαβ̄δ,µν̄γ ρ̃µν ργδ , (2b)

where greek indices α, β, ... label a complete orthonormal
single-particle basis (barred quantities refer to time-reversed
states) and ρ (ρ̃) denotes the normal (anomalous) one-body
density matrix [17].

Our calculations follow the sc0 approximation that is in-
troduced in Ref. [19] and start by solving the Hatree-Fock-
Bogoliubov equation within the chosen single-particle model
space, including 3NFs in full. This provides the refer-
ence state and the corresponding density matrices that are
used to generate the effective NN interaction according to
Refs. [7, 20]. Following the sc0 prescription, Σ(dyn) remains
unchanged throughout the rest of the calculation while Σ(∞)

is evaluated in a self-consistent fashion in terms of corre-
lated density matrices. As discussed in Ref. [19], this pro-
cedure represents the optimal compromise between accuracy
and computational cost and was found to be accurate to 1% or
better.

Once convergence is reached, the total energy is calculated
through the Koltun sum rule corrected for the presence of
3NFs [7, 20],

EA
0 = EA (̇NN)

0 −
1
2
〈Ψ0|Ŵ |Ψ0〉 , (3)

where EA (̇NN)
0 represents the energy sum rule for NN interac-

tions only, adapted to the Gorkov framework [17]. The ex-
pectation value of Ŵ is obtained at first order in terms of the
correlated normal density matrix

〈Ψ0|Ŵ |Ψ0〉 ≈
1
6

∑
α β γ µ ν ξ

Wαβγ,µνξ ρµα ρνβ ρξγ . (4)

The contribution containing two anomalous density matrices
was checked to be negligible and hence is not included here.

The present formalism assumes a JΠ = 0+ ground state and
therefore targets even-even systems. The ground state energy

of odd-even neighbours is obtained through [17, 21]

EA
0 = ẼA + ωk=0 , for A odd, (5)

where ẼA is the energy of the odd-even nucleus computed as
if it were an even-even one, i.e. as a fully paired even number-
parity state but forced to have an odd number of particles on
average, while ωk=0 denotes the lowest pole energy extracted
from Eq. (1) for that calculation. Eq. (5) is potentially exact
such that its ability to account for blocking and polarization
effects (and beyond) only depends on the scheme used to trun-
cate the self-energy expansion.

Results. Calculations were performed using chiral NN
and 3N forces evolved to low momentum scales through
free-space similarity renormalization group (SRG) tech-
niques [22]. The original NN interaction is generated at next-
to-next-to-next-to-leading order (N3LO) with cutoff Λ2N=500
MeV [23, 24], while a local N2LO 3NF [25] with a reduced
cutoff of Λ3N=400 MeV is employed. The 3NF low-energy
constants cD=-0.2 and cE=0.098 are fitted to reproduce 4He
binding energy [15]. The SRG evolution on the sole chiral NN
interaction already generates 3N operators in the Hamiltonian,
which we refer hereafter to as the “induced” 3NF. When the
pre-existing chiral 3N interaction, including the two-pion ex-
change Fujita-Miyazawa contribution, is included, we refer to
the “full” 3NF. Calculations were performed in model spaces
up to 14 harmonic oscillator (HO) shells [Nmax ≡ max (2n + l)
= 13], including all NN matrix elements and limiting 3NF
ones to configurations with N1+N2+N3 ≤ N3NF

max =16. An SRG
cutoff λ=2.0 fm−1 and HO frequency ~Ω=28 MeV were used.

Figure 1 shows the 51K binding energy as a function of the
model space size and the HO frequency used. Being one of
the heaviest nuclei considered here, 51K is representative of
the slowest convergence obtained in this work. Changing the
model space from Nmax=12 to 13 lowers its ground-state en-
ergy by 2.1 MeV, which corresponds to about 0.5% of the
total binding energy. This is much smaller than the uncer-
tainties resulting from truncating the many-body expansion of
the self-energy at second order (see below). Other isotopes
have similar speeds of convergence. For example, the change
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FIG. 1. (Color online) Convergence of the binging energy of 51K with
respect to the basis size and HO frequency, for the full Hamiltonian.
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for the same variation of the model space induces a change
of 1.7 MeV for 49K which slowly decreases to about 1 MeV
in 40Ca. Thus, one expects convergence errors to cancel to a
large extent when calculating two-neutron separation energies
S2n ≡ EA

0 − EA−2
0 , where the change in A is for the removal of

two neutrons. To test this we performed exponential extrap-
olations of the calculated binding energies of a few nuclei,
using the last few odd values of Nmax. We found variations
of at most ≈500 keV with respect to the value calculated at
Nmax=13. Hence, we take this as an estimate of the conver-
gence error on computed S2n. In the following we present our
results calculated for Nmax=13 and ~Ω=28 MeV, which corre-
sponds to the minimum of the curve in Fig 1. For isotopes
beyond N=32, appropriate extrapolations and larger model
spaces are required and will be considered in future works.

The accuracy of the many-body truncation of the self-
energy at second order must also be assessed. To this extent,
we consider the standard formulation of SCGF, based on the
Dyson equation, which has been implemented with the third
order algebraic diagrammatic construction [ADC(3)], which
includes all third order diagrams and resums higher-orders
non-perturbatively [26, 27]. We compute closed-shell iso-
topes 40Ca, 48Ca and 52Ca for which Dyson ADC(3) calcula-
tions with Nmax=9 can be performed and compared to second
order Gorkov calculations (Gorkov-GF theory intrinsically re-
duces to Dyson-GF theory in closed-shell systems). Results in
the top panel of Fig. 2 show that the correction from third- and
higher-order diagrams is similar in the three isotopes. Specif-
ically, we obtain EADC(3)−Dys

0 − E2nd−Gkv
0 = -10.6, -12.1 and

-12.6 MeV that correspond to ≈2.7% of the total binding en-
ergy. Assuming that these differences are converged with re-
spect to the model space, we add them to our second order
Gorkov results with Nmax=13 and display the results in the
bottom panel of Fig. 2. Resulting values agree well with IM-
SRG calculations of 40Ca and 48Ca based on the same Hamil-
tonian [10]. This confirms the robustness of the present results
across different many-body methods. The error due to missing
induced 4NFs was also estimated in Ref. [10] by varying the
SRG cutoff over a (limited) range. Up to ≈1% variations were
found for masses A ≤ 56 (e.g. less than 0.5% for 40Ca and
48Ca) when changing λ between 1.88 and 2.24 fm−1. We take
this estimate to be generally valid for all the present results.

A first important result of this Letter appears in the bot-
tom panel of Fig. 2, which compares the results obtained with
NN plus induced and NN plus full 3NFs. The trend of the
binding energy of Ca isotopes is predicted incorrectly by the
induced 3NF alone. This is fully amended by the inclusion of
leading chiral 3NFs. However, the latter introduce additional
attraction that results in a systematic overbinding of ground-
state energies throughout the whole chain. Analogous results
are obtained for Ar, K, Sc and Ti isotopic chains (not shown
here), leading to the same conclusion regarding the role of the
initial chiral 3NF in providing the correct trend and in gener-
ating overbinding at the same time.

The NN plus induced 3N interaction, which originates from
the NN-only N3LO potential, generates a wrong slope in
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FIG. 2. (Color online) Experimental (full squares) [28–30] and cal-
culated ground-state energies of Ca isotopes. Top panel: second-
order Gorkov and Dyson-ADC(3) results for 40,48,52Ca obtained with
a Nmax =9 model space and the full Hamiltonian. Bottom panel:
second-order Gorkov results with NN plus induced (crosses) and NN
plus full (open squares) 3NFs and Nmax =13. Full 3NF Gorkov re-
sults corrected for the ADC(3) correlation energy extracted from the
top panel (dotted line with full triangles). IM-SRG results [10] are
for the same 3NF and are extrapolated to infinite model space (dia-
monds with error bars).

Fig. 2 and exaggerates the kink at 40Ca. The corresponding
two-nucleon separation energies are shown in Fig. 3 and are
significantly too large (small) for N ≤ 20 (N > 20). Including
chiral 3NFs correct this behaviour to a large extent and pre-
dict S2n close to the experiment for isotopes above 42Ca. Fig-
ure 3 also shows results for microscopic shell model [8, 30]
and coupled cluster [14] calculations above 41Ca and 49Ca,
respectively, which are based on similar chiral forces. Our
calculations confirm and extend these results within a full-
fledged ab initio approach for the first time. The results are
quite remarkable, considering that NN+3N chiral interactions
have been fitted solely to few-body data up to A = 4.

The S2n jump between N=20 and N=22 is largely over-
estimated with the NN plus induced 3NFs, which confirms
the findings of Refs. [13, 31] based on the original NN in-
teraction. The experimental Z=20 magic gap across 48Ca is
∆π(48Ca) ≡ 2E

48Ca
0 − E

49Sc
0 − E

47K
0 = 6.2 MeV, whereas it was

found to be 10.5 MeV in Ref. [31]. The magic gap is some-
what larger in the present calculations, i.e. it is equal to
16.5 MeV with the NN plus induced 3NF and is reduced to
12.4 MeV including the full 3NF, which still overestimates
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FIG. 3. (Color online) Two-nucleon separation energies, S2n , of Ca
isotopes. Gorkov calculations are shown for the induced (crosses)
and full (open squares) Hamiltonians and are compared to the ex-
periment (full squares) [28–30]. Results from shell model calcula-
tions with chiral 3NFs (full line) [8, 30] and coupled cluster (dashed
line) [14] are also shown.

experiment by about 6 MeV.
The Koltun sum rule (3) computes the binding energy as

a weighted sum of one-nucleon removal energies. The sys-
tematic overbinding observed in the present results thus re-
lates to a spectrum in the A-1 system (not shown here) that is
too spread out. This has already been seen in Ref. [13] and
is reflected in the excessive distance between major nuclear
shells, or effective single-particle energies (ESPE) [17, 32].
In turn, the overestimated N=20 magic gap and the jump of
the S2n between N=20 and N=22 relate to the exaggerated en-
ergy separation between sd and pf major shells generated by
presently employed chiral interactions. Eventually, a too di-
lute ESPE spectrum translates into underestimated radii.

Presently, ADC(3)-corrected energies with the NN plus full
3NF (Fig. 2) overbind 40Ca, 48Ca and 52Ca by 0.90, 0.73, and
0.72 MeV/A, respectively. It can be conjectured that such a
behaviour correlates with a predicted saturation point of sym-
metric nuclear matter that is too bound and located at too
high density compared to the empirical point. Recent calcu-
lations of homogeneous nuclear matter based on chiral inter-
actions [2, 3] predict a saturation point in the vicinity of the
empirical point with an uncertainty that is compatible with
the misplacement suggested by our analysis. However, such
calculations use a different 3NF cutoff Λ3N=500 MeV and dif-
ferent values of cD and cE . Additional SCGF calculations as
in Ref. [3] but with the same NN+3N chiral interactions used
here would help in confirming this conjecture.

The systematic of S2n obtained with the NN plus full 3NF is
displayed in Fig. 4 along Ar, K, Ca, Sc and Ti isotopic chains,
up to N=32. When the neutron chemical potential lies within
the pf shell, predicted S2n reproduce experiment to good accu-
racy without adjusting any parameter beyond A = 4 data. Still,
the quality slightly deteriorates as the proton chemical poten-
tial moves down into the sd shell, i.e. going from Ca to K
and Ar elements. The increasing underestimation of the S2n is
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FIG. 4. (Color online) Two-neutron separation energies, S2n , along
Ar, K, Ca, Sc and Ti isotopic chains. The experimental values (solid
symbols) [28–30] are compared to second-order Gorkov calculations
with the NN plus full 3NF (full lines). Values for K, Ca, Sc and Ti
are respectively shifted by +5 MeV, 10 MeV, 15 MeV and 20 MeV
for display purposes. Isolated open symbols are AME2012 extrapo-
lations of experimental data [28].

consistent with a too large gap between proton sd and pf ma-
jor shells that prevents quadrupole neutron-proton correlations
to switch on. The too large jump of the S2n between N=20
and N=22 is visible for all elements and becomes particularly
pronounced as one moves away from the proton magic 40Ca
nucleus where the experimental jump is progressively washed
out. At N=18, the situation deteriorates when going from 38Ca
to 41Sc and 42Ti (but not going to 37K and 36Ar), i.e. when the
proton chemical potential moves up into the pf shell. This is
again consistent with an exaggerated shell gap between sd pf
shells that prevents neutron-proton correlations to switch on
when the chemical potentials sit on both sides of the gap. One
should also notice that present calculations are restricted to
densities with spherical symmetry and effects of deformation
might play a role in some Ar or Ti isotopes. However, such
effects will be minor in the S2n and we do not expect the accu-
rate treatment of deformation to alter any of our conclusions.

Conclusions. We have reported on the first application of
the Gorkov-Green’s function approach with two- and three-
body forces. We have shown that the present ab initio tech-
nique allows for the systematic description of mid-mass open-
shell nuclei, including odd-even systems. This represents a
qualitative breakthrough that opens up unprecedented possi-
bilities in terms of nuclei reachable from an ab initio stand-
point. Exploiting the mechanism of symmetry breaking and
keeping the simplicity of a single-reference scheme, Gorkov’s
framework could be naturally incorporated into other many-
body approaches. Its applicability is not limited to nuclear
physics but can be generally extended to many-body systems
that present a near-degeneracies.

In this Letter we have focused on the ability of leading chi-
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ral 3NFs to describe absolute binding and two-neutron sep-
aration energies along Ar, K, Ca, Sc and Ti chains, up to
N=32. While available NN+3N chiral interactions typically
perform well in the vicinity of oxygen isotopes, they were
never tested for entire isotopic chains with Z > 9. Leading
3NFs are found to be mandatory to reproduce the correct trend
of binding energies for all isotopes, analogously to what was
observed in lighter N, O and F chains. Overall, the system-
atic of two-neutron separation energies is reproduced with a
very good quality. Still, absolute binding energies are sys-
tematically overestimated throughout the Z≈20 mass region
and the magic character of N=20 and/or Z=20 nuclei is exag-
gerated by the employed NN+3N chiral forces. This can be
traced back to the fact that the latter make deeply bound effec-
tive single-nucleon shells too spread out and the distance be-
tween major shells too pronounced. It is conjectured that this
relates to a saturation point of symmetric nuclear matter lo-
cated at a slightly too large binding energy/density compared
to the empirical point. Eventually, we conclude that ab initio
many-body calculations of mid-mass isotopic chains can now
challenge modern theories of elementary nuclear interactions.
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