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Abstract: Despite substantial advancements have been done in the understanding of the 
pathogenesis of plasma cell (PC) disorders, these malignancies remain hard-to-treat. The 
discovery and subsequent characterization of non-coding transcripts, which include several 
members with diverse length and mode of action, has unraveled novel mechanisms of gene 
expression regulation often malfunctioning in cancer. Increasing evidence indicates that such non-
coding molecules also feature in the pathobiology of PC dyscrasias, where they are endowed with 
strong therapeutic and/or prognostic potential. In this review, we aim to summarize the most 
relevant findings on the biological and clinical features of the non-coding RNA landscape of 
malignant PCs, with major focus on multiple myeloma. The most relevant classes of non-coding 
RNAs will be examined, along with the mechanisms accounting for their dysregulation and the 
recent strategies used for their targeting in PC dyscrasias. It is hoped these insights may lead to 
clinical applications of non-coding RNA molecules as biomarkers or therapeutic targets/agents in 
the near future. 
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1. Introduction  

Plasma cell (PC) dyscrasias represent a clinically and biologically heterogeneous group of 
blood disorders characterized by the detection of a monoclonal paraprotein in the serum or urine, 
and/or the presence of monoclonal PCs in the bone marrow (BM) or in extramedullary tissues. This 
set of diseases include monoclonal gammopathy of undetermined significance (MGUS), multiple 
myeloma (MM), plasma cell leukemia (PCL), lymphoplasmacytic lymphoma/Waldenström 
macroglobulinemia (LPL/WM), amyloidosis and POEMS (Polyneuropathy, Organomegaly, 
Endocrinopathy, Monoclonal protein and Skin changes) syndrome. 

MM is caused by the clonal proliferation of abnormal PCs in the BM, and represents around 
10% of all hematological malignancies. Despite a vast improvement in treatment strategies over the 
last few decades, MM still remains incurable. Several risk factors associate with the disease, such as 
age, race, gender, family history [1] and obesity [2]. MM is always preceded by a premalignant 
condition known as MGUS, characterized by the finding of monoclonal protein or M-protein in 
serum (≤ 3 g/dL) and moderate PC proliferation (< 10%) in the BM [3]. Despite M protein, MGUS 
patients lack “myeloma-defining events”, including CRAB symptoms (hypercalcemia, renal 
insufficiency, anemia and bone disease) [4]. MGUS prevalence is approximately 3% of the 
population aged over 50 years and increases with age [3]. It is estimated that around 1% of these 
patients will progress to MM each year. No treatment is indicated in MGUS patients, although a 
careful monitoring is required throughout life to early detect progression toward MM [5]. 

Four early oncogenic events have been described for MGUS and MM, that include 
translocations, dysregulation of cyclin D/retinoblastoma pathway, hyperdiploidy and chromosome 
13 deletions. [6]. MGUS can progress to smoldering MM (sMM), which retains the diagnostic 
features of MM, but still lacks myeloma-defining events [4].  

PCL is a distinct PC dyscrasia that can result as progression of symptomatic MM (secondary 
PCL) or as de novo disease (primary PCL), whose diagnosis relies on the presence of at least 2 × 109/L 
or 20% circulating malignant PCs in the peripheral blood (PB). PCL accounts for around 0.5% cases 
of MM, with a crude incidence of 0.4 cases per million [7,8]. Treatments adopted resemble MM 
protocols, but overall outcomes of pPCLs and sPCLs are poorer [9,10].  

WM is a B-cell malignancy classified as lymphoplasmacytic lymphoma [11], characterized by a 
clonal infiltration of lymphoplasmacytic cells within the BM and a serum IgM monoclonal 
component. A pre-malignant condition, defined as IgM MGUS, may precede a clinically active WM. 
It is characterized by less than 10% BM lymphoplasmacytic cells, less than 3g/dL of monoclonal IgM 
and a lack of clinical signs or symptoms secondary to the WM disease. Importantly, a rate of IgM 
MGUS-to-WM progression of about 2% per year has been reported [12]. In parallel, a smoldering 
WM (sWM) status may also exist, defining patients with BM lymphoplasmacytic infiltration of 10% 
or more, IgM monoclonal protein of 3 g/dL or more, in the absence of any sign or symptom of 
disease. Conversely, WM is characterized by the presence of more than 10% BM clonal 
lymphoplasmacytic cells, monoclonal IgM of any degree and end organ damage [3,12]. In rare 
cases, WM cells may also infiltrate the central nervous system, leading to the so-called Bing-Neel 
syndrome [13,14]. 

Amyloid light-chain (AL) amyloidosis refers to the extracellular tissue deposition of 
monoclonal light chain fibrils. Patients can have AL amyloidosis alone or in association with other 
PC disorders such as MGUS, MM and LPL/WM. The median age at presentation is 64 years with 
men accounting for 70% of the cases [15]. 

POEMS syndrome is a rare disorder affecting patients in the fifth to sixth decade of life, whose 
clinical manifestations are highly variable. According to the IMWG, the diagnosis of POEMS 
syndrome is made by the presence of two mandatory criteria: peripheral neuropathy clinically 
sensorimotor with evidence of axonal and demyelinating damage and monoclonal plasma cell 
disorder characterized by serum or urine monoclonal protein, often lambda restricted; BM biopsy 
might be unrevealing [16]. 

Diagnostic criteria used for the classification of PC malignancies, along with the most relevant 
therapeutic options, are briefly summarized in Table 1. 
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Table 1. Clinical features and best therapeutic options of PC dyscrasias. 

PC Disorder 
Bone Marrow PCs or 
Lymphoplasmacytic 

Cells, % 

MC Serum/ 
24 h FLC Urine 

CRAB Features 
(Y/N) * 

Best Therapeutic Options 
(First Line) 

Symptomatic 
Multiple Myeloma 

>10% PCs 
> 3g/dL 
500 mg 

Y 
PIs/ImiDs +/− MoAbs ** 
based regimens 

Smoldering 
Multiple Myeloma 

>10%<60% PCs 
>or <3 g/dL/ 
500 mg 

N 
No therapy− 
strict follow up 

Plasma Cell 
Leukemia 

>20% circulating PC 
in peripheral blood 

> or <3 g/dL 
500 mg Y PIs/ImiDs based regimens 

MGUS <10% PCs 
<3 g/dL 
500 mg 

N 
No therapy- 
follow up 

Primary 
Amyloidosis 

<10% PCs 
<3 g/dL 
500 mg 

N 
PIs/ImiDs +/− MoAbs ** 
based regimens 

Solitary 
Plasmacytoma 

<10% PCs 
<3 g/dL 
500 mg 

Y *** Radiotherapy 

Smoldering 
Waldenström 
Macroglobulinemia 

Usually <30% LPCs <3g/dL N No therapy− 
strict follow up 

Waldenström 
Macroglobulinemia 

Usually >30% LPCs >3 g/dL N 
PI based regimens+anti CD20 
monoclonal; BTK inhibitors if 
MYD88mut 

POEMS 
>10% (in the case of an 
underlying MM) 

>3 g/ dL (in the 
case of an 
underlying MM) 

Y  
(in the case of an 
underlying MM) 

 
MM regimens (****) 

Abbreviations: FLC: free light chain; MC: monoclonal component; * CRAB: presence of at least one sign among 
the following: malignant hypercalcemia, renal failure, anemia, osteolytic bone lesions; clonal PC infiltration 
>60%; abnormal free light chain ratio (involved /uninvolved chain)>100; ** regimens including a proteasome 
inhibitor (PI) and /or an immunomodulatory molecule (thalidomide or lenalidomide, Imids) with a 
chemotherapy agent (e.g., cyclophosphamide, melphalan) or a monoclonal antibody (e.g., daratumumab, 
elotuzumab); *** only osteolytic bone lesion is considered; **** therapy depends on the presence of an 
underlying MM; NA: not applicable. 

A complex genomic and epigenomic landscape characterizes PC dyscrasias, and recent findings 
underscore the pivotal contribution of non-coding RNAs (ncRNAs) to the malignant transformation 
[17]. Herein, we will provide an overview of the most relevant ncRNAs, of their mechanism of action 
and of their emerging biological and clinical impact within the PC dyscrasias scenario. 

2. ncRNAs: Molecular Features 

It is nowadays evident that the non-coding compartment, which represents approximately the 
98.5% of the whole human transcriptome, critically regulates relevant physiologic and pathologic 
processes [18]. Based on their length, ncRNAs have been historically classified into short (< 200 
nucleotides) non-coding RNAs (sncRNAs) or long (> 200 nucleotides) non-coding RNAs (lncRNAs) 
[19]. An overview of the mechanisms of action of each class is provided in Figure 1. 

2.1. sncRNAs  

a) miRNAs. MicroRNAs (miRNAs) are sncRNA molecules, of 17 to 24 nucleotides (nt) in 
length, that post-transcriptionally regulate mRNAs [20,21]. After transcription by RNA polymerase 
II, miRNAs are processed through an evolutionarily conserved multi-step pathway, in which RNA 
endonucleases (Drosha and Dicer) progressively reduce the length of the initial miRNA transcripts 
from ~100 nt (primary-miRNA) to ~22 nt (mature miRNA). Mature miRNA is then assembled into 
the RNA-induced silencing complex (RISC) and can induce either translational repression or 
degradation of target mRNAs, upon total or partial complementary binding with 3′ untranslated 
region (3′ UTR) [21,22] (Figure 1a). Given the multitude of targets for a single miRNA, these 
molecules harbor the potential to concomitantly regulate multiple pathways [23]. As a consequence, 
dysregulation of miRNAs has been shown to underlie the onset and progression of cancers, 
including PC dyscrasias [24].  
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b) snoRNAs. Small nucleolar RNAs (snoRNAs) are well conserved sncRNAs located in the 
nucleolus, commonly involved in post-transcriptional modification of ribosomal RNAs (rRNAs) 
and small nuclear RNA (snRNA) [25]. Interestingly, their regulatory activity goes far beyond the 
previous knowledge that they are transcriptionally and functionally related to the host genes within 
they are encoded. Indeed, “orphan” snoRNAs are also expressed in a tissue-specific fashion, and 
may be located within intron of lncRNAs or of coding genes unrelated to ribosomal biogenesis 
(Figure 1b) [26].  

c) piRNAs. PIWI-interacting RNAs (piRNAs) are sncRNAs formed by 25 to 31 nucleotides, that 
bind to the evolutionarily conserved proteins PIWIL1-4 [27]. In physiological conditions, both 
PIWILs and piRNAs are expressed in the germline, where they regulate transposable element and 
heterochromatin [28]. Unlike the other sncRNAs, piRNAs are generated from single-stranded RNA 
transcripts in a Dicer-independent mechanism. piRNAs have a preference for uridine at their 5′-
ends, and have a HEN1-methyltransferase-catalyzed 2′-O-methylribose modification at their 3′-ends 
[29]. Three major classes of PIWI proteins have been implicated in a “ping-pong” amplification 
process, which creates antisense piRNAs that repress the transcript of origin [30,31]. Several studies 
revealed that mRNAs are also targeted by piRNAs at 3′UTR, leading to their degradation [32] 
(Figure 1c). A role for the PIWIL–piRNA complex has recently emerged in somatic cells, where their 
expression can be reactivated under pathological stimuli [33,34].  

2.2. LncRNAs  

LncRNAs comprise a heterogenous class of intergenic transcripts (lincRNAs), enhancer RNAs 
(eRNAs), and sense or antisense transcripts that overlap other genes [35]. LncRNAs have been 
proposed to exert diverse functions, including in cis or in trans transcriptional regulation, 
organization of nuclear domains and regulation of proteins or RNA molecules [35,36]. LncRNAs 
exert their functions by interacting with DNA, RNA or proteins [37]. The myriad functions that 
derive from such interactions are commonly categorized in four non-mutually exclusive archetypes: 
signals, decoy, guide, scaffold [37] (Figure 1d). 

a) Signals. Transcription of these lncRNAs occurs at a very specific time and place, to interpret 
cellular context and respond to diverse stimuli. Relevant examples of lncRNAs acting as signals are 
those implicated in genomic imprinting such as XIST, KCNQ1ot1 and Air [38,39]; or those activated 
in response to specific stimuli like DNA damage (LINC-p21, PANDA and NORAD) [40–42] or 
temperature decrease (COLDAIR and COOLAIR) [37,43,44].  

b) Decoy. These lncRNAs negatively regulate effector molecules including proteins or miRNAs 
[37]; they behave as “molecular sink” because their major function is to bind and titrate away the 
effector molecules, which in turn cannot exert their molecular functions. [37]. A compelling 
example of this class is MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), which 
binds to and sequesters several serine/arginine (SR) splicing factors into nuclear speckles [45].  

c) Guide. These lncRNAs direct ribonucleoprotein (RNP) complexes to target genes in cis 
(neighboring genes) or in trans (distantly located genes) [37]. The RNP complex brought on by the 
lncRNAs include both repressive (e.g., polycomb) and activating (e.g., MLL) complexes, as well as 
transcription factors (e.g., TFIIB). Key examples of cis-acting lncRNAs are XIST, AIR, COLDAIR, 
CCND1 and HOTTIP; while HOTAIR, LincRNA-p21 and JPX are well characterized trans-acting 
lncRNAs [37].  

d) Scaffold. These lncRNAs serve as platforms upon which relevant molecular components are 
assembled. To carry out this function, lncRNAs belonging to this archetype should possess different 
domains that concomitantly bind various effector molecules [37]. A fascinating example of lncRNA 
scaffold is provided by TERC (telomerase RNA component), an essential component of telomerase, 
a specialized reverse transcriptase that plays a fundamental role in the maintenance of genome 
stability. In order to work properly, telomerase catalytic activity indeed requires the association of 
two universal subunits, namely the lncRNA TERC, that provides the template for repeat synthesis, 
and the catalytic protein subunit TERT (telomerase reverse transcriptase) [46]. 
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Figure 1. Molecular features and mechanism of action of the different ncRNA classes. a) After being transcribed in the nucleus from a primary-miRNA (pri-miRNA), 
precursor miRNAs (pre-miRNAs) are exported by exportin 5 in the cytoplasm and processed by Dicer, which generates mature miRNAs, then loaded into the RNA-
induced silencing complex (RISC). miRNAs function through degradation of protein-coding transcripts or translational repression. b) Mature snoRNAs generated by 
splicing, debranching and trimming are either exported from the nucleus, where they regulate ribosomal RNA (rRNA) processing, or remain in the nucleus, where they 
can regulate alternative splicing. c) piRNAs are expressed as single stranded RNAs (ss piRNAs) or produced through a secondary amplification loop. The PIWI 
ribonucleoprotein (piRNP) complex functions in transposon repression through target degradation and epigenetic silencing. d) LncRNAs can modify gene expression by 
multiple mechanisms: they can act as decoy of transcription factors, sponge for miRNAs, regulators of splicing, recruiters of chromatin modifier complexes or modulate 
mRNA stability. e) circRNAs can bind miRNAs acting as a sponge to regulated downstream transcription, or can enhance the expression of host genes by improving the 
activity of Pol II in the nucleus. Part of the circRNA can also encode peptides or proteins.  
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2.3. CircRNAs 

Circular RNAs (circRNAs) are highly conserved ncRNA species formed through a back-
splicing mechanism, in which a 5′ splice donor attacks an upstream 3′ splice site, leading to a 3′-5′ 
phosphodiester bond [47–49]. The lack of free ends makes circRNAs more stable and resistant to 
exonucleases than linear RNAs [50–52].  

Expression of circRNAs is finely regulated in time and space [50,53], with an exquisite disease-
specific pattern [50,53]. Given the high stability of circRNAs in body fluids, several studies 
suggested their use as diagnostic and prognostic biomarkers [54]. Similar to other ncRNAs, it has 
been hypothesized for exosomal circRNAs a functional role in transmitting signals among cell 
populations of the tumor microenvironment [55,56]. Mechanistically, the presence of miRNA 
binding sites within their sequence allows circRNAs to function as miRNA decoys. However, the 
binding of a miRNA to a circRNA does not always correlate with the blockade of miRNA function, 
but can instead allow circRNAs to function as miRNAs reservoir [56]. Furthermore, circRNAs with 
RNA-binding protein motifs can act as protein decoys, or can facilitate the interaction between 
multiple proteins as scaffolds [57]. CircRNAs can bear AUG sites and internal ribosome entry sites 
elements, and some circRNAs can be translated in particular conditions [58,59]. Finally, some 
circRNAs are found located into the nucleus where they seem to be involved in transcription or in 
splicing events [60–64] (Figure 1e).  

3. Therapeutic Targeting of ncRNAs in PC Dyscrasias 

3.1. General Strategies for Targeting the ncRNAs  

Different approaches may be used to therapeutically target the ncRNA network in cancer. Of 
note, ncRNA molecules may be either used as targets or drugs, depending on the role (tumor 
promoting or tumor suppressing) during malignant transformation. Strategies for targeting 
sncRNAs may widely differ from those used to target lncRNAs and specific approaches may be 
required to inhibit ncRNAs located in certain subcellular compartments (i.e., nuclei). Moreover, 
along with the already established and continuously evolving field of RNA therapeutics by 
antisense oligonucleotides (ASOs), the development of small molecule (SM) inhibitors of ncRNAs 
represent a new emerging field. Below, we summarize the most promising approaches developed 
so far. 

miRNA replacement (miRNAs as drugs). The most useful tools adopted to enforce tumor 
suppressor miRNAs are small synthetic RNA duplexes mimicking endogenous miRNAs. Since the 
in vivo delivery of miRNA oligonucleotides as therapeutics is restricted because of charge density, 
molecular weight and degradation by nucleases [31], various viral and non-viral delivery systems 
have been developed, including liposomal formulations, which protect miRNAs from nucleases 
and are eventually decorated at the surface to confer tissue selectivity [31,65]. 

miRNA inhibition (miRNAs as targets). ASOs are small oligonucleotides capable to cross the cell 
membrane with RNA/DNA-based structures that selectively bind to RNA via Watson-Crick 
hybridization [66]. Chemical modifications have been applied to stabilize ASOs for in vivo delivery, 
such as the locked nucleic acid (LNA), bicyclic RNA analogues in which the furanose ring in the 
sugar backbone is locked into a RNA mimicking conformation through the introduction of a 
methylene bridge [67]. LNA inhibitors are endowed with nuclease resistance, increased binding 
affinity to the target and enhanced tissue uptake [31,67]. ASOs bearing complementary sequence to 
mature miRNAs have been used to stoichiometrically antagonize onco-miRNAs. This approach has 
the potential to effectively inhibit the activity of individual miRNAs (anti-miRs), as well as of 
different miRNAs belonging to the same family (seed-targeting tiny LNAs); or, further, to inhibit 
several unrelated miRNAs with oncogenic functions (miRNA sponges). Alternatively, as we 
recently proposed, the expression of clustered onco-miRNAs may also be antagonized using ASO-
dependent RNase H-mediated degradation of miRNA primary transcript (i.e., LNA gapmeRs).  

RNA therapeutics for oncogenic lncRNAs. RNA interference (RNAi) has been widely exploited to 
inhibit lncRNAs in cancer cells through RISC-mediated degradation. In order to achieve efficient in 



Cancers 2020, 12, 320 7 of 25 

 

vivo knock-down with siRNAs, the above described chemical modifications that improve uptake, 
stability and binding affinity of ASOs have been adopted. In case the lncRNA sequence becomes 
unfavorable to siRNA targeting because of extensive secondary structure or nuclear localization, 
the use of ASOs is mandatory [68,69]. Advantages of ASOs over siRNAs include their 
independence on the RISC machinery, higher specificity and fewer off-target effects. Ribozymes or 
deozyribozymes, which bind to a complementary target sequence and catalyze the cleavage of the 
flanked RNA region, may alternatively be exploited for the targeting of lncRNAs [70,71].  

SM inhibitors of ncRNAs. A new era in RNA targeting has started in late 1980s with the 
development of SMs, after the discovery that some drugs can bind the bacterial ribosomal RNA 
[72,73]. Regarding miRNA-targeting, the major goal has been the identification of SMs that 
specifically bind to miRNAs and/or to its precursors, thereby decreasing their levels. Gumireddy et 
al. first discovered a diazobenzene derivative that inhibits the transcription of the oncogenic pri-
miR-21 [74]. Liu et al. then reported that the alkaloid sophocarpine antagonized Dicer-mediated 
processing of miR-21 [75]. Later on, a bleomycin A5 conjugate, which selectively inhibits Drosha 
processing of pri-miR-96, was discovered and found to upregulate the miR-96 pro-apoptotic target 
FOXO1, inducing breast cancer cell death [76]. Interestingly, Costales et al. identified a SM with 
overlapping affinity for the precursors of both miR-515 and miR-885, which share a common target 
motif; this compound was optimized to bind only miR-515 by Inforna, a computational approach 
that drives sequence-based design of SM targeting structured RNA [77], leading to the Targaprimir-
515 molecule [78]. 

Regarding lncRNAs, although RNA three-dimensional (3D) structures provide different 
regions for the recognition and binding of SMs [79,80], the design is difficult because nucleic acids 
show a highly dynamic conformation and a repetitive surface, and their binding pockets are much 
more polar and exposed to solvents than proteins [81]. However, studies on viral RNA motifs 
indicated that ligands can bind discrete RNA pockets, pointing to the applicability of SMs to target 
RNAs [82–85]. Compared to ASOs, SMs offer superior pharmacokinetics (PK) and have the 
potential to specifically recognize RNA on the basis of their secondary or tertiary structure and 
independently of the sequence [86]. Overall, there are limited preclinical data on ncRNA targeting 
by SMs. Telomere repeat-containing RNA (TERRA) is a lncRNA transcribed from the sub-telomeric 
sequences, characterized by 5′-(UUAGGG)-3 repeats at its 3′ end, and involved in the maintenance 
and regulation of telomere’s homeostasis [87]. Its r(UUAGGG)n sequence can fold into G-
quadruplex (G4) conformation that is required for telomere heterochromatin formation in cancer 
cells [88]. Carboxypyridostatin, the first compound selectively targeting TERRA, was discovered 
through a template-directed in situ “click chemistry” approach [89–92]. 

MALAT1 has been defined as a promising anticancer target, because it is over-expressed and 
its knock-down produces strong anti-tumor effects in almost all tumor types [71]. A 1500 nt long 
segment at the 3′-end of MALAT1 was identified as a region responsible for its oncogenic activity 
[93]. The X-ray crystal structure of a 74 nt region at the 3′-end has been solved confirming a triple 
helix which confers stability to MALAT1 [94,95]. Such unique tertiary structure thus represents an 
excellent anti-cancer target for SMs. Accordingly, Donlic et al. synthesized an SM library based on 
the RNA binding scaffold diphenylfuran, which was used to selectively target MALAT1 triple helix 
[96]. Le Grice et al. also reported two new SMs targeting MALAT1, one of which unaffecting the 
triplex stability [97]. High-throughput screening also identified SMs disrupting the interaction of 
the lncRNA HOTAIR with its partner EZH2, leading to growth inhibition of breast and 
glioblastoma patient-derived xenografts [98,99].  

A cartoon reporting ASO- and SM-based lncRNA targeting approaches is reported in Figure 2. 
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Figure 2. Strategies for lncRNA targeting. The picture reports, as a representative model, the triple 
helix region of the lncRNA MALAT1, which can be targeted or by LNA gapmeR ASO, that binds 
the lncRNA by perfect complementarity and triggers the RNAse H-mediated degradation (upper 
part), or by an SM designed to specifically recognize an RNA binding pocket (bottom part). 

3.2. Preclinical Findings on ncRNAs in PC Dyscrasis  

3.2.1. sncRNAs 

During the last decade, extensive molecular profiling of tumor cells has shown deep 
dysregulation of miRNA networks in malignant PCs [100–103]. On this basis, the functional role of 
several miRNAs, either oncogenic or tumor suppressive, has been investigated in the preclinical 
setting, leading to a large body of evidence supporting their pivotal role in the pathogenesis of PC 
malignancies.  

In MM, specific miRNA signatures characterize disease progression from MGUS to overt 
disease and eventually towards PCL [100,104]. For instance, oncogenic miR-21 and miR-106a-92 
cluster were found upregulated starting from the MGUS stage, while other miRNAs were 
upregulated (e.g., miRs-221/222, -181a/b and -17-92 cluster) or downregulated (e.g., miR-15 and -16) 
predominantly in clinically manifest MM [104,105]. Among miRNAs upregulated in MM PCs, 
several reports demonstrated the oncogenic role of miR-221/222, a miRNA cluster acting via 
repression of CDKN1B (p27Kip1), BBC3 (PUMA), PTEN and CDKN1C (p57Kip2) [106–108]. 
Importantly, this cluster was shown to confer resistance to anti-MM agents including melphalan 
and dexamethasone [106–108]. Notably, the potential of miR-221 as therapeutic target was proved 
using the specific LNA-i-miR-221 inhibitor, that showed anti-MM efficacy and favorable PK profile 
upon systemic delivery in vivo [109]. On the other hand, enforced expression of tumor suppressor 
miR-34a exerted a strong anti-MM activity through BCL2, CDK6, and NOTCH1 targeting both in 
vitro an in vivo in the SCID-synth-hu model of MM, which recapitulates the disease within its BM 
milieu [110,111]. Likewise, the inverse correlation of miR-125b levels with IRF4, an “Achilles' heel” 
of MM, showed that this specific miRNA, differently from other hematologic malignancies, has 
tumor suppressor activity in MM [112].  

A specific miRNA signature markedly distinguished primary WM tumors from their normal 
counterparts, with a clear role for miR-155 as oncogenic driver and prognostic tool for this disease 
[102]. Functional studies showed that its inhibition by anti-miR-155 LNA decreased critical WM 
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signaling cascades such as MAPK/ERK, PI3/AKT and NF-kB both in vitro and in vivo [113]. miRNA 
dysregulation, specifically involving miR-16, has also been correlated with AL amiloydosis, 
suggesting its oncogenic role, as well as its use as biomarker in the disease [103]. 

Genetic, epigenetic and transcriptional alterations are holding to be responsible for selective 
miRNA deregulation. Gene copy number alterations in both hyperdiploid MM (HMM) and non-
HMM patients are one of the most prominent genomic perturbations [114], and miRNA expression 
is often altered upon gains and losses of chromosomal loci [115]. For instance, quantitative 
expression of miR-1232, miR-205, miR-215 and miR-488 strongly correlates with the 1q gain MM 
patients. miR-15a and -16 downregulation was similarly observed in patients displaying monosomy 
or deletions of chromosome 13, present in up to half of MM cases, with consequent induction of cell 
proliferation and BM angiogenesis [100,102,115].  

Epigenetic modifications occurring during disease progression dynamically regulate the 
expression of miRNAs. In particular, DNA hypermethylation due to aberrant expression of de novo 
DNA methyltransferases (DNMTs) plays a pivotal role in MM pathogenesis [116]. 
Hypermethylation of promoters of a plethora of tumor suppressive miRNAs during MGUS to MM 
transition and toward PCL stage has been indeed reported [17]. Importantly, miR-155, found 
overexpressed in a variety of solid tumors [117], was hyper-methylated and down-regulated in MM 
cells [118], and its enforced expression by miR-155 mimics antagonized MM growth both in vitro 
and in vivo, and reduced proteasome activity through PSMβ5-targeting [119]. In addition, miR-29b, 
a tumor suppressor miRNA in hematological malignancies [120], was found silenced by EZH2-
dependent H3K27 trimethylation [121] or by HDAC4-dependent deacetylation [122]. 

Besides being regulated by the epigenetic machinery, a subgroup of miRNAs, called “epi-
miRNAs”, also actively regulates epigenetic processes via targeting mRNAs encoding methylating 
and acetylating enzymes [120]. DNMT3A/B are targeted by miRNAs, such as miR-29b, whose 
restoration efficiently reduces global DNA methylation leading to a strong anti-MM effect in vitro 
and in vivo in the SCID-synth-hu model [116], either as a single agent or in combination with 
demethylating agents [116], HDAC inhibitors [122] or proteasome inhibitors [123]. Of note, miR-29b 
also binds the 3′ UTR of the histone deacetylase HDAC4, thereby affecting the acetylation pattern of 
MM cells [122]. Similarly, a miRNA-dependent modulation of histone acetylation was described in 
WM, mainly due to aberrant expression of miRNA-206 and miR-9* in the tumor clone [124].  

Expression of miRNAs is subjected to a tight regulation by numerous transcription factors 
[125]. Several transcription factor/miRNA autoregulatory loops have been described in MM, such as 
that between p53 and miR-194 or miR-34 [110,126], as well as the loop existing among transcription 
factor Sp1 and miR-29b which modulates bortezomib sensitivity [123]. Moreover, overexpression of 
c-MYC, a key driver of MM, appears to cause a widespread reorganization of miRNA expression 
patterns [127]. Importantly, c-MYC acts in concert with Sp1 to down-regulate the expression of 
tumor suppressor miR-23b in MM and WM cells [128], and miR-23b enforcement dampened in vitro 
and in vivo MM or WM growth. Additionally, c-MYC strongly induces the expression of miR-17-92 
oncogenic cluster, which in turn regulates the expression of MYC target genes—including BCL2L11 
(BIM)—establishing a homeostatic feed-forward loop (FFL) [129].  

The interaction between miRNAs and transcription factors may be susceptible of 
pharmacologic intervention: a specific LNA gapmeR inhibitor that selectively targets MIR17HG 
primary transcript, named MIR17PTi, is able to disrupt the MYC/miR-17-92 FFL and to trigger 
apoptosis by inducing MYC-dependent synthetic lethality in patient-derived MM cells [129].  

The MM microenvironment is composed by several immune cell types, with myeloid-derived 
suppressor cells (MDSCs) participating in immune suppression [130]. The pivotal role of MDSCs in 
MM was evidenced by their accumulation and activation in MM patients, as well as by their 
capacity to suppress T cells [131]. They have been also identified as pre-osteoclast cells and 
potential factor promoting MMBD and angiogenesis [132]. In MM, granulocytic-MDSCs 
significantly increased the stem-like cell proportion, sphere formation, and expression of stemness-
related genes through a piRNA-823-dependent DNMT3A/B activation. Such stem traits were 
abrogated by a selective antagomiR-823 [133]. 
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Effects of miR-based therapy have been investigated in the context of the BM 
microenvironment [134] and bone disease (BD) [135]. Specifically, replacement of miR-29b in 
osteoclasts prevented bone resorption by reducing expression of c-FOS and MMP2 [136]. Likewise, 
overexpression of miR-21 in BMSCs enhanced in vitro osteoclastogenesis, while its inhibition 
restored RANK-L/OPG balance via upregulation of its targets OPG and PIAS3, thus impairing 
osteoclast activity and reducing bone resorption [137]. Interestingly, miR-21 is also overexpressed in 
MM cells where it exerts a key oncogenic role downregulating PTEN and activating the AKT 
pathway. Its inhibition exerts strong anti-MM activity in vitro and in vivo [138]. miR-15a and -16-1 
upregulation reduces MM cell adhesion to the stroma as well as migration in vitro [102]. Similarly, 
enforced expression of miR-29b reduces migration of both MM and endothelial cells via VEGF and 
IL-8 targeting [139]. Targeting of HIF-1α, a transcription factor overexpressed in the hypoxic MM 
microenvironment, via miR-199a-5p mimics, significantly impaired endothelial cells migration and 
MM-related angiogenesis [140]. Likewise, exosomal miR-135b promoted angiogenesis in MM via 
downregulation of factor-inhibiting HIF-1, and its targeting may represent an additional strategy to 
block angiogenesis [141].  

The miRNA network is also dysregulated in MM-associated dendritic cells (DCs) and 
contributes to their tumor-promoting activity. Enforced expression miR-29b in DCs downregulated 
IL-23 in PCs also in the context of the SCID-synth-hu model, and antagonized the Th17 
inflammatory response, thus restoring an efficient anti-MM immune microenvironment [142]. 
Preclinical data on other classes of ncRNAs in PC dyscrasias are quite scarce. As for miRNAs, a 
snoRNA fingerprint characterizes distinct molecular subtypes of MM as compared to the normal 
counterpart: a global snoRNA downregulation occurs from normal to MM and to PCL stage, with 
the TC2 group displaying overexpression of SNORD115 and SNORD116 families [143]. ACA11, a 
relevant oncogenic snoRNA in MM encoded within the intron of the WHSC1 gene overexpressed in 
t(4;14) MM [25], was found to be part of a snRNP complex which includes proteins involved in 
post-splicing intron complexes. ACA11 overexpression promoted MM cell proliferation, decreased 
oxidative stress and reinforced chemotherapy resistance through inhibition of NRF2, a 
transcriptional regulator of antioxidant response. The further characterization of snoRNAs in MM 
as well as in the other PC dyscrasias will shed light into additional oncogenic mechanisms driving 
these diseases [25,144].  

Regarding piRNAs, piRNA-823 is the first investigated piRNA found overexpressed in MM 
patient-derived PCs, where high levels correlated with worse prognosis. Mechanistically, piRNA-
823 affected the MM methylation profile, as demonstrated by inhibition of DNMTs in antagomiR-
823 treated cells, which led to the reactivation of the hypermethylated tumor suppressor gene 
CDKN2A (p16INK4A). Of potential translational significance, antagomiR-823 delivery hampered cell 
growth in vitro triggering G0/G1 cell cycle arrest, apoptosis and reduced angiogenesis, as well as in 
vivo in relevant MM xenograft models [145]. MM-derived extracellular vesicles (EVs) containing 
piRNA-823 were found in the PB of MM patients and correlated with poor prognosis; such EVs 
promoted angiogenesis and invasion by transferring piRNA-823 to endothelial cells, as 
demonstrated in vitro and in vivo using xenograft models with endothelial cells treated either with 
antagomiR-823 or with piRNA-823-depleted EVs [146].  

3.2.2. LncRNAs 

LncRNAs drive tumorigenesis by promoting all aspects or “hallmarks” of malignant 
transformation [147]. Their role in promoting the outset and progression of PC dyscrasias, however, 
is poorly defined. Major evidence has been provided only in MM, where three distinct 
transcriptomic analyses described a dysregulated lncRNA landscape. Ronchetti et al. used 
microarray technology to analyze lncRNA expression in patients at different stages of MM 
progression—including MGUS (20), sMM (33), MM (170) and PCL (36)—and in healthy donors (9) 
[148]. This study identified 31 lncRNAs altered in tumor samples compared to normal controls. 
Interestingly they found 21 lncRNAs, whose expression was deregulated proceeding toward the 
more aggressive stages of PC dyscrasias (PCL), suggesting a possible role in the disease progression 



Cancers 2020, 12, 320 11 of 25 

 

[148]. In a follow up study, RNA-seq was used to evaluate lncRNA expression in 30 MM patients 
leading to the identification of 391 dysregulated lncRNAs [149]. The authors also provided a 
comprehensive catalogue of lncRNAs specifically associated with the main MM molecular 
subgroups and genetic alterations [149]. Samur et al. described the lncRNA landscape in MM cells 
by RNA-seq on MM PCs from 308 newly-diagnosed and uniformly treated patients enrolled to 
DFCI/IFM 2009 clinical study and on normal PCs from 16 HDs [150]. By comparing the expression 
of 7277 lncRNAs in these groups, they found 869 differentially expressed lncRNAs in MM 
compared to normal PCs. Among these, 395 were downregulated and 474 upregulated in MM cells 
[150]. They further observed a significant impact of copy number changes on lncRNA expression 
and identified a small subset of 14 lncRNAs strongly associated with progression free survival 
(PFS) [150]. The authors also developed a robust prognostic model to stratify patient risk, able to 
identify patients with differential outcomes within each low and high-risk categories using 
standard risk categorization, such as cytogenetic/FISH, ISS and MRD [150]. 

To date, only a few lncRNAs have been functionally investigated in MM—including MALAT1 
[151–153], NEAT1 [154,155], CCAT1 [156] and H19 [157,158]. Importantly, different reports 
converge in defining the oncogenic role of MALAT1 in MM, which was found upregulated during 
the progression from intra-medullary to extra-medullary disease, with the higher levels associated 
with shorter OS and PFS [153]. We explored its functional role in MM and demonstrated that it may 
promote cell survival by regulating the expression and activity of the proteasome machinery [152]. 
Mechanistically, we established that MALAT1 interacts with EZH2 to regulate KEAP1 expression, 
triggering a KEAP1-dependent induction of NRF1/2, two relevant transcriptional activators of 
proteasome subunit genes [152]. As a corollary of our work, we provided evidence of MALAT1 
druggability using LNA gapmeRs in vitro and in vivo in NOD-SCID mice bearing MM xenografts 
[152]. Hu et al. reported that MALAT1 acts as a scaffold in the formation of PARP1/LIG3 complexes 
that recognize DSBs on DNA and activate the alternative non-homologous end joining (A-NHEJ) 
DNA repair in MM cells [151]. Moreover, MALAT1 inhibition by ASOs was proven to synergize 
both with PARP and proteasome inhibitors, and a nanoparticle-based approach significantly 
increased the in vivo delivery of MALAT1 inhibitors [151]. NEAT1 is another lncRNA that has been 
deeply investigated in MM. It was firstly described as upregulated in primary MM cells [155], 
where it plays a key role in maintenance of genomic stability and DNA repair [154]. Of translational 
relevance, LNA gapmeR-mediated inhibition of NEAT1 antagonized growth of MM cells in NOD 
SCID mice, and synergized with conventional and novel anti-MM drugs [154]. 

3.2.3. CircRNAs 

CircRNAs are poorly characterized ncRNAs acting within complex regulatory systems 
involved in cancer pathogenesis [159]. A main obstacle to a deeper understanding of these 
molecules is the lack of standardized procedures. For instance, most public RNA-seq data sets come 
from poly(A) mRNAs enriched samples, limiting the annotation to circRNAs carrying poly(A) tail 
[160]. 

In hematological cancers, circRNAs have been proposed as valuable prognostic and diagnostic 
markers [161]. However, the biological impact of circRNAs in PC dyscrasias is insufficiently 
investigated and remains often unclear. Below, we summarize the more relevant examples of a 
functional role of circRNAs in MM. 

The circ_0000190 was found downregulated in primary MM cells and MM cell lines. Lower 
expression correlated with poorer survival rates of MM patients suggesting that it may affect 
disease behavior. In vitro and in vivo studies supported the tumor suppressor role of circ_0000190 
that seems to exert its function by sponging miR-767-5p, preventing the repression of its validated 
target MAPK4; the anti-tumor activity of circ_0000190 was confirmed in mouse models [162].  

The analysis of BM samples from 105 MM patients and 36 healthy controls highlighted MM 
downregulation of circRNA SWI/SNF-related matrix-associated actin dependent regulator of 
chromatin subfamily A member 5 (Circ-SMARCA5). Interestingly, expression levels of this circRNA 
negatively correlated with β2-microglobulin and the ISS stage, and elevated circ-SMARCA5 
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expression was associated with complete response to therapy and a better PFS and OS. Similar to 
circ_0000190, enforced expression of circ-SMARCA5 reduced MM cell proliferation and induced 
apoptosis by sponging miR-767-5p [163].  

RNA-seq profiling of mantle cell lymphoma and MM cell lines revealed the expression of a 
large number of circRNAs including ciRS-7 [164], circHIPK3 [165,166], circSMARCA5 [167] and 
circZKSCAN1 [168]. Importantly, it was also identified a circRNA derived from IKZF3 that was not 
listed in circBase [169]. These circRNAs were then quantified by the NanoString technology in cell 
lines and patient samples from malignant B cells, including MM, providing a unique map of 
circRNA expression in B cell malignancies [170]. Among putative oncogenic circRNAs, circ_0007841 
was found highly expressed in MM patient PCs, predicted worse PFS and correlated with 
chromosomal aberrations as 1q21 gain, t(4:14) and mutations in ATR and IRF4 genes [171].  

The “competitive endogenous RNA” (ceRNA) hypothesis suggests that RNA transcripts 
communicate to each other by miRNA response elements (MREs), affecting the stability/translation 
of target RNAs by competing in miRNA binding [172]. ceRNAs are implicated in cancer [173], and 
circRNAs could play as ceRNAs: for instance, the endogenous circUBAP2 and hsa_circ_0001892 
both competed to inhibit the activity of miR-143, blocking apoptosis of MM cells [173]. 

A list of the most relevant ncRNAs studied in PC dyscrasias is reported in Table 2. 

Table 2. Functionally characterized ncRNAs in PC dyscrasias. 

Name Class Disease 
Role in 

Tumorigenesis 

Mechanisms 
sncRNAstargets 

lncRNAspathways 
References 

Let-7b miRNA MM Tumor-suppressor MYC [174] 
miR-15a/16-1 miRNA MM Tumor-suppressor MAP3KIP3, BCL2, AKT3, RPS6, 

VEGFA, IL17A, CABIN1 
[105,175,176] 

miR-17-92 miRNA MM Tumor-promoting BCL2l11, TP53, PTEN, CDKN1A, 
SOCS1 

[104,129] 

miR-21 miRNA MM Tumor-promoting PTEN, PIAS3 [137,138] 
miR-22 miRNA MM Tumor-suppressor LIG3 [177] 

miR-29b miRNA MM Tumor-suppressor MCL1, CDK6, SP1, DNMT3A 
DNMT3B, FOS, MMP2 

[116,122,123,136,
139,142] 

miR-34a miRNA MM Tumor-suppressor BCL2, CDK6, NOTCH1 [110] 
miR-125a miRNA MM Tumor-promoting TP53 [178] 
miR-125b miRNA MM Tumor-suppressor IRF4, PRDM1 [112] 
miR-155 miRNA MM Tumor-suppressor PSMβ5 [119] 
miR-155 miRNA WM Tumor-promoting CEBPB, SMAD5, SOCS1, MAFB, 

SHANK2, SH3PXD2A 
[113] 

miR-181a/b miRNA MM Tumor-suppressor KAT2B [104] 
miR-194-2-192 miRNA MM Tumor-suppressor MDM2, IGF1 [126] 
miR-199a-5p miRNA MM Tumor-suppressor HIF1A, VEGFA, CXCL8, FGF [140] 

miR-203 miRNA MM Tumor-suppressor CREB-1 [179] 
miR-215-194-1 miRNA MM Tumor-suppressor MDM2, IGF1R [126] 

miR-214 miRNA MM Tumor-suppressor PSMD10, ASF1B [180] 
miR-215 miRNA MM Tumor-suppressor RUNX1 [181] 

miR-221/222 miRNA MM Tumor-promoting CDKN1B, CDKN1C, BBC3, 
PTEN 

[106,107,109] 

piRNA-823 piRNA MM Tumor-promoting DNMTA, DNMT3B [133] 
ACA11 snoRNA MM Tumor-promoting DHX9, ILF3, NCL, ADAR, 

HNRNPU 
[25] 

MALAT1 lncRNA MM Tumor-promoting Transcriptional regulation of 
proteasome machinery; 

Activation of A-NHEJ DNA 
repair 

[151,152] 

NEAT1 lncRNA MM Tumor-promoting Activation of HR DNA repair. [154] 
H19 lncRNA MM Tumor-promoting Activation of NF-kB pathway; 

ceRNA of miR-29b-3p resulting 
in positive regulation of MCL1; 

[157,158] 
 
 

CCAT1 lncRNA MM Tumor-promoting ceRNA of miR-181a-5p resulting 
in positive regulation of HOXA 

[156] 
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circ_00001190 circRNA MM Tumor-suppressor ceRNA of miR-767-5p resulting 
in upregulation of MAPK4 

[162] 

circ_SMARCA5 circRNA MM Tumor-suppressor ceRNA of miR-767-5p [163] 

4. Circulating ncRNAs in PC Dyscrasias 

Circulating ncRNAs have been identified in various body fluids [182]. They are quantifiable at 
low amounts, possess high stability as well as long-term storage properties [183] and are protected 
from enzymatic degradation through the binding with proteins or lipoproteins or through the 
packaging into EVs like exosomes [184–186].  

Circulating ncRNA signatures might provide valuable information which integrates 
established disease markers with clinical features, thus contributing to a better diagnosis and 
prognostic stratification of PC dyscrasias’ patients [187].  

The expression levels of circulating miRNAs may differ between serum samples of healthy 
controls and patients with asymptomatic or overt disease [187]. Jones et al. first identified 
circulating miR-720, miR-1308 and miR-1246 differently expressed in PB serum from patients with 
MGUS, MM and healthy donors; the combination of miR-720 and miR-1308 could discriminate 
healthy controls from MGUS and MM, whereas miR-1246 and miR-1308 combination distinguished 
MGUS from MM patients [188]. Kubiczkova et al. instead reported circulating miR-34a and let-7e 
levels as discriminating MM patients from normal controls, with a sensitivity of 80.6% and a 
specificity of 86.7%, and MGUS from healthy subjects with a sensitivity of 91.1% and a specificity of 
96.7% [189]. Similarly, the combination of miR-19a and miR-4254 allowed the distinction of MM 
patients from healthy donors [190]. 

Furthermore, many studies underlined the prognostic potential of single circulating miRNAs. 
Plasma levels of miR-92a were significantly down-regulated in newly diagnosed MM patients as 
compared with healthy controls; moreover, levels of miR-92a changed in concordance with stage of 
the disease and response to treatment [191]. The expression of serum miR-29a was higher in MM 
patients with a sensitivity of 88% and a specificity of 70% than normal counterpart; nevertheless, its 
expression did not differ among patients at various ISS and DS stages [192].  

Circulating miRNAs could also serve as predictive markers of MM survival. In fact, down-
regulation of let-7e and miR-744 correlated with shortened survival and worse time to progression 
of MM patients [189]; conversely, lower levels of miR-19a positively correlated with either shorter 
PFS or OS, and ISS stage. Additionally, MM patients with low levels of miR-19a had a better 
response and extended survival after bortezomib treatment [190]. High serum levels of miR-16 and 
miR-25 positively correlated with better OS in MM patients, whereas high miR-25 correlated with 
better PFS [193]. Increased miR-483-5p levels were found in plasma of MM patients and associated 
with either PFS or ISS staging [194]; conversely, lower levels of circulating miR-130a were found in 
extramedullary myeloma (EMM) patients as compared with newly diagnosed and relapsed 
patients, and could discriminate EMM from MM patients or healthy donors [195].  

High levels of serum miR-214 and miR-135b were found in patients with MMBD, where they 
positively correlated with the severity of the bone lytic lesions and predicted worst PFS and OS 
[196]; accordingly, high expression of miR-214 was detected in exosomes and serum of osteoporotic 
than non-osteoporotic patients, thus suggesting its potential as biomarker for MMBD [197]. A 
pattern of five circulating miRNAs was significantly reduced in patients with relapsed/refractory 
MM and poor responders after treatment with lenalidomide plus low-dose dexamethasone [198]. A 
relative lower expression of miR-143, miR-144, miR-199 and miR-203 in both BM supernatant fluid 
and serum of MM patients was found as compared with healthy controls; in these patients, levels of 
the proteoglycan VCAN positively, whereas miRNAs negatively correlated with the severity of 
disease [199].  

Manier et al. isolated exosomal miRNAs from the serum of 156 newly diagnosed MM patients 
uniformly treated with bortezomib and dexamethasone, followed by high dose melphalan and 
autologous hematopoietic stem-cell transplantation. Let-7b and miR-18a levels significantly 
correlated with poorer outcomes in terms of PFS and OS [200].  
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Regarding exosomal miRNAs, the levels of serum exosome-derived miR-20a-5p, miR-103a-3p 
and miR-4505 were significantly different among patients with MM, patients with SMM and 
healthy individuals, while there were differences in the levels of let-7c-5p, miR-185-5p and miR-
4741 in patients with MM relative to those in SMM patients or healthy controls [201].  

More recently, circulating exosomes have been profiled also from patients with WM at 
different stages (30 sWM, 44 WM samples and 10 healthy controls), leading to the identification of a 
pattern of four exosomal miRNAs correlating with the disease status. Of note, the expression of let-
7d decreased, whereas that of miR-192-5p, miR-21-5p and miR-320b increased during disease 
progression [202]. 

Regarding other ncRNAs, differential expression of five lncRNAs (TUG1, LincRNA-p21, 
MALAT1, HOTAIR, and GAS5) was observed between MM patients (n = 62) and healthy subjects (n 
= 40); TUG1 was the only found upregulated in the plasma of MM patients, whereas down-
regulation of all the others was detected [203]. Recently, upregulation of lncRNA H19 was detected 
in the serum of MM patients (n = 80) as well as in MM cell lines (n = 3) as compared to their normal 
counterparts; H19 positively associated with DS and the ISS stage, and increased in bortezomib 
resistant patients [204]. 

5. Conclusions 

Altogether, research thus far performed indicates that the malignant PC-associated ncRNA 
repertoire offers novel candidate biomarkers or targets for therapeutic intervention. Notably, 
evidence of the activity of certain classes of ncRNAs, such as lncRNAs, in PC dyscrasias different 
from MM is still at its infancy or lacking, and further studies are needed to validate their 
therapeutic and prognostic significance in these malignancies. We strongly believe that the ongoing 
development of novel tools to study and/or target ncRNAs will increase knowledge on their precise 
role in cancer pathobiology, strengthening the biological rationale underlying future ncRNA-based 
diagnostics and therapeutics. 
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