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 27 

ABSTRACT 28 

In this work, silica and alumina pure sources were used to perform the synthesis of zeolite A (LTA) 29 

by both conventional and pre-fused hydrothermal processes. Increasing amount of red mud (RM, a 30 

waste formed during the caustic leaching of bauxite to produce alumina and rich in Fe) was added 31 

during the synthesis processes. We attempted to investigate if the use of pure sources with the 32 

addition of different amounts of red mud promotes, or hinder, the crystallization of the zeolite A 33 

and if Fe is structurally-incorporated into the newly-formed zeolite structure (i.e., as framework or 34 

extra-framework cation) or if it is concentrated in a proper Fe-rich phase. The results carried out 35 

using a multi-methodological approach (laboratory X-ray powder diffraction; synchrotron radiation 36 

powder X-ray diffraction; scanning electron microscopy and electron transmission microscopy 37 

coupled with EDX elemental mapping) show that LTA zeolite crystals (with cubic morphology) can 38 

be efficiently formed using pure source combined with variable amount of red mud. The use of 39 

complementary analytical techniques indicate that Fe coming from the red mud is not structurally-40 

incorporated into the newly-formed zeolite crystals, but it is mainly concentrated in nano-clusters of 41 

Fe-oxides (with spinel-type structure) located on the zeolite crystal surface. The utilization of non-42 

conventional Fe source, here represented by red mud, can be considered as the first step toward a 43 

new solidification/stabilization process for this waste, as dictated by the regenerative economy 44 

route.  These data make an important contribution to understanding the role played by surface 45 

phenomena on zeolite crystals when transition elements are used in the synthesis procedure.  46 

 47 

Keywords: LTA; zeolite surface; red mud; waste; Fe-bearing nanoparticles 48 

 49 

1. Introduction 50 

LTA-type zeolite is a synthetic zeolite which empirical formula is [Mex][Al 12Si12O48], where Me 51 

represent the metal cations [1].  Its structure consists of simple β-cages, which are composed of 24 52 
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tetrahedra. The links of the β-cages is provided through double four-membered rings of tetrahedra. 53 

The interconnection of these units produces a large cavity (the so-called α-cage), ~11.4 Å in 54 

diameter, and two intersecting channel systems.   55 

Due to the Si:Al molar ratio close to 1, LTA is a low-silica zeolite easily synthesized from kaolinite 56 

characterized by the same atomic Si/Al atomic ratio [2-8]. However, beside this common natural 57 

source, processes based on the utilization of pure aluminate and silicate suspensions [9-14] or 58 

different waste materials [15-24] have been largely used to direct the crystallization of this type of 59 

zeolite. 60 

Literature data have documented the synthesis of magnetic or Fe-modified LTA zeolite [25-27]. 61 

However, studies on Fe-zeolites are currently orientated to consider iron as structurally-62 

incorporated framework/extra-framework component [26, 28-33], although there are several open 63 

questions about the incorporation mechanisms of trivalent cations into the structure of zeolites. A 64 

very few studies in the open literature  reported evidence that in Fe-modified zeolites most of the 65 

iron is not concentrated as extra-framework cation, but it is rather deposited on the surface of 66 

crystals in the form of nano-aggregates of Fe-oxides [34,35].  67 

One of the low-cost source of Fe is the  so-called “red mud” (RM). It is, in fact, the waste material 68 

produced by the caustic leaching process used to extract aluminium from bauxite, considered an 69 

important source of this element. The name ‘red mud’ comes from its red colour due to the 70 

abundant presence of iron, mainly as oxy-hydroxides. However, the composition of this waste 71 

varies according to the differences in the refining processes as well as to the mineralogical nature of 72 

the bauxite ores [36-40].The increasing alumina request worldwide has led to an increase in RM 73 

production. Power and co-workers [41] estimated at 120 million tonnes the annual world production 74 

rate of red mud, taking into account that about 1.5 t of RM is discharged for every ton of produced 75 

alumina. During the period from the late 19th century to 2008, more than 2.7 billion tonnes of red 76 

mud were generated [42]; in 2011, the annual production of RM in China was 42.6 million t and it 77 

reached 73 million t in 2013 [43,44]. The huge production of this waste causes serious pollution 78 
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problems. The high pH, as well as the chemical composition characterized by the presence of heavy 79 

metals and radioactive elements, generates environmental problems when large volume of this 80 

waste material has to be disposed. The main methods used in the past (prior to the 1970s) for RM 81 

disposal were marine discharge and lagooning [41]. These methods were replaced by a new RM 82 

disposal concept represented by a “dry” stacking in bonded area line with different kind of barrier 83 

materials [45]. However, in the recent years, much effort has been made to recycle red mud, in the 84 

framework of circular economy design processes. The key to solve environmental problems caused 85 

by RM is, in fact, to develop technologies able to convert this waste into a secondary resource [43] 86 

such as, e.g., bricks, concrete admixtures, and road base materials [46-48]. Many studies have also 87 

showed different processes for the recovery of major metals (e.g., Fe, Al and Ti) [49,50] or minor 88 

metals (e.g., rare earth elements) [51] from RM. In our previous papers, red mud was used as 89 

alumina source to form zeolite [52] or as complementary material to synthesize zeolite with 90 

magnetic property, without the addition of external magnetic nanoparticles[17]. However, in those 91 

studies, Fe speciation in the newly-formed magnetic zeolite was not analysed, leaving open 92 

questions about the actual location of Fe: lying into the structure of the newly-formed zeolite or in a 93 

proper Fe-rich species?. 94 

In this study, we investigated the effect of red mud addition to the IZA synthesis protocol of LTA in 95 

order to describe, on the basis of a multi-methodological approach (laboratory X-ray powder 96 

diffraction-XRPD; synchrotron radiation powder X-ray diffraction-SR/XRD; scanning electron 97 

microscopy –SEM and electron transmission microscopy-TEM coupled with EDX elemental 98 

mapping), if 1) the use of pure sources with the addition of different amounts of red mud promotes, 99 

or not, the crystallization of the zeolite A, by both conventional and pre-fused hydrothermal 100 

processes and 2) if Fe is structurally-incorporated into the zeolite structure (i.e., as framework or 101 

extra-framework cation) or concentrated in a different Fe-bearing phase, . These experimental 102 

findings are also preparatory for  a potential solidification/stabilization process for the red mud 103 

waste, following the route inspired to the regenerative economy. 104 
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 105 

2. Experimental section 106 

2.1. Materials 107 

The reactant used during the synthesis were pure sodium hydroxide pellets, sodium aluminate, 108 

sodium silicate and  deionised water for the preparation of the initial precursor suspension. Variable 109 

amount of red mud from aluminium extraction area of Sulcis, Cagliari (Italy) was also added. All 110 

chemicals of reagent grade were purchased from Aldrich Chemicals Ltd.  111 

 112 

2.2. Zeolite Synthesis 113 

Conventional hydrothermal synthesis. 80 mL of distilled water with 0.723 g of sodium hydroxide 114 

were gently mixed until NaOH was completely dissolved. Half of this solution was added to 8.3 g 115 

of sodium aluminate and mixed until clear to prepare Solution A. 116 

Solution B was prepared by dissolving 15.48 g of sodium silicate in the second half of NaOH 117 

solution previously prepared. Then solution A was quickly added into solution B under vigorous 118 

stirring. The resulted suspension was continuously stirred for 1 night, and then subjected to 119 

treatment at 40 °C for 4 days. The solid fraction was finally extracted via centrifugation followed by 120 

drying in an oven at 80 °C. The process was repeated adding 4, 8 and 12 g of red mud sample to the 121 

Solution A, in different experiments. The samples were labelled as S3, S5 and S6, respectively. 122 

Pre-fused hydrothermal synthesis. Solution A was prepared by dissolving NaOH, pre-fused red 123 

mud (at 600 °C) and 8.3 g of sodium aluminate in 40 mL distilled water. Solution B was prepared 124 

as described above. Solution A was quickly added into solution B, stirred for 1 nigh and treated at 125 

40 °C for 4 days. The solids was separated by centrifugation and dried as described above to 126 

recover the solid fraction for further characterizations. Also for the pre-fused hydrothermal 127 

synthesis, the process was repeated preparing Solution A with the addition of 4, 8 and 12 g of pre-128 

fused red mud, in different experiments. The new samples were labelled as S9, S10 and S11, 129 

respectively. 130 



 6

 131 

The samples synthesised without red mud addition were labelled as pure LTA and used as 132 

reference. 133 

 134 

2.3. Characterization  135 

Scanning Electron Microscopy (SEM). Crystal size and habit of the synthetic products were 136 

investigated using a Zeiss Supra 40 scanning electron microscope with Field Emission Gun (SEM-137 

FEG), equipped with an energy dispersive  spectrometer (EDS). The samples were carbon-sputtered 138 

(10 nm thick) in order to avoid charging of the surface. 139 

Laboratory X-ray powder diffraction (XRPD). Preliminary information on the crystalline phases 140 

formed by both conventional and pre-fused hydrothermal processes were obtained by X-ray 141 

diffraction from polycrystalline samples using a Rigaku Rint Miniflex powder diffractometer, 142 

equipped with Cu-Kα radiation. The XRD patterns were collected in Bragg–Brentano geometry in 143 

the angular range 3°–70° of 2θ, step-size of 0.02°, scan-step time of 3 s, accelerating voltage of 144 

30 kV and electric current at the Cu anode of 15 mA. 145 

Synchrotron radiation X-ray diffraction (SR-XRD). SR-XRD experiments were carried out at the 146 

MCX beamline (2) [53] of the ELETTRA-Sincrotrone Trieste S.C.p.A. facility (Basovizza, Trieste, 147 

Italy). Samples were loaded into borosilicate glass capillaries with 300 µm diameter. The diffraction 148 

patterns were collected in transmitting geometry, with capillary kept spinning during the data 149 

collection. An incident X-ray beam of 12 keV in energy was used. Full-profile fits were performed 150 

by the Rietveld method, using the GSAS package (http://www.ccp14.ac.uk/solution/gsas/). The 151 

structure refinement protocol is described in Gatta and co-authors [54]. 152 

Trasmission Electron Microscopy (TEM). The samples for transmission electron microscopy were 153 

prepared by drop-coating a carbon coated copper TEM grid with a dispersion of the material in 154 

ethanol. TEM observations have been carried out on a field emission gun FEI TALOS F200S at an 155 
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acceleration voltage of 200 kV. The microscope is equipped with an integrated EDS system with 156 

two silicon drift detectors, for qualitative and semi-quantitative chemical analysis. 157 

Elemental  analysis. The chemical composition of red mud sample was determined by X-ray 158 

fluorescence (XRF), with a Philips PW 1480 instrument. Elemental analyses were also performed 159 

with an energy-dispersive X-ray spectrometer (EDS, Oxford Inca Energy 350) equipped with a 160 

Si(Li) detector.  161 

 162 

3.  Results and discussion 163 

The chemical composition of the red mud displays the presence of large fraction of FeO (37.04 %), 164 

along with Zn (6.76 %) and Pb (3.61 %), thus indicating that it is a potentially toxic waste. SiO2 and 165 

Al 2O3 are scarce and the fraction of these oxides is 4.23% and 0.89 %, respectively (Table 1). The 166 

chemical data are confirmed by the XRPD investigation (Fig. 1): the diffraction patterns show the 167 

presence of natrojarosite [ideally NaFe3(SO4)2(OH)6], Pb-natrojarosite [ideally 168 

PbFe6(SO4)4(OH)12], franklinite [ideally ZnFe2O4] and gunningite [ideally ZnSO4·H2O].  169 

Conventional XRPD and SR-XRD measurements indicate that the uses of pure sources with the 170 

addition of different amounts of red mud promotes the crystallization of the zeolite A, by both 171 

conventional and pre-fused hydrothermal process. LTA without the addition of RM (i.e., pure LTA, 172 

Na12Al 12Si12O48) was also synthesized and taken as a reference material. XRPD patterns are shown 173 

in Fig. 2. The diffraction patterns display a generally decrease in peaks intensity with the increase in 174 

red mud content. Beside zeolite LTA, franklinite and hematite are detected as well on X-ray profiles 175 

after conventional (samples S3, S5 and S6) (Fig. 2a) and pre-fused hydrothermal process (samples 176 

S9, S10, S11) (Fig. 2b), respectively. However, weak diffraction peaks suggest the presence of a 177 

low fraction of franklinite also in the S10 sample. The weight fraction (wt%) of the different phases 178 

was determined by Rietveld full-profile fit on the SR-XRD patterns [55]. The data indicate that the 179 

amount of LTA formed by conventional hydrothermal method ranges from ∼91wt% in S5 to ∼98wt 180 

% in S3. S6 displays ∼93 wt% of the newly-formed zeolite (Table 2). The fraction of franklinite 181 
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detected in the same samples is ∼2 wt% in S3, ∼9 wt% in S5 and ∼7 wt% in S6 (Table 2). The 182 

quantitative analysis carried out on the samples formed by pre-fused hydrothermal process indicate 183 

that a lower amount of LTA is formed (~83wt%). The results also show the presence of about 184 

16wt% of hematite (Table 2).   185 

Based on the aforementioned results, it is possible to consider that natrojarosite and Pb-natrojarosite 186 

(characterizing the red mud composition) were dissolved during hydrothermal process, thus making 187 

Fe and Pb available to be involved in the zeolite crystallization process. The presence of franklinite 188 

in conventional hydrothermal products (Fig. 2a) indicates that this phase was only partially involved 189 

into dissolution process. The pre-fusion treatment, instead, was more effective in franklinite 190 

dissolution, making larger amount of Fe available to form hematite as precipitated phase (Fig. 2b). 191 

However, no linear correlation is observed between the weight fraction of zeolite and the amount of 192 

red mud added during both the synthesis processes.   193 

Scanning electron microscopy provided information on the habit of the crystallites formed by both 194 

conventional and pre-fused hydrothermal methods. Pure LTA is shown in Fig. S1. Although the 195 

typical cubic shape of this type of zeolite, SEM images display cubes with rather rounded faces and 196 

edges. The size of the crystallites ranges from 20-30 nm to 1 µm. A well-defined cubic habit instead 197 

characterizes all the samples formed with the addition of red mud. In detail, Fig. S2 shows LTA 198 

synthesised by hydrothermal process with 4 g (S3), 8 g (S5) and 12 g (S6) of RM, respectively, 199 

whereas Fig. S3 displays the zeolites formed by pre-fused hydrothermal method with the same 200 

amount of red mud: i.e., 4 g for S9, 8 g for S10 and 12 g S11. It is interesting to point out that 201 

increasing the content of red mud, the cubic habit is better defined, as shown by crystals with faces 202 

and edges very well outlined. Moreover, SEM data also indicate that the pre-fused process generally 203 

improve the zeolite synthesis. 204 

The presence of Fe associated with the newly-formed zeolite is documented by EDX analysis. Fig. 205 

3 shows a representative spectrum of the investigated samples. However, the SEM-EDX 206 

investigation cannot provide a unique answer about the presence of Fe as structurally-incorporated 207 
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element (i.e., as framework or extra-framework component) or in the form of nanoparticles 208 

precipitated on the crystallites surface, as observed by Kragović and co-workers [35]. In order to 209 

confirm or deny the presence of Fe as structurally-incorporated element, Rietveld structure 210 

refinements were performed on the basis of SR-XRD data of the synthesis products. A careful 211 

inspection was first of all devoted to the intra-tetrahedral (T-O) bond distances, to detect the 212 

potential substitution of Si or Al with Fe3+. The results indicate that the T-O bond distances are 213 

always consistent with the expected values of Si or Al as tetrahedral cations (Table S1), ruling out a 214 

significant presence of Fe as framework component. The potential presence of Fe as extra-215 

framework cation was also investigated, by careful inspection of the difference-Fourier maps of the 216 

electron density function. However, the residuals of the electron density maps do not provide 217 

unequivocal evidence of the presence of Fe into the zeolitic cavities.  218 

The aforementioned experimental findings based on X-ray diffraction data show that it is not 219 

possible to confirm or deny the presence of structurally-incorporated Fe into the newly-formed 220 

zeolite. On this basis, and considering the previous experiments reported by Kragović et al. [35], a 221 

TEM investigation of the synthesis products was performed. TEM data of both LTA synthesised by 222 

hydrothermal process (S3, S5 and S6) (Fig. S4) and pre-fused hydrothermal method (S9, S10 and 223 

S11) (Fig. S5) show idiomorphic crystals of zeolite with nano-aggregates on their surfaces. In order 224 

to further analyse the potential distribution of metal cations in zeolite crystals and in the nano-225 

aggregates lying on the crystals surfaces, EDX elemental mapping was performed for Si, Al, Fe, Zn 226 

and Pb on samples formed by both conventional and pre-fused hydrothermal process (Figs. 4-6). 227 

The EDX maps carried out on S5 sample clearly show that Si and Al are well distributed (and 228 

perfectly overlapping) (Fig. 4a, b) in the crystals of the LTA zeolite, and almost absent in the nano-229 

clusters. EDX- maps show instead a different distribution of Zn and Fe (Fig. 4c, d) that, however, is 230 

superimposable between these two elements but not with Si and Al. These data indicate that the 231 

transition metal cations are not incorporated in the Si-Al-bearing structure of the synthetic zeolite, 232 

but they form irregular aggregates of nano-sized particles. This is particularly evident in the case of 233 
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Fe (Fig. 4d). This behaviour is also confirmed by the EDX maps in Figure 10, showing well-defined 234 

zeolite crystals primarily with additional Fe and Zn-bearing nanoparticles (Fig. 5b and c).This 235 

figure also displays Pb elemental dispersion (Fig. 5b) comparable with the other metal cations. EDX 236 

maps carried out on the S10 sample (synthesised by pre-fused hydrothermal method) confirmed the 237 

same experimental findings already described for the S5 sample (Fig. 6). Furthermore, the electron 238 

diffraction patterns (Fig. 7 and 8) prove that the Fe-Zn-bearing nano-clusters lying on the surface of 239 

the zeolite crystallites are mainly constituted by Fe-Zn-spinels (franklinite ZnFe2O4 with magnetite-240 

like structure).  241 

Chemical (by elemental maps) and structure (electron diffraction patterns) evidence are, therefore, 242 

mutually consistent, and corroborates the previous experimental findings reported by Kragović and 243 

co-workers [35], who investigated the behaviour of iron in Fe-modified zeolite formed using FeCl2 244 

solution. In the experiments of our study, instead, we investigated the behaviour of iron from the 245 

red mud in relation to the newly formed LTA zeolite. To complete the investigation on the role 246 

played by surface phenomena on zeolite crystals in presence of iron, additional experiments were 247 

also performed to synthesise zeolite with Fe in the form of nano-magnetite by conventional 248 

hydrothermal method (SnM). Also in this case, TEM results display the formation of idiomorphic 249 

crystals of zeolite with nano-aggregates on the surfaces (Fig. 9). EDX elemental mapping (Fig. 10) 250 

indicates that Si and Al are perfectly overlapping in the crystals of the LTA zeolite, and almost 251 

absent in the nano-clusters that instead are characterized by Fe and O composition.  These data 252 

indicate that nano-magnetite does not dissolve during hydrothermal process but it precipitates on 253 

the surface of the newly-formed zeolite.  254 

Based on the new results discussed in this manuscript, and according with some previously 255 

published literature data [35,53], it is possible to infer that transition metals, such as Fe or Zn, tend 256 

to form nano-clusters on the crystal  surfaces of zeolite instead of being incorporated as 257 

framework/extra-framework component, as many studies on Fe-zeolites are still orientated to 258 

consider. 259 
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 260 

4. Conclusions 261 

The results reported in this paper show that LTA zeolite can be efficiently formed using pure source 262 

combined with variable amount of a waste material: red mud. The use of complementary analytical 263 

techniques indicate thatthe Fe coming from the red mud is not structurally-incorporated into the 264 

newly-formed zeolite crystals,  but it is mainly concentrated in nano-clusters of Fe-oxides (with 265 

spinel-type structure) located on the zeolite crystal surface. This behaviour is also shared by the 266 

other metal cations of this system: Zn and Pb.  267 

These data make an important contribution to understanding the role played by surface phenomena 268 

on zeolite crystals when transition elements are used in the synthesis procedure. Moreover, the 269 

utilization of ‘non-conventional Fe source’, here represented by red mud, can be considered the first 270 

step toward a new solidification/stabilization process for this waste, as dictated by the regenerative 271 

economy route. However, before any potential utilization of this protocol on an industrial scale, a 272 

deep investigation on mobility of Fe/Zn/Pb nano-clusters precipitated on the newly-formed zeolite 273 

needs to be performed by chemical sequential extraction process, and this will be the aim of a future 274 

investigation. 275 
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 432 

Captions 433 
Figure 1.  434 
XRPD patterns of the red mud used in this study. 435 
 436 
Figure 2.  437 
XRPD profiles of synthesis products by: [a] conventional hydrothermal process [b] pre-fused 438 
hydrothermal process 439 
 440 
Figure 3.  441 
EDX spectrum representative of the LTA zeolite crystals formed by adding RM during the 442 
synthesis  443 
 444 
Figure 4.  445 
TEM images (left-up) and relative EDX elemental mapping of : a) Si, b) Al, c) Zn and d) Fe. S5 446 
sample. 447 
 448 
Figure 5.  449 
TEM images (left-up) and EDX elemental mapping of : a) Si, b) Al, c) Zn, d) Fe and e) Pb. S5 450 
sample. 451 
 452 
Figure 6.  453 
TEM images (left-up) and EDX elemental mapping of Si, Al, Zn, Fe and Pb elements (a-e). S10 454 
sample. 455 
 456 
Figure 7.  457 
S5 sample. a) high-resolution image of a zeolite crystal and irregular aggregates of 458 
nano-sized particles lying on its surface; b) electron diffraction pattern showing single spots 459 
ascribable to the zeolite crystal and diffraction rings generated by the Fe-Zn-bearing 460 
nano-clusters (highly likely with spinel-type structure). A table with the geometric parameters is 461 
provided. 462 
 463 
Figure 8.  464 
S10 sample. a) high-resolution images of zeolite crystals and irregular aggregates of 465 
nano-sized particles; b) co-existing electron diffraction patterns of a zeolite crystal and Fe-Zn 466 
bearing nano-clusters (with a table of their geometric parameters). 467 
 468 
Figure 9.  469 
TEM images of the SnM zeolite formed by conventional hydrothermal synthesis with nano-470 
magnetite. 471 
 472 
Figure 10.  473 
TEM images (left-up) and EDX elemental mapping of : a) Si, b) Al, c) O and d) Fe.  474 
SnM sample. 475 
 476 
 477 
 478 
 479 
 480 
 481 
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Figure S1.  793 
SEM images of pure LTA.  794 
 795 
Figure S2.  796 
SEM images of LTA zeolite formed by a 4-day conventional hydrothermal synthesis. 797 
 798 
Figure S3.  799 
SEM image of LTA zeolite formed by a 4-day pre-fused hydrothermal process. 800 
 801 
Figure S4.  802 
TEM images of LTA zeolite formed by conventional hydrothermal synthesis. 803 
 804 
Figure S5.  805 
TEM images of LTA zeolite formed by pre-fused hydrothermal process.  806 
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Table 1. XRF chemical composition of Red mud (wt%). 

Zn Pb Cu FeO CaO Al2O3 MgO Cd Ag Mo SiO2 H2O S tot

Red mud 6.76 3.61 0.14 37.04 1.09 0.89 0.31 0.08 137 61 4.23 33.78 9.26



Samples LTA zeolite Franklinite Hematite

S3 98.0 2.0

S5 91.4 8.6

S6 93.1 6.9

S10 83.3 16.7

S11 83.6 16.4

Table 2. Synthetic products (wt%) based on Rietveld full-profile fit                              
of the X-ray diffraction data (uncertainty: +/- 1 wt%).























Highlights 
 

- Material: LTA zeolite formed using pure sources combined with red mud; 
- Red mud: a waste formed during the bauxite caustic leaching to produce alumina; 
- Aim: mobilize Fe coming from red mud within the newly formed zeolite structure; 
- Results: Fe concentrated in nano-clusters on the zeolite crystal surface; 
- Techniques: XRPD, SEM-EDX, synchrotron radiation XRD, TEM-EDX elemental mapping 
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Captions 
Figure 1.  
XRPD patterns of the red mud used in this study. 
 
Figure 2.  
XRPD profiles of synthesis products by: [a] conventional hydrothermal process [b] pre-fused 
hydrothermal process 
 
Figure 3.  
EDX spectrum representative of the LTA zeolite crystals formed by adding RM during the 
synthesis  
 
Figure 4.  
TEM images (left-up) and relative EDX elemental mapping of : a) Si, b) Al, c) Zn and d) Fe. 
S5 sample. 
 
Figure 5.  
TEM images (left-up) and EDX elemental mapping of : a) Si, b) Al, c) Zn, d) Fe and e) Pb. 
S5 sample. 
 
Figure 6.  
TEM images (left-up) and EDX elemental mapping of Si, Al, Zn, Fe and Pb elements (a-e). 
S10 sample. 
 
Figure 7.  
S5 sample. a) high-resolution image of a zeolite crystal and irregular aggregates of 
nano-sized particles lying on its surface; b) electron diffraction pattern showing single spots 
ascribable to the zeolite crystal and diffraction rings generated by the Fe-Zn-bearing 
nano-clusters (highly likely with spinel-type structure). A table with the geometric parameters 
is provided. 
 
Figure 8.  
S10 sample. a) high-resolution images of zeolite crystals and irregular aggregates of 
nano-sized particles; b) co-existing electron diffraction patterns of a zeolite crystal and Fe-Zn 
bearing nano-clusters (with a table of their geometric parameters). 
 
Figure 9.  
TEM images of the SnM zeolite formed by conventional hydrothermal synthesis with nano-
magnetite. 
 
Figure 10.  
TEM images (left-up) and EDX elemental mapping of : a) Si, b) Al, c) O and d) Fe.  
SnM sample. 
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