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We present results for the point-proton, charge and single-nucleon momentum distribution of
4He and 16O obtained within the Self Consistent Green’s Function approach. The removal of the
center of mass contribution for the light 4He nucleus has been performed by developing a Metropolis
Monte Carlo algorithm in which the center of mass coordinate can be exactly subtracted from the
Optimal Reference State trial wave function generated during the Self Consistent Green’s Function
calculations. The spectral function of the same two-nuclei have been used to compute inclusive
electron-nucleus cross sections. The formalism adopted is based on the factorization of the spectral
function and the nuclear transition matrix elements. This allows to provide an accurate description
of nuclear dynamics and to account for relativistic effects in the interaction vertex. When final state
interactions for the struck particle are accounted for, we find nice agreement between the data and
the theory for the inclusive electron-16O cross section. The results lay the foundations for future
applications of the Self Consistent Green’s Function method, in both closed and open shell nuclei,
to neutrino data analysis.

PACS numbers: 24.10.Cn,25.30.Pt,26.60.-c

I. INTRODUCTION

The current- and next-generation of neutrino oscilla-
tion experiments require nuclear physics calculations of
the structure and electroweak properties of atomic nu-
clei supplemented by quantified theoretical uncertain-
ties [1–3]. The Deep Underground Neutrino Experi-
ment (DUNE) will exploit Liquid Argon Time-Projection
Chambers (TPCs) to test CP violation in the lepton sec-
tor and to shed light on the neutrino mass hierarchy.
Hence, nuclear theories able to tackle genuine open shell
nuclei, such as Argon, will be critical to the reconstruc-
tion of the initial neutrino energy.

The Self Consistent Green’s Function (SCGF) ap-
proach is an ab initio method in which the optical po-
tential and spectral functions are calculated covering the
full spectra of both nucleon attachment and removal (i.e.,
both close and far form the Fermi surface) [4–9]. The
self-consistency feature means that the input information
about the ground state and excitations of the systems no
longer depends on a user-defined reference state but in-
stead it is taken directly from the computed correlated
propagator. The SCGF method has recently been refor-
mulated within Gorkov’s theory that allows to address
open shell nuclei [10–12]. Within this approach, the de-
scription of pairing correlations characterizing open shell
systems is achieved by breaking particle number sym-
metry. The method was extended to include three-body
interactions in Ref. [13, 14]. Modern two- and three-
nucleon chiral forces can be fully exploited within this
formalism. Because of these features, SCGF theory is
a prime tool for providing the nuclear structure input
necessary to calculate electroweak properties of nuclei.
However, its performance in predicting lepton-nucleus re-
actions with chiral nuclear forces is still to be assessed.

In this work we use the saturating next-to next-to lead-
ing order (NNLO) interaction denoted as NNLOsat [15]
and calculate the SCGF spectral functions of 4He and
16O. We obtain their point density, charge density and
single-momentum distribution. All calculations are per-
formed expanding on an harmonic oscillator basis and the
dependence of the results on the oscillator parameters is
investigated. For light nuclei, such as 4He, spurious con-
tributions of the center of mass in the calculated wave
functions can be sizable in the model spaces exploited by
SCGF and other post-Hartree-Fock methods. While it is
possible to show that the center of mass effectively decou-
ples from the relative motion for large enough spaces [16],
subtracting its effect from the calculated wave function
and spectral functions is a nontrivial long standing issue.
Here, we address this problem by performing a Monte
Carlo integration in which the center of mass component
is exactly subtracted from the wave function.

In the high momentum transfer region of neutrino-
nucleus scattering, the formalism based on spectral func-
tion and factorization of the nuclear transition matrix el-
ements allows to combine a fully relativistic description
of the single-nucleon interaction vertex with an accurate
treatment of nuclear dynamics [17, 18]. In order to ap-
ply any theoretical model in the neutrino data analysis,
it is fundamental to validate it against the large body of
electron scattering data.

This work has to be considered as a first step in this
direction. In fact, we present an extensive comparison
with the experimental data of the electromagnetic dou-
ble differential cross sections of 4He and 16O scatter-
ing, which was obtained by exploiting the corresponding
SCGF spectral functions. The predictions for 16O are
important for the data analysis of Super-Kamiokande, in
which a water Cherenkov detector to study neutrinos pro-
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duced from different sources is used. A detailed analysis
of theoretical uncertainties would also require studies of
the dependence of the nuclear Hamiltonian at different
resolution scales. This will be subject of future work.

In Section II we briefly review the SCGF formalism and
the links of propagators with the one-body density dis-
tribution and other quantities of experimental interest.
Section III is devoted to the derivation of the electron-
nucleus cross section within the Impulse Approximation
(IA) in which the factorization of the nuclear transi-
tion matrix elements is assumed. Final state interactions
(FSI) involving the struck particle are treated as correc-
tions. They are included using the convolution approach
of Refs. [19, 20]. In Section IV we present results for
the point density, charge density and single-momentum
distribution of 4He and 16O. In addition, the inclusive
electromagnetic cross sections of these two nuclei, ob-
tained using the associated SCGF spectral functions, are
compared with the experimental data and the role played
by FSI is discussed. Conclusions are drawn in Section V.

II. THE SELF CONSISTENT GREEN’S
FUNCTION APPROACH

The one-body Green’s Function is written as a sum of
two different contributions describing the propagation of
a particle and hole state [21]:

gαβ(ω) =〈ψA0 |aα
1

ω − (H − EA0 ) + iη
a†β |ψ

A
0 〉

+ 〈ψA0 |a
†
β

1

ω + (H − EA0 )− iη
aα|ψA0 〉 , (1)

where ψA0 is the ground state wave function of a target
system of A nucleons, a†α and aα are the creation and an-
nihilation operator in the quantum state α, respectively.
The so-called Lehmann representation results from in-
serting completeness relations in Eq. (1). This is

gαβ(ω) =
∑
n

〈ψA0 |aα|ψA+1
n 〉〈ψA+1

n |a†β |ψA0 〉
ω − (EA+1

n − EA0 ) + iη

+
∑
k

〈ψA0 |a
†
β |ψ

A−1
k 〉〈ψA−1k |aα|ψA0 〉

ω − (EA0 − E
A−1
k )− iη

, (2)

where |ψA+1
n 〉 (|ψA−1k 〉) are the eigenstates and EA+1

n

(EA−1k ) the eigenvalues of the (A ± 1)-body system. In-
troducing the transition amplitudes

(Xnα )∗ = 〈ψA0 |aα|ψA+1
n 〉 ,

Ykα = 〈ψA−1k |aα|ψA0 〉 (3)

and the corresponding quasiparticle energies

ε+n = EA+1
n − EA0 ,

ε−k = EA0 − EA−1k (4)

leads to the more compact expression

gαβ(ω) =
∑
n

(Xnα )∗ Xnβ
ω − ε+n + iη

+
∑
k

Ykα (Ykβ )∗

ω − ε−k − iη
. (5)

The one-body propagator given in Eqs. (1) and (2) is
completely determined by solving the Dyson equation

gαβ(ω) = g0αβ(ω) +
∑
γδ

g0αγ(ω)Σ?γδ(ω)gδβ(ω) , (6)

where g0αβ(ω) is the unperturbed single-particle propaga-

tor and Σ?γδ(ω) is the irreducible self-energy that encodes

nuclear medium effects in the particle propagator [21].
The latter is given by the sum of two different terms

Σ?αβ(ω) = Σ∞αβ + Σ̃αβ(ω) , (7)

the first one describes the average mean field while the
second one contains dynamic correlations. In practi-
cal calculations the self-energy is expanded as a func-
tion of the propagator itself, implying that an iterative
procedure is required to solve the Dyson equation self-
consistently. The self-energy can be calculated system-
atically within the Algebraic Diagrammatic Construc-
tion (ADC) method. The third order truncation of this
scheme [ADC(3)] yields a propagator that includes all
possible Feynman contributions up to third order but
it further resums infinite series of relevant diagrams in
a non-perturbative fashion [22, 23]. Two- and three-
nucleon force contributions are included. A first orga-
nization of the contributions to the self-energy comes by
considering the particle irreducible (PI) and skeleton di-
agrams. The number of Feynman diagrams entering the
calculation of the Green’s Function rapidly increase when
three- or many-body forces are accounted for. In order
to circumvent this problem and reduce the number of
Feynman diagrams to be considered, a useful strategy is
to include only interaction-irreducible diagrams [13]. For
our calculations, we use the following medium dependent
or effective one- and two-body interactions:

Ũαβ = Uαβ +
∑
δγ

Vαγ,βδρδγ +
1

4

∑
µνγδ

Wαµν,βγδργµρνδ ,

Ṽαβ,δγ = Vαβ,δγ +
∑
µν

Wαβµ,γδνρνµ , (8)

where U, V and, W label the matrix elements of the one-,
two-, and three-body interactions, respectively. The one-
body density matrix appearing in Eq. (8) reads

ρδγ = 〈ψA0 |a†γaδ|ψA0 〉 . (9)

The use of this averaging procedure allows to retain only
interaction irreducible diagrams in the effective interac-
tions Ũ and Ṽ , while residual contributions that include
W can be safely neglected [24–27]. The expressions of the
static and dynamic self-energy up to third order, includ-
ing all possible two- and three-nucleon terms that enter



3

the expansion of the self-energy, as well as interaction-
irreducible (i.e. not averaged) three-nucleon diagrams
have been recently derived in Ref. [28].
Figure 1 displays the three simplest diagrams that enter
the present calculation of the self-energy. These are taken
as “seeds” for an all order resummation that eventually
generates Σ?αβ(ω). The first contribution is at second-
order while the last two are of third-order in the expan-
sion of Eq. (7). Note that, for all the considered dia-
grams, the set of intermediate state configurations corre-
sponds to two-particles–one-hole (2p1h) and two-holes–
one-particle (2h1p) and that we use the two-nucleon ef-
fective interaction of Eq. (8) . Within the ADC(3) ap-
proach an infinite order summation of diagrams of Fig. 1
that includes particle-particle and hole-hole ladders as
well as particle-hole rings is performed. The dynamical
part of the self-energy of Eq.(7) can be rewritten in the
Lehmann representation as

Σ̃αβ(ω) =
∑
ij′

D†αi

[ 1

ω − (K + C)

]
ij
D†jβ , (10)

where K are the unperturbed 2p1h and 2h1p energies,
D coupling matrices and C interaction matrices for the
forward and backward intermediate states.

FIG. 1. One-particle irreducible skeleton and interaction irre-
ducible diagrams with 2p1h intermediate configurations. The
wiggly lines represent the two-body effective interaction of
Eq. (8). The corresponding diagrams for the 2h1p intermedi-
ate configurations are obtained by flipping the orientation of
the lines.

The calculations presented in this work have been
performed expanding one-, two- and three-body opera-
tors on a spherical harmonic oscillator basis whose di-
mension and the oscillation frequency are denoted by
Nmax = max{2n+ `} and ~Ω, respectively.

The point-proton density distribution can be readily
obtained from Eq.(9) and reads

ρp(r) =
∑
αβ

Φ∗β(r)Φα(r)ραβ , (11)

where Φα(r) = 〈r|α〉 denotes the harmonic oscillator
singe-particle wave-functions and the sum includes only
proton single-particle states. Analogous expressions can
be written for point-neutron and matter density distri-
butions.

The computational cost required to account for the
fragmentation of the single-particle propagator into
Eq. (10) rapidly increases with the size of the nucleus
and of the model space. For this reason an Optimized

Reference State (OpRS) approach is used to approximate
the single particle propagators entering in the diagrams
of Fig. 1 [8]. The OpRS is taken to be an independent
particle model propagator as

gOpRS
αβ =

∑
n 6∈F

(φnα)∗φnβ

ω − εOpRS
n + iη

+
∑
k∈F

φkα(φkβ)∗

ω − εOpRS
k − iη

(12)

where F represents the set of occupied states, εOpRS and
φ are the single particle energies and wave functions,
respectively. The OpRS propagator is chosen to best
approximate the correlated one while keeping a reduced
number of poles. This is achieved by introducing the fol-
lowing moments of the spectral distribution with respect
to energy poles:

M0
αβ =

∑
n

(Xnα )∗Xnβ +
∑
k

Ykα(Ykβ )∗ ,

M1
αβ =

∑
n

(Xnα )∗Xnβ
(EF − ε+n )

+
∑
k

Ykα(Ykβ )∗

(EF − ε−k )
, (13)

where EF = (ε+0 + ε−0 )/2 = (EA+1
0 − EA−10 )/2 and

the transition amplitudes are given in Eqs. (3). The
quantities in Eq. (13) are important since they constrain
the density distributions, one-body observables and the
Koltun energy sum rule of the propagator [29]. Hence,
we obtain εOpRS and φ by requiring that the OpRS
lowest momenta of the spectral distribution reproduce

those of the full calculation, i.e. M0,OpRS
αβ = M0

αβ and

M1,OpRS
αβ = M1

αβ [8].

The elastic scattering of a nucleus hit by a probe and
recoiling with a momentum q is described by the elas-
tic form factor FL(q). Neglecting the small spin-orbit
contribution, the latter is given by

FL(q) =
1

Z
〈ψA0 |

[ ∑
i εi√

1 +Q2
el/(4m

2)

]
|ψA0 〉 , (14)

where in the laboratory frame Q2
el = |q|2 − w2

el, ωel =√
|q|2 +m2

A − mA is the energy transfer corresponding
to the elastic scattering, mA is the target nucleus mass
and

εi = GpE(Q2
el)

(1 + τzi)

2
+GnE(Q2

el)
(1− τzi)

2
. (15)

with GpE(Q2
el) and GnE(Q2

el) the proton and neutron elec-
tric form factor, respectively. The elastic form factor can
be rewritten in terms of the Fourier transforms of the
point-proton and nucleon densities as

FL(q) =
1

Z

GpE(Q2
el)ρ̃p(q) +GnE(Q2

el)ρ̃n(q)√
1 +Q2

el/(4m
2)

, (16)

where

ρ̃p,n(q) =

∫
d3r1 . . . d

3rA e
iq·r1 ψ∗0(r1, . . . , rA)
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× 1± τz1
2

ψ0(r1, . . . , rA)

=

∫
d3reiq·rρp,n(r) . (17)

Note that the factor
√

1 +Q2
el/(4m

2) in the denomina-
tor of Eq. (16) accounts for relativistic corrections to
the charge operator. Assuming that ρ̃p(q) = ρ̃n(q), the
charge distribution can be written as

ρch(r′) =

∫
d3q

(2π)3
e−iq·r

′
FL(q)

=

∫
d3q

(2π)3
e−iq·r

′ 1

Z

(GpE(Q2
el) +GnE(Q2

el))ρ̃p(q)√
1 +Q2

el/(4m
2)

.

(18)

The probability of finding a nucleon in the nucleus with
momentum k is proportional to its momentum distribu-
tion. The latter can be written in terms of the one-body
density matrix of Eq. (9) as

n(k) =
∑
αβ

Φ̃∗β(k)Φ̃α(k)ραβ (19)

where Φ̃α(k) is the Fourier transform of the harmonic
oscillator wave function

Φ̃α(k) =

∫
d3r eik rΦα(r) . (20)

The momentum distribution is normalized as∫
d3k n(k)/(2π)3 = N , with N being the number

of either protons Z, or neutrons (A− Z).

The subtraction of the center of mass contribution
from the wave function is a long standing issue affect-
ing a number of nuclear many-body approaches relying
on a single-nucleon basis expansions. Whilst for medium
and heavy nuclei this correction can be safely neglected,
the center of mass contribution strongly affects the re-
sults of light nuclei, such as 4He. In order to address
this problem, we developed a Metropolis Monte Carlo
(MMC) code, analogous to the one used in Variational
Monte Carlo studies [30], that allows us to single out
the center of mass contribution to the wave function in
the calculation of the charge density and the momentum
distribution. The wave function we used for the MMC
is the Slater determinant obtained from the OpRS cal-

culation, |ψV 〉 = |ψOpRS0 〉. At variance with the fully
correlated propagator of Eq. (5), the use of the unper-
turbed gOpRS, (i.e. a Slater determinant) allows for a
unique definition of the wave function. The spatial inte-
grals of Eqs. (17), (19), and (20) have been performed
using Metropolis Monte Carlo techniques [31]. A se-
quence of points in the 3A-dimensional space denoted
by R = {r1, . . . , rA} are generated by sampling from the
probability distribution

P (R) = |ψOpRS0 (R)|2 . (21)

At each step of the calculation the center of mass contri-
bution to the wave function is subtracted computing the
wave function and the expectation value in the intrinsic
coordinates given by

r̃i = ri −Rcm , Rcm =
1

A

∑
i

ri . (22)

Hence, the identification of the intrinsic contribution is
easily achieved within Quantum Monte Carlo (QMC) al-
gorithms [32–35], since we always have access to the set
of 3A-coordinates of the constituent nucleons.

III. THE IMPULSE APPROXIMATION AND
CONVOLUTION APPROACH

In the one-photon-exchange approximation, the double
differential electron-nucleus cross section takes the form

d2σ

dEe′dΩe′
=
α2

q4
Ee′

Ee
LµνW

µν , (23)

where ke = (Ee,ke) and ke′ = (Ee′ ,ke′) are the labo-
ratory four-momenta of the incoming and outgoing elec-
trons, respectively; α ' 1/137 is the fine structure con-
stant, dΩe′ , the differential solid angle in the direction
of ke′ , and q = ke − ke′ = (ω,q) the four momentum
transfer. The leptonic tensor is given by

Lµν = 2 (kµe′k
ν
e + kµe k

ν
e′ − gµνke′ · ke) . (24)

The hadronic tensor is written in terms of matrix ele-
ments of the nuclear current operator between the target
ground state and the hadronic final states as

Wµν =
∑
f

〈ψA0 |Jµ
†(q)|ψAf 〉〈ψAf |Jν(q)|ψA0 〉

× δ(4)(P0 + q − Pf ) , (25)

where |ψA0 〉 and |ψAf 〉 denote the initial and final hadronic

states with four-momenta P0 = (E0,p0) and Pf =
(Ef ,pf ), while J(q) is the electromagnetic nuclear cur-
rent operator.

At relatively large momentum transfer, |q| & 500 MeV,
the Impulse Approximation (IA) can be safely applied.
Within this approximation the interaction between the
struck nucleon and the spectator (A-1) particles is ne-
glected [18, 36]. The nuclear current operator reduces
to a sum of one-body terms, J(q) =

∑
i ji(q) and the

hadronic final state factorizes as

|f〉 → |p〉 ⊗ |ψA−1f 〉 . (26)

In the above equation |p〉 denotes the final-state nu-

cleon with momentum p, while |ψA−1f 〉 describes the

(A− 1)-body spectator system. Its energy and recoiling
momentum are fixed by energy and momentum conser-
vation, yielding

EA−1f =ω + EA0 − e(p) , PA−1f = q− p . (27)
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Using the factorization ansatz and inserting a single-
nucleon completeness relation, the matrix element of the
current operator can be written as

〈ψA0 |Jµ|ψAf 〉 →
∑
k

〈ψA0 |[|k〉 ⊗ |ψA−1f 〉]〈k|
∑
i

jµi |p〉 .

(28)

Substituting the last equation in Eq. (25), the contribu-
tion to the hadron tensor is given by

Wµν(q, ω) =
∑
p,k

∑
f,i

〈k|jµi
†|p〉〈p|jνi |k〉

× 〈ψA0 |[|ψA−1f 〉 ⊗ |k〉][ 〈ψA−1f | ⊗ 〈k|]|ψA0 〉

× δ(ω − e(p)− EA−1f + EA0 ) . (29)

Momentum conservation in the single-nucleon vertex im-
plies p = k + q. The one-body current operator can be
written as

jµi =
[
F1iγ

µ + i
F2i

2m
σµνqν

]
(30)

where

F1,2i =
(FS1,2 + FV1,2τzi)

2
, (31)

and FS(V ) = F p ± Fn. The latter are defined in terms
of the electric and magnetic form factors via

FS1 =
GSE + τGSM

1 + τ
,

FS2 =
GSM −GSE

1 + τ
, (32)

where τ = −q2/(4m2). Finally, using the identity

δ(ω − e(p)− EA−1f + EA0 ) =∫
dE δ(ω + E − e(p)) δ(E + EA−1f − EA0 ) , (33)

we can rewrite the hadron tensor as

Wµν(q, ω) =

∫
d3k

(2π)3
dEPh(k, E)

m2

e(k)e(k + q)

×
∑
i

〈k|jµi
†|k + q〉〈k + q|jνi |k〉

× δ(ω + E − e(k + q)) , (34)

where the factors m/e(k) and m/e(k + q) have to be in-
cluded to account for the implicit covariant normalization
of the four-spinors of the initial and final nucleons in the
matrix elements of the relativistic current.
The hole spectral function

Ph(k, E) =
∑
f

|〈ψA0 |[|k〉 ⊗ |ψA−1f 〉]|2

× δ(E + EA−1f − EA0 ) . (35)

gives the probability distribution of removing a nucleon
with momentum k from the target nucleus, leaving the
residual (A−1) system with an excitation energy E. Note
that in Eq. (34) we neglected Coulomb interactions and
the other (small) isospin-breaking terms and made the
assumption, largely justified in the case of closed shell
nuclei, that the proton and neutron spectral functions
are identical.
Rewriting the nuclear matrix element as

[ 〈ψA−1f | ⊗ 〈k|]|ψA0 〉 =
∑
α

YkαΦ̃α(k)

=
∑
α

Φ̃α(k)〈ψA−1f |aα|ψA0 〉 , (36)

we recover the more familiar expression of the spectral
function written as the imaginary part of the Green’s
function describing the propagation of a hole state

Ph(k, E) =
1

π

∑
αβ

Φ̃∗β(k)Φ̃α(k)

× Im〈ψA0 |a
†
β

1

E + (H − EA0 )− iε
aα|ψA0 〉 . (37)

In the kinematical region in which the interactions be-
tween the struck particle and the spectator system can
not be neglected, the IA results have to be modified to
include the effect of FSI. Following Refs. [19, 20], the
multiple scatterings that the struck particle undergoes
during its propagation through the nuclear medium are
taken into account through a convolution scheme. The
IA responses are folded with a function fk+q, normalized
as ∫ +∞

−∞
dωfk+q(ω) = 1 . (38)

The double differential cross section is then given by( d2σ

dEe′dΩe′

)
FSI

=

∫
d3k

(2π)3
dE

∫
dω′ fk+q(ω − ω′)

× m

e(k)

m

e(k + q)
Ph(k, E)

α2

q4
Ee′

Ee

× Lµν
∑
i

〈k| (jµi )
† |k + q〉〈k + q|jνi |k〉

× δ(ω′ + E − ẽ(k + q))θ(|k + q| − pF ) .
(39)

In the last equation we modified the energy spectrum
of the struck nucleon

ẽ(k + q) = e(k + q) + U (tkin(k + q)) (40)

by considering the real part of the optical potential U
derived from the Dirac phenomenological fit of Ref. [37].
This allows to describe the propagation of the knocked-
out particle in the mean-field generated by the spectator
system.
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FIG. 2. Point proton densities in 4He. The dashed (blue) line
corresponds to the OpRS derived for Nmax = 11 and ~Ω = 20
MeV. The other lines have been obtained using the SCGF full
propagator for Nmax =11, 13 and ~Ω =20, 22 MeV.

IV. RESULTS

Our calculations have been performed using the
NNLOsat chiral interaction [15], which was specifically
designed to accurately describe both binding energies and
nuclear radii of mid-mass nuclei [38, 39]. In Fig. 2 we an-
alyze the convergence of the SCGF-ADC(3) point-proton
densities of 4He with respect to the oscillator frequency
(~Ω) and the size of the model space (Nmax). The differ-
ent lines almost superimpose, indicating that for ~Ω ≈ 20
MeV and Nmax ≥11 the calculation converges and no
longer depends on the oscillator parameters. The den-
sity calculated from the OpRS is also displayed. The
nice agreement with the SCGF-ADC(3) curves follows
from the requirement that the single particle energies and
overlap functions in the OpRS propagator are chosen to
approximate at best the true (correlated) one-body den-
sity.

The charge densities in 4He can be obtained from the
point-proton densities through Eqs. (17) and (18). In
Fig. 3 we compare the experimental charge density de-
termined through the “Sum-of-Gaussians” parametriza-
tion given in Ref. [40] with those obtained from the QMC
results of Ref. [41] and from the OpRS calculated in the
present work. For the latter, we display both the result
already shown in Fig. 2 and the distribution obtained af-
ter subtracting the center of mass effect with the MMC
algorithm outlined in Sec. II. When the center of mass
contamination is subtracted, we obtain the short-dashed
(black) line. The comparison with the total OpRS re-
sults, corresponding to the dot-dashed (blue) line, clearly
shows that for 4He the center of mass contribution is size-
able and can not be neglected. The use of the intrinsic
wave function yields a strong enhancement of the charge
density, which turns out to be very close to the QMC re-
sult. Note that the discrepancy between the experiment
and the intrinsic OpRS and QMC calculations is moti-
vated by the absence of the two-body meson exchange
current contributions. These are known to have little
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FIG. 3. Charge densities of 4He. The (green) dots have
been obtained using the “Sum-of-Gaussians” parametrization
of the charge densities given in Ref. [40]. The dashed (red)
line refers to the QMC calculation of Ref. [41] that used
the AV18+UIX two- and three-body interactions. The dot-
dashed (blue) line corresponds to the same OpRS propagator
shown in Fig. 2, while in the short-dashed (black) line the
center-of-mass contamination has been subtracted from the
OpRS wave function by means a MMC calculation.
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FIG. 4. Charge elastic form factor for 4He. The solid
(light green) and (violet) lines correspond to the calculation
of Ref. [44] where chiral two- and three-body interactions
at N2LO have been used for R0 = 1.0fm and R0 = 1.2fm
coordinate- space cutoffs, respectively. The uncertainty bands
include the statistical MC uncertainties added in quadrature
to the uncertainty from the truncation of the chiral expansion.
The dashed (red) line is obtained within QMC Ref. [44] while
the dot-dashed (blue) and short-dashed (black) line refers to
the OpRS calculation with and without the center-of-mass
contamination. The shaded area indicates the statistical MC
uncertainty. Experimental data are from an unpublished com-
pilation by I. Sick, based on Refs. [45–48].

effect on larger nuclei such as 16O but their inclusion
is fundamental in order to correctly reproduce the 4He
elastic form factor, from which the charge densities are
extracted [30, 41–43].

In Fig. 4 we compare the results for the charge elastic
form factor for 4He obtained within three many-body ap-
proaches in which different interactions have been used.
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(green) line corresponds to the full SCGF density calculated
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(blue) line refers to the OpRS calculation with and without
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It is visible that up to q = 3 fm−1 the removal of the
center-of-mass contamination enhances the strength and
improves the agreement between the OpRS and the QMC
and the calculations of Ref. [44]. For larger values of
the momentum we found some discrepancies in both the
OpRS calculations.

For medium-mass nuclei, the center of mass corrections
turn out to be less significant. This is clearly visible in
Fig. 5 where compare the the full charge SCGF density
calculated at the ADC(3) level is compared with the in-
trinsic OpRS calculation. The construction of the 16O
wave function is more complicated than in the 4He case
where only the s-shell orbital has to be accounted for
in the OpRS approximation. For this reason, the sub-
traction of the center-of-mass contribution required the
use of a more sophisticated MC code. The charge den-
sity distribution obtained using the total and the intrin-
sic wave functions slightly differs and there is an overall
nice agreement also with the QMC calculations. Both
the SCGF-ADC(3) and the OpRS intrinsic results cor-
rectly reproduce the experimental points, confirming the
goodness of the NNLOsat potential which was fitted to
reproduce the experimental radius of 16O.

Figure 6 displays the charge elastic form factor for 16O.
In this case we find an excellent agreement between the
SCGF, the QMC calculations and the experimental data.
The results of Ref. [49] for two different values of the
coordinate cutoffs are also shown. While for R0=1.0 fm
the curve has the correct behavior some discrepancies are
visible for R0=1.2 fm.

In Fig. 7 we benchmark the intrinsic and uncorrected
OpRS single-nucleon momentum distribution of 4He with
the QMC calculation of Ref. [41]. The OpRS result, cor-
responding to the dashed (blue) line, correctly follows
that of the dressed ADC(3) propagator, although the
agreement is not as close as in Fig. 2. Note that, also
in this case the subtraction of the center of mass compo-
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FIG. 6. Charge elastic form factor for 16O. The solid
(light green) and (violet) lines correspond to the calculation
of Ref. [49] for R0 = 1.0 fm and R0 = 1.2 fm coordinate-
space cutoffs, respectively. The uncertainty bands include
the statistical MC uncertainties added in quadrature to the
uncertainty from the truncation of the chiral expansion. The
dashed (red) line is obtained within QMC Ref. [44] while the
dot-dashed (black) refers to the SCGF results calculated at
the ADC(3) level. The shaded area indicates the statistical
MC uncertainty. Experimental data are from Ref. [40].
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FIG. 7. Momentum distributions of 4He. The dashed (red)
line corresponds to the QMC calculation [41], the dotted
(green) curve have been obtained using the SCGF-ADC(3)
propagator while the short-dashed (blue) and solid (black)
lines correspond to the total and intrinsic OpRS results, re-
spectively.

nent has a sizable effect, which is crucial for recovering
the agreement with the intrinsic QMC results.

The 16O single-nucleon momentum distributions ob-
tained within the SCGF-ADC(3) and QMC approach are
compared in Fig. 8. The differences displayed in the tails
of the single-nucleon momentum distributions are clearly
visible in the lower panel of Fig. 8 where the logarithmic
scale has been used. The dashed (red) line, corresponding
to the QMC calculation, is found to be above the SCGF-
ADC(3) results for high momenta. This is likely to be
ascribed to the different choice made for the potentials.
In fact, the NNLOsat is much softer than the AV18+UIX
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FIG. 8. Computed momentum distributions of 16O. The
dashed (red) and solid (black) lines are obtained within
QMC [41] and SCGF-ADC(3) approaches, respectively. In
the lower panel, a logarithmic scale has been used to demon-
strate the weak tail at large momenta that arises from the soft
chiral interaction adopted in the SCGF-ADC(3) calculation.

potential adopted in the QMC study. The use of an hard
potential implies the presence of stronger high momen-
tum components in the nuclear wave function. While
the QMC momentum distribution exhibits a long tail
extending to p > 1 GeV, the softer potential adopted
in our calculations strongly reduce the SCGF-ADC(3)
momentum distribution in the high momentum region.
In the upper panel we observe an enhancement of the
SCGF-ADC(3) results with respect to the QMC calcula-
tion. This can be explained by recalling that the QMC
and SCGF-ADC(3) momentum distribution are normal-
ized to the same constant. In order for the normalization
condition to be satisfied, the missing strength in the tails
of the SCGF-ADC(3) curve has to be compensated by
an enhancement in the low-momentum region.

Fig. 9 shows the electron-4He inclusive double-
differential cross sections at different values of Ee and
θe. The curves are obtained from the full SCGF-ADC(3)
spectral function, from its OpRS approximation and from
the intrinsic OpRS. The SCGF-ADC(3) cross-section
represented by the dashed (red) line is quenched with
respect to the solid (green) line that refers to the un-
corrected OpRS. This has to be attributed to the differ-
ent behavior of the curves displayed in Fig. ??. Whilst

the OpRS wave functions are built to reproduce low-
est energy momenta of the ADC(3) propagator—which
optimises the quasiparticle energies and strength near
the Fermi surface—this leaves small discrepancies in the
single-nucleon momentum distribution. The compari-
son between the solid (green) and dashed (black) curve
clearly shows that the subtraction of the center of mass
component from the wave function leads to a reduction of
the width and an enhancement of the quasielastic peak.
Since this strongly affects the cross section in all the kine-
matical setups that we considered, we applied FSI cor-
rections only to the intrinsic OpRS calculation. In order
to do it, we follow the approach outlined in Sec. III, with
the difference that the optical potential has been disre-
garded in the energy conserving δ-function since to the
best of our knowledge neither the 3H-p nor the 3He-n op-
tical potentials are present in the literature. The results
are shown in Fig. 10. The convolution of the OpRS cross
section with the folding function of Eq. (38) leads to a
redistribution of the strength, which quenches the peak
and enhances the tails. For Ee = 300 MeV, θ = 60◦,
and Ee = 500 MeV, θ = 34◦ the OpRS intrinsic calcu-
lation overestimates the data. Moreover, in all the kine-
matical configurations under consideration the position
of the quasielastic peak is not correctly reproduced. This
is likely to be ascribed to the approximate procedure we
adopted to account for FSI effects, i.e. we neglected the
real part of the optical potential. Its inclusion would
shift the cross section towards lower values of ω possibly
improving the agreement with the experimental data.

In Fig. 11 we compare the experimental data of the in-
clusive double-differential electron-16O cross sections as
computed from the fully correlated SCGF-ADC(3) spec-
tral function. In the dashed (green) curve FSI effects
have been implemented in full, yielding a very nice agree-
ment with the data. In particular, the inclusion of the
real part of the optical potential in the final state nu-
cleon energy shifts the cross sections towards lower val-
ues of ω and the quasielastic-peak position is correctly
reproduced.

V. CONCLUSIONS

We used the ab initio SCGF approach to compute the
single-particle propagators of closed shell 4He and 16O
nuclei. The calculations were based on the the NNLOsat

chiral interaction since this is cable to describe simulta-
neously binding energies and nuclear radii of medium-
mass nuclei. We have gauged the residual center of mass
contribution to the 4He wave function by developing a
MMC algorithm which exploits the OpRS single-particle
propagator. The resulting intrinsic charge density in 4He
has been computed and compared with both the QMC
calculation of Ref. [41] and the experimental data. The
subtraction of the center of mass contribution turns out
to be crucial in order to obtain correct predictions for this
light nucleus. The same pattern has also been observed
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FIG. 9. Double-differential electron-4He cross sections for different values of incident electron energy and scattering angle. The
dotted (red) curve have been obtained using the SCGF-ADC(3) propagator while the solid (green) and dashed (black) line
corresponds to the total and the intrinsic OpRS results, respectively. The experimental data are taken from Ref. [50].

in the single-nucleon momentum distribution; whilst the
total OpRS sizably underestimates the QMC calculation,
a very nice agreement is found between the QMC and the
results from the intrinsic OpRS.
In the analysis of the charge density in 16O, the full
SCGF-ADC(3) calculation has been compared with the
experimental curve. Since the radius of this nucleus has
been used to fit the NNLOsat potential, the nearly per-
fect agreement with the empirical charge density is not
surprising. However, the very good comparison with ex-
perimental cross sections corroborates the choice of the
interaction for future studies of lepton-nucleus scatter-
ing. The origin of the discrepancies between the single-
nucleon momentum distributions obtained from SCGF-
ADC(3) and QMC approaches has to be attributed to
the softness of the NNLOsat interaction. Although the

two approaches provide very similar results in the region
of low- and moderate-momentum, the use of an hard po-
tential, such as AV18+UIX, implies a stronger nuclear
interaction between large momenta. This manifests itself
into the appearance of very high-momentum tails in the
momentum distribution which are not as pronounced for
the NNLOsat chiral force.

We employed the IA approach to perform the calcu-
lation of inclusive electromagnetic cross sections which
exploits SCGF spectral functions. The electron-4He dou-
ble differential cross section corresponding to the intrin-
sic OpRS wave function sizably differs from the OpRS
in which the contamination of the center of mass is still
present. This indicates that the spurious effect of the
center of mass can not be neglected in light nuclei. For
this reason, we restricted the discussion of FSI effects to
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FIG. 10. Same double-differential cross sections as in Fig. 9 but only for the intrinsic OpRS calculation. The solid (black) line
corresponds to neglecting FSI, while the dashed (green) one has been obtained including FSI corrections.

the sole OpRS intrinsic calculations. We observed that
the convolution with the folding function of Ref. [19, 20]
yields a redistribution of the strength of the cross section.
However, disregarding the real part of the optical poten-
tial in the energy conserving delta function prevents a
good agreement with the data for the different kinemat-
ical setup analyzed.

Fully satisfactory results have been obtained for the
electron-16O double differential cross section, where the
IA calculation has been supplemented by FSI. Our find-
ings indicate that the SCGF approach provides accurate
predictions for medium-mass nuclei and their interaction
with an electron probe. The extension to the electroweak
sector will be the subject of a future work. Moreover,
exploiting the Gorkov formalism we will be able to pro-
vide valuable results for open shell nuclei [51] which will
be crucial in the data analysis of future neutrino experi-

ments, such as DUNE.
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FIG. 11. Double-differential electron-16O cross sections for different values of incident electron energy and scattering angle.
The solid (red) line corresponds to the SCGF-ADC(3) results and the dashed (green) one has been obtained including FSI
corrections. The experimental data are taken from Ref. [50].
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