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ABSTRACT	&	RESEARCH	AIM	

• Part	I	describes	two	possible	approaches	to	investigate	Mexican	
chicken	 genetic	 variation,	 using	 selective	 sweeps	 and	 Copy	
Number	Variants	(CNV).	CNVs	are	genomic	polymorphisms	that	
influence	phenotypic	expression	and	are	an	important	source	of	
genetic	variation	in	populations.		
The	aim	of	the	first	study	here	presented	was	to	characterize	the	
genetic	 variability	 of	 the	 Mexican	 chicken’s	 population	 and	 to	
disclose	 any	 underlying	 population	 structure.	 A	 total	 of	 213	
chickens	 were	 sampled	 in	 different	 rural	 production	 units	
located	 in	 25	 states	 of	México.	 Genotypes	were	 obtained	 using	
the	 Affymetrix	 Axiom®	 600K	 Chicken	 Genotyping	 Array.	 The	
Identity	by	Descent	(IBD)	and	the	Principal	Components	Analysis	
(PCA)	 were	 performed	 by	 SVS	 software	 on	 pruned	 SNPs.	
Analyses	done	with	ADMIXTURE	 identified	 three	ancestors	 and	
determined,	 for	 each	 individual,	 the	 proportion	 of	 the	 genetic	
contribution	from	each	of	the	three	ancestors.	The	results	of	the	
Neighbor-Joining	 (NJ)	 analysis	 were	 consistent	 with	 those	
obtained	by	the	PCA.	All	methods	used	in	this	study	did	not	allow	
a	 classification	of	Mexican	 chicken	 in	distinct	 genetic	 groups.	A	
total	 of	 3,059	Run	 of	 homozygosity	 (ROH)	were	 identified	 and,	
being	 mainly	 short	 in	 length	 (<	 4	 Mb),	 these	 regions	 are	
indicative	 of	 a	 low	 inbreeding	 level	 in	 the	 population.	 Finally,	
findings	from	the	ROH	analysis	indicated	the	presence	of	natural	
selective	pressure	in	the	population	of	Mexican	chicken.	
In	 the	 second	 study	 we	 used	 CNVs	 to	 investigate	 genetic	
variability	 in	 the	 Mexican	 Creole	 chicken	 and	 to	 relate	 this	
variation	 to	 the	 available	 gene	 annotation.	 The	Hidden	Markov	
Model	of	the	PennCNV	software	detected	a	total	of	1,924	CNVs	in	
the	 chicken	 genome	 of	 256	 individuals.	 Input	 data	 were	 LOGR	
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Ratio	and	B	allele	frequency	obtained	with	the	Axiom®	Genome-
Wide	Chicken	Genotyping	Array	(Affymetrix).	The	mapped	CNVs	
comprised	 1,538	 gains	 and	 386	 losses	 resulting,	 at	 population	
level,	 in	 1,216	 CNV	 regions	 (CNVRs),	 of	 which	 959	 gains,	 226	
losses	and	31	complexes	(i.e.	 containing	both	 losses	and	gains).	
The	 CNVRs	 covered	 a	 total	 of	 47	 Mb	 of	 the	 whole	 genome	
sequence	length,	corresponding	to	5.12	%	of	the	chicken	galGal4	
autosome	 assembly.	 This	 study	 allowed	 a	 deep	 insight	 into	 the	
structural	variation	in	the	genome	of	unselected	Mexican	chicken	
population,	 which	 up	 to	 now	 has	 not	 been	 genetically	
characterized.	The	genomic	study	disclosed	that	the	population,	
even	 if	presenting	extreme	morphological	variation,	couldn’t	be	
organized	 in	 differentiated	 genetic	 subpopulations.	 Finally,	 this	
study	provided	a	chicken	CNV	map	based	on	the	600K	SNP	chip	
array,	 jointly	with	 a	 genome-wide	gene	 copy	number	estimates	
in	 a	 native,	 unselected	 for	 more	 than	 500	 years,	 chicken	
population.	
Genetic	 variation	 can	 be	 caused	 by	 adaptive	 evolutionary	
changes	 and	 by	 artificial	 selection.	 The	 genetic	 makeup	 of	
populations	is	the	result	of	a	long-term	process	of	selection	and	
adaptation	to	specific	environments	and	ecosystems.		
The	 two	 studies	 here	 presented	 indicate	 that	 the	 Mexican	
chicken	clearly	appear	to	be	a	unique	Creole	chicken	population	
that	was	not	subjected	to	a	specific	directional	selection.	Results	
provide	a	genetic	knowledge	that	can	be	used	as	a	basis	 for	the	
genetic	 management	 of	 a	 unique	 genetic	 resource.	 Industry	 is	
likely	 envisaging	 to	 use	 the	 female	 native	 populations	 mating	
them	with	 selected	males	 to	 increase	 the	 productivity	 and	 the	
economic	revenue	of	family	farming	agriculture,	which	is	a	large	
reality	of	United	States	of	México.	
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• Part	II	describes	a	CNV	scan	and	a	population	analysis	of	turkey	
populations	coming	from	different	countries.		
The	domesticated	turkey	was	brought	to	Europe	in	late	1500	by	
Spanish	conquerors	from	Central	America,	likely	from	Mexico.	
The	evolution	of	the	Mexican	turkey	population	occurred	as	such	
independently	for	more	than	500	years	from	the	European	ones	
and	the	commercial	hybrids.		
This	 study	 investigates	 the	 genomic	 diversity	 of	 several	 turkey	
populations	using	CNVs	as	source	of	variation.		
A	 total	 of	 116	 individuals	 from	6	 Italian	 breeds	 (Colle	 Euganei,	
Bronzato	 Comune	 Italiano,	 Parma	 e	 Piacenza,	 Brianzolo,	 Nero	
d’Italia	 and	 Ermellinato	 di	 Rovigo),	 7	 Narragansett,	 38	
commercial	 hybrids	 and	 31	 Mexican	 turkeys,	 were	 processed	
with	the	Affymetrix	600K	SNP	turkey	array.	The	CNV	calling	was	
performed	 with	 the	 HMM	 of	 PennCNV	 software.	 CNV	 were	
summarized	into	CNV	regions	(CNVRs)	at	population	level	using	
BEDTools.	Variability	among	populations	has	been	addressed	by	
hierarchical	 clustering	 (pvclust	 R	 package)	 and	 by	 principal	
component	analysis	(PCA).	A	total	of	2,987	CNV	were	 identified	
covering	 4.65%	 of	 the	 autosomes	 of	 the	 Turkey_5.0/melGal5	
assembly.	The	CNVRs	 including	at	 least	2	 individuals	were	362,	
189	 gains,	 116	 losses	 and	 57	 complexes.	 Among	 these	 regions	
the	 51%	 contain	 genes.	 This	 study	 is	 the	 first	 CNV	mapping	 of	
turkey	 population	 using	 600K	 SNP	 chip.	 CNVs	 clustered	 the	
individuals	 according	 to	 population	 and	 their	 geographical	
origin.	 CNVs	 are	 also	 known	 to	 be	 indicators	 of	 adaptation,	 as	
some	 researches	 are	 suggesting	 investigating	 different	 species.	
The	 outcomes	 of	 this	 are	 likely	 reflecting	 the	 human	 action	 on	
domestication	of	domesticated	turkey	after	 its	 introduction	into	
Europe	 and	 the	 directional	 selection	 occurring	 in	 the	 last	 40	
years	to	produce	a	fast-growing	heavy	bird.		
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• Part	III	describes	 the	CNV	mapping	 in	 the	Valdostana	Red	Pied	
(VRP)	cattle	breed,	an	autochthonous	Italian	dual-purpose	cattle	
population	reared	in	the	Alps,	and	the	comparison	with	the	CNV	
maps	 detected	 in	 previous	 studies	 in	 the	 Italian	 Brown	 Swiss	
(IBS)	 and	 in	 the	 Mexican	 Holstein	 (HOL).	 Many	 studies	 have	
focused	 on	 identifying	 CNVs	 within	 and	 between	 human	 and	
livestock	 populations	 alike,	 but	 only	 few	 have	 explored	
population-genetic	 properties	 in	 cattle	 based	 on	 CNVs	 derived	
from	a	high-density	SNP	array.		
In	 this	 study	 in	 cattle	 we	 report	 a	 high-resolution	 CNV	 scan,	
using	 the	 Illumina	 777k	 BovineHD	 Beadchip,	 for	 VRP,	 a	
population	that	did	not	undergo	strong	selection	for	production	
traits.	 After	 stringent	 quality	 control	 and	 filtering,	 CNVs	 were	
called	 across	 108	 bulls	 using	 the	 PennCNV	 software.	 A	 total	 of	
6,784	 CNVs	were	 identified,	 summarized	 to	 1,723	 CNV	 regions	
(CNVRs)	 on	 29	 autosomes	 covering	 a	 total	 of	 ~59	 Mb	 of	 the	
UMD3.1	 assembly.	 Among	 the	mapped	 CNVRs,	 there	were	 812	
losses,	832	gains	and	79	complexes.	A	 total	of	171	CNVRs	were	
common	to	VRP,	IBS	and	HOL.	Between	VRP	and	IBS,	474	regions	
overlapped,	while	only	313	were	 in	 common	between	VRP	and	
HOL,	 indicating	 a	 more	 similar	 genetic	 structure	 among	
populations	 with	 common	 origins,	 i.e.	 the	 Alps.	 The	 clustering	
and	 admixture	 analyses	 showed	a	 clear	 separation	of	 the	 three	
breeds	 into	 three	 distinct	 clusters.	 In	 order	 to	 describe	 the	
distribution	of	CNVs	within	and	among	breeds	we	used	the	pair	
VST	statistic.	We	considered	only	the	CNVRs	shared	by	more	than	
5	 individuals	 within	 breed.	 We	 identified	 unique	 and	 highly	
differentiated	 CNVs	 (n=33),	 some	 of	 which	 could	 be	 due	 to	
specific	 breed	 selection	 and	 adaptation.	 Genes	 and	 QTL	within	
these	 regions	 were	 also	 characterized	 adding	 evidence	 to	 the	
relationship	between	CNV	and	adaptation	
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GENERAL	INTRODUCTION	

In	the	last	decade	thanks	to	the	availability	of	new	technologies	
such	 as	 high-density	 SNP	 chips	 genotyping	 and	 short	 read	
sequencing	 and	 their	 cost	 reduction,	 the	 possibility	 to	 obtain	 a	
great	 deal	 of	 previously	 inaccessible	 genomic	 information	 has	
opened	up.	A	large	part	of	this	genetic	information	can	be	used	to	
analyse	 genetic	 variability	 among	 populations	 of	 different	
species,	 including	 livestock	 populations	 (Franzer	 et	 al.,	 2007;	
Zhang	et	al.,	2011;	Vignal	et	al.,	2002).	
Different	 indicators	 can	 be	 employed	 to	 investigate	 genetic	
variability	along	the	genome.	In	this	work	we	used	high-density	
SNP	data	focussing	on	Copy	Number	Variants	(CNV)	and	Runs	of	
Homozigosytiy	(ROH).		
CNV	are	a	class	of	genomic	variation	known	to	be	related	to	gene	
expression	 deletion	 may	 be	 due	 to	 loss	 of	 deleterious	 genes	
during	a	species	evolution	(Hull	et	al.,	2017),	while	duplication	is	
driven	by	directional	selection	(Perry	et	al.,	2007).		
ROH	are	directly	 related	 to	mating	 strategies.	Long	ROH	are,	 in	
fact,	 an	 indicator	 of	 recent	 inbreeding,	 i.e.	 mating	 of	 related	
individuals	 in	 the	 last	 generations	 (Kirin	 et	 al.,	 2010).	 Shorter	
ROH	 are,	 on	 the	 other	 hand	 indicating	 of	 ancient	 mating	
occurrence	 among	 related	 individuals:	 recombination	 events	
across	several	generation	allow,	in	fact,	to	break	long	DNA	tract	
in	homozygosity	(Pemberton	et	al.,	2012).	
ROH	 can	 also	 be	 used	 to	 identify	 the	 genomic	 regions	 that	 are	
under	directional	 selection	according	 the	 selection	 strategies	of	
the	populations	(Purfield	et	al,	2010).	
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Genetic	diversity	in	genomic	era	

During	evolution,	natural	and	human-imposed	selection,	affected	
genomic	 structure	 of	 livestock	 populations.	 The	 differences	 in	
the	 genome	 structure	 affect	 phenotypic	 expression,	 driving	 the	
extreme	 variability	 that	 can	 be	 disclosed	 between	 native	 low	
producing	breeds	 and	highly	 selected	one	or	hybrids	 (Xu	et	 al.,	
2014;	Fleming	et	al.,	2017).	Generally,	the	native	populations	are	
said	to	be	very	well	adapted	to	harsh	environmental	conditions,	
while	 selected	 populations	 to	 outperform	 in	 artificially	
controlled	 environments,	 as	 the	 intensive	 farming	 ones	
(Thornton	et	al.,	2009).		
In	 last	 decades	 the	 artificial	 selection,	 also	 based	 on	 genomic	
information	 for	 the	 last	 years,	 was	 employed	 to	 improve	
performances	for	productive	traits	in	cattle	and	chicken,	driving	
a	quick	change	in	the	genome	(Hayes	et	al.,	2009;	Meuwissen	et	
al,	2001).	
On	 the	 other	 hand,	 natural	 selection	 and	 adaptation	 to	
environment	 are	 capable	 to	 modify	 the	 phenotypic	
characteristics	of	individuals	over	time,	and	thus	of	populations,	
as	well	as	their	genomic	structure	(Hoffman	et	al.,	2000).	
The	natural	 selection	 for	adaptive	and	survival	 traits	as	well	as	
the	 artificial	 selection	 for	 productive	 traits,	 may	 lead	 to	 the	
presence	 of	 genomic	 signatures	 as	 a	 response	 to	 selective	
pressure	(Fleming	et	al,	2016).		
Recently	one	of	 the	research	efforts	 in	 livestock	 is	addressed	to	
identify	 strategies	 to	 preserve	 population	 biodiversity	 and	
maintain	 genetic	 diversity	 (Herrero-Medrano	 et	 al.,	 2013).	 The	
very	recent	and	fast	development	of	genomic	technologies	led	to	
the	 development	 of	 many	 indicators	 that	 can	 be	 useful	 to	
preserve	 genetic	 diversity	 in	 conjunction	with	 improvement	 of	
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livestock	performances.	Among	these	indicators	the	most	used	in	
livestock	in	the	recent	past	are	SNP	markers,	a	neutral	indicator	
of	 genomic	 variation.	 The	 ROH	 can	 be	 determined	 from	
information	on	SNP	genotype	and	are	now	widely	 suggested	 to	
monitor	genomic	inbreeding	in	the	population.		
More	 recently	 CNVs	 are	 becoming	 a	marker	 studied	 in	 several	
species.	CNVs	are	an	interesting	class	of	non-neutral	markers	as	
a	large	proportion	of	them	is	overlapping	annotated	genes.	
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Copy	 Number	 Variants	 are	 defined	 as	 genomic	 structural	
variations	(duplications	or	deletions)	ranging	from	at	least	50	bp	
to	 several	 mega	 base	 (Mb),	 that	 can	 be	 distributed	 over	 the	
whole	genome	and	that	has	been	found	in	all	species	(Mills	et	al.,	
2011).	

These	 structural	variations	affect	a	 larger	portion	of	genome	 in	
respect	 to	 Single	 Nucleotide	 Polymorphism	 (SNPs),	 and	 this	
result	in	a	significant	influence	of	CNVs	on	phenotypic	variation	
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(Mills	et	al.,	2011).		
CNVs	can	also	 impact	 the	phenotype	of	 individuals,	altering	 the	
allele	 through	 different	 mechanisms,	 i.e.	 changing	 the	 coding	
sequence	 of	 a	 gene	 creating	 paralogs	 that	 can	 alter	 gene	
functions	or	altering	 the	expression	 level	of	a	gene,	altering	 the	
genes	dosage	(Iskow	et	al.,	2012).	
This	 may	 lead	 to	 phenotypic	 variation	 also	 in	 selected	
populations	 for	 commercial	 traits,	 as	 well	 as	 in	 disease	
susceptibility,	describing	up	to	the	30%	of	 the	genetic	variation	
in	 gene	 expression	 (Stranger	 et	 al.,	 2007;	 Henrichsen	 et	 al.,	
2009).		
The	evidence	of	a	direct	effect	of	CNVs	 in	determining	complex	
disease	 expression	 in	 human,	 e.g	 autism	 and	 schizophrenia,	 as	
well	 as	 in	 livestock	 species	 has	 been	 recently	 widely	 studied	
(Zhang	et	al.,	2009;	Norris	et	al.,	2008;	Pinto	et	al.,	2010;	Sebat	et	
al.,	 2007).	Additionally,	differential	 selection	 for	CNVs	has	been	
reported	to	generate	genomic	diversity	in	adaptation	to	specific	
environments	 (Chain	et	 al.	 2014;	 Iskow	et	 al.	 2012).	Therefore,	
studies	in	human	and	mice,	confirm	the	idea	that	CNVs	could	be	
exposed	to	selection	pressure	during	the	evolution	(Zahng	et	al.,	
2009).			

The	 first	comprehensive	human	CNV	map	was	edited	by	Iafrate	
et	 al.	 (2004),	 and	 Redon	 et	 al.	 (2006),	 and	 since	 then	 several	
studies	 based	 on	 CNV	 mapping	 were	 done	 in	 many	 species,	
including	 some	 livestock	 species,	 such	 as	 chicken	 (Gorla	 et	 al.,	
2017;	Drobik-Czwarno	et	al.,	2018),	cattle	(Bagnato	et	al.,	2015;	
Prinsten	et	al.,	2016),	pigs	(Ramayo-Caldas,	et	al.,	2010;	Schiavo	
et	 al.,	 2014)	 goat	 (Liu	 et	 al.,	 2019),	 and	 sheep	 (Liu,	 et	 al.	 2013;	
Zhu	et	al.,	2016),	using	SNP	chip.	Fewer	studies	have	investigated	
intra-breeds	genetic	diversity	in	cattle	(Bickhart	et	al.,	2016)	and	
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chicken	 (Strillacci	 et	 al.,	 2017).	 The	 use	 of	 CNVs	 as	markers	 to	
investigate	population	genetic	diversity	among	population	and	to	
explore	population	structure	is	gradually	becoming	an	emerging	
research	topic	for	livestock	animal,	even	though	up	to	now	it	has	
been	 focused	 mainly	 in	 cattle	 (Xu	 et	 al.,	 2016;	 Strillacci	 et	 al.,	
2018).	
	
Techniques	and	Software	for	CNVs	detection	
The	techniques	currently	available	for	the	identification	of	CNVs	
are	several:		
-)	 fluorescence	 in	 situ	 hybridization	 technique	 (FISH).	 This	
technique	 is	 a	 type	 of	 hybridization	 that	 uses	 probes	 whose	
presence	can	be	highlighted	by	marking	with	fluorochromes.	The	
principle	on	which	it	is	based	is	that	for	which	any	DNA	sequence	
is	 capable	of	 binding	 itself	 to	 its	 complementary	 sequence.	The	
probes	hybridized	and	marked	with	 fluorochromes	are	directly	
visualized	under	the	microscope.	FISH	allows	to	identify	CNVs	as	
visible	microscopic	alterations	(Wain	et	al.,	2009).	
-)	 comparative	 genomic	 hybridization	 array	 (aCGH).	 This	
technique	 requires	 DNA	 and	 control	 samples	 to	 be	 labelled	
respectively	with	Cyclochrome	 (green)	and	Cy5	 (red),	 and	 then	
hybridized	 together	 on	 a	 specific	 Microarray	 (long	
oligonucleotides	 or	 BAC	 clones).	 Both	 the	 total	 red	 and	 green	
fluorescence	 intensity	 for	 each	 sample	 is	 measured,	 as	 is	 the	
ratio	 between	 the	 intensities	 of	 the	 two	 fluorochromes.	 These	
intensities	are	 then	processed	with	specific	software	 to	 identify	
CNVs	
-)	Next	Generation	Sequencing	(NGS).	The	 NGS	 technique	 allows	
to	 detect	 more	 types	 of	 structural	 variation	 with	 a	 single	
sequencing	 trial.	 The	 CNV	 detection	 methods	 based	 on	 this	
technique	 can	 be	 classified	 into	 five	 main	 different	 strategies:	
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Paired-end	 mapping	 (PEM),	 Split	 read	 (SR)	 -based	 methods,	
Read	 depth	 (RD)	 -based	 approach,	 Assembly	 (AS)	 -based	
approach	and	a	combined	RD-PEM	approach	(Zhao	et	al.	2013).	
-)	SNP	genotyping	array	(SNP	chip).	The	SNP	genotyping	array	 is	
a	hybridization-based	technique	that	allows	the	identification	of	
hundreds	of	thousands	of	structural	variants	(SNPs)	with	a	high	
degree	 of	 resolution.	 An	 SNP	 array	 consists	 of	 a	 set	 of	 DNA	
probes	 (specific	 for	 the	 amplification	 of	 each	 SNP)	 fixed	 to	 the	
solid	surface	of	the	chip.	The	principle	on	which	this	technique	is	
based	 is	 given	 by	 the	 specificity	 of	 hybridization	 between	
complementary	 nucleotide	 sequences.	 The	 last	 two	 techniques	
are	the	most	used	and	most	reliable	 for	genome	wide	detection	
of	CNVs.	
-)	quantitative	PCR	(qPCR).	
It	is	a	method	based	on	a	simple	modification	of	PCR,	that	allow	
the	 quantification	 of	 target	 DNA,	 using	 fluorescent	 or	
intercalating	dyes	to	detect	PCR	product	as	it	accumulates	during	
PCR	 cycles.	 In	 addition	 to	 being	 used	 to	 quantify	 DNA,	
(mitochondrial	 DNA	 and	 cDNA),	 qPCR	 can	 be	 used	 in	 the	
validation	of	CNVs.	(Wain	et	al,	2009)	

A	 wide	 range	 of	 algorithms	 is	 currently	 available	 for	 the	
identification	 of	 CNVs,	 starting	 from	 the	 data	 obtained	 from	
different	genotyping	techniques.	To	identify	CNVs	from	the	data	
obtained	with	 the	 SNP	 chip,	 i.e.	 Log	R	Ratio	 (LRR)	 and	B	 allele	
frequency	 (BAF)	 two	 of	 the	 most	 commonly	 used	 and	 reliable	
algorithms	 are	 the	 HMM	 of	 PennCNV	 (Wang	 et	 al.,	 2007)	 and	
CNAM	of	SVS8	by	Golden	Helix	(Golden	Helix	Inc.,	Bozeman,	MT,	
USA).	
PennCNV	is	one	of	the	most	used	software	for	CNV	identification	
and	 use	 the	 Hidden	 Marckov	 Model	 (HMM)	 for	 the	 CNV	



 12 

detection.	 It	 incorporates	 multiple	 factors,	 including	 the	 log	 R	
ratio	(LRR),	B	Allele	Frequency	(BAF),	 the	marker	distance,	and	
the	population	frequency	of	the	B	allele	(PFB).	
-)	 The	 BAF,	 a	 normalized	 measure	 of	 fluorescence	 intensity	 of	
each	allele,	allows	defining	if	a	CNV	is	present	in	the	homozygous	
or	heterozygous	form.		
-)	The	LRR,	normalized	measurement	of	the	total	allelic	intensity	
signal	 of	 a	 given	 SNP,	 allows	 to	 attribute	 the	 CNV	 state,	 i.e.	
duplication	 or	 deletion	 state	 (defined	 also	 as	 gain	 or	 loss)	 in	 a	
given	chromosomal	region.	PennCNV	integrates	a	computational	
approach	 by	 applying	 a	 regression	model	 to	 the	 GC	 content	 to	
reduce	 waviness.	 Copy	 number	 variations	 were	 also	 detected	
using	the	Hidden	Marckov	Model	parameter	file.	
	

	
	
Figure	1.	An	illustration	of	Log	R	Ratio	(LRR)	and	B	Allele	Freq	(BAF)	
values	for	the	chromosome	1	of	an	individual	
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A	normal	 chromosome	 region	 has	 LRR	 values	 cantered	 around	
zero	and	has	three	BAF	genotype	clusters,	as	represented	as	AA,	
AB,	 and	 BB	 genotypes	 in	 boxes,	 and	 with	 LRR	 values	 centred	
around	 zero.	 Therefore,	 the	 increased	 copy	 number	 for	 a	 CNV	
region	can	be	detected	based	on	an	increased	number	of	peaks	in	
the	BAF	distribution,	as	well	as	increased	LRR	values.		

	
Table	 1.	 Description	 of	 hidden	 states,	 copy	 numbers	 and	 their	
genotypes	for	each	possible	detection	state	from	PennCNV	
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Figure	 2.	 A	 flowchart	 outlining	 the	 procedure	 for	 CNV	 calling	 from	
genotyping	data	(Wang	et	al.,	2007)	

The	SVS	8.4	by	Golden	Helix®	(Golden	Helix	Inc.,	Bozeman,	MT,	
USA)	 use	 a	 different	 algorithm,	 the	 Copy	 Number	 Analysis	
Module	(CNAM)	using	only	LRR	as	input	information.	The	CNAM	
is	 able	 to	 process	 raw	 intensity	 data,	 to	 detect	 copy	 number	
variations.	 It	 identifies	 the	 CNV	 boundaries	 at	 a	 single	 probe	
level.		
	
The	pipeline	in	SVS8	performs	an	accurate	Quality	Assurance	on	
LRR,	using	quality	 filters	such	as	the	derivative	 log	ratio	spread	
(DLRS),	Genomic	waves	detection	in	log	ratio	data	and	Principal	
component	analysis	(PCA),	as	in	Diskin	et	al.,	(2008).	This	step	is	
fundamental	 to	 reduce	 the	 false	 positive	 calling	 of	 CNV.	 CNV	
detection	 can	 be	 then	 performed	 using	 two	 segmentation	
algorithms:	the	univariate	method,	used	mainly	for	the	detection	
of	rare	and/or	large	CNV,	which	considers	only	one	sample	at	the	
time.	The	multivariate	method,	that	uses	all	samples	at	the	same	
time	and	is	recommended	to	detect	small,	common	CNV.		
	
The	basic	principle	of	the	CNAM	is	conceived	to	identify	the	CNV	
in	 the	 genome	 where	 a	 given	 sample’s	 mean	 LRR	 value	 is	
different	from	the	population	average	reference	value.	When	the	
mean	 LRR	 is	 around	 zero	 the	 sample	 has	 the	 same	 number	 of	
copies	as	the	reference.	Otherwise,	when	the	LRR	segment	mean	
is	above	zero	usually	there	is	a	copy	number	gain,	and	when	the	
LRR	 segment	mean	 is	 below	 zero,	 there	 is	 a	 copy	number	 loss.	
The	 CNAM	 is	 able	 then	 to	 detect	 with	 a	 specific	 methodology	
when	 change	 respect	 to	 the	 population	 reference	 are	 to	 be	
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considered	 true	 gain	 or	 loss	 (Golden	 Helix	 Inc.,	 Bozeman,	 MT,	
USA).		
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Runs	of	homozygosity	

 

 

Runs	 of homozygosity	 (ROH)	 are	 defined	 as	 continuous	

homozygous	 segments	 in	 the	 DNA	 sequence	 that	 are	 common	
among	individuals	and	populations	(Gibson	et	al.,	2006)	and	may	
be	 used	 to	 define	 individual	 autozygosity	 (McQuillan	 et	 al.,	
2008).	 This	 process	 occurs	 when	 parents	 share	 common	
ancestor	 and	 pass	 shared	 DNA	 fragments	 to	 their	 offspring,	
which	 inhered	 chromosomal	 segments	 that	 are	 identical	 by	
descent	 (IBD)	 from	 both	 parents	 (Wright	 1922).	 Those	
homozygous	 segments	 can	 form	 ROH	 in	 the	 progeny	 genome	
(Broman	 &	Weber	 1999).	 Generally,	 in	 livestock	 it	 is	 accepted	
that	ROH	with	a	 length	of	~10	Mb	are	a	 consequence	of	 recent	
inbreeding	(maximum	five	generations	ago),	while	shorter	ROH	
(~1	 Mb)	 can	 considered	 a	 consequence	 of	 ancient	 positive	
selection	 effect	 (50	 generations	 ago)	 (Purfield	 et	 al.,	 2012).	 In	
fact,	 recombination	 events	 may	 break	 long	 chromosome	 into	
shorter	segments	reducing	their	size	along	the	selection	process.	
Since	2006	 the	use	of	high-density	SNP	array	 to	 identified	ROH	
was	explored	first	in	human	(Gibson	et	al.,	2006;	McQuillan	et	al.,	
2008;	 Kirin	 et	 al.,	 2010;	 Nothnagel	 et	 al.,	 2010)	 and	 then	
livestock	 species:	 first	 in	 cattle	 (Ferencakovic	 et	 al.,	 2013a,	
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Ferencakovic	et	al.,	2013b;	Kim	et	al.,	2013),	swine	(Bosse	et	al.,	
2012;	Herrero-Medrano	et	al.	2013),	sheep	(Beynon	et	al.	2015;	
Muchadeyi	 et	 al.	 2015),	 goat	 (Guangul	 2014)	 and	 chicken	
(Strillacci	et	al.,	2018).		
Two	major	methods	 can	 be	 used	 to	 define	 ROH:	 observational	
genotype-counting	 algorithms	 (Purcell	 et	 al.	 2007)	 and	model-
based	algorithms	(Pemberton	et	al,	2012).		
The	first	approach	consists	 in	scanning	using	an	algorithm	each	
chromosome	 by	 moving	 a	 fixed	 size	 window	 along	 the	 whole	
length	 of	 the	 genome	 searching	 stretches	 of	 consecutive	
homozygous	SNPs	(Purcell	et	al.	2007).		
The	software	mainly	used	to	ROH	detection	are:	PLINK	(Purcell	
et	 al.	 2007),	 SVS	 (Golden	 Helix	 SNP	 &	 Variation	 Suite	 v.7.6.8),	
GERMLINE	(Gusev	et	al.	2009),	BEAGLE	(Browning	&	Browning	
2010).		
PLINK	v1.9	software	(Purcell	et	al.	2007),	 for	example,	uses	the	
first	approach,	by	considering	a	given	SNP	to	be	potentially	in	an	
ROH	 and	 calculating	 the	 proportion	 of	 completely	 homozygous	
windows	 that	 encompass	 the	 given	 SNP.	 If	 this	 proportion	 is	
higher	than	a	defined	threshold,	 the	SNP	 is	considered	as	being	
in	a	ROH.	
GERMLINE	(Gusev	et	al.	2009)	and	SVS	Golden	Helix	8.4	software	
(SVS)	(Golden	Helix	Inc.,	Bozeman,	MT,	USA)	on	the	other	hand,	
are	examples	of	haplotype-matching	algorithms	for	calculation	of	
identity-	by-descent	(IBD)	and	can	also	be	used	to	identify	ROH,	
as	a	special	case	of	IBD	within	an	individual.		
Finally,	 BEAGLE	 (Browning	 and	 Browning	 2010)	 is	 based	 on	 a	
Model-based	 approaches,	 which	 use	 Hidden	 Markov	 Models	
(HMM)	to	account	for	background	levels	of	LD.	
A	strong	limitation	for	the	studies	based	on	ROH,	is	the	lack	of	a	
common	 criteria	 for	 their	 definition	 across	 population	 and	
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studies,	 that	 is	not	only	determined	by	 the	ROH	 length	but	also	
function	 of	 parameters	 used	 in	 their	 detection	 as	 number	 of	
missing	 genotypes	 of	 heterozygous	 markers	 allowed	 in	 a	 run.	
This	 lack	 of	 consensus	makes	 it	 difficult	 to	 compare	 studies	 as	
also	 commented	by	 authors	 comparing	 different	 algorithms	 for	
their	detection	(Howrigan	et	al.	2011;	Ku	et	al.	2011).	 It	 is	 then	
always	 useful	 to	 consider	 the	 minimum	 length	 of	 ROH,	 the	
density	 of	 the	 SNP	 chip	 used,	 the	 minimum	 number	 of	 SNPs	
allowed	 in	 a	 ROH	 as	 suggested	 by	 Peripolli	 et	 al.	 (2017)	 in	 a	
recent	review	of	ROH	studies	in	livestock.	
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PART	I	

Investigation	of	genomic	variability	in	Mexican	
chicken	populations	

	

Local	 chicken	 populations	 are	 considered	 an	 important	 genetic	
resource;	they	are	able	to	adapt	successfully	during	the	years	in	
areas	 with	 peculiar	 environmental	 characteristics,	 with	 limited	
support	 (Hall	and	Bradley,	1995)	by	 farmers	 in	 terms	of	health	
management,	feed	supply	and	recovery	facilities.		
Often	 these	 populations	 are	 not	 of	 economic	 interest	 for	
intensive	 farming	practices	and	so	 there	 is	 a	 lack	of	knowledge	
about	 their	 phenotype	 and	 genetic	 variation,	 with	 consequent	
possible	 loss	 of	 information	 on	 the	 genes	 that	 favouring	 their	
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adaptability	to	local	harsh	environments	(Mahammi	et	al.,	2016).	
In	 Mexico	 the	 poultry	 population,	 despite	 showing	 large	
morphological	 variability,	 is	 not	 classified	 into	 breeds	 but	
considered	a	unique	backyard	population	generally	classified	as	
“creole”	 chicken	 (Gallus	 gallus	 domesticus),	 resulting	 from	
undefined	 crosses	 among	 different	 reeds	 imported	 into	Mexico	
from	Spanish	conquerors	(Segura-Correra	et	al.,	2004;	Rodriguez	
et	al.,	1996).		
Creole	 chickens	 show	 a	 wide	 range	 of	 variable	 biotypes,	 with	
different	morphological	 features	and	characterized	by	high	feed	
conversion,	 low	growth	rate,	 low	egg	production,	and	small	egg	
size	 under	 semi-intensive	 or	 harsh	 environmental	 conditions	
(Segura-Correa	 et	 al.,	 2004,	 2005).	 The	 Mexican	 chicken	
population	 has	 been,	 de	 facto,	 under	 natural	 adaptive	 selection	
for	more	 than	 500	 years,	making	 it	 a	 very	 interesting	 case	 for	
studying	 genetic	 variation	 related	 to	 resilience	 in	 harsh	
environments.			
In	 the	past	 only	 a	 few	 studies	 tried	 to	 characterize	phenotypes	
and	performance	of	Mexican	creole	chickens	and	up	to	now,	no	
molecular	 characterisation	 studies	 related	 to	 genetic	 variability	
and	 phylogenetic	 analysis	 of	 this	 population	 had	 been	 realized	
using	dense	panels	of	SNPs.	The	Mexican	population	is,	in	fact,	a	
genetic	 resource	 that	 could	 express	 genes	 lost	 in	 the	 industrial	
selection	 process,	 mainly	 targeted	 to	 increase	 meat	 and	 egg	
productions.	
In	 the	 absence	 of	 population	 characterization	 data	 and	
documentation	of	their	origin,	DNA	polymorphism	can	provide	a	
valuable	 and	 one	 of	 the	 most	 reliable	 indicators	 of	 genetic	
diversity	 within	 and	 between	 a	 given	 set	 of	 populations	
(Ceccobelli	et	al.	2013).		
We	here	used	different	genetic	information	to	investigate	genetic	
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variability	of	a	sample	of	Mexican	chickens,	in	order	to	reveal	any	
underlying	 population	 structure	 and	 breed	 differentiation.	 We	
use	 a	dense	 SNP	panel	 to	detect	 and	analyse	CNVs	 and	ROH	 to	
identify	 genetic	 variation	and	evidences	of	 selection	 signatures.	
We	 also	 identified	 the	 genes	 that	 according	 to	 the	 mapped	
genomic	 variation,	 appear	 to	 be	 under	 positive	 selection	 for	
adaptive	variants	in	an	outbred	population.		
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Introduction	
The	 knowledge	 of	 the	 genetic	 variation	 within	 and	 across	
populations	 is	 essential	 in	 the	 process	 of	 identification	 of	 local	
genetic	 resources	 (i.e.	 individuals	of	 local	poultry	breeds)	 to	be	
maintained	in	animal	genetics	conservation	efforts	(Cavalchini	et	
al.,	 2007).	 Microsatellites	 markers	 have	 been	 widely	 used	 to	
analyse	genetic	variability	in	the	chicken	population	(Strillacci	et	
al.,	 2009;	 Al-Qamashoui	 et	 al.,	 2014;	 Ceccobelli	 et	 al.,	 2015).	
Recently,	 the	 availability	 of	 high	 throughput	 genomic	
information,	 i.e.	 sequencing	 data	 and	 high-density	 Single	
Nucleotide	 Polymorphism	 (SNP)	 arrays,	 has	 opened	 the	
possibility	 to	 investigate	 the	 genetic	 structure	 of	 populations	
using	a	very	 large	number	of	markers	and	to	highlight	genomic	
regions	 where	 events	 related	 to	 selection	 pressure	 occur	
(Fleming	et	al.	2016;	Strillacci	et	al.,	2017).	Chicken	can	be	easily	
utilized	 for	 the	 study	 of	 the	 signatures	 of	 selection	 under	
artificial	 breeding	 conditions,	 thanks	 to	 their	 relatively	 fast	
reproduction	time	(Brown	et	al.,	2003).	Theoretically,	functional	
genes	under	selection	are	exposed	to	a	change	in	allele	frequency	
that	 can	 be	 identified	 analysing	 the	 characteristic	 DNA	 pattern	
that	derives,	known	as	 selection	signature	 (Fan	et	al.,	2014).	 In	
other	words,	selection	signatures	are,	particular	patterns	of	DNA	
that	 can	 be	 identified	 in	 regions	 of	 the	 genome	 that	 include	 a	
mutation,	that	is,	or	have	been,	under	selection	in	the	population	
(Qanbari	and	Simianer,	2014).	Whenever	in	positive	selection	for	
a	 particular	 allele,	 these	 regions	 are	 expected	 to	 exhibit	 larger	
homozygosity	than	expected	under	Hardy	Weinberg	equilibrium.	
Many	 measures	 can	 be	 utilized	 to	 estimate	 genetic	 variability	
pattern	along	the	genome	using	marker	data;	among	them	Runs	
of	 Homozygosity	 (ROH)	 are	 contiguous	 lengths	 of	 homozygous	
genotypes	 that	 develop	 as	 a	 result	 of	 parental	 transmission	 of	
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identical	 haplotypes	 (Gibson	 et	 al.,	 2006).	 Long	ROH	 (~10	Mb)	
are	 a	 consequence	 of	 recent	 inbreeding	 (up	 to	 five	 generations	
ago),	 whereas	 shorter	 ROH	 (~1	Mb)	 can	 be	 related	 to	 a	 more	
distant	 ancestral	 positive	 selection	 effect	 (up	 to	50	 generations	
ago),	 because	 of	 recombination	 events	 that	 break	 long	
chromosome	 into	 segments	 (Mastrangelo	 et	 al.,	 2016)	 have	
reduced	 their	 size	 along	 the	 reproductive	 events.	 Recently	 the	
availability	of	sequencing	and	high-throughput	SNP	datasets	has	
permitted	to	release	chromosome-wide	molecular	diversity	and	
population	 structure	 studies	 (Nimmakayala	 et	 al.	 2014).	
Furthermore,	it	is	possible	to	disclose	traces	of	positive	selection	
and	 identify	 possible	 candidate	 genes	 associated	with	 selection	
(Fan	et	al.,	2014).		
Local	 chicken	 populations	 are	 considered	 an	 important	 genetic	
resource,	 derived	 after	 thousands	 of	 years	 of	 successful	
adaptation	in	areas	with	peculiar	environmental	characteristics,	
with	 limited	 veterinary	 and	 management	 support	 (Hall	 and	
Bradley,	 1995).	 Phenotypic	 traits	 variability	 is	 little	 known	 in	
backyard	 poultry	 population,	 as	well	 as	 those	 genes	 that	 cause	
their	adaptability	to	local	environments.	It	is	also	not	clear	if	the	
geographical	origin	of	that	local	chicken	population	is	one	of	the	
causes	 of	 their	 genetic	 differentiation,	making	 them	 so	 various	
(Mahammi	 et	 al.,	 2016).	 In	 México,	 poultry	 population	 is	 not	
classified	in	breeds,	but	there	is	a	diffusion	of	the	Creole	chicken	
(Gallus	 gallus	 domesticus),	 coming	 from	 European	 chickens	
brought	 to	 México	 by	 the	 Spanish	 conquerors	 during	 the	 16th	
century.	They	originate	form	undefined	crosses	among	different	
breeds	 for	 almost	 500	 years.	 Because	 of	 that,	 Creole	 chickens	
include	 a	 wide	 range	 of	 variable	 biotypes,	 having	 different	
morphological	 features	 and	 characterized	 by	 high	 feed	
conversion,	 low	growth	 rate,	 low	egg	production	and	 small	 egg	
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size	 under	 semi-intensive	 or	 scavenging	 conditions	 (Segura-
Correa	 et	 al.,	 2004,	 2005).	 The	Mexican	 population	 is,	 de	 facto,	
under	 natural	 adaptive	 selection	 for	 more	 than	 five	 centuries	
making	 it	 a	 very	 interesting	 one	 to	 disclose	 genetic	 variation	
related	 to	 resilience	 in	 harsh	 environments.	 The	 Mexican	
population	 is	 in	 fact	 a	 genetic	 resource	 that	 can	 express	 genes	
lost	in	the	industrial	selection	process,	targeted	to	increase	meat	
and	egg	productions.		
As	 recently	 well	 disclosed	 by	 Fleming	 et	 al.	 (2016,	 2017)	
studying	 genetic	 variation	 in	 African	 native	 populations,	 the	
existence	 of	 proprietary	 genetic	 variation	 in	 native	 breeds	
related	to	specific	environmental	conditions	(e.g.	hot	and	humid	
climates	 or	 heat	 waves)	 is	 the	 basic	 knowledge	 for	 its	
introgression	 in	 F1	 individuals,	 crossing	 for	 native	 females	
populations	 (natural	 selection	 occurring	 in	 population)	 and	
artificially	selected	males	(artificial	selection).	To	our	knowledge,	
there	 have	 been	 some	 attempt	 to	 characterize	 phenotype	 and	
performance	 of	 Mexican	 creole	 chickens	 but	 up	 to	 now,	 no	
molecular	 characterisation	 studies	 related	 to	 genetic	 variability	
and	 phylogenetic	 analysis	 of	 this	 population	 have	 yet	 been	
realized	using	dense	panels	of	 SNPs,	 except	 the	 recent	 study	of	
Gorla	 et	 al.	 (2017)	who	 used	 Copy	Number	 Variants	 to	 dissect	
genetic	variability	in	the	Mexican	population.		
The	 aim	of	 this	 study	was	 to	 describe	 the	 genetic	 variability	 of	
Mexican	chickens	to	reveal	any	underlying	population	structure	
using	 a	 dense	 SNP	 panel	 and	 to	 identify	 selection	 signatures	
using	 ROH,	 characterizing	 the	 inbreeding	 level	 of	 this	 chicken	
population	and	disclosing	the	genes	under	positive	selection	for	
adaptive	variants	in	an	outbred	population.	
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Materials	and	methods	
Sampling	and	genotyping	
In	 the	 present	 study,	 a	 total	 number	 of	 213	 chickens	 feathers	
were	 sampled	 in	 different	 rural	 production	 units	 located	 in	 25	
states	of	México	(Aguascalientes,	Baja	California	Sur,	Campeche,	
Chiapas,	 Chihuahua,	 Coahuila,	 Colima,	 México	 City,	 Durango,	
Estado	 de	 México,	 Guanajuato,	 Guerrero,	 Hidalgo,	 Jalisco,	
Morelos,	 Nayarit,	 Nuevo	 León,	 Oaxaca,	 Querétaro,	 Tabasco,	
Tamaulipas,	 Tlaxcala,	 Veracruz,	 Yucatain	 and	 Zacatecas)	 by	
INIFAP	 (Instituto	 Nacional	 de	 Investigaciones	 Forestales,	
Agrícolas	 y	 Pecuarias).	 This	 samples	 collection	 is	 part	 of	
institucional	 Project	 “Identificación	 de	 los	 recursos	 genéticos	
pecuarios	 para	 su	 evaluación,	 conservación	 y	 utilización	
sustentable	 en	 México.	 Aves	 y	 cerdos.	 SIGI	 NUMBER	
10551832012”	 coordinated	 with	 the	 activities	 of	 the	 Centro	
Nacional	 of	 Recursos	 Genéticos	 (CNRG)	 at	 Tepatitlán,	 Jalisco	
(México)	 engaged	 in	 promoting	 strategic	 research	 to	 solve	 the	
most	 important	 problems	 of	 productivity,	 competitiveness,	
equity	and	sustainability	at	the	forest,	agricultural	and	livestock	
sectors	 in	 México	
(http://www.inifap.gob.mx/SitePages/centros/cnrg.aspx).	 The	
samples	 are	 owned	 by	 the	 CNRG	who	 control	 their	 access	 and	
reuse.	Original	owners	of	 individuals	have	donated	 the	samples	
to	CNRG	who	gave	consent	for	re-use	for	research	purposes.	The	
study	did	not	require	any	ethical	approval	according	to	national	
rules,	according	to	EU	regulation,	as	it	does	not	foresee	sampling	
from	alive	animals.	The	University	of	Milan	permit	for	the	use	of	
collected	 samples	 in	 existing	 bio-banks	 was	 released	 with	 n.	
OPBA-56-2016.	
DNA	extraction	from	feathers	and	genotyping	were	performed	at	
GeneSeek	 (Lincoln,	 NE)	 using	 a	 commercial	 kit	 and	 the	
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Affymetrix	Axiom®	600K	Chicken	Genotyping	Array,	containing	
580,954	 SNPs,	 distributed	 across	 the	 genome	 with	 an	 average	
spacing	 of	 1.7	 Kb,	 respectively.	 The	 galGal4	 chicken	 assembly	
was	 used	 in	 this	 study	 as	 reference	 genome.	 Only	 markers	
positioned	on	chromosome	1	to	28	were	used	in	this	study.		
A	 quality	 control	 of	 raw	 intensity	 files	 using	 the	 standard	
protocol	 in	 the	 Affymetrix	 Power	 Tools	 package	
(www.affimetrix.com)	 was	 performed	 in	 order	 to	 guarantee	 a	
high	 quality	 of	 genotyping	 data.	 Samples	 with	 Dish	 Quality	
Control	(DQC:	the	closer	the	value	is	to	one,	the	better	the	signal	
separates	 from	 the	background)	<0.82	and	with	quality	 control	
(QC)	call	rates	<97%	were	excluded	from	downstream	analysis.	
The	 quality	 verified	 samples	 were	 used	 for	 subsequent	 SNP	
analyses	using	dedicated	software.		
	
Morphological	chicken	characterization	
Morphological	 characteristics	 of	 collected	 Mexican	 Creole	
individuals	 are	 extremely	 variable	 in	 terms	 of	 feathers	 colours,	
shapes	 (i.e.	 naked	 neck/breast	 or	 not,	 fighting	 characteristics),	
comb,	 and	 size.	 The	 measurement	 of	 morphological	
characteristics	 of	 birds	 was	 done	 according	 to	 the	 FAO	
Guidelines	 (2012),	which	 is	 the	 recognised	 standard.	Measures	
were	 taken	 at	 sampling	 and	 recorded	 in	 a	 database.	 The	
STANDARD	 procedure	 of	 SAS	 9.4	 (2013)	 was	 used	 to	 create	 a	
dataset	 with	 standardized	 values	 (mean	 =	 zero;	 standard	
deviation	 =	 1)	 for	 the	 following	 four	 quantitative	 variables:	 i)	
body	 length	 -	 length	 between	 the	 tip	 of	 the	 rostrum	maxillare	
(beak)	 and	 that	 of	 the	 cauda	 (tail,	without	 feathers);	 the	 bird’s	
body	 should	 be	 completely	 drawn	 throughout	 its	 length;	 ii)	
wingspan:	length	in	cm	between	tips	of	right	and	left	wings	after	
both	 are	 stretched	 out	 in	 full;	 iii)	 breast	 circumference:	
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circumference	 of	 the	 chest	 (taken	 at	 the	 tip	 of	 the	pectus,	 hind	
breast);	iv)	length	of	the	shank:	(length	in	cm	of	the	shank	from	
the	 hock	 joint	 to	 the	 spur	 of	 either	 leg).	 Subsequently,	 a	
FASTCLUS	procedure	 of	 SAS	9.4	 (2013)	was	used	 to	 perform	a	
disjoint	cluster	analysis	on	the	basis	of	distances	computed	from	
one	 or	 more	 quantitative	 variables.	 The	 observations	 were	
divided	into	clusters	such	that	every	observation	belongs	to	one	
and	 only	 one	 cluster.	 Four	 clusters	 were	 generated	 by	 the	
program	 with	 a	 Cubic	 Clustering	 Criterion	 (CCC)	 of	 15.74.	
Following	the	FASTCLUS	the	CANDISC	procedure	was	run	on	the	
four	 body	 measures	 as	 variables	 using	 the	 clusters	 previously	
created	 as	 classes.	 The	 CANDISC	 procedure	 performs	 a	
multivariate	 one-way	 analysis	 of	 variance	 and	 provides	 four	
multivariate	 tests	 under	 the	 hypothesis	 that	 the	 class	 means	
vectors	are	equal.		
	
Genetic	characterization	
Different	 approaches	 and	 software	 were	 used	 in	 order	 to	
disclose	the	genetic	structure	of	Mexican	chickens:	
a) using	SVS	Golden	Helix	8.4	software	(SVS)	(Golden	Helix	Inc.,	
Bozeman,	MT,	USA)	the	Identity	by	Descent	(IBD)	estimation	
and	 the	 Principal	 Components	 Analysis	 (PCA)	 were	
performed.	The	IBD	is	a	measure	of	the	relatedness	of	the	pair	
of	 individuals	and	 indicates	how	many	alleles	at	any	marker	
in	 each	 of	 two	 individuals	 came	 from	 the	 same	 ancestral	
chromosomes.	The	estimation	of	the	IBD	between	all	pairs	of	
samples	was	done	after	the	application	of	LD	pruning	option.	
Relationship-based	pruning	was	performed	and	one	member	
of	each	pair	of	animals	with	an	observed	genomic	relatedness	
greater	 than	 0.25	 was	 removed	 from	 further	 analyses.	 The	
PCA,	of	pairwise	individual	genetic	distances,	was	performed	
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based	on	allele	 frequencies	of	pruned	SNPs.	To	visualize	 the	
individual	 samples	 relatedness	 graphically	 in	 multi-
dimensions	 the	 rgl	 R	 package	 (https://CRAN.R-
project.org/package=rgl)	was	used.		

b) The	ADMIXTURE	v.	1.3.0	software	was	employed	to	infer	the	
most	probable	number	of	ancestral	populations	based	on	the	
SNP	genotype	data	(Alexander	et	al.,	2009).	ADMIXTURE	was	
run	 from	K	=	2	 to	K	=	6,	and	the	optimal	number	of	clusters	
(K-value)	was	determined	as	the	one	having	the	lowest	cross-
validation	 error.	 Each	 inferred	 chicken	 population	 structure	
was	 visualized	 using	 R	 script	 suggested	 in	 the	 ADMIXTURE	
procedure.		

c) Wright’s	 statistics,	 including	 observed	 heterozygosity	 (HO),	
expected	 heterozygosity	 (HE),	 and	 inbreeding	 estimates	 (FIS)	
were	calculated	with	SVS.		

d) Neighbor-Joining	 (NJ)	 tree,	 constructed	 based	 on	 the	 allele	
sharing	distances	(DAs)	as	the	genetic	distance	between	not-
related	 individuals,	was	 created	and	graphically	 represented	
using	 PEAS	 (Xu	 et	 al.,	 2010)	 and	 FigTree	 version	 1.4.2	
(http://tree.bio.ed.ac.uk/software/figtree)	 software,	
respectively.		

e) The	Arlequin	 v.3.5.2.2	 software	 (Excoffier	 and	 Lisher,	 2010)	
was	 used	 to	 perform	 an	 Analysis	 of	 MOlecular	 VAriance	
(AMOVA)	 a	 tool	 to	 check	 how	 the	 genetic	 diversity	 is	
distributed	among	individuals	within	groups,	whose	structure	
is	quantified	by	FST.		

f) ROH	 analysis	 was	 performed	 for	 each	 individual	 (complete	
SNP	dataset	=	471,730),	using	the	SVS	software.	The	ROH	was	
defined	 by:	 i)	 a	 minimum	 of	 1500	 kb	 in	 size	 and	 50	
homozygous	SNPs;	ii)	one	heterozygous	SNP	was	permitted	in	
ROH,	 so	 that	 the	 length	of	 the	ROH	was	not	disrupted	by	an	
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occasional	heterozygote;	 iii)	 five	missing	SNPs	were	allowed	
in	 the	ROH;	 iv)	maximum	gap	between	 SNPs	of	 100	Kb	was	
predefined	 in	 order	 to	 assure	 that	 the	 SNP	 density	 did	 not	
affect	 the	 ROH.	 According	 to	 the	 nomenclature	 reported	 by	
other	authors	(Curik	et	al.	2014),	ROH	were	grouped	into	five	
classes	 of	 length:	 <2Mb,	 2-4Mb,	 4-8Mb,	 8-16Mb	 and	 >16Mb.	
Number,	 total	 length	 and	 the	 average	 of	 ROH	 length	 were	
calculated	 across	 individuals	 within	 chicken	 population.	 In	
addition,	 the	 percentage	 of	 the	 total	 genome	 length	 affected	
by	ROH	was	also	estimated.	

	
Results	
Morphological	chicken	characterization	
The	analysis	of	morphological	measures	(body	length,	wingspan,	
breast	circumference,	length	of	the	shank)	to	cluster	individuals	
separated	 the	 population	 into	 four	 different	 groups.	 While	 the	
clusters	1	(Cl_1),	3	(Cl_3),	and	4	(Cl_4)	were	composed	by	36,	74,	
and	 72	 animals,	 respectively,	 only	 one	 individual	 belonged	 to	
cluster	 2.	 This	 latter	 individual,	 as	 such	 as	 cluster	 2,	 were	
eliminated	from	subsequent	analyses.	In	Figure	1	the	scatter	plot	
of	 the	 canonical	 variables	 one	 vs.	 two	 based	 on	 morphological	
measures	is	shown.	The	distinction	among	the	three	clusters	was	
clearly	 displayed	 on	 the	 canonical	 variable	 plotted	 as	 x-axis	
representing	99%	of	the	total	variance.			
The	 Table	 S1	 shows	 that	 the	 individuals	 in	 the	 three	 clusters	
exhibit	 different	 sizes	 with	 CL_1	 being	 in	 general	 the	 smaller	
individuals,	CL_4	the	intermediate,	CL_3	the	cluster	with	birds	of	
larger	 dimension.	 This	 appears	 also	 from	 Figure	 1	where	 CV_1	
clearly	differentiate	the	three	clusters	with	CL_4,	 the	green	one,	
and	intermediate	respect	the	other	two.	
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Genetic	characterization	
SNPs	 with	 Minor	 Allele	 Frequency	 (MAF)	 value	 ≤	 0.01,	 HWE	
value	0.00001,	SNPs	non	on	autosomal	chromosomes	 from	1	to	
28	and	SNPs	having	a	call	rate	<97%	were	excluded,	reducing	to	
471,730	 markers	 the	 number	 of	 SNPs	 used	 for	 the	 statistical	
analysis.	 SNPs	 passing	 the	 QC	 were	 pruned	 for	 LD	 using	 a	
threshold	 of	 r2	 =	 0.5.	 LD	 trimming	 resulted	 in	 another	207,245	
SNPs	pruned	from	the	dataset,	ensuing	 in	a	 final	set	of	264,485	
SNPs	 used	 in	 the	 downstream	 analysis.	 Of	 the	 213	 animals	
sampled,	31	showed	an	IBD	value	greater	than	0.25	with	at	least	
one	 other	 individual	 of	 the	 population,	 and	 then	 were	
subsequently	 removed	 leaving	 182	 animals	 for	 the	 population	
structure	 analyses.	 The	 remaining	 population	 is	 thus	 holding	
individuals	with	IBD	less	than	0.25	IBD	value	as	maximum	value.	
Out	 of	 the	 16,471	 IBD	 values	 only	 337	 were	 comprised	 in	 the	
interval	0.125	≤	 IBD	<	0.25,	561	 in	 the	 interval	0.0625	≤	 IBD	<	
0.125,	646	between	0.0625	≤	IBD	<	0.03125,	while	the	remaining	
all	 less	 than	 0.03125.	 According	 to	 this	 distribution	 we	
considered	all	individuals	unrelated.	The	Heat	map	created	using	
the	IBD	estimates	values	is	showed	in	Figure	1S	in	Additional	File	
1.		
The	program	ADMIXTURE	was	run	for	K	values	 from	one	to	six	
(Figure	2A).	The	lowest	cross	validation	error	was	found	at	K	=	3,	
that	 represent	 the	 number	 of	 ancestors	 in	 the	 Mexican	
populations	(Figure	2B).	A	number	of	K	greater	than	three	does	
not	 produce	 a	 larger	 number	 of	 ancestor’s	 contribution	 in	 the	
living	population,	as	it	is	visible	in	Figure	2A.	
The	 Figure	 2C	 is	 a	 graphical	 representation	 of	 the	 182	
individuals	 grouped	 according	 to	 the	 proportion	 of	 the	 three	
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ancestors’	 contribution.	One	 individual	 result	 to	 derive	 entirely	
from	 ancestor	 1,	 while	 seven	 derives	 entirely	 from	 ancestor	 2	
and	 11	 from	 ancestor	 3.	 A	 total	 of	 25	 individuals	 showed	 to	
derive	 from	 two	 ancestors	 while	 the	 largest	 proportion	 of	 the	
sample,	 138	 individuals,	 showed	 a	 genetic	 composition	 that	
derived	from	all	the	three	identified	ancestors.	Apparently,	there	
is	 no	 clear	 relationship	 between	 the	 morphological	 clustering	
and	 the	 ancestor’s	 composition.	 Table	 S2	 shows	 the	 bird	 count	
according	 to	 the	 ancestor’s	 composition	 classes	 and	 the	
morphological	 clusterization.	 The	 largest	 part	 of	 individuals	
pertaining	 to	 ancestor	1	 class	 (i.e.	 57%)	 showed	morphological	
characteristics	 of	 birds	 classified	 as	 cluster	 3,	while	 individuals	
pertaining	 to	 ancestor	 2	 (i.e.	 50%)	 and	 3	 (i.e.	 49%)	 showed	
characteristics	of	animals	classified	as	cluster	4.	
The	 results	 of	 the	 NJ	 analysis	 depicted	 in	 Figure	 2D	 are	
consistent	with	those	obtained	by	the	PCA.	
It	 is	possible	 to	note	 that	 the	major	part	of	 samples	 is	 grouped	
according	 to	 the	 ancestor’s	 composition,	 but	 individual	
differences	based	on	DAs	did	not	allow	a	clear	division	of	birds	in	
well	separated	clusters	(Figure	2D).	
The	 results	 of	 the	 PCA	 agreed	 well	 with	 the	 findings	 outlined	
above,	 as	 showed	 on	 Figure	 3A	 e	 3B.	 In	 both	 PCA	 analyses	 of	
Figure	 3	 there	 is	 no	 clustering	 of	 individuals	 neither	 for	
morphological	 cluster	 than	 for	 the	 ancestor	 classification,	 as	
points	are	mixed	in	all	distributions	depicted.		
The	 Table	 1	 reports	 the	 results	 for	 the	 AMOVA	 analysis.	 The	
analysis	 account	 of	 individual	 classification	 was	 based	 on	
morphological	 clustering	 (Cl_1;	 Cl_3	 and	 Cl_4).	 We	 considered	
three	hypotheses:	Hypothesis	1)	Cl_1	+	Cl_3	vs	Cl_4;	Hypothesis	
2)	Cl_1	+	Cl_4	vs	 Cl_3;	Hypothesis	3)	Cl_3	+	Cl_4	vs	 Cl_1.	All	 the	
hypotheses	indicate	that	the	most	part	of	variability	is	observed	
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within	clusters,	99.72	%	(Hypothesis	1),	99.56%	(Hypothesis	2)	
and	99.49%	(Hypothesis	3),	with	a	much	smaller	amount	of	the	
variance	component	occurring	among	groups	0%	(Hypothesis	1),	
0.18%	(Hypothesis	2)	and	0.22%	(Hypothesis	3)	 (Table	1).	The	
AMOVA	 confirmed	 the	 results	 obtained	 with	 the	 PCA.	 In	 other	
words,	 the	genetic	variation	of	 the	Mexican	population	appears	
to	 be	mostly	 related	 to	 the	 individual	 genetic	 variability	 rather	
than	 to	 the	 genetic	 diversity	 expressed	 by	 the	 clustering	
classification	 obtained	 on	 the	 basis	 of	 the	 morphological	
characteristics.		
	
Run	of	homozygosity	(ROH)	analysis	
The	SVS	software	identified	a	total	of	3,059	runs	across	Mexican	
chicken	 population.	 (Supplementary	 Table	 S3).	 Six	 individuals	
did	not	show	any	ROH	in	any	of	the	28	chromosomes.	Likewise,	
the	 chromosomes	16	and	25	 showed	no	evidence	of	ROH	 in	all	
genotyped	individuals.	Results	revealed	that	there	were	marked	
differences	 in	 terms	 of	 number	 and	 length	 of	 ROH	 across	
individuals.		
The	 ROH	 have	 been	 defined	 with	 305	 and	 6,629	 SNPs	 as	
minimum	and	maximum	number	of	 SNPs.	The	average	number	
of	 SNPs	 falling	 into	 a	 ROH	 was	 consistent	 among	 ROH	 length	
category,	 ranging	 from	 824	 (ROH	 <2Mb)	 to	 3,977	 (ROH	 >8-16	
Mb)	SNPs.	
The	identified	ROH	are	mainly	short	in	length;	in	fact,	the	ROH	of	
2-4	 Mb	 and	 <2	 Mb	 are	 the	 most	 frequent	 classes	 of	 length	
identified	 (i.e.	 84%).	 Instead,	 no	 ROH	 were	 found	 within	 the	
>16Mb	length	class	(Table	2).		
The	number	of	ROH	per	individual	ranged	from	one	to	115,	with	
a	 mean	 number	 of	 ROH	 for	 sample	 of	 17.38	 (Figure	 3).	 The	
Figure	 3	 also	 shows	 the	 relationship	 between	 number	 and	
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averaged	total	length	of	ROH	for	each	individual	(mainly	ranged	
from	 1.7	 to	 2.8	 Mb).	 Only	 two	 samples	 showed	 a	 very	 high	
number	of	ROH	(i.e	110	and	115	ROH).	The	average	size	of	ROH	
of	these	two	individuals	is	nevertheless	similar	to	other	subject.	
ROH	 larger	 than	 three	 Mb	 were	 found	 in	 38	 individuals	
representing	21%	of	the	total	sample	and	showing	a	count	range	
of	ROH	 from	one	 to	65.	The	 amount	of	 the	 genome	 covered	by	
ROH	per	 individual	ranged	(as	mean	values)	 from	1,563,036	bp	
to	4,387,646	bp	(Figure	4).		
The	 relative	 frequencies	 of	 ROH	 (calculated	 as	 number	 of	 ROH	
per	class	on	total	number	of	ROH)	within	each	chromosome	and	
by	length	classes	(Table	2)	were	also	calculated.	The	ROH	of	8-16	
Mb	size	were	found	in	longer	chromosomes,	the	total	number	of	
ROH	 appeared	 to	 be	 proportional	 to	 their	 lengths	 and	 were	
distribution	appeared	homogeneous	across	them.	
The	genomic	regions	most	commonly	associated	with	ROH	have	
been	 identified	 by	 selecting	 the	 top	 1%	 of	 the	 SNPs	 most	
frequently	observed	in	the	ROH	(Top	1%	ROH).	Figure	5	shows	
the	incidence	of	ROH	segments	across	the	genome	and	as	appear,	
the	 genomic	 distribution	 of	 ROH	 segments	 was	 clearly	 non-
uniform	 across	 chromosomes.	 A	 total	 of	 11	 regions	 were	
identified	with	frequencies	of	ROH	segments	exceeding	1%	of	the	
whole	population	(Top	1%	ROH)	in	the	first	eight	chromosomes,	
excluding	chr	6.	
After	 downloading	 the	 list	 of	 chicken	 autosome	 galGal4	 genes	
(GCA_000002315.2)	 from	 Ensembl	 database	
(http://www.ensembl.org),	 the	 annotation	 of	 gene	 mapping	
within	the	Top	1%	ROH	is	reported	in	Table	3.		
	
Discussion	
Patterns	of	high-density	SNPs	variation	were	used	 in	 this	study	
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to	detect	genetic	variability	 in	a	chicken	population	collected	 in	
several	 states	 of	 México.	 All	 findings	 provided	 in	 this	 research	
using	 several	 statistic	 approaches,	 confirmed	 and	 highlighted	 a	
not	 structural	 classification	 of	 individuals	 in	 well	 differentiate	
subpopulations,	 even	 if	 ADMIXTURE	 statistic	 identified	 three	
possible	 ancestors	 to	 define	 the	 predominant	 genetic	
background	in	our	population.	
The	 effective	 number	 of	 polymorphic	 SNPs	 (considered	 as	 the	
number	of	SNP	in	which	at	least	one	heterozygous	individual	was	
identified)	represents	the	99.9%	of	the	total	loci.	The	moderately	
high	 values	 of	 HO	 (0.319)	 and	 HE	 (0.348)	 reflect	 the	 high	
percentage	 of	 polymorphic	 SNP;	 the	 low	 Fis	value	 (0.084)	 are	
indicative	 of	 a	 low	 level	 of	 inbreeding	 in	 the	population	 and	of	
the	 relatively	 high	 number	 of	 birds	 in	 heterozygous	 state.	 In	
other	 native	 populations	where	 the	 heterozygosity	 and	 Fis	 was	
recently	calculated	using	a	high-density	SNP	chip	(Strillacci	et	al.,	
2017),	the	HO	varies	from	0.21	to	0.34,	the	HE	from	0.17	to	0.32	
and	 the	Fis	 from	 -0.19	 to	0.094.	These	populations	nevertheless	
are	 very	 well	 characterized	 in	 different	 breeds,	 thus	 showing	
more	homogeneity	within	the	same	group	of	individuals.	Using	a	
60K	SNP	chip	(Johansson	and	Nelson,	2015)	found	an	Fis	value	of	
-0.09	 and	 0.17	 in	 two	 local	 chicken	 populations	 indicating	 that	
farmers	do	not	increase	inbreeding	excessively.	Our	results	thus	
show	that	in	outbreed	Creole	population	as	the	Mexican	one,	the	
genetic	 variability	 appear	 larger	 respect	 to	 local	 populations	
defined	in	breeds.	
As	 expected,	 the	 results	 of	 AMOVA	 showed	 that	 most	 of	 the	
genetic	 variation	 occurred	 within	 populations	 in	 all	 the	 three	
hypotheses	here	considered	and	confirm	the	absence	of	a	genetic	
structure	 in	 the	 Mexican	 chicken	 population.	 The	 slightly	
negative	value	for	the	variance	in	fact,	as	obtained	in	hypothesis	
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1	(i.e.	 -0.47),	can	occur	 in	absence	of	genetic	structure,	and	 is	a	
quite	common	occurrence	in	AMOVA,	as	the	real	parameter	value	
has	 to	 be	 considered	 zero.	 The	 negative	 or	 slightly	 positive	
values	 of	 among	 groups	 variance	 and	 ΦCT	 for	 all	 hypothesis	
(Excoffier,	 2007),	 thus	 confirm	 the	 absence	 of	 a	 hierarchical	
genetic	 structure	 in	 the	 Mexican	 poultry	 population.	 These	
findings	 also	 confirm	 the	 results	 from	 Gorla	 et	 al.	 (2017)	who,	
using	 a	 different	 approach	 and	 a	 different	 class	 of	 genetic	
markers,	 did	 not	 disclosed	 a	 genomic	 structure	 in	 the	Mexican	
chicken	population.	We	did	not	consider	the	analysis	by	ancestor	
as	 the	 classes	 are	 extremely	 numerous	 and	 unbalanced	 among	
them	(see	Table	1).	
It	is	to	be	recalled	that	the	Mexican	poultry	population	is	a	Creole	
unique	genetic	pool	that	have	not	been	selected	for	target	traits	
for	more	than	500	years.	As	consequences	of	its	adaptation	to	the	
environmental	conditions	and	production,	some	genomic	region	
may	be	fixed	in	individuals	as	a	result	of	positive	selection.		
These	 results	 here	 obtained	 for	 ROH	 are	 in	 concordance	 with	
those	 identified	 in	previous	 studies	 (Gibson	et	 al.,	 2006)	where	
short	 ROH	 with	 high	 frequencies	 were	 identified	 in	 outbred	
individuals,	as	well	as	 the	 intermediate	sizes	 runs.	ROH	greater	
than	 10	 Mb,	 generally	 identified	 in	 individuals	 belonging	 to	
populations	 with	 high	 levels	 of	 background	 relatedness,	 have	
been	 also	 identified	 in	 2%–26%	 of	 individuals	 pertaining	 to	
outbred	 populations	 (Pemberton	 et	 al.,	 2012),	 and	 in	 a	
proportion	 of	 14%	 in	 our	 birds.	 These	 findings	 may	 reflect	 a	
recent	parental	 relatedness	or	be	 the	 result	 of	 a	 recombination	
lack	 that	 allows	 uncommonly	 long	 ancestral	 genomic	 segments	
to	 persist	 in	 the	 population	 (Pemberton	 et	 al.,	 2012).	
Additionally,	 findings	 from	 the	 ROH	 analysis	 indicated	 that	
natural	selection	affected	allele	frequencies	in	specific	regions	of	
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the	Mexican	chicken	genome	(Figure	5).	
Among	the	annotated	genes	in	the	ROH	regions,	in	fact,	some	are	
worth	mentioning	because	 their	 functions	could	play	 important	
roles	 in	 the	historical	 genetic	dynamic	occurred	 to	 the	Mexican	
chicken	population.	
On	 chr1	 within	 the	 ROH_1	 (at	 41.38-43.21	Mb)	 lies	 the	 KITLG	
(KIT	 ligant)	 gene	 that	 has	 a	 role	 in	 controlling	 the	 migration,	
survival	and	proliferation	of	melanocytes;	also,	rare	mutations	in	
the	mouse	homolog	of	 the	KITLG	gene	are	known	to	affect	coat	
colour	 (Sulem	 et	 al.,	 2007).	 Additionally,	 Metzger	 et	 al.	 (2015)	
highlighted	 the	 role	 of	 this	 gene	 in	 the	 horse	 reproduction	
efficiency,	claiming	its	general	effect	in	all	livestock	populations.	
The	AICDA	 (activation-induced	 cytidine	 deaminase	 (AID))	 gene	
mapping	within	 the	 ROH_2,	 encodes	 for	 a	 DNA	 editing	 protein	
that	 plays	 an	 essential	 role	 in	 some	 events	 of	 immunoglobulin	
(Ig)	 diversification:	 somatic	 hypermutation,	 class	 switch	
recombination	 and	 Ig	 gene	 conversion	 (Carãtao	 et	 al.,	 2013).	
These	 processes	 generate	 the	 vast	 diversity	 of	 antibodies	
required	 to	 challenge	 a	 nearly	 infinite	 number	 of	 antigens	 that	
immune	 systems	 encounter	 (Keim	 et	 al.,	 2013).	 In	 the	 same	
ROH_2	 the	 VWF	 (von	 Willebrand	 factor)	 gene	 and	 the	 FGB	
(Fibrinogen	beta	chain),	the	FGG	(Fibrinogen	gamma	chain)	and	
the	 FGA	 (Fibrinogen	 alpha	 chain)	 genes	 located	within	 ROH_8,	
are	four	of	the	eight	hemostatic	genes	resulted	down	regulated	in	
studies	based	on	RNA-Seq	analysis	on	breast	muscle	of	chickens	
affected	by	 “Wooden	Breast	disease”	 (Mutryn	et	 al.,	 2015).	The	
ROH_9	 on	 chr5	 (2.60-3.95	 Mb)	 harbours	 the	 BDNF	 (brain	
derived	 neurotrophic	 factor)	 gene,	 which	 is	 considered	
important	for	the	heat	stress	response	in	chicken	(Lamont	et	al.,	
2014).	Furthermore,	previous	findings	 indicating	that	the	BDNF	
gene	prevents	 the	death	of	cultured	chick	retinal	ganglion	cells,	



 47 

and	 as	 reported	 by	 Herzog	 et	 al.	 (1994)	 the	 tightly	 controlled	
expression	 of	 the	 BDNF	 gene	 might	 be	 important	 in	 the	
coordinated	development	of	the	visual	system	in	chicks.		
The	 same	 ROH_9	 includes	 the	 LGR4	 (leucine	 rich	 repeat	
containing	G	protein-coupled	receptor	4)	gene	 that	 in	human	 is	
associated	with	 low	bone	mineral	 density	 (Styrkarsdottir	 et	 al.,	
2013).	
Within	the	ROH_8	and	ROH_10	map	genes	that	are	closely	linked	
to	 immune	 system	 (Table	 3).	 More	 precisely,	 within	 the	 first	
region	map	two	duplicated	genes,	the	TLR2A	(toll-like	receptor	2	
family	 member	 A)	 and	 the	 TLR2B	 (toll-like	 receptor	 2	 family	
member	 B),	 both	 orthologs	 of	 the	 single	 TLR2	 of	 mammals.	
These	genes	mediate	innate	immune	responses	via	recognition	of	
pathogen-associated	molecular	patterns	(PAMPs)	such	as	dsRNA	
of	some	viruses,	or	lipopolysaccharide	of	Gram-negative	bacteria	
(Downing	 et	 al.,	 2010).	Miyagi	 et	 al.	 (2007)	 demonstrated	 that	
regulation	 of	 basal	 levels	 of	 particular	 STATs	 including	 STAT1	
and	STAT4	and	their	receptor	association,	contributes	to	 innate	
production	of	the	IFN-γ	of	NK	cells.	Also,	the	STAT4	gene	encodes	
a	 transcription	 factor	 involved	 in	 the	 signalling	 pathways	 of	
several	 cytokines,	 including	 interleukin-12	 and	 interleukin-23	
(IL-12)	(Martinez	et	al.	2008).		
A	 recent	 work	 by	 Fleming	 et	 al.	 (2017)	 has	 mapped	 ROH	 in	
several	 indigenous	 African	 and	 European	 populations.	 The	
authors	 do	 not	 report	 the	 list	 of	 genomic	 position	 of	 the	 4167	
consensus	ROH	mapped	in	their	populations,	so	it	is	not	possible	
to	 compare	 the	 overlapping	with	 our	 results.	 Nevertheless,	 the	
number	of	ROH	mapped	is	comparable	with	the	one	found	in	this	
study.	 Finally,	 among	 the	 three	 ROH	 that	 Fleming	 et	 al.	 (2017)	
are	reporting	in	detail,	no	one	is	overlapping	those	found	in	this	
study.	
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Gene	 ontology	 (GO)	 and	 pathway	 analyses	 for	 genes	 included	
into	 the	 Top	 ROH	 	 (Supplementary	 Table	 S4)	 were	 performed	
using	 GenCLiP2.0,	 an	 online	 server	 for	 functional	 clustering	 of	
genes	
(http://ci.smu.edu.cn/GenCLiP2.0/analysis.php?random=new)	
accounting	for	false	discovery	rate.	The	GO	analysis	revealed	that	
they	are	clustered	into	a	10	group	of	genes	that	were	involved	in	
a	 variety	 of	 cellular	 functions	 such	 as	 sex	 differentiation,	
reproductive	 system	 development,	 regulation	 of	 response	 to	
stress,	 programmed	 cell	 death,	 tissue	 and	 organ	 development,	
and	 so	 on.	 KEGG	 Pathway	 analysis	 showed	 the	 involvement	 of	
several	signal	pathways,	but	only	five	were	significant	after	FDR	
correction	(in	Supplementary	Table	S5,	as	the	Q-values).	
The	 Literature	 Mining	 Gene	 Network	 tool	 (provided	 by	
GenCLiP2.0),	 that	 searches	 for	 genes	 linked	 to	 keywords	 based	
on	up-to-date	 literature	 profiling,	 revealed	 that	 the	 twenty-two	
genes	included	within	Top	1%	ROH	have	been	associated	mainly	
with	 the	 keywords	 ‘‘stress’’,	 “muscle”,	 “immune	 response”	 and	
“reproduction”,	 as	 reported	 in	 Figure	 6.	 Edges	 in	 Network	
correspond	 to	 literature	 that	 associate	 two	 genes	 with	 each	
other,	 while	 the	 relative	 edge-labels	 indicate	 the	 number	 of	
related	 articles.	 	 To	 further	 examine	 the	 Top	 1%	ROH	 content,	
quantitative	trait	loci	(QTL)	that	overlapped	with	these	genomic	
regions	 were	 identified	 by	 downloading	 the	 QTL	 list	 from	 the	
animal	 QTL	 database	 (http://www.animalgenome.org/cgi-
bin/QTLdb/GG/index).	We	 filtered	 out	 the	 QTL	 that	 are	 larger	
than	5	Mb	and	only	QTL	overlapping	 for	 at	 least	50%	with	 the	
ROH	 were	 considered.	 As	 reported	 in	 Table	 3,	 the	 most	
represented	QTL	are	those	associated	to	body	conformation	and	
structure	 (i.e.	 breast	muscle	 percentage	 and	weight,	 tibia	 bone	
mineral	density,	body	weight,	abdominal	fat	weight	and,	muscle	
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fibre	density	and	diameter).	The	same	holds	for	QTLs	with	a	size	
comprised	between	5	and	10	Mb.	
The	study	indicates	that	the	Mexican	population	is	well	adapted	
to	the	diverse	farming	conditions	that	can	be	found	in	the	United	
States	 of	México.	 The	 population	 clearly	 appear	 to	 be	 a	 unique	
Creole	 chicken	 population	 that	 was	 not	 subjected	 to	 a	 specific	
breeding	 strategy	 to	 improve	 performance	 but	 shows	 selection	
sweeps	due	to	the	occurring	natural	selection	for	more	than	500	
years.	 As	 the	 population	was	maintained	mainly	 as	 a	 backyard	
population,	 possibly	 the	 farmers	 have	 reproduced	 the	 more	
productive,	 more	 fertile,	 and	 more	 resistant	 individuals	
regardless	 to	 plumage	 colour	 or	 morphological	 characteristics.	
The	adaptation	of	the	population	to	environmental	conditions,	its	
resilience	 to	 various	 challenges,	 makes	 it	 very	 interesting	 as	
native	 genetic	 resource	 to	 be	 used	 in	 family	 non-intensive	
farming,	in	order	to	raise	their	income.		
In	 some	 states	 of	México	where	with	 a	 very	 important	 poultry	
and	 swine	 intensive	 farming,	 there	 is	 no	 specific	 financial	
support	 for	 poultry	 family	 farming	 by	 Mexican	 program	 “Sin	
hambre”	(no	hungry	-	http://sinhambre.gob.mx/).	In	these	states	
the	goal	of	is	to	improve	sanitary	conditions	in	intensive	farming	
to	 favour	 the	exportation	 to	USA	and	Europe.	Nevertheless,	 the	
“Sin	 hambre”	 project	 helps	 greatly	 local	 family	 to	 farm	 chicken	
and	 increase	 their	revenue,	providing	a	commercial	channel	 for	
the	egg	production.	This	 can	be	easily	 supported	with	 the	 local	
Mexican	 chicken	 population	 adapted	 to	 local	 environmental	
conditions.	A	 strategy	 sometime	used	at	present	 is	 to	 cross	 the	
local	Creole	population	with	highly	productive	breeds	as	the,	e.g.	
Rhode	Island	or	to	provide	farmers	directly	with	F1	hybrids.	This	
practice	nevertheless	requires	a	very	careful	management	of	the	
local	 well	 adapted	 population	 to	 avoid	 the	 loss	 of	 the	 genetic	
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variability	that	guarantee	the	resilience	of	the	individuals	in	very	
harsh	environments.	
The	 study	 provide	 a	 genetic	 knowledge	 that	 can	 be	 used	 as	 a	
basis	 for	 the	 genetic	 management	 of	 a	 unique	 and	 very	 large	
Creole	population,	especially	in	the	view	of	using	it	in	production	
of	hybrids	to	increase	the	productivity	and	economic	revenue	of	
family	 farming	 agriculture,	 which	 is	 a	 large	 reality	 of	 United	
States	of	México.		
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Tables	
Table	1.	Hierarchical	AMOVA	analysis	among	the	clusters	obtained	based	on	allele	 frequencies	of	
pruned	SNPs.	

Hypotheses	
Variance	component	(%)	 Fixation	indexesa	

Among	
groups	

Among	 clusters	
within	groups	

Within	
clusters	

ΦCT	 P-valueb	 ΦSC	 P-valueb	 ΦST	 P-valueb	

Cl_1+Cl_3	vs	Cl_4	 -0.47c	 0.75	 99.72	 -0.005	 1.000±0.000	 0.007	 0.000±0.000***	 0.003	 0.000±0.000***	

Cl_1+Cl_4	vs	Cl_3	 0.18	 0.26	 99.56	 0.002	 0.658±0.011	 0.003	 0.043±0.001*	 0.004	 0.001±0.001*	

Cl_3+Cl_4	vs	Cl_1	 0.22	 0.29	 99.49	 0.002	 0.332±0.016	 0.003	 0.004±0.002*	 0.005	 0.000±0.000***	

aΦCT	 =	 variation	 among	 groups	 divided	 by	 total	 variation,	ΦSC	 =	 variation	 among	 sub-groups	 divided	 by	 the	 sum	 of	
variation	among	sub-groups	within	groups	and	variation	within	sub-groups,	ΦST	=	the	sum	of	variation	groups	divided	
by	total	variation.	
bns	=	P	>	0.05,	*	=	P	<	0.05,	***	=	P	<	0.001.	
cNegative	values	are	presented,	but	we	can	consider	this	value	effectively	equal	to	zero.	
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Table	 2.	 Numbers	 of	 ROH	 per	 chromosome	 according	 to	 ROH	
classes	of	length.	

	

	
(*)	Proportion	calculated	as	number	of	ROH	per	class	over	the	total	
number	of	ROH	
	

	

Classes	of	ROH	
Chr	 <2	Mb	(*)	 2-4	Mb	(*)	 4-8	Mb	(*)	 8-16	Mb	

(*)	
>16	Mb	
(*)	 Total	

1	 247	(0.34)	 350	(0.48)	 123	(0.17)	 11	(0.02)	 0	(0)	 731	
2	 190	(0.35)	 255	(0.47)	 83	(0.15)	 11	(0.02)	 0	(0)	 539	
3	 147	(0.38)	 182	(0.47)	 56	(0.14)	 5	(0.01)	 0	(0)	 390	
4	 110	(0.34)	 162	(0.5)	 45	(0.14)	 8	(0.02)	 0	(0)	 325	
5	 97	(0.39)	 104	(0.42)	 46	(0.18)	 3	(0.01)	 0	(0)	 250	
6	 51	(0.42)	 46	(0.38)	 23	(0.19)	 1	(0.01)	 0	(0)	 121	
7	 41	(0.32)	 71	(0.56)	 14	(0.11)	 1	(0.01)	 0	(0)	 127	
8	 39	(0.41)	 50	(0.53)	 6	(0.06)	 0	(0)	 0	(0)	 95	
9	 23	(0.34)	 42	(0.62)	 3	(0.04)	 0	(0)	 0	(0)	 68	
10	 27	(0.37)	 36	(0.49)	 10	(0.14)	 0	(0)	 0	(0)	 73	
11	 27	(0.44)	 30	(0.48)	 5	(0.08)	 0	(0)	 0	(0)	 62	
12	 20	(0.48)	 20	(0.48)	 2	(0.05)	 0	(0)	 0	(0)	 42	
13	 16	(0.43)	 19	(0.51)	 2	(0.05)	 0	(0)	 0	(0)	 37	
14	 15	(0.52)	 14	(0.48)	 0	(0)	 0	(0)	 0	(0)	 29	
15	 6	(0.22)	 18	(0.67)	 3	(0.11)	 0	(0)	 0	(0)	 27	
16	 0	(0)	 0	(0)	 0	(0)	 0	(0)	 0	(0)	 0	
17	 10	(0.36)	 18	(0.64)	 0	(0)	 0	(0)	 0	(0)	 28	
18	 9	(0.53)	 8	(0.47)	 0	(0)	 0	(0)	 0	(0)	 17	
19	 12	(0.52)	 10	(0.43)	 1	(0.04)	 0	(0)	 0	(0)	 23	
20	 21	(0.49)	 19	(0.44)	 3	(0.07)	 0	(0)	 0	(0)	 43	
21	 3	(0.38)	 5	(0.63)	 0	(0)	 0	(0)	 0	(0)	 8	
22	 1	(0.33)	 2	(0.67)	 0	(0)	 0	(0)	 0	(0)	 3	
23	 3	(0.6)	 2	(0.4)	 0	(0)	 0	(0)	 0	(0)	 5	
24	 6	(0.67)	 3	(0.33)	 0	(0)	 0	(0)	 0	(0)	 9	
25	 0	(0)	 0	(0)	 0	(0)	 0	(0)	 0	(0)	 0	
26	 0	(0)	 1	(1)	 0	(0)	 0	(0)	 0	(0)	 1	
27	 1	(0.25)	 3	(0.75)	 0	(0)	 0	(0)	 0	(0)	 4	
28	 2	(1)	 0	(0)	 0	(0)	 0	(0)	 0	(0)	 2	
Total	 1,124	(0.36)*	 1,470	(0.48)*	 425	(0.14)*	 40	

(0.02)*	 0	(0)*	 3,059	

 



 

Table	3.	The	eleven	Top	1%	ROH	identified	on	Mexican	chicken	autosomes	by	SVS.	

	

ROH_ID	 Chr	 Start	 End	 Length	 Genes*	 QTL	 (http://www.animalgenome.org/cgi-
bin/QTL_IDdb/GG/index)	

ROH_1	 1	 41,387,392	 43,210,859	 1,823,467	 NTS,	KITLG,	DUSP6	

Femur	 bending	 strength	 QTL_ID	 (6758);	
Yolk	 weight	 QTL_ID	 (24938,	 24939,	
24940);	Breast	muscle	percentage	QTL_ID	
(95427);	 Growth	 (post-challenge)	 QTL_ID	
(65829)	

ROH_2	 1	 73,476,359	 75,663,705	 2,187,346	
CCND2,	NDUFA9,	NTF3,	VWF,	
TEAD4,	 RHNO1,	 FKBP4,	
FOXM1,	 NANOG,	 AICDA,	
PHC1	

	

ROH_3	 1	 146,817,860	 147,817,564	 999,704	 	 	

ROH_4	 2	 51,510,051	 54,136,958	 2,626,907	 PSMA2,	 STK17A,	 EGFR,	
SEC61G	

Body	 weight	 (70	 days)	 QTL_ID	 (12390);	
Body	 weight	 (56	 days)	 QTL_ID	 (12391);	
Body	weight	(70	days)	QTL_ID	(12392)	

ROH_5	 2	 70,951,155	 71,838,862	 887,707	 ENS-3,	mir6545	
Body	 weight	 (42	 days)	 QTL_ID	 (6899);	
Abdominal	 fat	 weight	 QTL_ID	 (6900);	
Breast	muscle	weight	QTL_ID	(6968)	

ROH_6	 2	 86,255,347	 87,498,657	 1,243,310	 IRX1,	IRX2	
Egg	shell	color	QTL_ID	(1914);	Body	weight	
(42	 days)	 QTL_ID	 (6901);	 Breast	 muscle	
percentage	QTL_ID	(12569)	

ROH_7	 3	 68,723,915	 70,012,473	 1,288,558	 	 	

ROH_8	 4	 18,018,373	 20,496,038	 2,477,665	
IDS,	 TLR2A,	 TLR2B,	 TRIM2,	
MND1,	 SFRP2,	 FGB,	 FGA,	
FGG,	NPY2R,	CTSO,	mir7469	

Abdominal	 fat	 weight	 QTL_ID	 (19531,	
19535,	 19538);	 Body	 weight	 (40	 days)	
QTL_ID	 (6659);	 Egg	 shell	 color	 QTL_ID	
(3348);	 Muscle	 fiber	 density	 QTL_ID	
(19534,	 19537);	 Muscle	 fiber	 diameter	
QTL_ID	 (19533,19536,19340);	 Residual	
feed	 intake	QTL_ID	 (7057);	 Subcutaneous	
fat	thickness	QTL_ID	(19532,	19539);	Yolk	
weight	QTL_ID	(3349)	
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ROH_9	 5	 2,126,161	 4,221,327	 2,095,166	

PRMT3,	 ANO5,	 SLC17A6,	
GAS2,	 SVIP,	 ANO3,	 FIBIN,	
LIN7C,	 BDNF,	 KIF18A,	
METTL15,	 BBOX1,	 LGR4,	
SLC5A1,	mir1775,	mir1760	

Body	 weight	 (28	 days)	 QTL_ID	 (95415,	
195416)	

ROH_10	 7	 6,661,093	 8,199,140	 1,538,047	
COL18A1,	SLC19A1,	COL6A1,	
COL6A2,	 FTCD,	 LSS,	 S100B,	
ITGB2,	ADARB1,	GLS,	STAT1,	
STAT4	

Shank	 weight	 QTL_ID	 (9161);	 Breast	
muscle	weight	QTL_ID	(6982)	

ROH_11	 8	 9,141,018	 11,122,757	 1,981,739	

PLA2G4A,	 PTGS2,	
C8H1ORF27,	 AMY1AP,	
AMY1A,	 SLC30A7,	 CRK,	
CDC14A,	 DBT,	 SASS6,	
MFSD14A,	 SLC35A3,	 HOXA3,	
PALMD,	mir6561,	mir1610	

Thigh	 meat-to-bone	 ratio	 QTL_ID	 (6721);	
Abdominal	 fat	 percentage	QTL_ID	 (2183);	
Body	 weight	 (day	 of	 first	 egg)	 QTL_ID	
(14465);	 Tibia	 bone	 mineral	 density	
QTL_ID	(24365)	

	*Genes	in	bold	are	those	included	in	Networks	
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Figures	
Figure	 1.	 PCA	 based	 on	 morphological	 features	 (Body	 length,	
Wingspan,	Breast	circumference,	Length	of	the	shank):	Cl_1:	blue,	
Cl_3:	red,	and	Cl_4:	green).	Canonical	variable	1:	CV_1;	Canonical	
variable	2:	CV_2	
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Figure	 2.	 Graphical	 representation	 of	 Mexican	 chicken	
population	genetic	structure.	A)	ADMIXTURE	k=2-K=6	barplots;	
B)	 Optimal	 number	 of	 clusters	 according	 to	 cross-validation	
error;	C)	Count	of	individuals	based	on	3	ancestors’	composition;	
D)	NJ	tree:	classification	of	individuals	according	to	allele	sharing	
distances.	 Individuals	 were	 labelled	 according	 to	 the	
morphological	 cluster	 (i.e.	 from	 1	 to	 4)	 they	 belong	 and	 their	
individual	 (e.g.	 CL1012	 =	 morphological	 cluster	 1,	 individual	
012)	and	the	ancestors’	composition	from	ADMIXTURE.	
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Figure	3.	A)	PCA	based	on	allele	frequencies	of	SNPs	(individuals	
were	 coloured	 according	 to	 the	 three	 morphological	 clusters:	
Cl_1:	 blue,	 Cl_3:	 red,	 and	 Cl_4:	 green);	 B)	 PCA	 based	 on	 allele	
frequencies	of	SNPs	(individuals	were	coloured	according	to	the	
individual	 ancestor’s	 composition:	 ancestor_1:	 blue,	 ancestor_2:	
orange,	and	ancestor_3:green).	
	

	
	 	



 

 58 

Figure	4.	Relationship	between	number	 and	averaged	 length	 of	
ROH	in	each	individual.	
	

	
Figure	 5.	 SNPs	 incidence	 in	 ROH	 identified	 by	 SVS.	 Red	 line	
indicates	the	adopted	threshold:	Top	1%	of	the	observations.		
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Figure	 6.	 Network	 of	 genes	 included	 in	 the	 Top	 1%	 Mexican	
chicken	ROH.	

	
	
Supporting	information	
All	supplementary	files	are	available	at:	
https://doi.org/10.3382/ps/pex374/4767756	
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Background		
Copy	Number	Variants	 (CNV)	are	genomic	 structural	 variations	
distributed	 over	 the	whole	 genome	 in	 all	 species	 and	 refers	 to	
genomic	 segments	 of	 at	 least	 50	 bp	 in	 size	 [1],	 for	which	 copy	
number	 differences	 have	 been	 observed	 in	 comparison	 to	
reference	 genome	 assemblies	 (insertions,	 deletions	 and	 more	
complex	 changes)	 [2-3].	 Sequencing	 of	 the	 chicken	 genome,	
released	in	2004	[4],	has	facilitated	the	use	of	molecular	markers	
for	breed/ecotype	characterization.	Structural	variation	has	been	
recognized	 as	 an	 important	 mediator	 of	 gene	 and	 genome	
evolution	within	populations.	 In	 the	 last	decades,	microsatellite	
markers	have	been	often	used	to	perform	phylogenetic	analysis	
and	studies	on	genetic	variability	in	chicken	populations	[5-6-7].	
Although	numerous	studies	 investigating	genetic	variation	have	
focused	on	SNPs,	there	is	a	growing	evidence	for	the	substantial	
role	of	structural	DNA	polymorphism	in	phenotypic	diversity	[8].	
It	has	been	shown	that	CNVs	are	ubiquitous	 in	 the	genome	and	
can	contribute	substantially	to	phenotypic	variability	and	disease	
susceptibility	 in	 humans	 [8-9]	 and	 animals	 [10-11].	 The	
underlying	 assumption	 is	 that	 CNVs	 are	 changing	 the	 gene	
structure	and	dosage	and	altering	the	gene	regulation	[8-12-13].	
Even	 if	 CNVs	 are	 less	 frequent	 than	 SNPs	 in	 terms	 of	 absolute	
numbers,	 CNVs	 cover	 a	 larger	 proportion	 of	 the	 genome	 and	
have,	therefore,	a	large	potential	effect	on	phenotypic	variability	
[14].	Compared	with	humans	and	other	model	organisms,	there	
is	 limited	 research	 on	 the	 extent	 and	 impact	 of	 CNVs	 in	 the	
chicken	genome.		
In	 Mexico	 the	 poultry	 population,	 even	 if	 it	 shows	 large	
morphological	 variability,	 is	 not	 divided	 into	 breeds	 or	 strains	
and,	possibly,	can	be	considered	as	a	unique	widespread	Creole	
chicken	 population	 (Gallus	 gallus	 domesticus),	 as	 the	 result	 of	
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undefined	crosses	among	different	breeds	imported	into	Mexico	
from	 Europe	 for	 almost	 500	 years	 [15-16].	 Creole	 chickens	
include,	in	fact	a	wide	variety	of	biotypes	with	different	colors	of	
plumage	and	morphological	features	that	are	widely	distributed	
in	 the	 country	 [17].	 In	 the	 absence	 of	 comprehensive	 breed	
characterization	 data	 and	 documentation	 of	 the	 origin	 of	
breeding	 populations,	 DNA	 polymorphism	 provides	 the	 most	
reliable	 estimates	 of	 genetic	 diversity	 within	 and	 between	 a	
given	set	of	populations	[18].		
Several	studies	have	been	developed	in	the	recent	past	to	detect	
CNV	 in	 poultry	 using	 low-density	 60K	 SNP	 chips	 [19]	 or	 aCGH	
[20-21-22].	 The	 major	 limits	 of	 these	 studies	 reside	 in	 the	
density	 of	 the	 spots	 of	 the	 used	 arrays	 and	 the	 limited	 sample	
size.	It	has	been	already	suggested	by	Jia	et	al.	[23]	that	the	use	of	
the	 600K	 SNP	 array	 can	 improve	 the	 efficiency	 of	 the	 CNV	
detection	 in	 the	 poultry	 species.	 The	 whole	 genome	 sequence	
data	 can	 improve	 the	 detection	 of	 small	 CNVs	 but,	 even	 if	
desirable	 and	 employed	 by	 some	 authors	 [24-25],	 is	 still	
economically	too	demanding	to	be	realized	over	a	large	number	
of	samples.	
The	aim	of	this	study	was	to	map	the	CNV	in	the	Mexican	chicken	
population	with	an	unprecedented	resolution	using	high	density	
SNP	 chip	 (i.e.	 600K	Affymetrix	 SNP	 chip)	 on	 a	 large	 number	 of	
individuals	(i.e.	256)	and	to	characterize	the	genetic	variability	of	
the	Mexican	Creole	 chicken’s	 population	using	CNV	 as	 genomic	
markers.	
	
Methods		
Sampling	and	genotyping	
In	 this	 study	 a	 collection	 of	 265	 individuals	 of	 the	 Mexican	
chicken	 population,	 from	 different	 farms	 across	 26	 states	 of	



 

 69 

United	 States	 of	 Mexico,	 was	 previously	 sampled	 by	 Instituto	
Nacional	 de	 Investigaciones	 Forestales,	 Agricola	 y	 Pecuarias	
(INIFAP)	within	the	institutional	activities	of	the	Centro	Nacional	
de	 Recursos	 Geneticos	 at	 Tepatiplan,	 Jalisco.	 As	 mentioned	
hereinbefore,	a	classification	of	the	Mexican	population	in	breeds	
does	not	exist.	For	this	reason,	the	birds	have	been	considered	as	
a	 unique	 Creole	 population	 and	 sampled	 in	 several	 states	 of	
Mexico.		
Samples	were	processed	and	genotyped	within	the	framework	of	
a	previous	project	of	 INIFAP	using	the	600K	Affymetrix	Axiom®	
Chicken	Genotyping	Array,	containing	580,954	SNPs	distributed	
across	the	genome,	with	an	average	spacing	of	about	1.8	kb	and	
data	made	available	for	the	present	study.	A	commercial	service	
provider	performed	the	genotyping	and	the	DNA	extraction	from	
feathers.	The	galGal4	chicken	assembly	was	used	in	this	study	as	
reference	genome.		
	
Quality	assurance	of	CNV	raw	data	and	CNV	detection	
The	CNV	detection	was	performed	on	a	total	of	471,730	SNPs	on	
the	first	28	chicken	autosomes.	
The	 Axiom®	 Analysis	 Suite	 software	 (Affymetrix)	 was	 used	 to	
perform	 raw	 intensity	 data	 Quality	 Control	 and	 run	 the	
genotyping	 algorithms.	 Default	 quality	 control	 settings	 were	
applied	 to	 filter	 for	 low	 quality	 samples	 before	 running	 the	
genotyping	 analysis,	 to	 exclude	 the	 ones	with	 call	 rates	 <	 97%	
and	 Dish	 Quality	 Control	 <0.82.	 The	 Axiom®	 CNV	 summary	
software	tool	was	used	to	generate	input	files	for	CNV	prediction	
analysis.		
The	CNV	detection	was	performed	with	PennCNV	software	[26]	
using	Log	R	Ratio	and	the	B	allele	frequency	[27]	obtained	with	
the	Axiom®	CNV	Summary	Tool	software.	The	individual-based	
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CNV	calling	was	performed	using	 the	default	parameters	of	 the	
Hidden	Markov	Model	(HMM):	standard	deviation	of	LRR	<0.30,	
BAF	drift	as	0.01	and	waviness	factor	at	0.05	and	a	minimum	of	3	
SNP	was	 required	 to	define	a	CNV.	The	distribution	of	CNV	per	
individual	spanned	from	0	CNV	to	more	than	100.	Up	to	79	CNV	
the	distribution	was	continuous,	while	a	step	 to	more	 than	100	
CNV	 was	 detected	 in	 9	 birds.	 To	 avoid	 the	 introduction	 of	
possible	false	positive	and	a	bias	in	the	CNV	interpretation	they	
were	then	filtered	out	as	the	number	of	CNVs	detected	appeared	
to	be	outlier	respect	to	the	CNV	distribution,	leaving	256	samples	
for	further	analyses.	It	is	worth	to	mention	that	Zhang	et	al.	[19]	
have	performed	a	validation	of	the	CNV	called	by	PennCNV,	using	
the	CNVPartition	program	obtaining	an	overlapping	of	results	of	
99%.	 Additionally,	 recent	 studies	 in	 cattle	 [28]	 have	 used	 two	
software	to	map	CNV	based	on	different	algorithms:	the	HMM	of	
PennCNV,	based	on	the	CNV	identification	on	B	allele	frequency	
and	Log	R	ratio,	and	the	CNAM	of	SVS	(Golden	Helix)	basing	the	
identification	 only	 on	 Log	 R	 ratio.	 These	 studies	 provide	 an	
additional	empirical	evidence	of	the	results	provided	by	Xu	et	al.	
[29]	that	in	their	study	concluded	that	using	multiple	CNV	calling	
algorithms	might	also	increase	the	false	positive	rate.		
In	 addition	 to	 detect	 the	 outliers	 as	 hereinbefore	 described,	 in	
order	 to	minimize	 the	 false	 positive	 callings,	 the	 PennCNV	was	
run	 using	 different	 “.hmm”	 files	 (agre.hmm,	 affygw6.hmm,	
hh550.hmm),	which	 is	 known	 that	may	 affect	 substantially	 the	
false	 positive	 as	 well	 as	 the	 false	 negative	 rate.	 The	 online	
PennCNV	manual	(www.openbioinformatics.org)	in	fact	 instruct	
the	 user	 that	 the	 agre.hmm	 file	 produces	 an	 excess	 of	 false	
positive	calls	respect	to	the	default	affygw6.hmm	file,	which	has	
been	criticized	to	produce	a	low	number	of	CNV	calls	(i.e.	excess	
of	 false	 negative)	 respect	 to	 other	 calling	 software	 and	
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algorithms.	 Additionally,	 we	 used	 the	 hh550.hmm	 file	 in	 the	
calling	process,	which	is	based	on	a	chip	with	the	closest	number	
of	 SNPs	 respect	 to	 the	 SNP	 chip	used	here.	 To	 reduce	 the	 false	
calling	 rate,	 we	 have	 then	 considered	 valid	 only	 the	 CNV	 calls	
obtained	both	with	the	agre.hmm	and	the	hh550.hmm	files.	The	
number	of	CNV	 calls	 resulted	using	 the	 affygw6.hnm	 files	were	
negligible	 respect	 to	other	 two	 files,	but	anyhow	present	 in	 the	
consensus	here	obtained.	The	hmm	file	supplied	to	 the	HMM	of	
PennCNV,	 (www.openbioinformatics.org),	 provides	 to	 the	
algorithm	the	expected	signal	intensity	values	for	different	states	
of	 CNV	 and	 the	 expected	 probability	 for	 the	 transition	 in	
different	 copy	number	state.	As	described	 in	 the	PennCNV	user	
manual,	 however,	 the	 transition	probability	 is	 a	 function	of	 the	
distance	between	neighboring	markers.	This	makes	the	choice	of	
a	correct	hmm	file,	in	respect	to	the	density	of	markers,	a	critical	
step	in	the	mapping	of	CNV	to	control	false	positive	and	negative	
calls.		
	
CNVR	annotation		
After	 downloading	 the	 list	 of	 chicken	 autosome	 galGal4	 genes	
(GCA_000002315.2)	 from	 Ensembl	 database	 (Release	 88)	
(http://www.ensembl.org),	 the	gene	annotation	was	performed	
using	the	software	Bedtools,	intersect	command	[30],	identifying	
the	genes	fully	 included	in,	or	partially	overlapping,	 the	defined	
CNVRs.	 Gene	 ontology	 (GO)	 and	 Kyoto	 Encyclopedia	 of	 Genes	
and	Genomes	(KEGG)	analysis	were	performed	using	the	Panther	
database	(http://pantherdb.org).	
	
Clustering	analysis	using	CNVRs.	
A	clustering	analysis	was	performed	considering	CNVRs	found	in	
this	study	[31].	A	scoring	matrix	of	the	CNVRs	was	constructed,	
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attributing	 the	 “0”	 or	 “1”	 values	 to	 indicate	 the	 absence	 or	 the	
presence	 of	 a	 CNV	 in	 a	 specific	 CNVR.	 A	 hierarchical	
agglomerative	clustering	was	then	applied	to	the	scoring	matrix	
using	 the	 pvclust	 function	 of	 the	 pvclust	 R	 package	 [32].	
Multiscale	 bootstrap	 resampling	 (no.	 10,000	 bootstraps)	 was	
used	 to	 obtain	 the	 Approximately	 Unbiased	 P-value	 (AU),	 in	
order	to	determine	the	robustness	of	branches.	The	Unweighted	
Pair	 Group	 Method	 with	 Arithmetic	 mean	 (UPGMA)	 was	 the	
Agglomerative	method	chosen.	
	

Results	
CNV	and	CNVR	detection	
The	Table	1	reports	 the	descriptive	statistics	of	 identified	CNVs	
and	CNVRs.	The	HMM	of	the	PennCNV	software	detected	a	total	
of	1,924	CNVs;	among	these,	386	were	deletions	(i.e.	 loss	state)	
and	 1,538	 were	 duplication	 (i.e.	 gain	 state),	 with	 a	
deletions/duplications	CNV	ratio	of	0.25,	 calculated	as	 the	 total	
number	of	losses	divided	by	the	total	number	of	gains.		
The	CNVs	overlapping	among	samples	were	summarized	across	
all	 individuals	 into	 1,216	CNVRs	 (959	 gains,	 226	 losses	 and	31	
complex),	 covering	 a	 total	 of	 47	 Mb	 of	 sequence	 length,	
corresponding	 to	 5.12	 %	 of	 28	 autosomes	 in	 the	 galGal4	
assembly	(Additional	File	1:	Sheet	1).		
In	Figure	1	the	CNVRs	map,	divided	in	gain,	loss	and	complex	on	
each	chromosome	is	shown.		
In	Table	2	the	number	of	CNVRs	found	is	reported,	together	with	
the	 state	 and	 the	 proportion	 of	 coverage	 by	 chromosome.	 The	
coverage	 proportion	 is	 smaller	 than	 10%	 for	 all	 chromosomes,	
except	for	16,	18,	24,	27	ones.			
CNVRs	 were	 classified	 as	 singleton	 if	 detected	 in	 only	 one	
individual.	 Among	 the	 identified	 CNVRs,	 1,009	 (82.9%)	 were	
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present	 in	singleton,	127	(10.4%)	 in	two	 individuals,	30	(2.4%)	
in	three	individuals,	11	(0.9%)	in	four	individuals,	and	39	(3.2%)	
in	 five	 or	 more	 individuals.	 For	 every	 state	 (i.e.	 gain,	 loss,	
complex)	CNVRs	were	divided	according	to	their	length	into	four	
classes:	<1	kb,	1-10	kb,	10–100	kb,	>100	kb;	Figure	2	reports	the	
CNVRs	count	for	each	class	of	CNVRs	length.		
The	majority	 of	 the	 1,065	 CNVRs	 identified	 in	 this	 study	 had	 a	
length	 comprised	 between	 10	 kb	 and	 100	 kb,	 of	 which	 471	
comprised	between	1	kb	and	10	kb	and	594	comprised	between	
10	kb	and	100	kb.	A	total	of	39	CNVRs	had	a	length	lower	than	1	
kb	while	112	CNVRs	showed	a	size	longer	than	1	Mb	(Figure	3).	
The	highest	number	of	gain	and	complex	CNVRs	are	those	with	a	
length	 of	 10–100	 kb,	 while	 the	 loss	 CNVRs	 were	 present	 at	
largest	frequency	within	a	length	of	1–10	kb	(Figure	3).		
The	regions	mapping	in	a	large	number	of	individuals	were:	the	
CNVR	 on	 chromosome	 1	 at	 42.96-43.13	 Mb,	 identified	 in	 61	
samples;	 the	 CNVR	 on	 chromosome	 12	 at	 1.12-1.22	 Mb,	
identified	in	56	samples;	the	CNVR	on	chromosome	16	at	1,253-
533,589	bp,	identified	in	53	samples;	the	CNVR	on	chromosome	
1	at	193.13	–	193.24	Mb,	identified	in	52	samples.		
The	 Figure	 3	 shows	 the	 sample	 count	 for	 every	 CNVR	 state	
according	 to	 the	 previously	 defined	 4	 CNVR	 length	 classes	 (as	
shown	in	Figure	2).	The	sample	count	classes	were	defined	as:	1	
(singleton),	2–5,	6–20	and	>	20.		
The	 gain	 CNVRs	 (Figure	 3.A)	 have	 a	 sample	 count	 distribution	
with	most	of	the	regions	falling	into	the	10–100	kb	class.	The	loss	
CNVRs	(Figure	3.B)	have	a	sample	count	distribution	with	most	
of	 the	 regions	 falling	 into	 the	 1–10	 kb	 class.	 Class	 1	 mostly	
represents	 the	 gain	 regions.	 Furthermore,	 class	 1	 is	 the	 most	
frequent	 in	 all	 length	 classes.	 The	 highest	 length	 and	 sample	
classes	mainly	belong	to	the	gain	regions.	In	the	complex	region	
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(Figure	3.C)	 the	 class	mostly	 represented	 is	 the	10-100	kb	one.	
More	 precisely,	 the	 most	 represented	 sample	 class	 is	 the	 2–5	
class	 falling	 mainly	 within	 the	 10–100	 kb	 length	 class.	
Furthermore,	class	2-5	is	the	most	frequent.	Lastly,	all	the	sample	
classes	are	distributed	mostly	within	the	1–10	and	10-100	length	
classes.		
	
CNVR	annotation		
The	 intersection	 analysis	 performed	 between	 the	 chicken	 gene	
database	 (Ensembl	 galGal4)	 and	 our	 CNVRs	 allowed	 the	
identification	 (within	 or	 overlapping	 the	 consensus	 CNVRs)	 of	
1,543	Ensemble	genes	ID,	corresponding	to	1,068	genes	with	an	
official	gene	ID.	Out	of	 the	1,216	CNVRs	 identified	 in	this	study,	
783	 (64.4%)	 encompassed	 one	 or	 more	 genes,	 while	 433	
(35.6%)	did	not	involve	any	gene.	More	specifically,	among	these	
genes,	 1,028	 (96.25%)	 were	 protein-coding	 genes,	 34	 (3.1%)	
were	 miRNAs	 and	 6	 (0.56%)	 were	 small	 nuclear	 RNAs	
(Additional	File	1:	Sheet	4).	
The	 Panther	 database	 provided	 the	 annotation	 information,	
according	to	GO	terms	and	KEGG	pathways,	for	only	865	chicken	
genes.	 The	 Additional	 File	 1	 reports	 the	 annotation	 output	
including	 only	 terms	 resulted	 statistically	 significant	 after	
Bonferroni	 correction	 (p-value	<	0.05):	27	 classified	as	Cellular	
Component,	 11	 as	 Molecular	 Function,	 and	 28	 as	 Biological	
Process.	 The	 significant	 GO	 terms	 were	 mainly	 involved	 in	
muscle	 contraction,	 sensory	 perception	 of	 sound,	 response	 to	
stimulus,	cellular	component	morphogenesis	and	movement,	and	
cell	 communication	 (Additional	 File	 1:	 Sheet	 5).	 Instead,	 the	
KEGG	pathway	analysis	 indicated	 that	 these	genes	are	 involved	
in	 166	 pathways,	 but	 none	 of	 which	 was	 significant	 after	
Bonferroni	correction.	
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Clustering	analysis	using	CNVRs.	
The	Figure	4	shows	the	cluster-tree	built	for	the	chicken	Mexican	
Creole	population	based	on	CNVRs	similarities.		
In	 the	 plot	 (Figure	 4),	 the	 branch	 length	 is	 not	 directly	
proportional	 to	 the	 genetic	 distance	 estimated	 among	 samples.	
The	 Approximately	 Unbiased	 P-value	 (AU-P	 in	 red)	 and	
Bootstrap	 Probability	 value	 (BP-P	 in	 green),	 indicative	 of	 how	
strongly	 the	 cluster	 is	 supported	 by	 the	 data,	 were	 shown	 for	
each	node,	as	well	as	the	Edge	numbers	(in	light	grey).	As	can	be	
read	 from	 Figure	 4	 mostly	 all	 AU-P	 and	 BP-P	 values	 are	 zero,	
showing	 no	 difference	 among	 branch	 in	 which	 individuals	 are	
clustered	in:	there	is	no	cluster	with	both	AU-P	and	BP-P	values	
greater	than	0.	
	

Discussion	
CNV	and	CNVR	detection	
The	 use	 of	 a	 high-density	 SNP	 chip	 allows	 to	 disclose	 smaller	
CNVs	 compared	 to	 studies	 performed	 in	 the	 recent	 past	 that	
were	based	on	a	60K	SNP	chip	[19]	or	on	aCGH	[20-21-22].	The	
average	probe	distance	in	the	SNP	chip	used	here	is	in	fact	more	
or	less	1,8	kb	(galGal4)	allowing	the	identification	of	short	CNVs.	
The	 smaller	 CNV	 (i.e.	 92	 bp.)	 that	 was	 detected	 in	 this	 study	
(Table	1),	according	to	the	criteria	of	minimum	3	SNPs	to	map	a	
CNV,	 overlaps	 with	 the	 one	 mapped	 by	 Yi	 et	 al.	 [24]	 using	 a	
sequencing	approach.		
Chromosome	16	is	the	only	one	with	a	very	 large	proportion	of	
length	covered	by	CNV,	i.e.	81%	(Table	2).	This	may	be	due	to	the	
small	 length	 of	 the	 autosome	 and	 to	 the	 presence	 of	 the	Major	
Histocompatibility	 Complex	 (MHC),	 which	 is	 known	 to	 be	
affected	 by	 variation	 in	 genome	 copy	 number	 as	 reported	 by	
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Fulton	 et	 al.	 [33].	 The	 region	 is	 resulting	 in	 this	 study	 as	 a	
complex	 CNVR	 but	 having	 the	majority	 of	 individual	 CNVs	 (46	
over	 52)	 to	 be	 gain	 variant	 (45	 heterozygous	 duplications,	 1	
homozygous	 duplication).	 The	 existence	 of	 such	 a	 CNV	 is	
possibly	 due	 to	 the	 importance	 that	 the	 MHC	 has	 in	 immune	
resistance.	As	it	is	known	by	literature	in	fact,	the	high	number	of	
polymorphic	 sites,	 closely	 associated	 with	 resistance	 against	
infection	 diseases	 (e.g.	 Marek's	 disease,	 avian	 Influenza,	 Rous	
sarcoma	disease,	avian	 leukosis,	 infectious	bursal	disease,	avian	
infectious	 bronchitis,	 Salmonella	 enteritidis,	 E.	 coli	 and	 other	
bacterial	diseases),	characterizes	this	complex	[34-35].	
The	 large	 proportion	 of	 singleton	 CNVRs	 has	 been	 previously	
reported	 in	chicken	populations	also	by	Yi	et	al.	 [24],	Han	et	al.	
[22]	 and	 Strillacci	 et	 al.	 [36],	 finding	 a	 total	 fraction	 of	 68.8%,	
76.5%	and	75%,	respectively.	Our	findings	confirm	their	results	
and	 showed	 that	 also	 in	 the	 Mexican	 chicken	 population	 the	
segregation	of	CNVs	exists	among	individuals.	
	
Comparison	with	previous	chicken	CNV	studies		
In	order	to	perform	a	comparison	with	previous	studies	mapping	
CNVs	 in	 chicken,	 we	 migrated	 autosomal	 CNVRs	 coordinates	
from	 galGal3	 to	 galGal4	 for	 the	 CNVRs	 identified	 by	 Tian	 et	 al.	
[21],	 by	Crooijmans	 et	 al.	 [20]	 and	by	Han	 et	 al.	 [22]	 using	 the	
UCSC	 liftOver	 tool	 (https://genome.ucsc.edu/cgi-
bin/hgLiftOver).	In	total	201	out	of	308	(65%)	autosomal	CNVRs	
detected	by	Tian	et	al.	 [21],	837	out	of	1,504	(56%)	mapped	by	
Croijmans	et	al.	 [20]	and	134	out	of	264	(50.75%)	 identified	 in	
Han	et	al.	[22]	were	converted	successfully.	
The	comparison	among	the	CNVRs	found	in	this	study	and	those	
found	 in	other	7	 studies	 [19-20-21-22-24-25-36]	 is	 reported	 in	
Table	3	and	in	the	Additional	File	1:	Sheet	2	showing	the	number	
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of	CNVRs	overlapping	among	the	studies.		
The	 1,216	 CNVRs	 detected	 in	 this	 study	 overlap	 with	 617	
mapped	by	others	confirming	that	a	proportion	of	51%	of	them	
were	 found	 by	 independent	methods	 and	 in	 other	 populations	
(Additional	File	1:	Sheet	2).		
As	 reported	 in	 Table	 3,	 the	 proportion	 of	 overlapping	 CNVRs	
between	this	study	and	each	of	the	other	7	studies	ranged	from	
2.38%	to	35.19%.	Independently	from	the	breeds	included	in	all	
studies,	the	CNVRs	detection	is	mainly	influenced	by	the	sample	
size	 and	 by	 the	 algorithm	 and	 the	 technology	 used	 to	 CNVs	
mapping	 (i.e.	 aCGH	 vs.	 SNP	 or	 whole	 genome	 sequence).	 The	
largest	 overlap	 rates	 occurred	 in	 fact	 when	 the	 comparison	 is	
done	 with	 studies	 using	 in	 their	 analyses	 a	 large	 sample	 of	
individuals	 [24-	 25].	 On	 the	 contrary,	 a	 low	 overlap	 occurred	
when	the	comparison	was	performed	with	studies	that	employed	
a	 low	 number	 of	 samples,	 when	 CNVs	 were	 detected	 with	
different	 technical	 methods	 (i.e.	 aCGH	 or	 whole	 genome	
sequencing)	and	calling	algorithms.	
No	CNVR	is	simultaneously	common	to	this	and	to	all	the	7	other	
studies	 here	 considered.	 The	Additional	 File	 1:	 Sheet	 3	 reports	
the	list	of	CNVRs	simultaneously	shared	by	our	study	and	at	least	
3	 other	 ones	 among	 the	 7	 here	 considered,	 and	 the	 annotated	
genes	found	in	the	regions.	As	shown,	the	CNVR	common	among	
7	studies	are	4	and	are	located	on	chromosome	1	at	42.96-43.13	
Mb,	chromosome	5	at	2.6-3.9	Mb,	chromosome	8	at	15.45-15.47	
Mb	and	chromosome	9	at	3.42-	3.49	Mb.	
In	particular	the	CNVR	on	chromosome	1	is	common	to	7	studies	
and	 includes	 the	 KITLG	 (KIT	 ligant),	 a	 pigmentation	 candidate	
gene	 that	 has	 a	 role	 in	 controlling	 the	 migration,	 survival	 and	
proliferation	 of	 melanocytes.	 Rare	 mutations	 in	 the	 mouse	
homolog	 of	 KITLG	 are	 known	 to	 affect	 coat	 color	 [37].	
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Additionally,	 Metzger	 et	 al.	 [38]	 highlighted	 the	 importance	 of	
this	 gene	 in	 the	 reproduction	 efficiency	 in	 horses	 claiming	 its	
general	effect	in	all	livestock	populations.	
The	CNVR	on	chromosome	5	 (2.60-3.95	Mb)	 (Additional	File	1:	
Sheet	 3)	 harbors	 the	 BDNF	 (brain	 derived	 neurotrophic	 factor)	
gene,	 which	 seems	 to	 be	 involved	 in	 chicken	 heat	 stress	
response.	 In	 fact,	 Lamont	 et	 al.	 [39]	 reports	 that	 early	 thermal	
conditioning	allows	increased	transcription	of	the	BDNF	gene	in	
response	 to	 heat	 stress	 later	 in	 the	 bird’s	 life.	 Furthermore,	
previous	 findings	 indicate	 that	 BDNF	 prevents	 the	 death	 of	
cultured	chick	retinal	ganglion	cells	and,	as	reported	by	Herzog	
et	 al.	 [40],	 the	 tightly	 controlled	 expression	 of	 the	 BDNF	gene	
might	be	important	in	the	coordinated	development	of	the	visual	
system	in	chicks.	Also,	 in	the	same	CNVR	on	chromosome	5	lies	
the	 LGR4	 (leucine	 rich	 repeat	 containing	 G	 protein-coupled	
receptor	 4)	 gene	 that	 in	 human	 is	 associated	 with	 low	 bone	
mineral	density	[41]	
In	the	region	on	chromosome	8	no	genes	were	annotated,	while	
in	 the	 region	 on	 chromosome	 9	 the	 IMP4	 (U3	 small	 nucleolar	
ribonucleoprotein)	 and	 the	 VPS8	 (Vacuolar	 Protein	 Sorting-
Associated	Protein	8	Homolog)	genes	are	annotated,	but	there	are	
no	studies	that	associate	these	genes	to	specific	traits.	
	
	
CNVR	annotation		
Additionally,	 quantitative	 trait	 loci	 (QTL)	 from	 chicken	 QTLdb	
(http://cn.animalgenome.org/cgi-bin/QTLdb/GG/index)	 were	
downloaded	 in	 order	 to	 examine	 their	 overlapping	 with	 the	
identified	CNVRs.	Because	the	confidence	intervals	of	some	QTL	
were	 too	 large,	we	 considered	QTL	 less	 than	5	Mb	of	 length.	 A	
total	of	656	CNVRs	overlapped	with	918	QTL,	corresponding	to	
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172	different	traits	that	included	mainly:	body	weight,	body	size,	
carcass	 traits,	 fatness	 traits,	Marek's	 disease-related	 traits,	 and	
eggshell	(Additional	File	1:	Sheet	6).	
Some	 of	 the	 genes	 identified	 in	 our	 CNVR	 have	 already	 been	
associated	with	functional	traits	in	chickens	in	previous	studies.	
The	 region	 identified	 on	 chromosome	 4	 at	 80.75-81.02	 Mb	
contains	 the	 gene	 SORCS2	 (sortilin	 related	 VPS10	 domain	
containing	receptor	2)	associated	with	aggressive	behavior	traits	
in	males	[42].	The	region	on	chromosome	1	at	130.82-130.89	Mb	
includes	 the	 gene	 OCA2	 (oculocutaneous	albinism	 II).	This	 gene	
had	highly	significant	effects	on	body	weight	 in	weeks	11–12	in	
chicken,	 as	 reported	 by	 Gu	 et	 al.	 [43]	 and	 is	 also	 involved	 in	
pigmentation	[44].	The	CNVRs	on	chromosome	1	at	65.63-	65.98	
Mb	and	at	66.02-	66.03	Mb	harbor	SOX5	(SRY-box	5)	gene,	which	
is	 involved	 in	 chicken	 the	 Pea-comb	 expression.	 In	 fact,	 Pea-
comb	 is	 caused	 by	 a	 duplication	 located	 near	 conserved	 non-
coding	sequences	in	intron	1	of	the	gene	[45].	Three	regions	on	
chromosome	1	at	146.55-146.59	Mb,	at	147.08-147.13	Mb	and	at	
147.78-147.80	Mb	harbor	the	glypican	6	(GPC6)	gene,	glypican	5	
(GPC5)	 gene,	which	 are	 located	within	 the	QTL	 for	 bodyweight	
identified	in	previous	studies	[46-47].	
The	CNVR	on	chromosome	18	(5.00-5.02	Mb)	includes	the	FASN	
(fatty	acid	synthase)	 gene	 that	has	been	 identified	as	one	of	 the	
genes	that	control	 fat	deposition	in	chickens	(i.e.	 fat	bandwidth,	
abdominal	fat	percentage	and	abdominal	fat	weight)	[48].	
Finally,	some	genes	included	in	10	different	CNVRs	found	in	this	
study	 are	 classified	 into	 the	 pathway	 for	 salmonella	 infection	
(http://www.genome.jp/dbget-bin/www_bget?gga05132).	
These	 genes	 are:	 IFNG	 (interferon	 gamma)	 (chromosome	 1	 at	
34.95-35.16	Mb),	DYNC2H1	 (dynein	cytoplasmic	2	heavy	chain	1)	
(chromosome	1	at	182.31-182.3	Mb),	WASF1	(WAS	protein	family	
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member	 1)	 (chromosome	 3	 at	 66.86-66.87	 Mb),	 ARPC2	 (actin	
related	protein	2/3	complex	subunit	2)	 (chromosome	7	at	22.60-	
22.70	 Mb),	 TJP1	 (tight	 junction	 protein	 1)	 (chromosome	 10	 at	
6.08-	 6.11	 Mb),	 DYNC1LI2	 (dynein	 cytoplasmic	 1	 light	
intermediate	 chain	 2)	 (chromosome	 11	 at	 11.42-	 11.51	 Mb),	
FLNB	 (filamin	 B)	 (chromosome12	 at	 8.87-8.87	 Mb),	 RAB7A	
(member	 RAS	 oncogene	 family)	 (chromosome	 12	 at	 9.15-	 9.15	
Mb),	 ARPC1B	 (actin	 related	 protein	 2/3	 complex	 subunit	 1B)	
(chromosome	 14	 at	 4.38-	 4.38	 Mb),	 PLEKHM2	 (pleckstrin	
homology	and	RUN	domain	containing	M2)	 (chr21	 at	 4.21-	 4.22	
Mb).	
	
Clustering	analysis	using	CNVRs	
The	results	of	this	study	suggest	that	there	is	not	a	clear	division	
in	 classifiable	 subpopulations	 based	 on	 the	 CNVR	
characterization	 and,	 thus,	 that	 the	 Mexican	 Creole	 chicken	
population	can	be	considered	a	unique	genetic	mix.	These	results	
are	 different	 to	 the	 ones	 recently	 found	 by	 Strillacci	 et	 al.	 [36]	
using	 the	 same	approach	 in	 Italian	well	defined	chicken	breeds	
clearly	clustered	by	CNVRs	classification	and	by	Tian	et	al.	 [21]	
and	Wang	 et	 al.	 [49]	 in	 chicken	 and	 pigs	 respectively,	 showing	
additional	 evidence	 of	 the	 usefulness	 of	 CNV	 as	 markers	 for	
differentiating	 individuals.	 To	 provide	 a	 validation	 of	 the	
approach	 here	 used	 to	 cluster	 individuals	 of	 the	 Mexican	
population	 with	 CNVs	 we	 performed	 a	 PCA	 and	 a	 hierarchical	
clustering	using	the	SNP	genotypes:	no	clustering	was	obtained,	
and	 the	 population	 resulted	 as	 for	 CNVs	 a	 unique	 genetic	 mix	
(Additional	File	2:	Figure	S1).		
	
Conclusion	
This	study	is	the	first	CNV	genomic	analysis	on	a	large	sample	of	
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individuals	 of	 the	 Mexican	 chicken	 population	 based	 on	 high-
density	 SNP	 chips.	 It	 provides	 insights	 into	 the	 genetic	 and	
genomic	architecture	of	 the	Mexican	Creole	chicken	population,	
providing	 valuable	 genomic	 source	 of	 structural	 variation	 to	
enrich	 the	 chicken	 CNV	 map,	 helping	 future	 CNV	 association	
studies	for	important	traits	in	chickens.	The	major	result	resides	
in	 the	 disclosure	 of	 the	 genetic	 homogeneity	 of	 the	 Mexican	
chicken	population.	This	result	allows	to	consider	all	individuals	
of	 population	 as	 a	 unique	 genetic	 mix	 deriving	 from	 the	
introduction	of	chicken	in	the	American	continent,	following	the	
colonization	 from	 Europe.	 According	 to	 our	 results	 the	 CNV	
variation	 in	 the	population	does	not	 allow	 to	 disclose	 breeding	
strategy	 addressed	 to	 specific	 selection	 criteria.	 The	 same	
method,	 we	 used	 here	 based	 on	 the	 CNV,	 was	 able	 to	 dissect	
properly	 different	 Italian	 breeds	 in	 a	 previous	 study	 [36].	 The	
results	 of	 this	 study,	 thus,	 suggest	 that	 there	 is	 not	 a	 clear	
division	 in	 classifiable	 subpopulations	 based	 on	 the	 CNVR	
characterization	and	that	the	Mexican	Creole	chicken	population	
can	 be	 considered	 a	 unique	mix	 of	 genetics.	 Most	 of	 the	 1,216	
CNVRs	detected	were	novel	variants	disclosed	thanks	to	the	HD	
SNP	 chips	 here	 used,	 which	 enrich	 the	 current	 poultry	 CNV	
database.	This	mapping	is	having	a	particular	value	because	it	is	
based	on	a	unique	poultry	population,	that	we	assumed	to	own	a	
larger	 genetic	 variability	 respect	 to	 selected	 commercial	
population,	 as	 reproduction	 is	 based	on	 an	outbreeding	mating	
system	 by	 more	 than	 500	 years.	 Finally,	 we	 detected	 1,543	
Ensemble	 genes	 ID	 overlapping	 with	 CNVRs,	 including	 genes	
involved	in	well-known	phenotypes	such	as	KITLG	and	OCA2	on	
chromosome	1,	SORCS2	on	chromosome	4,	FASN	on	chromosome	
18.	Also,	some	genes	included	in	10	different	CNVRs	found	in	this	
study,	belong	to	the	pathway	for	salmonella	 infection.	The	MHC	
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region	on	chromosome	16,	which	has	great	 interest	 for	disease	
resistance,	lies	on	a	region	that	is	in	common	among	the	CNVRs	
of	four	studies.	
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Tables	
Table	 1.	 Descriptive	 statistics	 for	 Copy	 Number	 Variants	 (CNVs)	 and	 Copy	 Number	 Variants	

Regions	(CNVRs)	identified	in	the	Mexican	chicken	population	

	

Type	 No.	 Length	
Min	

length	
Max	length	 Mean	length	

Median	

length	
Total	

Coverage	
CNVs	
Loss	 386	 12,575,609	 92	 574,231	 32,579	 6,038	 1.37%	
Gain	 1,538	 74,022,420	 138	 1,345,291	 42,129	 22,810	 8.05%	
All	 1,924	 86,598,029	 92	 1,345,291	 45,009	 19,273	 9.42%	
CNVRs	
Loss	 226	 3,920,955	 92	 279,420	 17,349.36	 4,950	 0.43%	
Gain	 959	 38,550,088	 138	 1,345,291	 40,198.21	 15,414	 4.19%	
Complex	 31	 4,580,519	 3,501	 607,435	 147,758.7	 60,250	 0.50%	
All	 1,216	 47,051,562	 92	 1,345,291	 38,693.72	 13,897.5	 5.12%	
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Table	 2.	Number	 and	proportion	 of	 genome	 covered	 (Coverage	
%)	 by	 Gain,	 Loss	 and	 Complex	 Copy	 Number	 Variants	 Regions	
per	chromosome	(CHR).	
CHR	 Gain	(*)	 Loss	(*)	 Complex	(*)	 Total	 Coverage	(%)	
1	 186	(3.94)	 46	(0.38)	 6	(0.29)	 238	 4.61	
2	 140	(4.78)	 31	(0.38)	 2	(0.14)	 173	 5.29	
3	 101	(3.02)	 18	(0.11)	 0	(0)	 119	 3.13	
4	 58	(3.40)	 20	(0.36)	 0	(0)	 78	 3.75	
5	 58	(6.43)	 8	(0.15)	 0	(0)	 66	 6.58	
6	 41	(3.61)	 9	(0.15)	 1	(0.15)	 51	 3.91	
7	 36	(4.03)	 2	(0.02)	 1	(0.46)	 39	 4.51	
8	 32	(4.55)	 1	(0.30)	 1	(0.68)	 34	 5.53	
9	 25	(3.22)	 8	(0.23)	 0	(0)	 33	 3.45	
10	 32	(5.06)	 9	(0.79)	 2	(1.11)	 43	 6.96	
11	 17	(2.64)	 7	(0.78)	 1	(0.19)	 25	 3.61	
12	 26	(2.73)	 4	(0.16)	 0	(0)	 30	 2.89	
13	 30	(3.88)	 8	(1.05)	 1	(0.52)	 39	 5.45	
14	 32	(7.72)	 7	(2.05)	 1	(0.20)	 40	 9.97	
15	 18	(1.90)	 3	(0.12)	 1	(0.31)	 22	 2.33	
16	 0	(0)	 0	(0)	 1	(81.60)	 1	 81.60	
17	 8	(2.28)	 5	(0.97)	 0	(0)	 13	 3.26	
18	 12	(3.54)	 7	(2.06)	 2	(5.03)	 21	 10.63	
19	 22	(8.32)	 4	(0.23)	 1	(0.91)	 27	 9.46	
20	 17	(3.57)	 3	(0.26)	 2	(0.39)	 22	 4.22	
21	 9	(1.60)	 5	(0.30)	 0	(0)	 14	 1.90	
22	 8	(4.31)	 2	(0.74)	 1	(0.62)	 11	 5.67	
23	 9	(4.78)	 5	(0.95)	 1	(0.73)	 15	 6.46	
24	 12	(9.91)	 2	(0.24)	 0	(0)	 14	 10.14	
25	 3	(2.41)	 3	(1.13)	 2	(2.39)	 8	 6.48	
26	 6	(2.27)	 5	(2.11)	 1	(1.46)	 12	 5.84	
27	 11	(6.04)	 4	(3.66)	 1	(10.74)	 16	 20.45	
28	 10	(3.36)	 0	(0)	 2	(2.24)	 12	 5.61	
Total	 959	 226	 31	 1,216	 	

*	Coverage	of	CNVR	by	chromosome	and	state	(gain/loss/complex)	
relatively	to	each	chromosome	length.		
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Table	3.	Comparison	between	CNVRs	detected	in	this	study	and	in	other	4	published	ones.		

Study	 Method	 Samples	 Breeds	 CNVR	 Length	overlap	
(Mb)	

Common	
CNVR	

Overlap	
(%)	

Crooijmans	 et	 al.	
[20]	 aCGH	 64	 7	 837*	 4.49	 92	 7.57	

Tian	et	al.	[21]	 aCGH	 22	 11	 201*	 0.969	 29	 2.38	
Zhang	et	al.	[19]	 SNP	chip	(60K)	 475	 11	 438	 19.903	 80	 6.58	
Han	et	al.	[22]	 aCGH	 10	 4	 134*	 1.311	 29	 2.38	
Yi	et	al.	[24]	 Sequencing	 12	 12	 8,487	 10.424	 428	 35.19	
Yan	et	al.	[25]	 Sequencing	 6	 2	 5,009	 2.933	 256	 21.05	
Strillacci	et	al.	[36]	 SNP	chip	(600K)	 96	 6	 564	 3.855	 109	 8.96	
This	Study	 SNP	chip	(600K)	 256	 1	 1,216	 47.05	 	 	

*	This	value	refers	to	the	number	of	CNVRs	after	the	shifting	to			
	



 

Figures	

Figure	 1.	 Physical	 distribution	 of	 the	 Copy	 Number	 Variants	
Regions	(CNVRs)	according	to	states	(gain,	loss	and	complex).	
	

	
	
	
Figure	2.	Distribution	of	CNVRs	lengths	identified	with	PennCNV	
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Figure	3.	Sample	count	per	classes	of	samples	(1	singleton;	2-5;	
6-20;	>20)	in	each	class	of	CNVR	length	(<1;	1-10;	10-100;	>100	
kb),	according	to	the	different	CNVRs	states.		
	

	
Figure	4.	Cluster	dendrogram	with	AU/BP	values	(%)		
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Supporting	information	

All	supplementary	files	are	available	at:	
https://doi.org/10.1186/s12863-017-0524-4	
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PART	II	

CNV	mapping	and	population	structure	in	
turkey	populations	

	
Turkey	 (Meleagris	 gallopavo)	 domestication	 process	 began	
about	 2000	 years	 ago	 in	 ancient	 North	 America	 (i.e.,	 the	
combined	 North	 and	 Central	 American	 sub-continents)	
(Thornton	 and	 Emery,	 2015).	 The	 wild	 form	 of	 turkey	 was	
divided	 into	 seven	 subspecies	 (Howard	 and	 Moore,	 1984)	
located	 in	different	geographic	areas	and	having	morphological	
and	plumage	differences.		
The	 Mexican	 turkey	 is	 supposed	 to	 be	 the	 first	 ancestor	 of	
domestic	 turkeys	 (Crawford,	 R.D.,	 1990).	 Turkeys	 from	 central	
America	 underwent	 two	main	migratory	 processes.	 In	 the	 16th	
century	 turkeys	 have	 been	 introduced	 into	 Europe	 and	 spread	
quickly	 across	 European	 countries	 (Schorger,	 1966).	 In	 17th	
Century	French,	Dutch	and	English	colonists	brought	them	back	
into	 North	 America,	 where	 they	 crossed	 them	 with	 local	 wild	
eastern	 subspecies	 (Meleagris	 gallopavo	 silvestris)	 (Crawford,	
1984,	1990).	
Since	 then,	 Turkeys	 experimented	 a	 massive	 expansion	 and	
became	 the	 second	 worldwide	 source	 of	 poultry	 meat,	 in	
particular	in	developing	countries.	In	last	40	years,	turkey	stock	
almost	 tripled,	 average	meat	 production	 per	 bird	 doubled,	 and	
selection	pressure	for	economically	important	traits,	such	as	egg	
production,	 meat	 quality	 and	 body	 weight	 were	 enhanced,	
showing	 an	 intensive	 selection	 process	 on	 turkey	 populations.	
(FAO)		
Recently	scientific	studies	focusing	on	turkey	genetics	developed	
rapidly,	 thanks	 to	 the	 availability	 of	 a	 reference	whole	 genome	
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sequence	(Dalloul	et	al.,	2010).	
The	 following	 study	 is	 the	 first	 to	use	high	density	SNP	chip	 to	
create	CNV	map	 in	 the	Turkey	 species	 (Meleagris	Gallopavo)	 in	
several	 autochthonous	 populations:	 the	 Mexican	 turkey,	 the	
Narragansett,	6	 Italian	breeds	and	a	 commercial	hybrid,	 and	 to	
identify	annotated	genes	harboured	in	the	mapped	CNVRs.	
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Introduction	

The	domestication	of	the	wild	turkey	appears	to	occur	in	Mexico	
between	 200	 B.C	 and	 700	 A.D.	 (Crawford,	 1992).	 The	
domesticated	turkey	has	been	introduced	in	Europe	from	Mexico	
and	 central	 America	 starting	 in	 late	 15th	 century	 (Schorger,	
1966)	 by	 the	 Spanish	 conquerors.	 The	 diffusion	 of	 the	 turkey	
population	 in	 the	European	 territory	was	 very	 fast,	 close	 to	50	
km	 per	 year	 as	 indicated	 by	 Crawford	 (1992).	 The	 rapid	
diffusion	 in	 Europe	 was	 possibly	 facilitated	 because	 of	 their	
farming,	as	turkey	was	appreciated	for	its	meat	(Schorger,	1996).	
Then,	 since	 15th	 century,	 the	 populations	 of	 European	 and	
Mexican	turkey	evolved	independently	for	more	than	500	years.	
At	 present	 in	 Europe	 there	 is	 a	 clear	 differentiation	 in	 several	
turkey	 breeds,	 indicating	 that	 farmers	 and	 breeders	 have	
selected	 the	 turkey	 populations	 according	 to	 a	 directional	 goal	
for	more	 than	 five	 centuries.	 Additionally,	 in	 the	 last	 40	 years,	
companies	 developed	 a	 structured	 breeding	 plan	 to	 produce	
commercial	hybrids	selected	to	maximize	meat	production1.	
In	 this	 study	 six	 Italian	 autochthonous	 breeds	 (Colle	 Euganei	
(CoEu);	 Bronzato	 Comune	 Italiano	 (BrCI);	 Parma	 e	 Piacenza	
(PrPc);	Brianzolo	 (BR);	Nero	d’Italia	 (NI)	Ermellinato	di	Rovigo	
(ErRo)),	 the	 Narragansett,	 the	 Mexican	 turkey	 and	 a	 hybrid	
population	 were	 considered	 to	 disclose	 genome	 structural	
variations	 in	 a	 wide	 dataset	 of	 individuals	 from	 differently	
evolved	populations.		
The	selection	operated	by	farmers	in	the	past	5	centuries	in	the	
Italian	 populations	 determined	 the	 appearance	 of	 strong	
variation	 in	 plumage	 colors,	 in	 body	 size	 and	 weight,	
differentiating	the	populations	in	breeds	(Cavalchini,	1983).	This	

 
1https://www.coe.int/t/e/legal_affairs/legal_co-
operation/biological_safety_and_use_of_animals/farming/Rec%20Turkeys.asp	
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differentiation	 was	 possibly	 also	 facilitated	 by	 the	 geopolitical	
structure	of	Italy	in	middle	ages,	structured	in	a	large	number	of	
small	 states	 with	 very	 limited	 exchange	 of	 goods	 and	
populations,	making	each	turkey	population	genetically	isolated	
from	 the	 others.	 Plumage	 of	 these	 breeds	 spans	 from	 totally	
black	(Nero	d’Italia)	to	white	with	black	streaks	(Ermellinato	di	
Rovigo),	 while	 it	 is	 generally	 bronze	 like	 or	 with	 bronze	
reflection	 in	 all	 the	 other	 Italian	 populations.	 Body	 size	 is	 also	
showing	a	considerable	difference	among	the	Italian	breeds	with	
male	weight	 spanning	 from	 4.5	 to	 6.5	 Kg	 in	 the	 Brianzolo	 and	
reaching	12	kg	in	the	Ermellinato	di	Rovigo	(Table	1).	Due	to	the	
fact	that	local	farming	occurred	for	centuries,	it	is	expected	that	
genetic	 bottleneck	 occurred	 in	 the	 Italian	 populations.	 The	
Mexican	 turkey	 population	 has	 historically	 been	 farmed	 as	 a	
backyard	 population	 without	 any	 directional	 selection	 for	
centuries,	with	a	plumage	very	variable	in	its	color	and	a	weight	
close	to	6	kg	in	males.	In	fact,	in	this	population,	there	is	no	any	
structured	 selection	 program,	 while	 its	 genetic	 peculiarity	 is	 a	
strong	argument	in	favor	of	its	conservation	(Utrera	et	al.,	2016).	
In	 the	 farming	 system	birds	 are	 free	 to	migrate	 facilitating	 the	
exchange	 of	 genetics	 across	 the	 country,	 favoring	 the	 genetic	
variability	 occurring	 in	 the	 population	 thus	 contributing	 to	 its	
morphological	homogeneity	irrespectively	from	the	geographical	
location.	 The	 Narragansett	 breed	 (NARR)	 originated	 in	 Rhode	
Island	 and	 was	 recognized	 as	 a	 breed	 at	 the	 end	 of	 the	 19th	
century.	The	NARR	was	originally	developed	in	Rhode	Island	by	
colonies	 returning	 to	 America	 from	 Europe	 in	 16th	 century,	
bringing	 back	 turkeys	 of	 the	 Norfolk	 Black	 breed	 and	 crossing	
them	with	the	native	American	ones	(Ekarius,	2007).		
In	the	last	40	years	the	intensive	selection	in	turkey	produced	a	
fast-growing	 meat	 bird,	 a	 commercial	 hybrid	 (HYB).	 The	
selection	for	heavy	turkey	started	presumably	in	north	America	
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and	 preferred	 the	white	 pigmentation	 to	 other	 plumage	 colors	
(Christman	and	Hawes,	1999;	Ekarius	2007).	Birds	are	selected	
according	 to	 a	 strong	 directional	 mating	 system	 to	 improve	
weight	 at	 slaughter	 and	 feed	 conversion	 efficiency.	 The	 hybrid	
population	 here	 used	 is	 a	 common	 commercial	 line	 of	 selected	
heavy	turkey	(white	plumage)	that	reach	in	males	a	weight	of	20	
kg	or	more.	
Even	 though	 the	 directional	 selection	 occurring	 in	 European	
populations	 for	 more	 than	 500	 years	 determined	 that	 breeds	
differentiated	in	morphology	and	in	performances,	the	European	
and	 central	 American	 populations	 share	 a	 common	 genetic	
background,	because	 their	 common	ancestral	origin.	This	holds	
true	 also	 for	 commercial	 turkey	 line	 where,	 nevertheless,	 the	
intense	 directional	 selection	 performed	 in	 the	 last	 40	 years,	
affected	 dramatically	 the	 physiology,	 the	 adult	 weight,	 the	
growth	rate,	 the	behavior	and	the	bird’s	sociality	respect	to	the	
wild	type	(EU	directive,	2001).		
The	 Copy	 Number	 Variants	 (CNVs)	 are	 genomic	 structural	
variants	 recognized	 to	 have	 an	 active	 role	 in	 gene	 regulation	
(Redon	et	al.,	2006;	Gamazon	and	Stranger,	2015)	and	capable	to	
identify	 genomic	 variation	 among	 populations.	 Their	 use	 in	
identifying	genomic	variation	among	populations	 is	particularly	
relevant	as	several	authors	found	a	large	proportion	(up	to	60%	
in	 chicken)	 of	 mapped	 CNVs	 Regions	 (CNVRs)	 harboring	
annotated	genes	related	to	expressed	phenotypes	caused	by	the	
specific	evolution	occurred	in	the	populations	(Gorla	et	al.,	2017;	
Strillacci	et	al.,	2018;	Drobik-Czwarno	et	al.,	2018).	
The	 goal	 of	 this	 study	 is	 to	 produce	 the	 first	 CNV	 map	 in	 the	
Turkey	 species	 (Meleagris	 gallopavo)	 using	 high	 density	 SNP	
chip	information	in	several	populations:	the	Mexican	turkey,	the	
Narragansett,	6	 Italian	breeds	and	a	 commercial	hybrid,	 and	 to	
produce	a	GO	analysis	of	annotated	genes	in	the	mapped	CNVRs.	
The	 strong	 directional	 selection	 occurring	 in	 high	 producing	
hybrids,	 the	 one	 occurred	 in	 the	 differentiation	 of	 the	
Narragansett	 and	 the	 Italian	 Turkey	 breeds,	 and	 the	 adaptive	
selection	 in	 the	 Mexican	 turkey	 population	 is	 then	 discussed	
according	to	the	genes	harbored	in	the	CNVRs.	The	second	goal	
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of	 this	 study	 is	 to	 identify	 the	 existing	 variability	 among	 the	
breeds	and	populations	using	the	mapped	CNV,	since	knowledge	
of	 their	 genomic	 variation	 can	 be	 used	 to	 interpret	 the	
phenotypic	variability.	
	
Materials	and	methods	

Sampling	and	SNP	chip	processing	
A	 total	 of	115	biological	 samples	 from	 individuals	belonging	 to	
six	 Italian	breeds	 (Colle	Euganei:	 CoEu	–	22;	Bronzato	Comune	
Italiano:	BrCI	–	5;	Parma	e	Piacenza:	PrPc	–	15;	Brianzolo:	BR	–	
32;	Nero	 d’Italia:	NI	 –	 31;	 Ermellinato	 di	 Rovigo:	 ErRo	 -	 10),	 7	
Narragansett	turkeys	(NARR),	38	commercial	hybrids	(HYB),	30	
Mexican	turkeys	(MEX)	were	available	from	previous	collections	
or	 deriving	 from	 other	 research	 projects	 and	 part	 of	 the	
University	of	Milan	repository	of	animal	samples.	The	University	
of	Milan	permit	 for	the	use	of	collected	samples	 in	existing	bio-
banks	was	released	with	n.	OPBA-56-2016.	The	Mexican	sample	
collection	is	part	of	the	institutional	Project	“Identificación	de	los	
recursos	genéticos	pecuarios	para	su	evaluación,	conservación	y	
utilización	 sustentable	en	México.	Aves	y	 cerdos.	 SIGI	NUMBER	
10551832012”	 coordinated	 with	 the	 activities	 of	 the	 Centro	
Nacional	 of	 Recursos	 Genéticos	 (CNRG)	 at	 Tepatitlán,	 Jalisco	
(México)2.	Original	owners	of	sampled	 individuals	gave	consent	
for	re-use	for	research	purposes.	The	study	did	not	require	any	
ethical	 approval	 according	 to	 national	 rules,	 according	 to	 EU	
regulation,	as	it	does	not	foresee	sampling	from	alive	animals.		
The	samples	of	the	Italian	breeds	belong	to	individuals	originally	
collected	 in	 different	 areas	 of	 North	 Italy	 (Veneto,	 Lombardia	
and	 Emilia	 Romagna),	 in	 nine	 small	 farms	 dedicated	 to	 the	
breeding	of	one	or	 two	breeds	each.	The	MEX	 individuals	were	
originally	 sampled	 across	 twelve	 different	 States	 of	 Mexico,	
characterized	 by	 various	 climatic	 and	 geographical	
environments.	The	individuals	belong	to	backyards	small	groups,	
spread	 over	 many	 small	 farms.	 These	 birds,	 at	 best	 of	 our	

 
2http://www.inifap.gob.mx/SitePages/centros/cnrg.aspx	
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knowledge,	did	not	undergo	any	selection	by	the	owners,	who	let	
them	reproduce	according	to	a	natural	occurring	random	mating	
as	 they	 are	 raised	 as	 a	 backyard	 population.	 The	 Narragansett	
individuals	 were	 originally	 sampled	 from	 two	 family	 farms	 in	
North	 Italy	 A	 brief	 description	 of	 each	 turkey	 population	
including	a	picture,	the	sampling	geographical	area,	the	plumage	
color,	 the	 adult	 body	 weight	 and	 the	 fertility	 performance	 are	
reported	 in	 Table	 1.	 The	 commercial	 hybrid	 comes	 from	 a	
unique	 farm	 in	 the	 Lombardia	 region	 in	 north	 Italy	 from	 the	
same	batch	of	birds.	
DNA	extraction	 from	feathers	(Mexican	samples)	and	blood	(all	
others)	 samples	 were	 performed	 using	 ZR	 Genomic	 DNATM	
Tissue	 MiniPrep	 (Zymo,	 Irvine,	 CA,	 U.S.A.)	 according	 to	 the	
procedures	relative	to	different	tissue.	DNA	was	quantified	using	
NanoQuant	Infinite®m200	(Tecan,	Männedorf,	Switzerland)	and	
diluted	 to	 50	 ng/μl.	 Samples	 were	 processed	 on	 the	 Axiom®	
Turkey	Genotyping	Array	(Affimetrix),	containing	634,067	SNPs.	
The	Turkey_5.0	(GCA_000146605.1)	genome	assembly	was	used	
in	this	study	as	reference	genome.		
A	 quality	 control	 of	 raw	 intensity	 files	 using	 the	 standard	
protocol	 in	 the	 Affymetrix	 Power	 Tools	 package	
(www.affimetrix.com)	 was	 performed	 in	 order	 to	 guarantee	 a	
high	 quality	 of	 obtained	 data.	 Default	 quality	 control	 settings,	
according	 to	 the	manual	 (www.affimetrix.com)	were	applied	 to	
filter	for	low	quality	samples,	i.e.	genotyping	call	rate	<98%	and	
Dish	Quality	Control	<0.82.		
	
CNVs	detection	and	subsequent	analysis	
The	Log	R	Ratio	 (LRR)	and	 the	B	allele	 frequency	 (BAF)	values	
were	obtained	using	 the	Axiom®	CNV	Summary	Tool	 software.	
Outlier	 samples	 for	 LRR	 were	 identified	 using	 the	 SVS	 8.4	
software	(SVS)	(Golden	Helix	Inc.,	Bozeman,	MT,	USA)	through:	i)	
the	 overall	 distribution	 of	 Derivative	 Log	 Ratio	 Spread	 (DLRS)	
values;	ii)	screened	according	to	GC	content,	which	is	correlated	
to	 a	 long-range	waviness	 of	 LRR	 values	 by	 the	wave	 detection	
factor	algorithm	as	in	Diskin	et	al.,	(2008).	
The	CNV	detection	was	performed	on	 the	data	of	birds	passing	
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quality	 controls	 on	 30	 autosomes,	 using	 two	 different	 calling	
algorithms:	 i)	 the	 Copy	 Number	 Analysis	 Module	 (CNAM)	 of	
SVS3 ;	 ii)	 the	 Hidden	 Markov	 Model	 (HMM)	 of	 PennCNV	
software4.	In	order	to	reduce	the	false	positive	calls	a	consensus	
map	of	CNV	obtained	by	the	two	algorithms	was	produced.	
The	CNV	calling	performed	with	SVS	has	been	obtained	using	the	
univariate	 analysis	 based	 on	 LRR	 values,	 with	 the	 following	
options:	univariate	outlier	removal,	a	limit	of	not	more	than	100	
segments	per	10,000	markers	with	a	minimum	of	3	marker	per	
segment,	and	2,000	permutations	per	pair	with	a	p-value	cut	off	
of	0.005,	according	to	the	SVS	8.4	user	manual.		
The	PennCNV	calling	(Wang	et	al.,	2007)	was	based	on	LRR	and	
BAF	values	using	 the	default	parameters:	 standard	deviation	of	
LRR	<0.30,	BAF	drift	 as	0.01	and	waviness	 factor	at	0.05	and	a	
minimum	of	3	SNP	was	required	to	define	a	CNV.	In	addition,	as	
to	 reduce	 the	 false	 calling	 rate	 function	 of	 the	 hmm	parameter	
file	 proper	 of	 PennCNV,	 the	 CNV	 call	was	 obtained	 using	 three	
different	 “hmm”	 files	 (agre.hmm,	 affygw6.hmm,	 hh550.hmm).	
The	 online	 PennCNV	 manual	 describes	 that	 the	 agre.hmm	 file	
produces	 an	excess	of	 false	positive	 calls	 respect	 to	 the	default	
affygw6.hmm	file	(both	specific	for	Affymetrix	SNP	array),	which	
instead	 is	 known	 to	 produce	 a	 low	 number	 of	 CNV	 calls	 (i.e.	
excess	 of	 false	 negative)	 respect	 to	 other	 calling	 software	 and	
algorithms.	 The	 hh550.hmm	 file	 (specifically	 developed	 for	
Illumina	SNP	arrays)	has	been	considered	in	the	calling	process,	
because	is	based	on	a	SNPs	chip	density	closest	to	the	one	used	
in	this	study.		
After	the	four	CNVs	detections	(i.e.	one	for	each	hmm	file	and	the	
one	from	SVS8.4),	the	outputs	were	compared,	at	individual	level	
and	within	each	population,	using	the	-intersectBed	command	of	
Bedtools	software	(Quinlan	and	Hall,	2010).	For	each	individual,	
the	consensus_CNVs	were	defined	as	the	length	of	the	DNA	tract	
full	 overlapping	 across	 at	 least	 two	 detections.	 CNVs	 were	
classified	in	loss	(0	and	1	from	the	PennCNV	output)	and	in	gain	

 
3http://goldenhelix.com	
4http://penncnv.openbioinformatics.org/en/latest/	
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(3	 and	 4	 from	 PennCNV	 output)	 and	were	 constant	 across	 the	
different	callings.		
CNV	 regions	 (CNVRs)	 at	 population	 level	 were	 obtained	 by	
merging	consensus_CNVs	that	overlap	by	at	least	1	bp	using	the	-
megeBed	 command	 of	 Bedtools	 (Quinlan	 and	 Hall	 2010)	 in	 at	
least	 two	 birds.	 The	 identified	 CNVRs	 were	 classified	 as	
“breed_CNVRs”	and	“shared_CNVRs”,	when	occurred	in	only	one	
breed	(i.e.	BR,	BrCl,	CoEu,	ErRo,	NI	and	PrPc)	or	population	(i.e.	
NARR	 MEX	 and	 HYB),	 or	 in	 at	 least	 two	 ones,	 respectively.	
CNVRs	 were	 classified	 within	 population	 in	 gain	 (all	
consensus_CNVs	 gain),	 loss	 (all	 consensus_CNV	 loss)	 and	
complex	 (consensus_CNVs	 both	 gain	 and	 loss).	 Singleton	 CNVs	
were	considered	also	to	be	singleton	CNVRs.	
Genes	 were	 annotated	 within	 the	 CNVRs	 using	 the	 NCBI	
Turkey_5.0	 gene	 dataset	 (annotation	 Release	 102)	 and	 the	
Bedtools	 “-intersectBed”	command	was	used	to	catalogue	these	
genes	 to	 the	 corresponding	 regions.	 Gene	Ontology	 terms	 (GO)	
and	Kyoto	Encyclopedia	of	Genes	and	Genomes	(KEGG)	pathway	
analyses	 were	 performed	 using	 the	 DAVID	 Bioinformatic	
Database5.	 Only	 LOC	 genes	 catalogued	 in	 NCBI	 Database	 as	
protein	genes	were	considered.	
Different	approaches	were	used	to	disclose	population	structure	
and	diversification	of	all	 turkey	population.	 In	order	 to	provide	
the	required	 input	 for	different	analyses	 two	different	matrices	
were	built	using	CNV	data:	i)	the	first	matrix	(matrix_1)	was	built	
by	 assigning	 a	 value	 of	 “1”	 (presence	 of	 CNV),	 or	 “0”	 (normal	
state)	 to	 each	 sample-CNV	 for	 each	 CNVR,	without	 considering	
the	 CNV	 state;	 ii)	 the	 second	 matrix	 (matrix_2)	 was	 built	
assigning	 the	 sample-CNV	genotypes:	 “0”	homozygous	deletion,	
“1”	heterozygous	deletion,	 “2”	normal	 state	 (absence	of	CNV	 in	
that	 region),	 “3”	heterozygous	duplication	 and	 “4”	homozygous	
duplication.	For	details	see	Strillacci	et	al.,	(2018).		
The	 Past	 software	 (Hammer	 et	 al.,	 2001)	 was	 employed	 to	
perform	and	visualize	two	principal	component	analyses	(PCAs),	
the	 first	 based	on	 the	matrix_1	 as	 input	data,	while	 the	 second	

 
5https://david.ncifcrf.gov/tools.jsp	
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based	 on	 matrix_2.	 In	 addition,	 two	 3D	 PCAs	 were	 performed	
with	 the	 “rgl”	 package	 of	 R6	on	 PCAs	 results.	 The	 pvclust	 R	
package	was	utilized	using	 the	 same	matrixes	 to	 carry	out	 two	
Hierarchical	 Clustering	 Analyses	 (HCA)	 applying	 10,000	
bootstraps	(Suzuki	and	Shimodaira,	2006).		
The	STRUCTURE	Software	v.2.3.4	(Pritchard	et	al.,	2002;	Falush	
et	 al.,	 2003)	was	used	 to	 represent	 the	 population	 structure	 of	
the	 populations	 studied,	 on	 the	 basis	 of	matrix_1.	We	 used	 the	
STRUCTURE	admixture	model	without	 the	LocPrior	option	 and	
setting	 5,000	 as	 burning	 period	 and	 10,000	 as	 iterations,	
performing	 five	 replicates	 for	 each	 K	 value	 from	 2	 to	 20	 and	
assuming	 nine	 different	 populations.	 Structure	 Harvester	
software	(Dent	and	vonHoldt,	2012)	was	used	to	obtain	the	best	
K	 values,	 on	 the	 basis	 of	 STRUCTURE	 results,	 providing	 the	
DeltaK	 values	 according	 to	 the	 heuristic	 method	 reported	 by	
Evanno	 et	 al.	 (2005).	 The	 STRUCTURE	 PLOT	 software	
(Ramasamy	et	 al.,	 2014)	was	 employed	 to	 graphically	 visualize	
each	cluster	assignment	of	the	K	obtained.	
	
Results	

CNVs	and	CNVRs	maps	
A	 total	 of	 13	 samples	 (5	 NI,	 2	 PrPc,	 4	MEX,	 1	 ErRo	 and	 1	 BR)	
were	 excluded	 during	 quality	 assurance:	 three	 because	 of	 high	
DLRS	 values,	 seven	 because	 wave	 factor	 values,	 and	 three	 for	
their	 exceptionally	 high	 number	 of	 called	 CNVs.	 Consequently,	
the	 final	 CNV	 dataset	 used	 for	 genomic	 variation	 analyses	
comprised	a	total	of	177	turkeys.	
The	 total	 number	 of	 CNVs	 called	 was	 2,987	 (Supplementary	
Table	 1)	 and	 varied	 in	 terms	 of	 number	 and	 size	 among	 the	
individuals	 of	 each	 population,	 as	 reported	 in	 Table	 2.	 CNVs	
ranged	from	819	bp	to	453.5	kb	in	size	with	an	average	length	of	
115.2	kb,	covering	a	total	 length	of	about	41	Mb	(4.65%)	of	the	
turkey	 genome	 (chromosomes	 1-30).	 The	 BrCl	 and	 the	 HYB	
shown	shorter	average	CNVs	respect	to	other	populations,	while	

 
6https://CRAN.R-project.org/package=rgl	
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in	the	MEX	one	the	longest	average	CNVs	length	was	found.	The	
HYB	birds	are	also	the	most	homogeneous	for	the	average	length	
of	CNVs	(Figure	1A).	The	MEX	breed	is	the	one	with	the	largest	
number	of	CNVs	per	individual	(i.e.	28)	while	the	HYB	is	the	one	
with	the	lowest	(i.e.	10).	
Duplications	 were	 higher	 than	 deletions	 in	 the	 majority	 of	
populations	except	 for	BrCI,	CoEu	and	NARR	breeds,	where	 the	
ratio	gain/loss	(losses	are	 the	sum	of	 the	 total	copy	numbers	0	
and	1;	gains	are	the	sum	of	the	total	copy	numbers	3	and	4)	are	
inverted	as	showed	in	Figure	1B.	The	gain/loss	ratio	is	similar	in	
HYB,	 MEX,	 NI,	 and	 PrPc	 populations	 (about	 65%	 vs.	 35%),	
instead	the	proportion	of	duplication	and	deletion	are	differently	
represented	 in	 the	 other	 populations.	 The	 CNVRs	 including	 at	
least	2	individuals	were	362	counting	189	gains,	116	losses	and	
57	 complexes	 and	 their	 distribution	 on	 the	 chromosomes	 is	
shown	in	Figure	1C.	
Statistics	of	CNVRs	for	each	population	are	reported	in	Table	3.	
A	 total	 of	 1,659	 CNVRs	 (OverAll)	 were	 obtained	 across	 all	
populations	with	412	loss,	1,190	Gain	and	57	Complex.		
Details	on	CNVRs	are	reported	in	the	Supplementary	Table	S2	
for	 those	 including	at	 least	 two	 individuals	and	detected	across	
breeds,	 i.e.	 shared_CNVRs.	 The	 1,297	 singleton	 CNVRs,	
representing	 64%	 of	 all	 detected	 ones,	 are	 listed	 in	 the	
Supplementary	 Table	 S3.	 The	 Supplementary	 Figure	 S1	 is	
showing	the	distribution	of	singleton	among	breeds/populations	
and	the	distribution	of	loss	and	gains	across	all	populations	and	
by	breed/population.	The	 largest	proportion	of	CNVRs	resulted	
to	 be	 gain,	 i.e.	 77%	 across	 all	 breeds/populations,	 with	 a	
proportion	 of	 singletons	 of	 64%.	 This	 result	 is	 consistent	with	
the	 proportion	 of	 singleton	 identified	 in	 chickens	 by	 others	
(Gorla	et	al.,	2017;	Yi	et	al.,	2014).		
The	 Venn	Diagram	 (Heberle	 et	 al.,	 2015)	 shown	 in	Figure	2	A	
represents	the	amount	of	CNVRs	shared	among	the	populations,	
grouping	 them	 as	 ITA	 (all	 Italian	 breeds),	 NARR	 (the	
Narragansett),	 MEX	 (the	 Mexican	 turkey	 population)	 and	 HYB	
(the	 commercial	 cross).	 The	 reason	 of	 this	 grouping	 resides	 in	
the	type	of	evolution	of	the	populations:	the	Italian	breeds	are	all	



 

 108 

highly	 selected	 for	 breed	 standard	 phenotypes	 and	 possibly	
highly	 inbred;	 the	 Mexican	 population	 has	 been	 under	 an	
outbreeding	 mating	 system,	 with	 no	 directional	 selection	
undertaken	for	centuries;	the	NARR	is	a	cross	between	the	wild	
American	turkey	and	the	US	domestic	Bronze	turkey;	the	HYB	is	
a	 commercial	 population	 obtained	 by	 a	 strong	 directionally	
selection	for	heavy	body	weight.	Three	CNVRs	resulted	common	
to	 all	 populations	 and	 a	 large	 proportion	 of	 ITA	 CNVRs	 are	
shared	with	MEX	and	HYB,	65	and	42	CNVRs	respectively.		
In	 Table	 4	 the	 details	 of	 the	 thirty-two	 CNVRs	 detected	 in	 at	
least	 ten	 samples	 and	 the	genes	 laying	 in	 the	 same	 regions	are	
reported.	 Among	 those,	 the	 three	 regions	 in	 common	 to	 all	
turkey	populations,	 as	 shown	also	 in	Figure	2A	 are	 located	on	
chr3	at	92,889,953	–	92,936,492	(CNVR_1126,	gain),	on	chr4	at	
26,993	–	164,704	(CNVR_1240,	gain)	and	on	chr4	at	68,446,449	
–	68,522,752	(CNVR_1371,	complex).	In	the	CNVR_1371,	the	one	
also	found	in	the	largest	number	of	individuals	from	all	breeds,	is	
annotated	 the	 CD8A	 gene	 that	 is	 related	 to	 immune	 and	
inflammatory	 response	 (Li	 et	 al.,	 1999).	 In	 the	 other	 two	
common	regions,	CNVR_1126	and	the	CNVR_1240,	the	FK1L	and	
the	TLR2A	gene	are	annotated.	respectively	involved	in	immune	
and	 inflammatory	 response	 and	 in	 feather	 keratin	 multigene	
family	 with	 implication	 in	 feather	 evolution	 (Li	 et	 al.,	 2013;	
Velová	et	al.,	2018).		
Other	two	regions	are	shared	by	a	large	number	of	individuals	of	
ITA	 breeds	 and	 have	 been	 detected	 on	 chr4	 at	 63,830,569	 –	
63,854,111	 in	 CNVR_1357	 (62	 birds	 from	 ITA	 breeds)	 and	
CNVR_1358	 (65	birds	 from	 ITA	breeds).	These	 two	 regions	are	
both	a	loss,	are	very	close	on	the	genome	being	13,382	bp	apart	
and	have	been	detected	in	almost	the	same	samples	of	the	same	
ITA	breeds.	No	genes	are	annotated	within	these	two	CNVRs.	Ten	
CNVRs	 in	Table	4	 are	 common	 to	 ITA	 and	MEX,	 5	 common	 to	
ITA	 and	 HYB	 and	 only	 1	 in	 common	 between	 ITA	 and	 NARR.	
Among	 these	 regions	 9	 of	 them	 including	 genes	 (CNVR_163,	
CNVR_1243,	 CNVR_1246,	 CNVR_1598,	 CNVR_488,	 CNVR_644,	
CNVR_987,	 CNVR_1025).	 There	 are	 no	 regions	 shared	 only	
among	HYB,	NARR	and	MEX.		
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The	Venn	Diagram	in	Figure	2B	shows	in	detail	the	distribution	
of	CNVRs	among	 the	 six	 Italian	breeds.	 It	 is	worthy	of	mention	
that	the	gene	CD8A	is	in	a	CNVR	common	to	all	the	Italian	breeds	
(in	the	red	circle).	
Among	the	362	CNVRs	a	total	of	140	mapped	only	in	one	specific	
population,	 the	 breed_CNVRs,	 as	 reported	 in	 Supplementary	
Table	 S4.	 The	 mapped	 genes	 in	 any	 species	 and	 the	
corresponding	 references	 for	 each	 association	 studies,	 the	
associated	 phenotypes	 and	 the	 organism	 involved	 are	 also	
indicated.	
The	largest	number	of	breed_CNVRs	occurred	in	the	MEX	turkey	
population	 with	 45	 regions	 followed	 by	 the	 NI	 with	 33.	 The	
lowest	number	of	breed_CNVRs	was	found	in	the	BrCI	and	in	the	
NARR	with	 1	 and	 4	 breed_CNVRs	 respectively.	 The	 number	 of	
genes	annotated	in	the	breed_CNVRs	was	26	and	21	in	MEX	and	
NI,	 while	 the	 number	 of	 genes	 in	 breed_CNVR	 in	 other	 other	
populations	was	between	1	and	8.	The	gene	IMMPL2	is	harbored	
by	 2	 breed_CNVRs,	 one	 in	 the	BI	 (CNVR_69)	 and	 one	 in	 the	NI	
(CNVR_70).	 The	 two	 regions	 are	 very	 close	 even	 if	 they	do	not	
overlap.	
The	 results	 of	 the	 GO	 TERM	 and	 KEGG	 pathway	 analyses	
obtained	 using	 DAVID	 considering	 the	 genes	 found	 in	 the	 362	
shared_CNVRs	 are	 reported	 in	 the	 Supplementary	 Table	 S5	
into	clustered	and	not	clustered	groups	of	genes.		
The	 Supplementary	 Table	 S6	 contains	 the	 information	
generated	 from	 the	 KEGG	 and	 GO	 Term	 analysis	 using	 DAVID	
from	 breed_CNVRs.	 The	 information	 was	 obtained	 using	
Meleagris	gallopavo	 as	 background	 species	 and	 integrated	 and	
confirmed	 using	 the	 Gallus	 gallus	 as	 background,	 in	 case	 of	
absence	 of	 complete	 information	 for	 the	 Meleagris	 gallopavo	
species.	
	
Genetic	Variability	across	turkey	populations	
Two	clustering	analysis	were	performed	based	on	two	different	
matrixes	 (matrix_1	 and	matrix_2)	 described	hereinbefore.	 Both	
the	 cluster	 dendrograms,	 Figure	 3A	 based	 on	 matrix_1	 and	
Figure	4A	 based	 on	matrix_2,	 showed	distinct	 clades	 grouping	
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animals	belong	to	the	same	populations.	It	is	interesting	to	note	
that	 MEX	 and	 NARR	 always	 clustered	 very	 close.	 Also,	 Italian	
breeds	 and	 the	 Hybrid	 group	 form	 well	 distinct	 clusters	
according	to	their	origin.		
In	all	the	PCAs	graphs	in	Figure	3B	3C,	4B	and	4C	the	clustering	
results	 show	 two	 main	 clades:	 NARR,	 MEX	 and	 HYB	 were	
grouping	 closer,	 while	 the	 ITA	 breeds	 clustered	 in	 a	 separate	
one.	
The	 STRUCTURE	 software	 was	 employed	 to	 infer	 population	
structure	 and	gene	 flow	of	 the	 individuals	of	 the	9	populations	
studied.	We	calculate	a	number	of	K	from	K=2	to	K=20	to	identify	
the	true	number	of	possible	clusters	(subpopulation)	in	which	is	
possible	to	divide	the	populations.	The	estimated	likelihood	(LnP	
(D))	values	were	used	to	find	the	ΔK	to	distinguish	the	break	in	
slope	 of	 the	 distribution	 of	 LnP	 (D)	 values	 at	 the	 true	 K.	 The	
analyses	 identify	 K=13	 the	 best	 likely	 K	 value,	 suggesting	 that	
the	population	could	be	divided	into	13	genetic	groups.	
Even	 though	 K=5	 show	 the	 second	 higher	 value	
(Supplementary	 Figure	 S2)	 it	 is	 not	 possible	 to	 well	
differentiate	the	populations	as	in	K	=13.	In	fact,	for	K=2	to	K=12	
it	 is	 not	 possible	 to	 assign	 each	 population	 to	 a	 clear	 distinct	
cluster,	 while	 for	 K=14	 to	 K=20	 the	 high	 level	 of	 admixture	 in	
each	 of	 the	 population	 result	 in	 not	 significant	 successive	
clustering.	
	
Discussions	

The	results	from	this	study	are	likely	reflecting	the	human	action	
on	turkey	populations,	i.e.	its	migration	to	Europe	and	then	back	
to	America,	and	the	directional	selection	occurring	in	the	last	40	
years	to	produce	a	fast-growing	heavy	bird.		
The	study	considers	 three	main	groups	of	birds	 that	 reproduce	
and	 adapt	 according	 to	 different	 constrains	 and	 environmental	
conditions.	 The	 MEX	 population	 developed	 in	 a	 natural	
environment,	with	no	(or	very	little)	intervention	by	humans	in	
mating	and	with	no	(or	very	little)	supplement	of	feed	and	harsh	
rearing	 conditions.	 The	 Italian	 populations	 are	 the	 result	 of	 a	
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phenotypic	 selection	 operated	 by	 individual	 farmers	 in	 their	
small	group	of	individuals	and	operated	to	obtain	birds	that	best	
perform	 in	 the	 semi-extensive	 farming	 system	 (backyard	 with	
recovery	availability	and	feeding	supplement)	that	characterized	
the	 middle	 ages	 poultry	 system	 of	 Italy	 and	 Europe.	 The	 HYB	
population,	 in	 the	 last	 40	 years,	 has	 been	 heavily	 directionally	
selected,	 through	 a	 very	 well-structured	 genetic	 improvement	
and	 breeding	 plans	 to	 improve	 weight	 and	 growing	
performances	 and	 to	 best	 perform	 in	 an	 artificially	 controlled	
environment	with	unlimited	feed	supplement.	
Our	 study	 is	 the	 first	 CNV	 mapping	 in	 a	 worldwide	 turkey	
sampling,	from	populations	collected	across	different	continents,	
and	 disclosed	 similarities	 and	 variation	 in	 CNVs	 and	 CNVRs	
across	the	populations	studied.	Because	of	the	diversity	in	their	
breeding	 history	 and	 actual	 farming	 environmental	 conditions	
the	MEX,	ITA	and	HYB	populations	provide	an	interesting	model	
to	 investigate	 CNV	 variation,	 and	 their	 relation	 to	 gene	
expression	and	 rearing	 conditions.	The	CNV,	 in	 fact,	 are	widely	
recognized	 to	 be	 a	 non-neutral	 genomic	 structural	 variation	
related	 to	positive	 and	directional	 selection.	The	CNV	has	been	
recently	successfully	used	in	poultry	to	differentiate	breeds	and	
populations	 with	 different	 genetic	 background	 (Gorla	 et	 al.,	
2017;	 Strillacci	 et	 al.,	 2017;	 Sohrabi	 et	 al,	 2018),	 as	 well	 as	 in	
other	species	(Xu	et	al.	2016;	Strillacci	et	al.	2018).	Interestingly	
in	chicken	Sohrabi	et	al.	(2018)	discuss	long-term	adaptation	of	
animals	 to	 rural	 and	 hard	 rearing	 conditions	 in	 relation	 to	 a	
specific	expressed	trait	linked	to	a	CNV	identified	in	the	Creeper	
indigenous	chicken	local	population	that	is	adapted	to	the	harsh	
environmental	 condition	 of	 southeastern	 Iran.	 Additionally,	 a	
recent	 study	 on	 a	 eukaryotic	model	 (Hull	 et	 al.,	 2017)	 showed	
that	environmental	changes	are	accelerating	adaptation	through	
the	 stimulation	of	 copy	number	variation	and	 that	 this	 is	not	 a	
random	 effect	 but	 has	 a	 cause	 effect	 relationship.	 Perry	 et	 al.	
(2007)	 also	 demonstrated	 that	 directional	 selection	 due	 to	
starch	 diet	 (i.e.	 environmental	 factor)	 is	 increasing	 specific	
copies	of	the	genes	 involved	in	starch	metabolism	producing	as	
such	CNV	gains.	The	CNV	difference	among	populations	 is	here	
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shown	 in	particular	by	 the	variation	 in	 the	number	of	CNV	per	
bird	that	is	the	lowest	in	the	HYB	(10	on	average)	and	the	largest	
in	 the	MEX	 (28	CNV)	and	by	 the	CNV	 length	 that	 in	 the	HYB	 is	
much	less	variable	than	in	the	other	two	group	(ITA	and	MEX)	of	
birds.	These	findings	support	the	hypothesis	that	the	variability	
in	CNV	(size	and	number),	as	in	the	MEX	vs.	the	HYB,	is	possibly	
related	 to	 the	 different	 breeding	 and	 selection	 underwent	 in	
these	 populations	 and	 to	 the	 environmental	 conditions	 where	
they	were	 farmed:	MEX	very	harsh	rearing	one,	HYB	controlled	
artificial	 environment	 and	 ad	 libitum	 feeding.	 The	 same	 holds	
true	for	the	ITA	vs.	MEX	and	HYB.	
Most	of	the	genes	found	do	not	show	previous	associations	with	
any	 specific	 function	 or	 pathway	 in	 turkey,	 since	 associations	
studies	 in	 turkey	 are	 only	 a	 few,	 but	most	 of	 those	 genes	 have	
been	previously	studied	and	linked	to	functions	in	other	species	
such	as	chicken,	pig,	bovine,	birds,	mice,	zebrafish	and	human,	as	
reported	in	Supplementary	Table	4.	
Thirty-two	regions	were	detected	in	at	least	10	individuals,	and	
14	of	 them	 include	29	 genes,	 that	 are	 known	 to	be	 involved	 in	
different	 traits	 in	 different	 species	 (Table	 4),	 such	 as	 immune	
response	 (TLR2A	 and	 CD8A),	 feather	 evolution	 (FK1L),	 feed	
efficiency	(PRKG1	and	LMAN1),	growth	traits	(TCF15,	FAM110A)	
and	 residual	 feed	 intake	 (TACC1,	 PLEKHA2,	 TM2D2,	 ADAM9,	
IDO2,	C24H8orf4,	ZMAT4),	as	reported	in	Table	4.	
There	 are	 three	 CNVRs	 in	 common	 among	 all	 the	 populations;	
one	 of	 them	harbors	 the	CD8A	gene,	which	 is	 known	 to	 have	 a	
role	 in	 the	host	 immune	and	 inflammatory	response	 in	chicken	
(Li	 et	 al.,	 1999).	The	polymorphism	of	 the	CD8A	 gene	has	been	
studied	 in	5	 lines	of	 turkey	populations	by	Li	et	al.	 (1999)	who	
found	 a	 loss	 of	 this	 gene	 in	 one	 half	 of	 the	 turkey	 of	 a	 studied	
line.	 This	 loss	 can	 be	 related	 to	 the	 CNVR_1371	 found	 in	 this	
study	 where	 34	 CNVRs	 were	 loss	 and	 34	 gain.	 All	 the	 ErRo	
resulted	to	have	a	loss,	CoEu	had	12	loss	(over	13	birds),	BrCI	4	
loss	 (over	 5	 birds),	 while	 other	 populations	 have	 a	 more	
balanced	representation	between	loss	and	gain	CNVs.		
The	 TLR2A	 gene	 has	 been	 shown	 to	 be	 involved	 in	 the	 bird’s	
evolution	with	a	strong	driving	of	TLR	due	to	positive	selection	
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(Velova	 et	 al.,	 2018).	 It	 is	 interesting	 to	 note	 that	 our	 results	
show	that	CNVR_1240	include	the	TLR2A	gene	with	only	normal	
and	gain	state.	Even	if	 the	question	of	 the	adaptive	value	of	 the	
TLR	 genetic	 variation	 is	 still	 unresolved	 the	 results	 found	here	
are	 supporting	 the	 hypothesis	 that	 positive	 selection	 is	 driving	
the	 evolution	 of	 the	 gene	 towards	 duplication	 of	 copies	 as	
proposed	recently	by	Velova	et	al.,	(2018).	
Other	 genes	 in	 the	 CNVRs	 here	 found	 (Supplementary	 Table	
S4)	are	associated	with	immunity	and	inflammatory	response	in	
mice	 (TCF7,	ARHGEF5),	 chicken	 (VMO1,	GUCY1A2,	NBN),	 bovine	
(NEK11)	 and	 in	 all	 species	 (PARP15)	 as	 reported	 in	 previous	
studies	(Velova	et	al.,	2018;	Zhu	et	al.,	2015;	Wang	et	al.,	2009;	
Lim	and	Song	2015;	Saelao	et	al.,	2018;	Jang	et	al.,	2015;	Strillacci	
et	al.,	2014;	Daugherty	et	al.,	2014).	Among	the	genes	reported	in	
the	Supplementary	Table	S4,	the	IMMP2L	gene	lies	in	CNVR_69	
which	 is	 common	 to	NI	 and	BR.	This	 gene	was	 associated	with	
fertility	 in	 mice	 (Bharadwaja	 et	 al.,	 2014)	 and	 with	 collective	
behavior	 in	 zebrafish	 (Tang	 et	 al.,	 2018).	 	 The	presence	 of	 this	
gene	 in	 a	 gain	 CNVR	 may	 have	 some	 link	 with	 the	 typical	
collective	behavior	of	the	turkey.	
	
Conclusions	

This	study	represents	the	first	CNV	mapping	using	high	density	
SNP	chip	on	turkey.	It	provides	a	first	insights	into	the	genomic	
architecture	of	the	turkey	population,	laying	the	groundwork	for	
future	structural	variation	investigation	in	turkey	species.	In	this	
study	we	have	focused	on	the	CNV,	a	structural	variation	linked	
to	 phenotypic	 expression	 regulation,	 in	 order	 to	 identify	
similarities	across	populations	of	the	structural	genome	covered	
by	this	large	variation.		
The	 turkey	 populations	 are	 a	 unique	 resource	 to	 identify	
evolutionary	process	 affecting	 the	 structural	 genome	 since	 it	 is	
possible	 to	 access	 to	 populations	 under	 positive	 selection	 only	
and,	on	 the	other	extreme,	under	heavy	artificial	 selection.	The	
most	 complete	 isolation	 of	 the	MEX	 turkey	 population	 and	 the	
European	ones	 together	 to	 the	HYB	provide	 a	unique	model	 to	
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disclose	 the	 effect	 of	 the	 adaptation	 to	 environment	 and	
directional	 artificial	 selection	 performed	 by	 humans	 on	 the	
structural	genome.		
	



 

Tables	
Table	 1.	 Population	 name,	 sampling	 area,	weight	 (kg)	 and	 plumage	 color	 of	 the	 turkey	 populations	
considered	in	the	study.			

Brianzolo (BR)* Bronzato Comune Italiano (BrCI)* Colle Euganei (CoEu)** Ermellinato di Rovigo (ErRo)** 
 

   
Origin Area: North Italy (Lombardia) 
Weight (Kg): F:2.1-3.2; M: 4.5-6.4 
N. eggs/year: 47   Fertility: 77-78% 
Plumage: Black, bronzed, reticulated gray 
(common), bronzed with white wings.  
Description: Early and disease-resistant bird. Rural 
breeding, numerical consistency extremely small. 

Origin Area: North-East Italy (Veneto) 
Weight (Kg): F:3-3.5; M: 6-7 
N. eggs/year: 70-100   Fertility: 92-93% 
Plumage: brilliant black with intense bronze 
reflections. 
Description: Rustic breed with a strong hatching 
attitude. Breeding in local areas. 

Origin Area: North-East Italy (Veneto) 
Weight (Kg): F:3; M: 5 
N. eggs/year: N/A   Fertility: N/A 
Plumage: bronzed with metallic reflections. 
Description: Rustic breed with a strong hatching 
attitude. Local breeding, numerical consistency 
extremely small. 

Origin Area: North-East Italy (Veneto) 
Weight (Kg): F:4-6; M: 10-12 
N. eggs/year: 70-80   Fertility: 86-92% 
Plumage: white with black streaks. 
Description: Rustic breed with slow growing 
excellent grazers. Breeding in local areas. 

Nero Italiano (NI)* Parma e Piacenza (PrPc)** Mexican (MEX)*** Narragansett (NARR)**; § 
   

 
Origin Area: North Italy (Lombardia) 
Weight (Kg): F:2.1-3-9; M: 4.9-7.1 
N. eggs/year: 41   Fertility: 84-85% 
Plumage: Black. 
Description: Rustic breed with a strong hatching 
attitude Breeding in local areas. 

Origin Area: North Italy (Emilia Romagna) 
Weight (Kg): F:6.5; M: 12 
N. eggs/year: N/A   Fertility: N/A 
Plumage: Steel gray with white streaks. 
Description: Local breeding, numerical consistency 
extremely small. 

Origin Area: Mexico  
Weight (Kg): F: 3.2; M: 5.7 Kg 
 N. eggs/year: N/A   Fertility: N/A 
Plumage: Different colors. 
Description: Backyard birds. Unselected extremely 
variable in term of phenotype and production. 

Origin Area: Rhode Island (USA) 
Weight (Kg): F: 8.2; M: 15 Kg 
 N. eggs/year: N/A   Fertility: N/A 
Plumage: Steel gray color. 
Description: Breeding in Europe and locally in 
Italy. 

*Data from https://www.pollitaliani.it/portfolio-articoli/razze/: **Data from: http://www.agraria.org/tacchini/neroitalia.htm; *** Data from: Utrera et al., (2016);  
§Picture from: https://commons.wikimedia.org/wiki/File:Narragansett_Turkey,_male.jpg  

 



 

Table	2.	Summary	of	CNVs	identified	in	each	population.	

Breed	
N.	of	

samples	
N.	CNVs	

CNV	per	sample	

Min-Max	

(average)	

Loss	

(0/1)*	

Gain	

(3/4)*	

Min	

length	

Max	

length	

Mean	

length	
Coverage	

Total	

Coverage	(%)	

BR	 31	 412	 4-34	(13)	 185	 227	 1,221	 214,517	 15,715	 6,474,485	 0.73	

BrCl	 5	 63	 6-24	(12)	 38	 25	 1,271	 25,586	 7,357	 463,483	 0.05	

CoEu	 22	 354	 8-37	(16)	 191	 163	 1,096	 184,966	 11,762	 4,163,692	 0.47	

ErRo	 9	 135	 8-30	(10)	 53	 82	 1,221	 362,781	 11,569	 1,561,859	 0.18	

NI	 26	 567	 6-69	(22)	 192	 375	 1,096	 283,259	 12,436	 7,038,934	 0.8	

PrPc	 13	 232	 7-42	(18)	 85	 147	 1,328	 230,199	 16,307	 3,783,129	 0.43	

NARR	 7	 96	 10-22	(14)	 51	 45	 1,301	 83,743	 13,105	 1,258,113	 0.14	

MEX	 26	 734	 12-49	(28)	 245	 489	 819	 453,485	 16,979	 12,462,363	 1.41	

HYB	 38	 394	 4-20	(10)	 128	 266	 1,070	 62,316	 9,964	 3,935,744	 0.45	

Total	 177	 2,987	 4-69	(17)	 1,168	 1,819	 819	 453,485	 115,194	 41,141,802	 4.65	

*0=homozygous	 deletion,	 1=heterozygous	 deletion,	 3=heterozygous	 duplication,	 and	 4=homozygous	 duplication



 

Table	3.	Summary	of	CNVRs	identified	for	each	turkey’s	population.	
	

Breed	 CNVR	 Loss	 Gain	 Complex	
Min	
length	

Max	
length	

Mean	
length	

Coverage	
Total	

Coverage	(%)	
BR	 223	 53	 168	 2	 1,221	 214,517	 12,293	 2,741,386	 0.31	
BrCl	 47	 24	 23	 0	 1,383	 25,586	 7,063	 331,977	 0.04	
CoEu	 195	 56	 138	 1	 1,096	 186,030	 10,542	 2,055,612	 0.23	
ErRo	 108	 79	 29	 0	 1,221	 362,781	 12,634	 1,364,494	 0.15	
NI	 358	 58	 293	 7	 1,096	 283,259	 15,186	 5,436,564	 0.62	
PrPc	 186	 59	 126	 1	 1,328	 230,199	 14,029	 2,609,445	 0.30	
NARR	 77	 39	 38	 0	 1,301	 83,743	 11,494	 885,013	 0.10	
MEX	 575	 185	 385	 5	 843	 453,485	 15,864	 9,122,023	 1.03	
HYB	 243	 59	 181	 3	 1,070	 62,316	 8,830	 2,145,688	 0.24	
OverAll	 1,659	 412	 1190	 57	 843	 453,485	 13,612	 22,581,871	 2.55	
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Table	 4.	 List	 of	 the	 CNVRs	 mapped	 in	 at	 least	 10	 birds	 with	
chromosome,	start	bp,	end	bp,	CNVR	length	and	CNVR	state.	For	
each	 of	 the	 CNVRs	 the	 count	 of	 birds	 for	 each	 population	 (ITA,	
NARR,	MEX	HYB)	is	reported	together	with	their	total.	The	genes	
annotated	in	each	region	are	listed	with	the	trait	of	interest	and	
the	reference.	

	

	

CNVR	 CNVR CNVR ITA

start end length BR BrCl CoEu ErRo NI PrPc

CNVR_126 1 52847470 52853786 6316 9 4 13 loss

CNVR_163 1 76320966 76430128 109162 6 8 7 2 23 gain OVSTL,	TCRb1 OVSTL:	eggshell	calcified	
layer	(quail)

Mann	and	Mann,	2015

CNVR_206 1 98886764 98931838 45074 2 17 19 loss

CNVR_210 1 99904908 99927304 22396 9 1 1 1 12 loss

CNVR_307 1 145466178 145680695 214517 9 1 1 11 complex

CNVR_757 2 30461083 30521978 60895 9 4 13 complex

CNVR_780 2 42604981 42606860 1879 9 1 2 1 13 loss

CNVR_809 2 57899261 57923296 24035 1 5 4 10 complex

CNVR_843 2 72167387 72173022 5635 10 4 4 18 loss

CNVR_920 2 101084671 101088748 4077 1 2 6 1 4 14 loss

CNVR_1088 3 20396386 20399251 2865 10 18 11 39 loss

CNVR_1152 3 54655570 54693060 37490 1 2 10 13 complex OPN5L1

CNVR_1226 3 92889953 92936492 46539 1 1 1 1 1 6 4 15 gain FK1L

CNVR_1240 4 26993 164704 137711 2 1 3 2 2 5 3 18 gain TLR2A	 host	immune	response	
(Birds)

Velová	et	al.,	2018

CNVR_1243 4 1581791 1620844 39053 2 9 11 gain GRIA2

CNVR_1246 4 3011587 3071312 59725 5 2 1 4 12 complex FSTL5

CNVR_1259 4 8948522 8954649 6127 12 5 17 loss

CNVR_1357 4 63830569 63837531 6962 21 19 24 1 65 loss

CNVR_1358 4 63850913 63854111 3198 19 19 23 1 62 loss

CNVR_1371 4 68446449 68522752 76303 4 4 13 7 13 2 2 7 16 68 complex CD8A
host	immune	and	

inflammatory	response	
(Poultry)

Yi	et	al.,	2014

CNVR_1408 5 15840153 15842835 2682 3 10 1 4 18 loss

CNVR_1586 7 28038559 28062433 23874 2 1 1 2 2 5 2 15 gain

CNVR_1598 8 3846585 3850061 3476 1 8 1 2 2 14 loss PRKG1 feeding	efficiency	(bovine) Taye	et	al.,	2017

CNVR_465 11 1004126 1053713 49587 1 2 1 2 6 12 gain HNRNPL

CNVR_488 11 18985991 19015763 29772 6 1 1 3 1 12 complex LMAN1,	CPLX4 LMAN1:	feed	efficiency	and	
feeding	behavior	(pig)

Reyer	et	al.,	2017

CNVR_644 16 4206442 4209316 2874 12 11 1 24 loss GRIN2A

CNVR_970 21 5878926 5903943 25017 5 3 2 10 loss

SLC52A3,	RSPO4,	
SRXN1

TCF15 growth	(bovine) Paredes-Sánchez	et	al.,	2015

	FAM110A growth	(human,	bovine) Espigolan	et	al.,	(2015)

ANGPT4 birth	weight	(human) Turan	et	al.,	(2012)

SCRT2 self-	reported	helping	
behavior	(human)

Primes	and	Fieder	(2018)

CNVR_1003 24 2359444 2545474 186030 1 12 13 gain

TACC1,	PLEKHA2,	
TM2D2,	ADAM9,	
IDO2,	C24H8orf,	

ZMAT4

(all	genes)	residual	feed	
intake	(bovine)

Hardie	et	al.,	(2017)

CNVR_1024 26 6388747 6431016 42269 1 2 19 22 gain

CNVR_1025 27 157671 192870 35199 1 5 10 16 gain VPS45,	NUPL2

gain2 4 10CNVR_987 22 5386977 5429908 42931 2 1 1

17 18 gain1

CNVR	state Genes Trait	by	gene:	(species) References

CNVR_113 1 46402671 46430314 27643

N_CNVR Chr NARR MEX HYB Total	Samples
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Figures	
Figure	 1.	 Graphical	 representation	 of	 identified	 CNVRs.	 A)	
Distribution	 of	 Individual	 mean	 length	 for	 each	 population;	 B)	
Percentage	of	losses	and	gains	CNVRs	in	each	population;	C)	Map	
of	CNVRs	in	the	autosomes	according	with	states.	
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Figure	 2.	 Venn	 diagrams	 of	 CNVRs	 identified:	 A)	 in	 turkeys	
grouped	according	to	ITA-breeds;	NARR;	MEX	and	HYB;	B)	in	the	
six	Italian	turkey	breeds.		
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Figure	3.	Hierarchical	clustering	and	PCAs	based	on	CNVRs	(CNV	
encoded	as	 in	matrix_1).	A),	B)	 and	C)	 are	 the	dendrogram,	 the	
PCA-2D	and	the	PCA-3D,	respectively.	
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Figure	4.	Hierarchical	clustering	and	PCAs	based	on	CNVRs	(CNV	
encoded	as	 in	matrix_2).	A),	B)	 and	C)	 are	 the	dendrogram,	 the	
PCA-2D	and	the	PCA-3D,	respectively.	
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PART	III	

Analysis	of	population	structure	based	on	copy	
number	variation	in	cattle	specialized	

breed	

	
	
CNV	 diversity	 in	 cattle	 breeds	 may	 reveal	 the	 genetic	 basis	 of	
their	 respective	 phenotypic	 differences	 and	 provide	 insights	 on	
their	adaptation	to	environments:	extensive	farming	or	intensive	
farming	systems.		
We	 performed	 the	 first	 CNV	 mapping	 of	 Valdostana	 Red	 Pied	
cattle	 (VRP)	 breed	 based	 on	 high	 density	 SNP	 chip,	 comparing	
the	 CNVs	 identified	 in	 the	VRP	with	 those	 already	 available	 for	
the	Mexican	Holstein	(HOL)	and	Italian	Brown	Swiss	(IBS)	cattle.	
The	 comparison	 aimed	 at	 disclosing	 a	 possible	 relationship	
between	 the	 proprietary	 genomic	 structure	 of	 each	 breed	 and	
their	fitness	to	different	farming	systems.		
We	 use	 different	 techniques,	 such	 as	 Principal	 Component	
Analysis;	 clustering	 analysis	 using	 the	 pvclust	 function	 of	 the	
pvclust	 R	 package	 (Suzuki	 &	 Shimodaira,	 2006);	 the	 admixture	
model	 of	 STRUCTURE	 software	 v.2.3.4	 (Pritchard	 et	 al.,	 2002;	
Falush	et	al.,	2003)	to	investigate	population	structure	and	finally	
we	investigate	possible	regions	under	selection	using	VST	statistic	
as	defined	in	Redon	et	al.,	(2006).	
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Introduction	
The	 use	 of	 genomic	 information	 in	 dairy	 cattle	 breeding	 has	
taken	high	priority	in	recent	years,	as	genomic	selection	has	been	
adopted	 to	 improve	 genetic	 gain	 for	 production	 traits	 such	 as	
milk	 production	 [1]	 and	 meat	 quality	 [2]	 in	 cattle	 breeding	
programs.	In	the	last	50	years,	artificial	and	natural	selection	has	
provoked	 changes	 within	 the	 cattle	 genome,	 causing	 relevant	
phenotypic	and	genetic	variability	and	resulting	in	the	adaptation	
to	local	environments	[3].		
Structural	 variations,	 as	 the	 Copy	Number	 Variants	 (CNVs),	 are	
one	of	the	major	contributors	to	genetic	diversity	and	phenotypic	
variation	[4].	Liu	et	al.,	(2010)	[5].	Underlined	the	importance	of	
CNVs	 in	 disclosing	 genetic	 diversity	 among	 populations	 and	 in	
breeds	evolution.		
CNVs	 were	 defined	 as	 large-scale	 insertions	 and	 deletions,	
ranging	from	50	bp	to	several	megabases	(Mb)	[6].	Compared	to	
SNPs,	 which	 are	 commonly	 used	 to	 detect	 the	 existing	 genetic	
variation	in	cattle,	CNVs	involve	larger	genomic	regions	and	may	
have	 stronger	 effects	 on	 gene	 regulation	 and	 expression.	 These	
effects	 include	 the	 modification	 of	 gene	 dosage	 and	 structure,	
which	 in	 turn	 cause	 exposure	 of	 recessive	 alleles	 and	 the	
alteration	of	gene	regulation	[7,8].	Studies	in	several	species	have	
found	that	CNVs	are	sources	of	phenotypic	variability	as	well	as	
disease	 susceptibility,	 describing	 up	 to	 30%	 of	 the	 genetic	
variation	in	gene	expression	[9,10].		
CNVs	have	been	mapped	 in	several	 livestock	species	 [11,12,13],	
although	 their	 use	 as	 markers	 to	 explain	 intra-breed	 genetic	
diversity	has	been	explored	in	only	a	few	species	[14,3,15].	CNV	
properties	 used	 to	 explore	 the	 diversity	 and	 structure	 of	 cattle	
populations	 remains	 an	 issue	 of	 little	 investigation	 [16].	 The	



 

 135 

study	 of	 genetic	 variation	 in	 local	 populations	 is	 a	 fundamental	
step	in	understanding	the	evolutionary	processes	that	lead	to	the	
divergence	 and	 differentiation	 of	 breeds.	 Since	 the	 mid	 20th	
century,	 the	 strong	 selective	 pressure	 to	 increase	 milk	
production	 in	 cattle	 has	 led	 to	 the	 specialization	 of	 breeds	 that	
were	once	dual-purpose	 in	 the	past	(i.e.	Brown	Swiss)	 to	where	
their	 structure	 in	 terms	 of	 size	 and	 physiology	 has	 drastically	
changed.		
The	 Valdostana	 Red	 Pied	 (VRP),	 farmed	 in	 the	 Aosta	 Valley	
located	in	the	northwest	Alps	of	Italy,	is	an	autochthonous	dual-
purpose	 cattle	 breed	 that	 did	 not	 undergo	 any	 specialized	
intensive	selection	for	neither	milk	nor	meat.	This	population	 is	
bred	 for	milk	 and	meat,	 and	 possesses	 fairly	 considerable	milk	
production	considering	the	size	of	the	animal	(mature	weight	of	
500	 kg	 on	 average).	 It	 is	 a	 well-adapted	 breed	 to	 harsh	
environments	as	those	that	animals	face	during	summer	pasture	
in	 the	 Alps.	 Therefore,	 it	 is	 thought	 that	 the	 VRP’s	 genetic	
background	 is	 a	 population	 that	 diverged	 less	 than	 specialized	
populations	as	 the	Brown,	 from	the	ancestral	 cattle	populations	
of	the	Alps.	
CNV	 diversity	 in	 cattle	 breeds	 may	 reveal	 the	 genetic	 basis	 of	
their	 respective	 phenotypic	 differences	 and	 provide	 insights	 on	
their	adaptation	to	environments:	extensive	farming	vs.	intensive	
farming	systems.		
In	 this	 study	we	mapped	 the	CNVs	 of	 143	Valdostana	Red	Pied	
(VRP)	 bulls	 in	 order	 to	 identify	 structural	 variations	 in	 this	
breed’s	genome.	Additionally,	we	compare	 the	VRP’s	CNVs	with	
those	 already	 identified	 in	 the	 Mexican	 Holstein	 (HOL)	 and	
Italian	 Brown	 Swiss	 (IBS)	 cattle	 to	 highlight	 genomic	 structure	
diversity	 possibly	 linked	 to	 differences	 in	 breed	 fitness.	 Breeds	
were	chosen	because	of	 their	selection	histories.	VRP	remains	a	
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dual-purpose	 breed,	 HOL	 has	 been	 heavily	 selected	 for	 milk	
production	 and	 intensive	 farming	 and	 IBS,	 while	 a	 dairy	 cattle	
breed	for	not	more	than	20	years,	was	initially	selected	for	dual-
purpose	characteristics.	
	
Results	
CNV	and	CNVR	detection	in	VRP	breed	
The	 stringent	quality	 control	performed	with	 SVS®	allowed	 for	
the	 identification	 of	 35	 outlier	 individuals	 that	 were	 identified	
according	 to	 the	 Derivative	 Log	 Ratio	 Spread	 (DLRS)	 and	
genomic	wave	factor	values.	A	total	of	6,784	CNVs	were	detected	
with	 PennCNV	 software	 across	 the	 29	 autosomal	 chromosomes	
in	 a	 final	 dataset	 of	 108	 VRP	 bulls.	 Among	 these,	 3,990	 were	
deletions	 (i.e.	 loss	 states	 0	 and	 1)	 and	 2,794	were	 duplications	
(i.e.	gain	states	3	and	4),	with	a	deletions/duplications	CNV	ratio	
of	 1.42	 calculated	 as	 the	 total	 number	 of	 losses	 divided	 by	 the	
number	of	gains.	The	CNV	count	ranged	from	38	to	141	CNVs	per	
sample,	 with	 an	 average	 of	 62	 CNVs.	 Additionally,	 the	 size	 of	
CNVs	ranged	from	31,558	to	103,139	bp,	with	an	average	size	of	
55,566	 bp.	 Table	 1	 shows	 the	 descriptive	 statistics	 of	 the	
identified	 CNVs	 and	 CNV	 regions	 (CNVRs)	 at	 population	 level	
according	to	their	state.	
All	 the	CNVs	were	merged	 into	1,723	unique	CNVRs	(832	gains,	
812	 losses	 and	 79	 complex)	 across	 all	 individuals,	 covering	 a	
total	of	59.4	Mb	of	 the	genome,	which	corresponds	 to	2.36%	of	
the	bovine	UMD3.1	assembly.	
In	Table	S1	the	complete	list	of	CNVRs	in	the	VPR	is	reposted.	In	
Fig	 1,	 the	map	 displays	 gain,	 loss	 and	 complex	 CNVRs	 on	 each	
chromosome.	 Table	 S2	 reports	 the	 number	 of	 CNVRs	 by	 state	
(gain,	 loss	 and	 complex)	 and	 the	 proportion	 of	 coverage	 by	
chromosome	 in	 the	 VPR.	 Although	 CNVRs	 were	 found	 on	 all	
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autosomes,	 the	 number	 and	 the	 total	 size	 of	 CNVRs	 per	
chromosome	were	not	correlated	with	their	lengths.	
The	regions	mapped	in	a	large	number	of	individuals	were:	chr12	
at	72.42-74.59	Mb	(n	=	104	samples)	and	70.49-72.12	Mb	(n	=	91	
samples),	 chr5	 at	 117.28-117.64	 Mb	 (n	 =	 107	 samples),	 and	
chr10	 at	 23.89-25.26	 Mb	 (n	 =	 76	 samples).	 In	 some	 cases,	
subjects	 contribute	 with	 two	 or	 more	 adjacent	 CNVs	 to	 the	
location	of	these	regions.		
A	 classification	 based	 on	 CNVR	 length	 was	 performed	 for	 each	
state	(i.e.	gain,	 loss,	complex)	and	the	CNVRs	have	been	divided	
into	three	classes	of	length:	1-10	kb,	10–100	kb,	>100	kb	(Fig	2).	
The	majority	of	CNVRs	identified	in	this	study	(n	=1,043)	have	a	
length	comprised	between	10	kb	and	100	kb.	The	class	of	length	
comprised	between	10	and	100	kb	harbors	the	highest	number	of	
gain,	 loss	 and	 complex	 CNVRs.	 In	 addition,	 593	 CNVRs	 have	 a	
length	comprised	between	1	and	10	kb,	while	only	87	CNVRs	had	
a	size	longer	than	1	Mb.	
Additionally,	 each	 class	 of	 CNVRs	 length	 has	 been	 divided	 into	
four	classes	of	CNV	frequency	per	individual	(1,	2-4,	5-15,	≥	16).	
The	 frequency	 count	 is	 shown	 in	 Fig	 3.	 Thus,	 for	 every	 state,	
CNVRs	were	defined	as	singleton	regions	(if	defined	by	one	single	
individual),	 rare	 regions	 (if	 determined	 by	 2-4	 individuals),	
moderately	 recurring	 (if	 determined	 by	 5-15	 individuals),	 or	
recurring	 regions	 if	 including	 at	 least	 16	 individuals	 (Fig	 3).	 In	
general,	 among	 the	 identified	 CNVRs,	 1,061	 (58.9%)	 were	
singleton,	440	 (25.5%)	were	 rare	 regions	and,	267	 (15.5%)	are	
CNVRs	identified	in	more	than	5	individuals.	If	we	consider	CNVR	
states,	 the	 occurrences	 of	 singleton	 and	 rare	 regions	 were	 the	
most	frequent	both	in	gain	and	loss	regions	as	shown	in	Fig	3.	
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Annotation	of	Valdostana	Red	Pied	CNVRs	
A	 total	 of	 882	 Ensembl	 gene	 IDs	 (Ensembl	 UMD3.1),	
corresponding	 to	 442	 genes	 with	 an	 official	 ID,	 have	 been	
identified	 in	 the	 1,723	 CNVRs	 of	 the	 VPR.	 Five	 hundred	 and	
thirty-six	 regions	 (31.1%)	 encompassed	 one	 or	 more	 genes,	
while	1,187	(68.9%)	did	not	involve	any	gene	(Table	S3).		
The	GO	Term	and	KEGG	pathway	analysis	was	performed	using	
the	 DAVID	 Classification	 database.	 After	 FDR	 (p-value	 <	 0.05),	
terms	 resulting	 as	 statistically	 significant	 included	 12	 genes	
involved	 in	 heart	 development	 as	 “Biological	 Process,”	 and	 4	
genes	 involved	 in	 glucoside	 activity	 as	 “Molecular	 Component.”	
The	complete	list	of	Biological	Process,	Cellular	Component,	and	
Molecular	Function	is	reported	in	Table	S4.	
	
Comparison	of	CNVs	across	populations	
A	 comparison	 among	 VRP,	 HOL,	 and	 IBS	 cattle	 breeds	 was	
performed	 using	 CNVs	 called	 here	 and	 previously	 published,	
summarized	in	Table	S5	and	in	the	Venn	diagram	of	Fig.	S1.	We	
observe	 that	 171	 CNVRs	 are	 shared	 among	 the	 three	 breeds,	
while	1,107,	1,800,	and	1,161	unique	CNVRs	belong	 to	 the	VRP,	
IBS	and	HOL,	respectively.	In	particular,	the	CNVRs	found	in	HOL	
overlap	with	18.16%	(313	CNVRs)	of	 those	 found	 in	VRP,	while	
the	identified	regions	in	IBS	overlap	with	27.51%	(474	CNVRs)	of	
those	found	in	VRP.	Considering	the	lengths	of	the	common	171	
CNVRs,	we	can	observe	that	those	shared	by	VRP	and	IBS	have	an	
average	 length	of	29.82	Mb	(50.17%	of	 the	 length	of	 the	CNVRs	
identified	in	this	study),	while	the	ones	common	to	HOL	and	VRP,	
show	an	average	length	of	24.15	Mb	(40.06%	of	the	length	of	the	
CNVRs	detected).	
	
Principal	component	analysis	
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In	 the	 PCAs,	 the	 first	 two	 principal	 components	 explain	 10.2%	
and	 3.1%	 respectively	 of	 the	 total	 variability	 of	 data	 (PC1	 and	
PC2)	for	Analysis	1.	The	same	occurs	for	Analysis	2	where	10.5%	
and	2.3%	of	 the	 total	 genetic	 variation	 is	 explained	by	PC1	and	
PC2.	 Both	 analyses	 clearly	 identified	 three	 clusters	
corresponding	 to	 the	 three	breeds	 (Figs	4A	and	4B).	While	VRP	
and	IBS	breeds	appeared	to	be	closer,	a	clear	separation	resulted	
between	IBS	and	VRP	in	respect	to	HOL.		

	
Clustering	to	infer	population	structure	
The	STRUCTURE	software	was	employed	 to	analyze	 the	genetic	
structure	of	 the	396	animals	of	 IBS,	VRP	and	HOL.	The	analysis	
identified	the	true	number	of	clusters	(subpopulation)	in	which	it	
is	possible	to	divide	the	considered	pools	of	individuals.	i.e.	VRP,	
IBS	 and	 HOL.	 Both	 the	 analyses	 (Analyses	 1	 and	 2)	 assumed	 a	
model	with	 12	 clusters	 (K=12).	 Based	 on	 the	 heuristic	 test,	 the	
estimated	likelihood	(LnP	(D))	values	were	used	to	obtain	the	∆K	
values	 in	 order	 to	 distinguish	 the	 break	 in	 slope	 of	 the	
distribution	of	LnP	(D)	values	at	the	true	K.	The	analyses	identify	
K=3	as	the	likely	K	value	suggesting	that	the	population	should	be	
divided	 into	3	genetic	groups:	 the	VPR,	 the	 IBS	and	 the	HOL.	 In	
both	 analyses	 at	 K=2,	 VRP	 and	 IBS	 were	 clearly	 assigned	 to	 a	
unique	 group	 distinct	 from	 HOL.	 At	 K=3,	 the	 three	 breeds	
resulted	 in	 a	 clear	 separation	 of	 three	 clusters	 and	most	 of	 the	
individuals	 were	 assigned	 to	 a	 cluster	 according	 to	 the	 breed	
division.	From	K=4	to	K=12,	the	high	level	of	admixture	in	each	of	
the	breeds	 (in	particular	 in	 the	HOL)	 shows	 that	 the	 successive	
clustering	is	not	significant	(Figs	4A	and	4B).	
The	 cluster	 tree	 represented	 in	 Fig	 5	was	 built	 using	 the	CNVR	
differences	 identified	 in	 the	 three	 considered	 populations.	 Each	
node	 of	 the	 tree	 reports	 the	 AU-P	 and	 Bootstrap	 probability	
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values	and	the	edge	number.	As	reported	by	[17]	the	AU-P	value	
is	 considered	more	 accurate	 than	 the	BP-P	 value.	 Even	 if	many	
AU-P	values	reported	 for	every	node	of	 the	tree	are	 low,	maybe	
due	 to	 the	 number	 of	 CNVRs	 considered	 in	 this	 analysis	 (171	
regions	 share	 among	 the	 three	 breeds),	 the	 majority	 of	
individuals	are	grouped	 in	 three	distinct	clusters	corresponding	
to	 the	 three	 populations	 (breed-cluster).	 To	 be	 noted	 that,	 IBS	
and	 VRP,	 although	 separated	 in	 different	 clusters,	 come	 from	 a	
common	node.		
	
Population	Differentiated	CNVs	on	VST	
In	 order	 to	 test	 if	 the	 CNVs	 can	 be	 related	 with	 population-
specific	 selection,	 we	 calculated	 the	 pairwise	 VST	 among	 every	
combination	 of	 the	 three	 breeds	 (HOL	 vs	 IBS,	 VRP	 vs	HOL,	 and	
VRP	vs	IBS).	The	VST	statistic	defines	values	that	range	from	0	to	
1;	 the	 high	 VST	 values	 (close	 to	 1),	 similar	 to	 FST,	 suggest	
differentiation	between	populations,	while	low	values	(close	to	0)	
are	indicative	of	very	similar	populations.	
To	 calculate	 the	 VST	 we	 used	 a	 total	 of	 930	 CNVs	 (only	 those	
identified	in	at	least	5	individuals	in	each	population),	defined	by	
1,222	 SNPs.	 The	 defined	 threshold,	 taking	 into	 account	 the	
pairwise	of	VST	>	mean	+	2	standard	deviations,	identified	a	total	
of	33	CNVs	(Fig	6):	8	for	HOL	vs	IBS;	13	for	VPR	vs	HOL;,	12	for	
VPR	 vs	 IBS.	 The	 genes	 and	 QTL	 annotated	 in	 these	 CNVs	 are	
reported	in	Table	2.	

	
Discussion	
Although	 recent	 studies	 on	 CNVs	 in	 cattle	 breeds	 using	 high-
density	 SNP	 chips	 have	 been	 performed,	 limited	 knowledge	
regarding	 genetic	 variability	 and	 CNV	 characterization	 in	 local	
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populations	 like	the	VRP	is	available.	This	study	is	the	first	CNV	
scan	 on	 the	 VRP	 using	 a	 high-density	 SNP	 chip,	 and	 provides	
valuable	 information	of	 the	structural	genomic	variation	able	 to	
enrich	the	Bovine	CNV	map.	A	total	of	6,784	CNVs	were	detected	
in	 the	 autosomes	 of	 108	 VRP	 bulls,	 and	 breed-specific	 region	
under	 selection	 were	 identified	 comparing	 CNVs	 mapped	 here	
and	 those	 available	 from	 previously	 published	 studies	 for	 IBS	
(n=164)	[18]	and	HOL	(n=	124)	[19]	populations.	We	observed	a	
similar	 number	 of	 duplications	 (gain	 state)	 and	 deletions	 (loss	
state)	in	VRP	and	IBS,	while	the	number	of	deletions	(loss	state)	
is	superior	to	the	number	of	duplications	(gain	state)	in	the	HOL	
breed.	The	latter	result	was	previously	reported	for	the	Holstein	
breed	 in	several	studies	based	on	SNPs	 [20]	and	whole	genome	
sequencing	 [21].	 These	 results	 suggest	 the	 existence	 of	 high	
genetic	 variability	 among	 these	 breeds.	 When	 we	 assessed	
population	 structure,	 both	 principal	 component	 analyses	
revealed	 that	 the	 three	 cattle	 breeds	 form	 non-overlapping	
clusters,	 which	 is	 evident	 given	 that	 they	 are	 three	 separated	
populations,	 even	 though	 the	 second	 PCA	 shows	 a	 clearer	
separation	 among	 IBS	 and	 VRP.	 The	 same	 results	 are	 found	 by	
the	 hierarchical	 clustering,	 performed	 on	 a	 matrix	 based	 on	
presence	or	absence	of	a	CNV	in	a	CNVR,	which	also	exhibits	that	
the	 HOL,	 VRP	 and	 IBS	 samples	 are	 grouped	 in	 three	 distinct	
clusters.	Also,	both	 the	admixture	analyses	revealed	 that	at	K=3	
the	 three	 breeds	 result	 in	 three	 clearly	 separated	 clusters,	 and	
most	 of	 the	 individuals	 are	 assigned	 to	 a	 cluster	 according	 to	
their	breed	division.	Very	interestingly	at	K=2	IBS	and	VPR	result	
a	 unique	 genetic	 population.	 Till	 30	 years	 ago	 in	 fact	 both	 VPR	
and	IBS	were	sharing	the	same	selection	by	breeders:	milk,	meat	
and	 adaptation	 to	 pasture.	 This	 latter	 characteristic	 is	
fundamental	 for	 breeds	 that	 during	 summer	 face	 the	
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environmental	challenge	of	pasturing	in	harsh	mountain.	This	 is	
still	 the	 ongoing	 selection	 objective	 for	 the	 VPR,	 while	 the	 IBS	
selection	pushed	in	the	last	30	years	towards	the	specialization	of	
the	 population	 as	 a	 dairy	 breed.	Nowadays,	 in	 fact,	 the	 IBS	 is	 a	
specialized	dairy	breed	with	a	 large	proportion	of	genes	coming	
from	the	US	Brown,	historically	selected	for	milk	production.	The	
results	 of	 this	 study	 show	 that	 IBS	 and	VPR	 still	 are	 very	 close	
populations	as	the	30	years	of	strong	directional	selection	in	the	
IBS	 is	 still	 not	 sufficient	 to	 completely	 differentiate	 the	 two	
populations.		
Regarding	 the	 HOL	 since	 1950,	 Mexico	 has	 imported	 Holstein	
germplasm	 (mainly	 animals	 and	 semen)	 largely	 from	 the	 USA	
and	 Canada	 to	 increase	 the	 productivity	 of	 its	 dairy	 cattle	
populations	 [22].	 The	 same	 occurred	 in	 Italian	 Holstein	 where	
more	than	80%	of	the	genetic	origin	is	attributed	to	US	bulls	[23].	
The	 HOL	 population	 here	 analyzed	 thus	 can	 be	 considered	 a	
representative	 sample	 of	 the	 genetic	 background	 that	 USA	
population	 has	 diffused	 all	 over	 the	 world	 in	 the	 last	 century	
after	importation	from	the	Holstein	and	Frisian	regions	of	north	
Europe.	 The	 HOL	 population	 then	 has	 an	 origin	 mostly	
completely	 different	 than	VPR	 and	 IBS.	 This	 result	 clear	 at	K=2	
where	HOL	population	is	clustered	separately	from	VPR	and	IBS.	
Additionally,	 the	 HOL	 at	 K=3	 is	 showing	 common	 CNV	 regions	
with	 the	 IBS	 and	 in	 a	 very	 minor	 extent	 to	 the	 VPR.	 We	 may	
speculate	that	this	has	occurred	because	the	selection	in	the	IBS	
to	 increase	 milk	 production	 has	 generated	 CNVs	 of	 common	
importance	between	HOL	and	IBS.	Nevertheless,	at	K=3	IBS	and	
VPR	remain	very	well	differentiated	from	the	HOL	and	results	to	
be	2	distinct	populations.	
The	pairwise	VST	for	the	three	comparisons	(HOL	vs	IBS,	VRP	vs	
HOL,	 and	 VRP	 vs	 IBS)	was	 estimated	 in	 order	 to	 identify	 CNVs	
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under	 a	 population-specific	 selection.	 According	 to	 the	 VST,	 we	
identified	a	 total	of	33	CNVs	 that	differing	 in	 frequencies	 in	 the	
above-mentioned	comparisons,	8,	12	and	13,	respectively,	could	
be	considered	involved	in	breed	selection.	The	high	VST	values	in	
the	comparison	of	VRP	vs	IBS,	as	shown	in	Table	2,	are	closer	to	
zero	in	respect	to	the	VST	results	obtained	comparing	HOL	to	the	
other	 two	 breeds,	 which	 are	 closer	 to	 one.	 This	 confirms	 the	
genetic	similarity	described	above	between	the	two	populations	
and	their	difference	from	the	HOL.		
Among	 the	 33	 genomic	 regions,	 21	 CNVs	 encompass	 22	 genes,	
some	of	which	have	a	well-known	phenotype	associated	in	cattle	
or	in	other	species.	The	lysozyme	gene	(LYZ)	(VPR	vs	IBS)	on	BTA	
5,	for	example,	encodes	for	the	1,4-beta-N-acetylmuramidase	C.	It	
belongs	 to	 a	 class	 of	 enzymes	 that	 lyse	 the	 cell	walls	 of	 certain	
gram-positive	 bacteria	 and	 has	 also	 been	 described	 in	 other	
important	 functions	 including	 inactivation	 of	 certain	 viruses,	
enhancement	 of	 phagocytic	 activity	 for	 leukocytes	 and	
macrophages,	 and	 control	 of	 inflammation	 [23].	 For	 the	 same	
breed	 comparison,	 the	 CNV	 on	 BTA	 10	 contains	 leucine-rich	
repeat	 containing	49	(LRRC49),	which	has	been	 associated	with	
subcutaneous	 fat	and	marbling	score	 in	 the	Canchim	beef	breed	
by	[25].	In	respect	to	the	HOL	vs	IBS	comparison,	the	CNV	on	BTA	
23	 overlaps	BCL2	 antagonist/killer	 1	 (BAK1).	 This	 gene	plays	 a	
crucial	 role	 in	 inducing	 apoptosis,	 and	 [26]	 associates	 it	 with	
carcass	measurements	in	beef	cattle	breeds.	Also,	sortilin	related	
VPS10	 domain	 containing	 receptor	 2	 (SORCS2)	 on	 BTA	 6	 has	
been	 associated	 with	 lipid	 metabolism	 in	 different	 mammal	
species	and	with	back	fat	thickness	in	the	Nellore	beef	breed	by	
[27].	The	CNV	identified	on	BTA	13	overlaps	with	lipin	3	(LPIN3).	
This	 gene	 has	 been	 associated	 with	 both	 lipodystrophy	 in	
humans	and	with	back	 fat	 thickness	 in	 cattle	by	 [28].	Also,	 [29]	
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defines	 this	 gene	 as	 a	 potential	 marker	 for	 hepatic	 metabolic	
adaptations	 to	 negative	 energy	 balance,	 as	 well	 as	 for	 altered	
physiological	 state	 occurring	 during	 the	 transition	 period	 in	
cattle,	like	adipose	tissue	lipolysis	or	hepatic	fatty	acid	oxidation.	
Finally,	 in	 the	 last	 comparison	 of	 VRP	 vs	 HOL,	 the	 possible	
candidate	 genes	 under	 selection	 are	 reelin	 (RELN),	 gamma-
aminobutyric	acid	type	A	receptor	alpha2	subunit	(GABRA2),	and	
solute	carrier	family	9	member	C2	(SLC9C2).	The	RELN	gene,	on	
BTA	 4,	 is	 involved	 in	 the	 regulation	 of	 mammary	 gland	
morphogenesis	 [30].	 These	 authors	 also	 report	 a	 down-
regulation	 of	 RELN	 in	 lactating	 pregnant	 cows,	 showing	 an	
imbalance	and	possible	lower	availability	of	this	protein	affecting	
embryo	 differentiation	 and	 development.	 The	 GABRA2	 gene,	
located	 on	 BTA	 6,	 is	 involved	 in	 stress	 response	 in	 the	 mouse	
species	 [31].	 Lastly,	 the	 SLC9C2	gene	 is	 located	 within	 a	 CNVR	
associated	 with	 a	 polyunsaturated	 fatty	 acid	 profile	 in	
intramuscular	fat	of	the	Longissimus	thoracis	muscle	in	a	Nellore	
cattle	 population	 (Lemos,	 2017.	 Online	 Thesis;	
http://hdl.handle.net/11449/150817).	
In	 addition,	EPHB3,	PRAME,	TSPY,	and	ZNF280B	were	 identified	
as	 genes	 under	 selection	 and	 have	 also	 been	 reported	 in	 [16],	
who	reported	a	comparison	between	Taurine	(included	Holstein	
and	 Brown	 Swiss	 cattle	 breeds)	 and	 two	 African	 multipurpose	
populations	using	VST.	Furthermore,	12	QTLs	overlapped	with	the	
significant	 CNVs	 resulting	 from	 the	 VST	 analysis,	 and	 some	 of	
these	have	already	been	 linked	 to	 functional	processes	 in	 cattle	
(Table	2).	
In	general,	 our	analyses	 revealed	distinctiveness	among	 the	 IBS	
and	VRP	in	respect	to	HOL,	especially	related	to	genes	regulating	
the	 distribution	 of	 intramuscular	 lipids,	 which	 is	 indicating	 a	
difference	 in	 metabolism	 of	 individuals.	 In	 particular	 we	 may	
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speculate	that	the	use	of	resources	in	HOL	is	not	addressed	to	fat	
deposition	 and	 in	 a	 more	 general	 context	 to	 body	 weight,	
differently	than	in	the	double	purpose	VPR	breed,	an	in	a	minor	
extent	in	the	IBS,	a	double	purpose	breed	till	few	years	ago.	
	
Conclusions		
In	 this	 project,	 we	 performed	 the	 first	 CNV	 mapping	 in	 an	
autochthonous	cattle	population,	the	Valdostana	Red	Pied	breed,	
using	 high-density	 SNP	 genotypes.	 The	 study	 permitted	 to	
disclose	a	CNV	map	in	a	local	population	well	adapted	to	a	harsh	
environment.,	 and	 to	 compare	 it	 with	 2	 cosmopolitan	
populations,	the	Holstein	and	the	Brown	Swiss.	One	of	the	major	
indications	of	this	study	is	that	the	directional	selection	occurring	
in	 population	 is	 affecting	 the	 genome	 in	 term	 of	 CNVs.	
Particularly	 the	 comparison	 among	 a	 very	 selected	 and	
specialized	 population,	 the	 HOL,	 a	 population	 as	 the	 Italian	
Brown	 Swiss	 where	 a	 directional	 selection	 occurred	 only	
recently,	 and	 a	 population	 under	 a	 very	 limited	 selection	
pressure	 for	 milk	 and	 meat	 but	 maintained	 adapted	 to	
environment	 as	 the	 VPR,	 discloses	 differentiated	 CNVRs	 where	
genes	and	QTL	related	to	their	selection	history	are	annotated.		
	
Materials	and	Methods	
Sampling	and	genotyping	
The	 Associazione	 Nazionale	 Allevatori	 Bovini	 di	 Razza	
Valdostana	 (A.N.A.Bo.Ra.Va.)	 provided	 commercial	 semen	 doses	
of	 143	 bulls.	 No	 animals	 were	 involved	 directly	 in	 this	 study;	
consequently,	 no	 ethical	 approval	 was	 required.	 Genomic	 DNA	
was	extracted	from	semen	using	the	ZR	Genomic	DNA	TM	Tissue	
MiniPrep	 (Zymo,	 Irvine,	 CA,	 U.S.A.).	 DNA	 was	 quantified	 using	
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NanoQuant	Infinite®m200	(Tecan,	Männedorf,	Switzerland)	and	
diluted	 to	 50	 ng/μl	 as	 required	 in	 order	 to	 apply	 the	 Illumina	
Infinium	protocol.	DNA	samples	were	genotyped	using	BovineHD	
Genotyping	 BeadChip	 Illumina	 (Illumina	 Inc.,	 San	 Diego,	 USA)	
containing	777,962	polymorphic	SNPs	with	a	median	<3	kb	gap	
spacing.	
	
CNV	and	CNVR	detection	in	VRP	breed	
Intensity	signals	from	all	SNPs	were	clustered	using	the	Illumina	
BeadStudio	 software	 V.2.0	 (Illumina	 Inc.).	 Samples	 with	 a	 call	
rate	below	98%	were	excluded.	The	signal	intensity	data	of	log-R	
ratio	(LRR)	and	B	allele	frequency	(BAF)	were	exported	from	the	
Illumina	 BeadStudio	 software	 on	 all	 the	 autosomes.	 As	 quality	
control,	 the	 overall	 distribution	 of	 derivative	 log	 ratio	 spread	
(DLRS)	 values	 was	 used	 in	 the	 SVS	 8.4	 software	 (Golden	 Helix	
Inc.)	 to	 identify	 and	 filter	 outlier	 samples	 [32].	 In	 addition,	
individuals	 were	 also	 screened	 according	 to	 their	 GC	 content,	
which	is	correlated	to	a	long	range	waviness	of	LogR	ratio	values	
and	 outlier	 samples,	 as	 detected	 by	 the	 SVS	8.4	wave	detection	
factor	 algorithm	 [33],	 were	 edited.	 The	 PennCNV	 software	
(http://penncnv.openbioinformatics.org/en/latest/)	 was	 used	
for	CNV	calling	in	the	VRP	breed.	PennCNV	is	based	on	a	Hidden	
Markov	Model	(HMM)	algorithm	using	as	input	the	LRR	and	BAF	
data	 from	 the	 SNP	 arrays.	 Only	 samples	 with	 a	 standard	
deviation	(SD)	of	LRR	<0.30	and	with	default	set	of	BAF	drift	as	
0.01	 were	 used	 to	 call	 CNV.	 Additionally,	 a	 minimum	 of	 three	
adjacent	 SNPs	was	 required	 for	 the	 detection.	 The	CNV	 regions	
(CNVRs)	were	defined	as	described	by	 [34],	using	 the	BedTools	
software	 (-mergeBed	 command)	 [35],	 through	 merging	
overlapping	 CNVs	 by	 at	 least	 1	 bp.	 CNVRs	 were	 classified	 as	
“gain”	if	there	was	a	duplication	of	the	genome,	“loss”	if	there	was	
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a	 deletion,	 or	 “complex”	 if	 the	 region	 comprised	 both	 gain	 and	
loss	events.	
	
Comparison	of	CNVs	across	populations	
In	 this	 study,	 we	 used	 CNVs	 to	 study	 the	 population-genetic	
properties	in	cattle.	In	order	to	identify	genomic	diversity	among	
the	 three	 populations	 (VPR,	 HOL,	 and	 IBS),	 we	 used	 the	
individual	CNVs	available	from	[18]	and	those	identified	in	Italian	
bulls	selected	from	[19].	CNV	calling	was	performed	following	the	
same	 procedures	 as	 in	 our	 study,	 and	 only	 CNVs	 identified	
(within	each	breed)	in	at	least	five	individuals	were	considered	in	
this	 comparison.	Based	on	CNV	 two	different	matrices	 (number	
of	 individuals	 by	 number	 of	 CNV)	 were	 built	 and	 applied	 for	
analysing	 population	 genetic	 properties.	 The	 first	 matrix	 was	
built	 by	 presence	 (“1”)	 or	 absence	 (“0”)	 of	 a	 CNV	 in	 a	 CNVR,	
without	considering	if	CNVs	were	a	gain	or	a	loss	(Analysis	1)	as	
used	 in	 the	 studies	 of	 [13-15].	 The	 second	 matrix	 was	 built	
according	 to	 the	 CNV	 genotypes:	 “0”	 homozygous	 deletion,	 “1”	
heterozygous	deletion,	 “2”	normal	state	(absence	of	CNV	 in	 that	
region),	 “3”	 heterozygous	 duplication	 and	 “4”	 homozygous	
duplication	 (Analysis	 2)	 as	 applied	 in	 [36].	 The	 use	 of	 two	
different	 approach	 to	 inform	 the	 matrices	 built	 was	 chosen	 to	
explore	 if	 the	 presence	 of	 the	 CNV	 in	 a	 CNVR	 is	 sufficient	 to	
discriminate	 genomic	 variation	 among	 individuals	 and	 if	 the	
availability	 of	 the	 CNV	 genotype	 is	 providing	 additional	
information.	 Different	 approaches	 and	 software	 were	 used	 in	
order	 to	disclose	population	structure	and	diversification	of	 the	
three	breeds	considered.	The	Past	software	[37]	was	employed	to	
perform	 two	 different	 principal	 component	 analyses	 (PCAs)	 of	
pairwise	individual	genetic	distances	based	on	allele	frequencies	
of	CNVRs	classified	according	to	Analyses	1	and	2	(as	above).	The	
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STRUCTURE	 v2.3.4	 software	 [38,39]	 was	 used	 to	 obtain	 a	
complete	 representation	 of	 the	 population	 structure	 of	 the	
considered	 breeds,	 using	 both	 the	 two	 matrices	 built	 as	
hereinbefore	 described.	 The	 Admixture	 model	 of	 STRUCTURE	
without	 the	 LocPrior	 option	 was	 used,	 with	 a	 5,000	 burning	
period	and	10,000	iterations,	performing	five	repeats	for	each	K	
value	from	2	to	12	and	assuming	three	different	populations.	On	
the	 basis	 of	 STRUCTURE	 results,	 the	 best	 K	 values	 were	
calculated	 using	 the	 Structure	 Harvester	 software	 [40],	 which	
provides	 the	 DeltaK	 values	 according	 to	 the	 heuristic	 method	
reported	 by	 [41].	 The	 Distruct	 software	 [42]	 was	 utilized	 to	
graphically	visualize	each	cluster	assignment	 for	K	of	2	 to	12.	A	
clustering	analysis	was	then	performed	using	the	pvclust	package	
of	 the	 software	 R	 [17],	 applying	 a	 hierarchical	 agglomerative	
clustering	 to	 the	 scoring	matrix	based	on	Analysis	1	 (as	default	
input	for	this	application).	 In	order	to	obtain	the	Approximately	
Unbiased	 P-value	 (AU)	 and	 identify	 the	 branches	 robustness,	 a	
multiscale	 bootstrap	 resampling	 (n=10,000	 bootstraps)	 was	
used.	 For	 the	 hierarchical	 clustering	method,	 we	 employed	 the	
Unweighted	Pair	Group	Method	with	Arithmetic	mean	(UPGMA).	
In	order	to	identify	novel	and	exclusive	population-differentiated	
loci,	 the	 VST	 statistic	 (highly	 correlated	 with	 Wright’s	 fixation	
index	 of	 FST)	 was	 used.	 As	 defined	 in	 [34],	 VST	 is	 calculated	 by	
considering	(VT-VS)/VT,	where	VT	is	the	variance	in	LRRs	mean	of	
SNPs	(within	defined	CNVR)	estimated	among	individuals	of	two	
populations	 and	 VS	 is	 the	 average	 variance	 within	 each	 breed,	
weighted	for	breed	size	(in	our	case:	VRP	vs	HOL,	VPR	vs	IBS,	and	
HOL	vs	IBS).	
	
Annotation	and	Gene	Ontology	and	Pathway	Analysis	
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The	 full	 Ensembl	 UMD3.1	 gene	 set	 for	 the	 autosomal	
chromosomes	was	downloaded	from	Ensemble	Genome	Browse	
database	 (release	 90	 -	 August	 2017),	 using	 BioMart	
(http://www.ensembl.org/biomart).	 Gene	 ontology	 (GO)	 and	
KEGG	 pathways	 analyses	 were	 performed	 with	 the	 high	
classification	 stringency	 option	 and	 FDR	 correction,	 using	 the	
DAVID	database	(https://david.ncifcrf.gov).	The	analyses	allowed	
the	 identification	 of	 molecular	 functions,	 biological	 processes,	
cellular	components	and	pathways	for	the	genes	included	in	the	
consensus	 CNVRs.	 In	 addition,	 the	 National	 Animal	 Genome	
Research	 Program	 database	 (https://www.animalgenome.org)	
was	utilized	 to	catalogue	bovine	QTL	overlapping	 in	both	VRP’s	
CNVRs	and	within	significant	CNVs.	
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Tables	
Table	 1.	 Descriptive	 statistics	 for	 CNVs	 and	 CNVRs	 detected	 in	
VRP	breed	

State*	 No.	 Mean	
Length	

Min	
Length	

Max	
Length	

Total	
Coverage	

CNVs	
0	 1,434	 59,322	 1,245	 581,425	 3.39%	
1	 2,556	 45,839	 1,264	 523,180	 5.72%	
3	 2,779	 56,924	 1,030	 1,052,912	 6.00%	
4	 15	 52,381	 3,270	 273,013	 0.01%	
All		 6,784	 59,322	 1,245	 581,425	 15.10%	
CNVRs	
Loss		 812	 29,827.30	 1,263	 494,272	 0.53%	
Gain		 832	 26,438.23	 1,029	 692,847	 0.88%	
Complex		 79	 167,388.85	 1,714	 2,170,361	 0.96%	
All		 1,723	 34,498.03	 1,029	 2,170,361	 2.36%	
*0=homozygous	 deletion,	 1=heterozygous	 deletion,	 3=heterozygous	
duplication,	and	4=homozygous	duplication	
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Table	2.	List	of	CNVRs	and	gene	and	QTL	annotation	for	pairwise	VST	>	Mean	+	2	S.D	

CHR	 CNV	Start	 CNV	End	 Length	 VST	 IND*	 Genes	 QTL**	
VPR	vs	IBS	

1	 83218713	 83238102	 19389	 0.141	 5	 EPHB3	

Conformation	 score	 QTL	 (106404,	
106405),	 Average	 daily	 gain	 QTL	
(106246),	 Muscularity	 QTL	 (106247,	
106248)		

2	 56375294	 56403140	 27846	 0.132	 5	 	 	
3	 71477185	 71486626	 9441	 0.165	 11	 	 	
5	 3434356	 3439861	 5505	 0.133	 6	 	 	
5	 40181727	 40209934	 28207	 0.141	 6	 CNTN1	 	
5	 44705963	 44718715	 12752	 0.14	 5	 LYZ	 	
9	 71525299	 71608476	 83177	 0.143	 7	 	 	
10	 17775153	 17784123	 8970	 0.123	 16	 LRRC49	 	
13	 43884430	 43940108	 55678	 0.117	 21	 AKR1C3	 	
16	 7901886	 7948314	 46428	 0.11	 12	 	 	
16	 80271680	 80284738	 13058	 0.157	 7	 	 	
18	 61894649	 61918012	 23363	 0.246	 37	 	 	

25	 18666885	 18674448	 7563	 0.128	 11	
ERI2,	 REXO5,	
DCUN1D3	 	

HOL	vs	IBS	
3	 93310320	 93315045	 4725	 0.615	 7	 	 Somatic	cell	score	QTL	(122082)	
6	 118543527	 118545281	 1754	 0.587	 5	 SORCS2	 	
7	 4226753	 4238450	 11697	 0.591	 7	 COPE	 	
8	 83242450	 83261773	 19323	 0.769	 5	 TSPY	 	
13	 70667271	 70698983	 31712	 0.6	 21	 LPIN3,	EMILIN3	 	

17	 25056695	 25119996	 63301	 0.874	 97	 PRAME	 Average	 daily	 gain	 QTL	 (106236),	
Conformation	 score	 QTL	 (106238,	



 

 152 

106239)	
17	 51115979	 51370688	 254709	 0.651	 60	 	 Conformation	score	QTL	(106240)	

23	 7655804	 7688981	 33177	 0.595	 58	
BAK1,	 GGNBP1,	
ITPR3	 	

VRP	vs	HOL	
4	 45062559	 45072215	 9656	 0.618	 6	 RELN	 	
5	 108810406	 108866833	 56427	 0.358	 6	 DCP1B	 	
6	 66451170	 66465621	 14451	 0.358	 5	 GABRA2	 	
7	 43487164	 43498441	 11277	 0.462	 67	 LOC788287	 Calving	ease	(maternal)	QTL	(106493)	
8	 105250028	 105303832	 53804	 0.331	 7	 COL27A1	 	
10	 23133923	 23160598	 26675	 0.305	 16	 	 	
15	 1277543	 1312041	 34498	 0.312	 27	 	 	
16	 56458959	 56475433	 16474	 0.3	 26	 SLC9C2	 	

17	 73004371	 73023888	 19517	 0.453	 7	
ZNF280B,	
ZNF280A	 	

18	 59154291	 59182962	 28671	 0.301	 5	 	 Length	of	productive	life	QTL	(123783)	

24	 61918390	 62143246	 224856	 0.304	 9	 BCL2,	KDSR	 Body	weight	gain	QTL	(69320),	Daughter	
pregnancy	rate	QTL	(107040)	

25	 7380550	 7388001	 7451	 0.307	 6	 	 Lean	meat	yield	QTL	(36946)	
28	 43916806	 43924903	 8097	 0.534	 7	 	 	

*IND	=	individuals	per	CNVR;		
**https://www.animalgenome.org/cgi-bin/QTLdb/BT/index	
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Figures	
Fig	1.	Distribution	of	the	CNVRs	on	the	chromosomes	according	
to	their	state	(gain,	loss	and	complex)	
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Fig	 2.	 Distribution	 of	 CNVR	 lengths	 in	 VRP	 identified	 with	
PennCNV	
	

	
	
Fig	3.	Sample	count	per	 individual	class	 (1	singleton;	2-5;	5-15;	
>16)	 in	 each	 class	 of	 CNVR	 length	 (1-10;	 10-100;	 >100	 kb),	
according	to	CNVR	states.	
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Fig	4.	PCAs	and	population	STRUCTURE	analyses	of	three	cattle	
breeds	 (VRP,	 IBS	 and	 HOL)	 based	 on	 CNVs.	 Twelve	
subpopulation	clusters	inferred	by	STRUCTURE	are	represented	
by	 different	 colors	 (K2-K12).	 A)	 Analyses	 run	 considering	 five	
CNV	 genotypes:	 (1)	 normal	 state,	 (2)	 homozygous	 deletion,	 (3)	
heterozygous	 deletion,	 (4)	 homozygous	 duplication,	 or	 (5)	
heterozygous	duplication;	B)	Analyses	run	considering	presence	
or	absence	of	a	CNV	in	a	CNVR	
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Fig	 5.	 Dendrogram	 obtained	 from	 clustering	 analysis	 based	 on	
common	CNVRs	of	VRP,	IBS	and	HOL	breeds	
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Fig	6.	Genome	wide	VST	value	plots	for	CNVs	in	the	combinations:	
A)	HOL	vs	IBS;	B)	VRP	vs	HOL;	C)	VRP	vs	IBS	
	

	
	
Supporting	information	
All	supplementary	files	are	available	at:	
https://doi.org/10.1371/journal.pone.0204669	
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GENERAL	DISCUSSION	

In	 the	 studies	 here	 presented	 we	 focused	 on	 structural	
variations,	 SNP	 (Single	 Nucleotide	 Polymorphism)	 and	 CNV	
(Copy	 Number	 Variants),	 to	 disclose	 and	 characterize	 the	
genomic	variation	in	populations	and	breeds	of	different	species,	
cattle	and	poultry.	The	possibility	to	realize	such	type	of	studies	
resides	 in	 the	 recent	 availability	 of	 the	 reference	 genome,	 e.g.	
turkey,	 and	 high-density	 SNP	 chip	 that	 have	 been	 recently	
developed	 and	 released	 to	 the	 animal	 science	 community.	 The	
SNP	 genotypes	 are	 a	 class	 of	 neutral	 markers	 while	 CNV	 can	
contain	 in	a	 large	proportion	 (up	 to	60%	 in	poultry)	annotated	
genes	related	to	expressed	phenotypes.		
Moreover,	the	study	of	the	Run	of	Homozygosity	(ROH)	shown	in	
the	Part	I,	allows	to	deepen	the	genomic	variability	and	genomic	
modifications	occurred	to	the	Mexican	chicken	population.	
Findings	 from	the	ROH	analysis	 indicated	 that	natural	 selection	
affected	 allele	 frequencies	 in	 specific	 regions	 of	 the	 Mexican	
chicken	 genome	 and	 some	 of	 the	 annotated	 genes	 in	 the	 ROH	
regions	 could	 play	 important	 roles	 in	 the	 historical	 genetic	
dynamic	of	this	population.	
The	 use	 of	 avian	 species	 is	 particularly	 interesting	 as	 we	
considered	 populations	 that	 were	 separated	 by	 500	 years	 of	
evolution	in	different	farming	and	mating	systems.	The	Mexican	
chicken	population	 resulted	 to	be	a	mix	of	 a	 limited	number	of	
genetic	 founders	 that	 were	 brought	 in	 Central	 America	 by	
Spanish	conqueror	in	16th	century.		
On	the	other	hand,	they	brought	the	turkey	from	Central	America	
to	Europe	where	 this	bird	 found	a	 rapid	expansion.	The	 turkey	
populations	 were	 selected	 in	 Europe	 and	 differentiated	 in	
several	 distinct	 breeds	 and	 in	 the	 last	 four	 decades	 in	 a	 highly	
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selected	hybrid	for	meat	production.	Instead,	the	Mexican	turkey	
population	 maintained	 its	 own	 mating	 system	 as	 a	 backyard	
population.	
The	 genetic	 comparison	 of	 unselected	 Mexican	 population	 of	
chicken	and	turkey	populations	with	the	selected	ones,	disclosed	
common	and	proprietary	 structural	variation	 that	we	speculate	
is	due	to	the	different	evolution	and	selection	occurred.	
The	genetic	variation	existing	in	the	backyard	chicken	population	
of	 Mexico	 was	 mapped	 using	 both	 SNP	 genotypes	 and	 CNV	 as	
markers.	Results	 are	 suggesting	 that	 this	 creole	population	 is	 a	
genetic	mix	 derived	by	 three	 ancestors	 (Part	 1)	 supporting	 the	
evidence	 that	 a	 very	 limited	number	of	birds	 funded	 the	 actual	
genetic	mix.	
The	genetic	variability	resulted	in	Mexican	population	respect	to	
the	one	identified	in	selected	Italian	native	populations	(Strillacci	
et	al.,	2016)	suggest	that	the	environmental	context	affected	the	
structural	 evolution:	 in	 Mexico	 the	 population	 evolved	
expressing	genes	favourable	to	the	harsh	environment,	while	the	
Italian	population	were	 influenced	by	 the	selection	operated	by	
farmers	 for	 a	 higher	 production.	 Even	 if	 further	 studies	 are	
necessary	 to	 deeply	 investigate	 these	 findings,	 the	 genes	
harboured	 in	 the	 CNV	 show	 a	 differentiation	 according	 to	 the	
fitness	 to	 the	 environment	 of	 these	 populations:	 in	 a	 general	
context,	in	fact,	CNV	loss	occurred	where	deleterious	genes	may	
be	 identified,	 while	 CNV	 gains	 include	 genes	 related	 to	
production	 traits.	 CNV	 gains,	 as	 showed	 by	 literature,	 are	
generally	related	 to	directional	selection	 increasing	 the	number	
of	 copies	 of	 a	 gene:	 e.g.	 the	 starch	 gene	 in	 humans	 and	 dogs,	
where	 has	 been	 shown	 an	 increase	 of	 number	 of	 copy	 of	 the	
“starch	 gene”	 when	 a	 nutritional	 diet	 based	 on	 starch	 is	
consumed	vs	a	non-starch	diet	cohort.	Recently,	 in	 fact,	a	 study	
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on	 a	 eukaryotic	 model	 (Hull	 et	 al.,	 2017)	 showed	 that	
environmental	 changes	are	accelerating	adaptation	 through	 the	
stimulation	 of	 copy	 number	 variation	 and	 that	 this	 is	 not	 a	
random	 effect	 but	 has	 a	 cause	 effect	 relationship.	 Additionally,	
Perry	et	al.	(2007)	demonstrated	that	directional	selection	due	to	
starch	 diet	 (i.e.	 environmental	 factor)	 is	 increasing	 specific	
copies	of	 the	genes	 involved	 in	starch	metabolism	producing	as	
such	CNV	gains.	
	
In	 turkey	the	variation	was	here	studied	using	CNV.	The	turkey	
model	 is	 particularly	 interesting	 as	 we	 mapped	 the	 genetic	
variation	 on	 the	 “original	 population”,	 the	 Mexican	 one,	 and	
compared	it	to	several	populations	that	derived	from	that	genetic	
pool.		
Results	 are	 likely	 reflecting	 the	 human	 action	 on	 turkey	
populations,	 i.e.	 its	 migration	 to	 Europe	 and	 then	 back	 to	
America,	 and	 the	 directional	 selection	 occurring	 in	 the	 last	 40	
years	to	produce	a	fast-growing	heavy	bird.		
The	 study	 considers	 three	 groups	 of	 birds	 that	 reproduce	 and	
evolve	 according	 to	 different	 constrains	 and	 environmental	
conditions.	 The	 Mexican	 population	 developed	 in	 a	 natural	
environment,	with	no	(or	very	little)	 intervention	by	humans	in	
mating	 and	 with	 no	 (or	 very	 little)	 supplement	 of	 feed.	 The	
Italian	 populations	 are	 the	 result	 of	 a	 phenotypic	 selection	
operated	 by	 individual	 farmers	 in	 their	 small	 group	 of	
individuals,	 to	 obtain	 birds	 that	 best	 perform	 in	 the	 semi-
extensive	 farming	 system	 (backyard	 with	 recovery	 availability	
and	 feeding	 supplement)	 that	 characterized	 the	 middle	 ages	
poultry	system	of	Italy	and	Europe.	The	Hybrid	population,	in	the	
last	40	years,	has	been	heavily	directionally	selected,	 through	a	
very	well-structured	genetic	improvement	and	breeding	plans	to	
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improve	weight	and	growing	performances	and	to	best	perform	
in	 an	 artificially	 controlled	 environment	 with	 unlimited	 feed	
supplement.		
This	 study	 is	 the	 first	 CNV	 mapping	 in	 a	 worldwide	 turkey	
sampling,	from	populations	collected	across	different	continents	
and	 disclosed	 similarities	 and	 variations	 in	 CNVs	 and	 CNVRs	
across	the	populations	studied.	Because	of	the	diversity	 in	their	
selection	 history	 and	 actual	 farming	 environmental	 conditions	
the	 Mexican,	 Italian	 and	 Hybrid	 populations	 provide	 an	
interesting	model	to	investigate	CNV	variation.		
These	recent	findings	support	the	hypothesis	that	the	variability	
in	 size	 of	 CNV	 and	 their	 number	 in	 the	 Mexican	 population	
respect	 to	 Hybrid,	 is	 possibly	 related	 to	 the	 different	 selection	
and	 breeding	 undergoing	 in	 these	 populations,	 and	 to	 the	
environmental	conditions	where	they	are	farmed.	The	impact	of	
the	different	selection	performed	on	 the	CNV	variability	 is	here	
supported	by	the	variation	in	the	number	of	CNV	per	bird	that	is	
the	lowest	in	the	Hybrid	(10	on	average)	while	the	largest	in	the	
Mexican	 (28	 CNV)	 population.	 Additionally,	 the	 length	 of	 the	
CNVs	in	the	Hybrid	group	is	much	less	variable	than	in	the	other	
two	groups	(Italian	and	Mexican).	
	
A	 first	 general	 evidence	 that	 can	be	drawn	 from	 the	 studies	on	
avian	specie	is	that	the	environmental	effect	(either	environment	
itself	 or	 human	 intervention)	 on	 population	 evolution	 is	 likely	
affecting	 the	 genome	 structure	 in	 term	 of	 number	 of	 copies	 of	
genes:	 deleterious	 genes	 are	 lost	 while	 those	 related	 to	
directional	selection	are	increased	in	number	of	copies.		
A	second	evidence	is	that	CNV,	as	SNP,	can	be	efficiently	used	to	
identify	genetic	distinct	clusters.	While	SNP	are	neutral	markers	
and	 can	 show	 the	 long-term	 evolution,	 the	 CNV	 markers	 are	
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involved	 in	 gene	 regulation	 and	 expression,	 thus	 allowing	 a	
functional	 interpretation	 of	 the	 results.	 The	 comparison	 of	 the	
results	 obtained	 with	 the	 SNP	 markers	 and	 CNV,	 in	 terms	 of	
genetic	clustering	of	the	populations,	show	comparable	results.		
	
In	 the	 third	 part	 of	 this	 thesis	 we	 presented	 a	 CNV	 mapping	
based	 on	 high	 density	 SNP	 chips	 in	 the	 Valdostana	Red	 Pied,	 a	
double	 purpose	 breed,	 comparing	 it	 with	 the	 CNV	 detected	 in	
two	 specialized	 breeds,	 the	 Mexican	 Holstein	 and	 the	 Italian	
Brown	Swiss.	
In	cattle	many	studies	on	CNV	using	high-density	chip	have	been	
performed,	 but	 this	 is	 the	 first	 CNV	 scan	 in	 the	 VRP	 a	 local	
autochthonous	 population	 of	 northwest	 Italy.	 The	 VRP	
population	selection	occurring	in	the	last	decades	was	addressed	
to	increase	milk	and	meat	production,	maintaining	the	ability	of	
the	 population	 to	 cope	 with	 harsh	 environments	 and	 summer	
pasture	practice.		
The	 approach	we	 used	 in	 this	 study	 is	 somehow	 similar	 to	 the	
one	 in	poultry	 for	 the	 comparison	among	populations:	 the	VRP	
very	well	adapted	to	environmental	conditions	of	the	Alps	vs	the	
IBS	originally	a	double	purpose	but	strongly	selected	for	milk	in	
the	 last	 30	 years	 and	 the	 Holstein	 strongly	 selected	 and	
specialised	for	milk	production.		
The	comparison	of	CNV	regions	across	population	using	the	VST	
statistic	 allows	 disclosing	 proprietary	 deletion	 or	 duplication	
related	 to	 the	 peculiar	 evolution	 of	 the	 population.	 The	HOL	 is	
showing	 duplications	 harbouring	 genes	 related	 to	 production	
efficiency,	while	on	the	contrary	the	VRP	CNV	variation	is	more	
related	to	adaptive	genes.	
	
In	general,	the	results	obtained	in	the	different	species	show	the	
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capability	of	CNV	as	markers	to	disclose	genetic	variation	among	
populations	 not	 identified	 by	 SNP	 and	 the	 possibility	 to	 relate	
this	variation	to	annotated	genes.	This	appears	to	be	true	across	
different	livestock	species,	i.e.	poultry	and	cattle.	
The	results	here	obtained	showed	a	clear	differentiation	among	
the	 populations	 analysed.	 In	 general	 populations	 and	 breeds	
evolving	 in	 harsh	 environments	 show	 CNV	 regions	 related	 to	
adaptive	genes.	While	populations	and	breeds	farmed	in	artificial	
controlled	environmental	conditions,	i.e.	intensive	farming,	show	
a	 genomic	 CNV	 evolution	 that	 can	 be	 related	 to	 the	 strong	
directional	selection	for	production	traits.	
Our	 findings	 are	 a	 first	 overview	 on	 the	 comparison	 between	
selected	and	unselected	populations	using	non-neutral	markers.	
Further	 insights	 should	 be	 considered	 using	 genomic	 data	 that	
may	 include	other	 layers	of	 information	as	expression	data	and	
epigenetic	marks.	
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Table	2.	Summary	of	analysis	performed	in	the	four	studies	included	in	this	thesis	

	

	

	 I	paper	 II	paper	 III	paper	 IV	paper	
POP	 CHICKEN	

-Mexican	creole	chicken	
CHICKEN	

-Mexican	creole	
Chicken	

TURKEYS	
-6	Italian	breeds	
-Narragansett	
-Hybrid		
-Mexican	Turkeys	

CATTLE	
-Valdostana	Red	Pied,	
-Mexican	Holstein,	
-Italian	Brown	Swiss	

CNV	detection	 -Penn	CNV	 /	 -Penn	CNV		
-Golden	Helix	

Penn	CNV	

	
Structure	
Analysis	

-Hierarchical	clustering		
(pvclust	R)	

-PCA		
(Past	software)		
-IBD	
-Wright’s	statistics	
-ADMIXTURE	
-AMOVA	
-ROH	

-PCA	
(Past	software)		
-Hierarchical	clustering	
(pvclust	R)	
-	STRUCTURE	software	

-PCA	
(Past	software)		
-STRUCTURE	software	
-Hierarchical	clustering			
(pvclust	R)	
-VST	

Gene	Annotation	
and	KEGG	-	Go	
Term	Analysis	

-Ensemble	database	
	
-Panther	database	

-Ensemble	Database	 -NCBI	Turkey_5.0	gene	
dataset	 	
-DAVID	Database	

-Ensemble	database		
-DAVID	Database	
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