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Background: Three-nucleon forces (3NFs) have non trivial implications on the evolution of correlations at
extreme proton-neutron asymmetries. Recent ab initio calculations show that leading order chiral interactions
are crucial to obtain the correct binding energies and neutron driplines along the O, N, and F chains, Ref. [A.
Cipollone, C. Barbieri, P. Navrátil, Phys. Rev. Lett 111, 062501 (2013)].

Purpose: Here, we discuss the impact of 3NFs along the oxygen chain for other quantities of interest, such has
the spectral distribution for attachment and removal of a nucleon, spectroscopic factors and radii. The objective
is to better delineate the general effects of 3NFs on nuclear correlations.

Methods: We employ self-consistent Green’s function (SCGF) theory which allows a comprehensive calculation
of the single particle spectral function. For the closed subshell isotopes, 14O, 16O, 22O, 24O and 28O, we perform
calculations with the Dyson-ADC(3) method which is fully non-perturbative and is the state of the art for both
nuclear physic and quantum chemistry applications. The remaining open shell isotopes are studied using the
newly developed Gorkov-SCGF formalism up to second order.

Results: We produce complete plots for the spectral distributions. The spectroscopic factors for the dominant
quasiparticle peaks are found to depend very little on the leading order (NNLO) chiral 3NFs. The latters have
small impact on the calculated matter radii, which, however are consistently obtained smaller than experiment.
Similarly, single particle spectra tend to be too spread with respect to the experiment. This effect might hinder,
to some extent, the onset of correlations and screen the quenching of calculated spectroscopic factors. The most
important effect of 3NFs is thus the fine tuning of the energies for the dominant quasiparticle states, which governs
the shell evolution and the position of driplines.

Conclusions: Although present chiral NNLO 3NFs interactions do reproduce the binding energies correctly in
this mass region, the details of the nuclear spectral function remain at odd with the experiment showing too
small radii and a too spread single particle spectrum, similar to what already pointed out for larger masses. This
suggests a lack of repulsion in the present model of NN+3N interactions which is mildly apparent already for
masses in the A=14–28 range.

I. INTRODUCTION

The concept of correlations is fundamental to a deep
understanding of nuclear phenomena [1]. These are gen-
erally defined as characteristics of the nucleus that can-
not be explained in terms of a simple mean field picture
(i.e., a wave function of Slater determinant type). These
effects are often quantified in terms of the fragmentation
of the single particle strength observed when adding or
removing a nucleon. An intriguing feature is the per-
sistence of dominant quasiparticle peaks near the Fermi
surface while broader resonances are found at higher ex-
citations. This is at the origin of the duality between
the liquid drop and the shell model behaviour of atomic
nuclei.

Historically, several electron scattering studies have
provided a wealth of information on nuclear spectral
functions (see [2–9] and references therein). This has al-
lowed a rather complete characterisation of correlations
for stable nuclei [1]. However, a similar full character-
ization for exotic isotopes is still lacking. Recent data
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from radioactive beam facilities have put in evidence new
phenomena such as shell evolution with changing proton-
neutron asymmetry [10] and the insurgence of new magic
numbers [11–13]. From the theoretical point of view,
some of these effects have been explained in terms of
properties of the tensor interaction [14], and the need for
contributions from three-nucleon forces (3NFs) has also
been pointed out [15]. More recently, it has been shown
that 3NFs are crucial for understanding the neutron rich
side of the nuclear chart. In particular, to explain the
oxygen dripline at 24O [16–19] and neutron rich Ca iso-
topes [20–23]. Ref. [19] found that the same mechanism
responsible for the anomalous oxygen dripline also affects
N and F isotopes up to at least 29F, which is strongly
neutron rich but still not at the dripline.

Ab initio calculations of atomic nuclei have advanced
dramatically in the medium mass region. Several ap-
proaches such as coupled cluster [24, 25], in-medium
similarity renormalisation group (IM-SRG) [26] and self-
consistent Green’s function (SCGF) [19, 27] theories are
now capable of approaching masses up to A≈100 or more.
These allow to fully exploit modern chiral interactions
with two-nucleon (NN) and 3NFs evolved through SRG
techniques [28]. Moreover, open shell nuclei have become
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accessible through a Gorkov extension of the SCGF for-
malism [22, 29, 30], multi-reference IM-SRG [18, 23] and
Bogoliubov coupled cluster (BCC) [31]. These ab initio
studies have mainly focussed on ground state properties,
such as total binding energies and two-nucleon separation
energies. More recent works have addressed the construc-
tion of effective shell model interactions directly from
full NN plus 3NF Hamiltonians [32, 33]. This allows to
successfully address low-energy excitations directly from
first principles.

The SCGF method has the added advantage to provide
consistent optical potentials and spectral functions over
the whole energy spectrum (i.e., both close and far form
the Fermi surface). This gives comprehensive insights
into the many-body dynamics and allows to address other
quantities such as giant resonances or the qualitative fea-
tures of single particle distribution [2, 34], which can re-
quire considering several major shells [27, 35].

In this paper, we consider the Green’s functions of the
oxygen isotopes already obtained in Ref. [19] and extend
these calculations to the remaining even mass—and open
shell—isotopes, using the Gorkov-SCGF approach. We
then present first fully microscopic calculations of the
evolution of the single particle spectral functions along a
full isotopic chain. This gives an overall description of the
evolution of nuclear correlations between two extremes of
the nuclear chart. At the same time, it allows to perform
a more thorough test of modern chiral interactions and,
in particular, we investigate the effects of initial 3NFs at
NNLO.

Section II discusses the relevant features of the SCGF
formalism, for completeness. It reviews the links of prop-
agators with the spectral function and other quantities
of experimental interest. Calculations are done in an ab
initio fashion and we discuss in some details the choice of
the Hamiltonian, the approximations taken and the ex-
pected uncertainties, when these can be estimated. This
is done in Sec. III. Sec. IV discusses our results for single
particle spectra, spectroscopic factors and binding ener-
gies. Full three-dimensional plots of spectral functions
are discussed in the Appendix for completeness and con-
clusions are drawn in Sec. V.

II. SCGF FORMALISM

Information about the single particle dynamics is fully
contained in the one-body Green’s function, or propaga-
tor, whose Lehmann representation reads:

gαβ(ω) =
∑
n

〈ΨA
0 |aα|ΨA+1

n 〉〈ΨA+1
n |a†β |ΨA

0 〉
ω − ε+n + iη

+

+
∑
k

〈ΨA
0 |a
†
β |Ψ

A−1
k 〉〈ΨA−1

k |aα|ΨA
0 〉

ω − ε−k − iη
. (1)

In Eq. (1), |ΨA
0 〉 represents the ground state of A nu-

cleons and |ΨA+1
n 〉, |ΨA−1

k 〉 are the eigenstates of the

(A ± 1)-nucleon system. The greek indices α,β,..., la-
bel a complete orthonormal single particle basis, while
ε+n ≡ (EA+1

n − EA0 ) and ε−k ≡ (EA0 − EA−1k ) are one-
nucleon addition and removal energies, respectively. Note
that these are generically referred to in the literature
as “separation” or “quasiparticle” energies although the
first naming normally refers to transitions involving only
(A ± 1)-nucleon ground states. We will use the sec-
ond convention in the following, unless the two nam-
ing are stricktly equivalent. The transition amplitudes
Xnα ≡ 〈ΨA+1

n |a†α|ΨA
0 〉 and Ykα ≡ 〈ΨA−1

k |aα|ΨA
0 〉 give infor-

mation about the strength of the corresponding particle
addition and removal processes.

The one-body Green’s function (1) is completely de-
termined by solving the Dyson equation,

gαβ(ω) = g0αβ(ω) +
∑
γδ

g0αγ(ω)Σ?γδ(ω)gδβ(ω) , (2)

where the unperturbed propagator g0αβ(ω) is the initial

reference state (usually a mean field or Hartree-Fock
state) while gαβ(ω) is the correlated propagator. A full
knowledge of the self-energy Σ?αβ(ω) yields the exact so-

lution for gαβ(ω). However, in practical calculations this
has to be approximated and it is expanded in terms of
the propagator itself (that is, Σ? = Σ?[g(ω)]). Thus,
an iterative procedure is required to solve for Σ?(ω) and
Eq. (2) self consistently. The approximation schemes we
employ to calculate the self-energy are outlined in the
next subsection.

The attractive feature of the SCGF approach is that
gαβ(ω) describes the one-body dynamics completely. The
particle and hole spectral functions are extracted directly
from Eq. (1), respectively:

Spαβ(ω) =
∑
n

(Xnα )
∗ Xnβ δ

(
ω − (EA+1

n − EA0 )
)
,

Shαβ(ω) =
∑
k

Ykα
(
Ykβ
)∗

δ
(
ω − (EA0 − EA−1k )

)
. (3)

Any one-body observable can be calculated via the one-
body density matrix ραβ , which is obtained from gαβ as
follows:

ραβ ≡ 〈ΨA
0 |a
†
βaα|Ψ

A
0 〉

=

∫ ε−0

−∞
Shαβ(ω) dω =

∑
k

(Ykβ )∗Ykα. (4)

The expectation value of a one-body operator, Ô1B , can
then be written in terms of the Y amplitudes as:

〈Ô1B〉 =
∑
αβ

O1B
αβ ρβα =

∑
k

∑
αβ

(Ykα)∗ O1B
α,β Ykβ . (5)

Evaluating two- and many-nucleon observables requires
the knowledge of many-body propagators. In the fol-
lowing, we do this by approximating the correspond-
ing A-body density matrices with A correlated but non-
interacting propagators, Eq. (4). Specifically, we use this
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to account for the centre of mass (COM) correction when
calculating root mean square (rms) radii:

〈r2〉 ' 1

A

∑
αβ

uα 〈α|~r 2|β〉 ρβα

− 1

A2

∑
αβγδ

uαγ 〈αγ|~r1 ·~r2|βδ〉 ρβαρδγ , (6)

where ~ri represents the position of particle i. The fac-
tors uα and uαβ in Eq. (6) and the two-body correction
term arise because the intrinsic radius is calculated with
respect to the COM of the system [36]. Point-matter
radii are calculated by taking upt−mα = (A − 1)/A and
upt−mαγ = 1, while point-proton radii are found using

upt−pα =


A(A−2)+Z

ZA if α labels a proton state,

1
A if α is a neutron

(7)

and

upt−pαβ =


2A−Z
Z if α,γ label two proton states,

A−Z
Z if α,γ are a proton and a neutron,

−1 if α,γ are two neutrons.
(8)

To obtain charge radii, we first calculate the point-proton
ones and then account for the rms charge radii of the
nucleons and for the Darvin-Foldy relativistic correc-
tion [37]:

〈r2ch〉 = 〈r2pt−p〉+ 〈R2
p〉+

N

Z
〈R2

n〉+
3~2

4m2
pc

2
, (9)

with 〈R2
p〉=0.8775(51) fm2 [38] and 〈R2

n〉=−0.1149(27)

fm2 [39]. In the present calculations, the contribution of
second term of Eq. (6) to the rms radii are ≤ 0.03 fm
and decrease with the mass number. Refs. [19, 40] have
considered first order corrections to the approximation
of A non interacting propagators—used to calculate this
term—and found that it is negligible in most cases as
long as fully correlated densities are used. Therefore, we
conclude that Eq. (6) does not introduce sizable errors.

The exact one-body propagator, gαβ(ω), also allows
calculating the total energy by means of the extended
Koltun sum-rule [41]:

EA0 =
∑
αβ

1

2

∫ ε−0

−∞
[Tαβ +ω δαβ ]Shβα(ω)dω− 1

2
〈W 〉 . (10)

This requires only the additional evaluation of the ex-
pectation value of the three-nucleon interaction, 〈W 〉.
Again, we approximate this in terms of non-interacting
three-body density matrices:

〈W 〉 ' 1

6

∑
αβµγδν

Wαβµ,γδν ργα ρδβ ρνµ . (11)

The errors in this approximation have been estimated in
Ref. [19] and were found to not exceed the 250 keV on
the total binding energy for 16O and 24O.

In all simulations below we subtract the spu-
rious contribution of the kinetic energy of the
COM and work with the intrinsic Hamiltonian
H[A] = H − TCOM (A) = U(A) + V (A) +W , which ac-
quires a dependence on total number of nucleons. The
U , V and W label one-, two- and three-body interac-
tions. This implies that the particle and hole spectra of
the even-odd isotopes are recalculated separately from
H[A+ 1] and H[A− 1]. They are then corrected for the
COM motion as follows:

ε+n,COM = ε+n [A+ 1] + EA0 [A+ 1]− EA0 [A] ,

ε−k,COM = ε−k [A− 1]− EA0 [A− 1] + EA0 [A] ,
(12)

where ε±n [A± 1] and EAk [A± 1] label the poles of gαβ(ω)
and the total energies, Eq. (10), calculated from the
H[A± 1] Hamiltonian. The overall COM corrections be-
come progressively smaller as A increases.

A. Dyson-ADC(3) and second-order Gorkov
equations

Calculations with 3N interactions follows the proce-
dure extensively discussed in Ref. [41], which involves
defining the following medium dependent one- and two-
body interactions:

Ũαβ = Uαβ +
∑
δγ

Vαγ,βδ ρδγ +
1

4

∑
µνγδ

Wαµν,βγδ ργµ ρδν ,

Ṽαβ,γδ = Vαβ,γδ +
∑
µν

Wαβµ,γδν ρνµ . (13)

This allows neglecting residual contributions in W that
have been found to be negligible for oxygen isotopes [42,
43]. Hence, we retain only interaction-irreducible dia-

grams in Ũ and Ṽ to the self-energy.
To solve Eq. (2), we express the self-energy as,

Σ?αβ(ω) =Σαβ(∞) +
∑
i j

D†αi

[
1

ω − (K + C)

]
i j

Djβ .

(14)

where Σαβ(∞) is the correlated and energy-independent
mean field. The whole Σ∗αβ(ω) is an optical potential for

elastic scattering of a nucleon off the |ΨA
0 〉 ground state,

which also describes the fragmentation of the particle and
hole spectra [44, 45].

In Eq. (14), the matrix D couples single particle states
to more complex intermediate configurations, while K
and C are their unperturbed energies and interaction
matrices. For the closed subshell isotopes we exploit
the third order algebraic diagrammatic construction
[ADC(3)] scheme, which is the best compromise between
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computational efforts and accuracy. This consists in the
minimal choice of these matrices that retains all self-
energy diagrams up to third order. Although ADC(3) is
constrained at third order, it contains infinite order sum-
mations of diagrams that include particle-particle and
hole-hole ladders as well as particle-hole rings. It is there-
fore a fully non-perturbative approach. Generally speak-
ing, ADC(n) defines a hierarchy of truncation schemes
of Eq. (14) for increasing order n that allows systematic
improvements of the method [46].

Recently, SCGF theory has been extended to a Nambu-
Gorkov formulation that allows addressing truly open
shell nuclei [29]. This has opened the possibility to cal-
culate ground state properties and the one-nucleon ad-
dition/removal spectra of mid-mass open shell nuclei,
in a fully ab initio fashion. As in BCS theory, one
allows for an explicit breaking of particle-number con-
servation that is necessary for a proper description of
pairing correlations [29, 47]. This implies introducing

a grand canonical Hamiltonian Ω = H − µnN̂ − µpẐ
and constraining the proton (neutron) chemical poten-
tials µp(µn) to recover the correct particle number on

average: A = 〈Ψ0|Â|Ψ0〉, where |Ψ0〉 is the symmetry-
broken ground state. A detailed description of the theory
can be found in Refs. [29, 30, 48].

In Gorkov theory one is left with a set of normal
and anomalous propagators and self-energies with sim-
ilar Lehman representations to Eqs. (1) and (14). In
particular, the normal propagator is

G11
αβ(ω) =

∑
k

{
Ukα Uk∗β

ω − ωk + iη
+

V̄k∗α V̄kβ
ω + ωk − iη

}
(15)

where U ,V are the transition amplitudes for reaching the
states |Ψk〉 by adding (removing) a nucleon to (from)
|Ψ0〉, and ωk are the corresponding quasiparticle ener-
gies [29].

The Gorkov version of the SCGF approach allows to
calculate spectral functions for open shell semi-magic
systems. Its present formulation follows the ADC(n)
truncation scheme discussed above but has been imple-
mented only up to the second order. This has allowed
successful predictions of trends in binding energies [22].
However, the ADC(2) is known to slightly underestimate
binding energies and it is not guaranteed to provide ac-
curate predictions for one-nucleon removal and addition
energies [49], which are instead possible with a Dyson-
ADC(3) calculations. The full extension to Gorkov-
ADC(3) formalism is currently underway [50].

III. CALCULATIONS

Calculations have been performed using NN and 3N
chiral interactions evolved to a low-momentum scale
λSRG through free space similarity renormalization
group (SRG) techniques [28]. The original NN interac-
tion is the next-to-next-to-next-to-leading order (N3LO)

with a cutoff ΛNN = 500 MeV/c, from Refs. [51, 52].
For the 3N interactions we used the NNLO with a re-
duced local cutoff of Λ3N = 400 MeV/c [43, 53]. This
includes the two-pion exchange contribution that was
originally proposed by Fujita and Miyazawa [54]. Low-
energy constants were set at cD = −0.2, cE = 0.098
to reproduce the 3H beta decay and the binding energy
of 4He. With this choice, the binding energy of 3H is
-8.32 MeV to be compared to the experimental value
of -8.48 MeV. When we perform the SRG transforma-
tion of the sole NN-N3LO interaction we already obtain
evolved NN+3N interactions. We will refer to this as the
“induced” Hamiltonian. Conversely, the “full” Hamil-
tonian is the one obtained by also evolving the original
3NF-NNLO. Therefore, the effects of 3NFs of the Fujita-
Miyazawa type are included in the full Hamiltonian only.

All calculations were performed in a model
space of 12 harmonic oscillator (HO) shells
[Nmax ≡ max(2n+ l) = 11], including all NN ma-
trix elements and limiting 3NF ones to configurations
with N1 + N2 + N3 ≤ N3NF

max = 14. We checked
that increasing N3NF

max from 14 to 16 changes Gorkov
total binding energies by ≈500 keV. Changing the
oscillator frequency between ~ΩHO = 20 and 24 MeV
in Dyson-ADC(3) calculations, we found up to 450
KeV variations in the binding energy of 24O. Similarly,
varying λSRG in a limited range 1.88 − 2.0 fm−1 did
not induce variations of more than 0.5%. From these
and other tests we infer a conservative theoretical error
of at most 5%, for binding energies obtained with
Dyson-ADC(3) [19]. Similar conclusions can be drawn
about the prediction of dominant quasiparticle peaks in
the single particle spectrum, ε+k and ε−n . Varying both
~ΩHO = 20-24 MeV and λSRG = 1.88-2.0 fm−1, we found
a maximum variation of 310 KeV for the neutron 1/2−

quasihole in 24O. This corresponds to 2% of its value,
ε−ν1/2− = -14.22 MeV. The largest variation for proton

quasiparticle energies was found to be of 550 KeV for a
5/2+ quasiparticle, mostly due to variations in ~ΩHO.
Therefore, we estimate theoretical errors of ≤1 MeV for
the Dyson-ADC(3) gaps discussed below. For Gorkov
calculations, we expect that errors on binding energies
and quasiparticle peaks will be larger due to the simpler
many-body truncation. However, we note that Ref. [55]
has reported a remarkable independence of dominant
quasiparticle peaks on the λSRG cutoff already at second
order.

In the following sections, we will report the results ob-
tained for ~ΩHO= 24 MeV and λSRG= 2 fm−1.

IV. RESULTS

A. Spectral functions and evolution of single
particle spectra

Three dimensional plots of the full spectral function,
Eq. (3), are illustrated in Appendix A. Here, we focus on
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FIG. 1. (Color online) Single particle spectral distributions
for the addition and removal of a proton to/from closed sub-
shell oxygen isotopes. States above the Fermi Surface (EF )
are indicated by the shaded areas and yield the spectra of the
resulting odd-even fluorine isotopes. The spectra below EF is
for odd-even nitrogen isotopes in the final state (this appears
inverted in the plot, with higher excitation energies point-
ing downward). Fragments with different angular momen-
tum and parity are shown with different colors, as indicated,
and the bar lengths provide the calculated spectroscopic fac-
tors. These results are obtained from ADC(3) and the full
NN+3NF interaction with λSRG = 2.0 fm−1.

the energy distribution of the spectral strength calculated
by integrating its diagonal part over the single particle
degrees of freedom,

S(ω) =
∑
α

Spαα(ω) + Shαα(ω)

=
∑
n

SF+
n δ(ω − EA+1

n + EA0 )

+
∑
n

SF−k δ(ω − EA0 + EA−1k ) , (16)

which yields the energy distribution of spectroscopic fac-
tors. Each peak corresponds to eigenstate of a neighbour-
ing odd-even isotope, whose energy is directly observed
in nucleon addition and removal experiments.

The particle and hole contributions to Eq. (16), cal-
culated with Dyson ADC(3), are displayed in Fig. 1 for
protons and in Fig. 2 for neutrons. The nucleon addition
part of the spectra are highlighted by the shaded areas.
These figures show the general features of the correlated
spectral distribution, which conserves strong quasipar-
ticle fragments close the the Fermi surface but becomes
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FIG. 2. (Color online) Same as Fig. 1 but for the addition
and removal of a neutron. Both particle (shaded areas) and
hole spectra are for odd-even oxygen isotopes.

heavily fragmented as one moves further away due to cou-
pling to 2p1h and 2h1p (or more complex) excitations.
Quasiparticle states with positive energies are above the
one-nucleon continuum threshold (EA+1

n −EA0 = 0 MeV)
and therefore represent states for scattering of a nucleon
off the |ΨA

0 〉 target. Since we assume a discrete model
space in our calculations the associated particle contin-
uum is found discretised in several peaks that become
more dense with increasing energy, reflecting the changes
in the density of states for |ΨA+1

n 〉. Quasihole fragments
at large negative energies correspond to highly excited
|ΨA−1
k 〉 states and also display a continuum portion of

the spectrum. However, the spectral strength for nu-
cleon removal is less pronounced. This due to the fewer
degrees of freedom available to generate 2h1p configura-
tions, and it can be equivalently explained in terms of the
small overlap between the (A-1)-nucleon wave functions
in the continuum and the bound |ΨA

0 〉 ground state.

The fragments of the spectral distribution provide the
excitation spectrum for the neighbouring odd-even iso-
topes. For example, the two dominant quasihole peaks
in 24O, in Fig. 2, correspond to the 1/2+ ground state
and the 5/2+ excitation of 23O. Our calculated excita-
tion energy for the 5/2+ state is 2.74 MeV, close to
the experimental value of 2.79(13) MeV [64]. The 3/2+

state of 23O can be calculated from the quasiparticle
spectra of 22O. For this we obtain 5.0 MeV excitation
energy, which is larger than the experimental value of
4.0 MeV [62]. In both cases, the theoretical result agrees
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εdLS ≡ protons neutrons
ε3/2+ − ε5/2+

15F 17F 23F 25F 29F 15O 17O 23,21O 25,23O 27O

∆εdLS : 1.32 1.67 2.72 3.02 2.92 2.70 1.77 3.06 3.30 2.03
εIND
dLS : 3.17 5.33 1.17 1.84 4.98 6.33 5.65 5.05 5.06 6.28
εFULL
dLS : 4.48 7.00 3.88 4.86 7.90 9.02 7.42 8.12 8.36 8.32
εexp.dLS : 5.00 3.83/3.44 5.09 8.10 6.64

TABLE I. Spin-orbit splittings between 3/2+ and 5/2+ quasiparticle fragments. For the case of protons these are eigenstates
of the odd-even A+1F isotopes indicated in the second row. In the case of neutrons, they are states of odd-even A±1O. Note
that for neutrons and A=22,24, these two levels are found across the Fermi surface and correspond to eigenstates of different
isotopes. Results are reported for both the NN+3N-induced and full Hamiltonians and ∆εdLS = εFULL

dLS -εIND
dLS are the changes

due to adding the original 3NFs at NNLO. Experimental values are from Refs. [56, 57, 59–63].
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FIG. 3. (Color online) Energy evolution of dominant proton
quasiparticle fragments around oxygen isotopes of increasing
neutron numbers. These level are for protons in the p and sd
shells and refer to the ground and excited states of odd-even
nitrogen (1/2−, 3/2−) and fluorine (5/2+, 1/2+, 3/2+). Dots
(joined by dashed lines) shows ADC(3) results obtained with
the induced NN+3NF interaction. Squares (with full lines)
refer to the full Hamiltonian, with the leading NNLO-3NF
included. The latter are the dominant peaks also displayed
in Fig. 1. In all cases λSRG = 2.0 fm−1. Experimental values
are from Refs. [56–59].

with the ab initio configuration interaction (CI) calcu-
lations of Refs. [32, 33], which use the same NN+3NF
full Hamiltonian. As already mentioned above, satellite
peaks (that is, non dominant ones) are not necessarily
well described in nucleon-attached and nucleon-removal
methods at the ADC(3) level. This because they require
leading order configurations of 2p1h/2h1p type or higher.
The first 1/2+ exited state of 21O, seen as a hole on
22O, is of this type and has a spectroscopic factor ≈9%
of the independent particle model. In spite of this, the
ADC(3) excitation energy is 1.78 MeV which is again in
great agreement with CI calculations based on the same
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FIG. 4. (Color online) Same as Fig. 3 but for dominant
neutron fragments. Dots (joined by dashed lines) shows
ADC(3) results obtained with the induced NN+3NF inter-
action. Squares (with full lines) refer to the full Hamiltonian
and the same shown in Fig. 2. Experimental values are from
Refs. [56, 57, 60–63].

Hamiltoninan (and slightly off the experimental value of
1.22 MeV [65]). Instead, the calculated spectroscopic
factor the the 3/2+ excited state is only <1% and this is
unlikely to be converged with respect to the many-body
truncation in the ADC(3). For this state, we obtain an
excitation energy of 940 keV that disagrees with both
the experiment and the ab initio CI results, as expected.
These results give a further confirmation of the perfor-
mance of the present chiral Hamiltonian with the single
sd shell. Furthermore we note that the comparison with
Refs. [32, 33] provides a successful benchmark of the ac-
curacy of ADC(3) for calculating dominant quasiparticle
states. We then use the latter to discuss the single par-
ticle structure across both p and sd shells.

Figure 3 shows the details of the evolution of the dom-
inant proton quasiparticle and quasihole peaks, in the sd
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εpLS ≡ protons neutrons
ε1/2− − ε3/2−

13N 15N 21N 23N 27N 15,13O 15O

∆εpLS : 2.00 3.10 2.84 4.52 3.01 3.66 3.01
εIND
pLS : -0.92 5.10 2.36 0.53 3.73 5.05 5.16
εFULL
pLS : 1.07 8.21 5.20 5.05 6.74 8.71 8.24
εexp.pLS : 3.50 6.32 9.95 6.18

TABLE II. Spin-orbit splitting between 1/2− and 3/2− quasi-
particle fragments. For the case of protons these are eigen-
states of the odd-even A−1N isotopes indicated in the second
row. For neutrons, they are states of odd-even A−1O, except
for 14O where the two quasiparticles correspond to different
isotopes. Results are reported for both the NN+3N-induced
and full Hamiltonians and ∆εpLS = εFULL

pLS -εIND
pLS are the con-

tributions due to original 3NFs at NNLO. Experimental val-
ues are from Refs. [56, 58].

Egap ≡ protons neutrons
εA+1
5/2+

14O 16O 22O 24O 28O 14O 16O

−εA−1
1/2−

∆Egap: 0.61 -2.16 -2.03 -2.14 -3.64 -1.74 -2.20
EIND

gap : 10.38 15.76 16.50 16.46 15.54 12.07 15.60
EFULL

gap : 10.99 13.60 14.47 14.32 11.90 10.32 13.40
Eexp.

gap : 7.41 11.53 10.02 13.33 5.24 11.52

TABLE III. Energy gaps between the dominant 5/2+ and
1/2− quasiparticles. These give a measure of the gaps between
the sd and p shells for the AO isotopes indicated in the second
row. For the case of protons, these are particle-hole gaps and
coincide with the ground states of the corresponding odd-even
A+1F and A−1N isotopes. For neutrons, these are eigenstates
of odd-even A±1O but are not necessarily situated across the
Fermi surface. Results are reported for both the NN+3N-
induced and full Hamiltonians and ∆Egap = EFULL

gap −EIND
gap

are the effects of the original 3NFs at NNLO. Experimental
data are from Refs. [56–61, 63].

and p shells, for increasing neutron number. These are
corrected for the effects of the COM motion according
to Eqs. (12). The dashed lines are obtained from the
NN+3N-induced interaction and represent the spectrum
predicted by the initial N3LO two-nucleon force. In gen-
eral, the addition of original 3NFs (full lines) has the
effect of consistently increasing the spin-orbit splittings
between the 1/2−–3/2− and the 3/2+–5/2+ dominant
peaks. The s1/2 orbit remain largely unaffected. The
overall changes introduced by leading order 3NFs are re-
ported in Tabs. I and II for both protons and neutrons.
The evolution of quasiparticle energies for the addition
and the removal of a neutron is displayed in Fig. 4. In
this case, the 1/2− and 3/2− strength (in the p shell)
is strongly fragmented for masses above A=20 and no
clear dominant peak is predicted. The original 3NFs still
have the effect of increasing the splitting between spin-

orbit partner states. However, this is in addition to the
stronger repulsion on the d3/2 orbit that is at the origin

of the anomalous dripline at 24O [16].
Worth of mention are the splittings between the 1/2−

and the 3/2− quasiholes in 16O. For protons, this is pre-
dicted to be 5.1 MeV by the NN+3N-induced interac-
tion, which is close to the empirical value of 6.32 MeV.
However, the full Hamiltonian increases it to 8.2 MeV,
overestimating the experiment. Exactly the same situ-
ation is found for the splitting between corresponding
neutron holes, which is also increased by 3.1 MeV due to
the original 3NF at NNLO. For comparison, the Argonne
v18 interaction that has a strongly repulsive core predicts
a separation of ≈3.1 MeV [66] for these two states, at
the NN interaction level. The corresponding Urbana IX
3NF increases this by another 2.7 MeV predicting a split-
ting that is much closer to the experiment [67]. Both
three-nucleon Hamiltonians include two-pion terms of the
Fujita-Miyazawa type and it is therefore reasonable that
they generate similar corrections.

From Tabs. I and II it is clear that the present NN+3N
chiral Hamiltonians have a slight tendency to stretch the
single particle spectrum, as compared to the experimen-
tally observed dominant peaks. Corrections to this flaws
may come at the price of introducing extra short-range
repulsion in the NN interactions, for example through
higher chiral cutoffs. At lower resolution scales, this im-
plies the possible presence of relevant many-body forces
at least at the 4NF level. Ref. [22] pointed out that the
experimental gaps between the sd and pf shells are over
estimated for the Ca and neighbouring isotopic chains.
To investigate the behaviour in the present case, we con-
sider the separations between the dominant 5/2+ and
1/2− fragments that is representative of the gap between
the p and sd shells. These are reported in Tab. III. With
the only exception of the proton gap in 14O, we find that
pre-existing 3NFs have the effect of reducing the distance
between the two shells, by about 2 MeV, and to bring it
closer to the experiment. In spite of this, the gaps remain
consistently predicted too large by just a few MeV even
when the full Hamiltonian is used.

B. Spectroscopic factors

The quenching of spectroscopic factors (SFs) for the
dominant quasiparticle peaks can provide useful insights
on the strength of the correlations generated by the
Hamiltonian. The principal mechanisms that are respon-
sible for these, are identified with the coupling of nucleons
to high-momentum states due to short-range physics and
with long-range effects that include collective resonance
modes and configuration mixing at small excitation en-
ergies [35]. For short-range correlations, we refer to the
effects of the repulsive part of the central and tensor NN
interactions, typically at distances <1 fm, traditionally
used to reproduce nuclear phase shifts at very high en-
ergies. Even for Hamiltonians that present strongly re-
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FIG. 5. (Color online) Calculated spectroscopic factors plot-
ted as a function of their separation energies. All values shown
are for transitions between two ground states and refer to the
removal of a proton (blue squares and diamonds) or a neu-
tron (green circles and triangles) from the isotope indicated
nearby. Triangles and diamonds highlight transitions that in-
volve the 16O and 28O isotopes, at major shell closures. These
results are for ADC(3) and the full NN+3NF interaction.

pulsive NN cores, the effects of short-range physics is
usually found to be at most a 10% reduction with re-
spect to the independent particle model prediction [1].
Thus, the quenching of SFs is mostly a consequence of
low-energy physics. For the present Hamiltonian, the
SRG evolution completely removes any quenching due to
short-range correlations.

Since spectroscopic factors are directly linked to the
cross sections probed by particle addition and removal
processes, it has long been debated whether their evolu-
tion with proton-neutron asymmetry can explain the ob-
served variations in the strength of direct nucleon knock-
out cross sections [68, 69]. The difference between the
proton and neutron separation energies is normally taken
as a measure of such asymmetry. A case of particular in-
terest is 14O because of the very large value of this quan-
tity. The present ADC(3) calculations yield substantially
the same spectroscopic factors equal to 77.4% (77.2%)
for the removal of a proton (neutron) from this isotope
to the ground state of 13N (13O). Recent measurements
of the (d,3He) and (d,3H) reactions are found to be con-
sistent with our calculations and therefore support a near
independence of correlations effects from proton-neutron
asymmetry [70].

In order to extend the analysis to cases with larger dif-
ferences between proton and neutron numbers, we plot
in Fig. (5) the SFs for ground state to ground state tran-
sitions along the whole chain. In general, we find values
evenly spread between 70% and 90% of the independent
particle model. The smaller values of SFs are obtained at
low separation energies and involve transitions to/from
14,22,24O. These isotopes present reduced particle-hole

neutron gaps and therefore allow for stronger correlations
at the Fermi surface. This consideration is also consistent
with previous works that clearly showed a close correla-
tions between the particle-hole gap at the Fermi surface
and the predicted values of SFs [27]. From this, one may
infer that the over streched spectra reported in Tabs. I,
II and III result in more modest quenchings of SFs than
otherwise expected.

By looking only at transitions that involve the doubly-
closed major shells 16O and 28O, one can still identify a
correlation between SFs and nucleon separation energies.
In particular, proton orbits tend to be more deeply bound
as the number of neutrons increases. This is due to the
strong components of the proton-neutron forces, which
also enhances their correlations. However, the overall de-
pendence on proton-neutron asymmetry is rather mild.
We note that the vicinity to the neutron dripline would
require to explicitly account for the continuum. Ref. [71]
found that this effect is sizeable for 24,28O and leads to
further quenching of the proton SFs. Again, this could
be interpreted as a reduced gap between the highest neu-
tron quasihole state and the nearby particle continuum.
In this sense, the reduction of spectroscopic factors is
an indirect consequence of the change in proton-neutron
asymmetry, which first affects energy gaps.

For the case of the NN+3N-induced Hamiltonian we
find a completely similar picture, with SFs of domi-
nant peaks being on average slightly larger than those
obtained with the full interaction. Also in this case,
stronger quenchings are associated with increased frag-
mentation of nearby strength and the narrowing of
(sub-)shell gaps. Thus, we conclude that the general ef-
fects of the original 3NFs on the quenching of absolute
SFs mainly results from the rearrangement of shell orbits
and excitation gaps.

C. Results for open shells

The present implementation of the Gorkov-GF ap-
proach allows calculations up to the second order in the
self-energy [i.e. at the ADC(2) level]. Although this does
not guarantee the best precision for quasiparticle ener-
gies [49], it still yields proper predictions for the trend of
binding energies [22].

We plot the Gorkov predicted binding energies for all
even-even isotopes in Fig. 6 and compare them to the
Dyson-ADC(3) results where available. For the Dyson
case, the NN+3N-induced Hamiltonian systematically
under binds the full isotopic chain and predicts 28O to
be bound with respect to 24O. This is fully corrected
by including the original 3NF at leading order, which
brings all results to about 3% form the experiment or
closer. This is well within the estimated theoretical er-
rors discussed above [19]. The dot-dashed line shows the
trend of ground state energies for the full Hamiltonian
obtained form Gorkov, which include the 18,20,26O iso-
topes. This demonstrates that the fraction of binding
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FIG. 6. (Color online) Binding energies of oxygen isotopes.
Dashed and full lines join the results from Dyson-ADC(3)
calculations with the NN+3N-induced (squares) and full (cir-
cles) Hamiltonians. The shaded area highlights the changes
due to the original 3NF at NNLO. The open diamonds, joined
by dot-dashed lines, are from Gorkov calculations at sec-
ond order and include open shell isotopes. Odd-even iso-
topes are obtained by summing total binging energies of the
even-even systems, Eq. (10), and the energies for addition
or removal of a neutron, Eq. (12). Experiment are from
Refs. [56, 57, 60, 63, 72].

missed by the second order truncation is rather constant
across the whole isotopic chain and, in the present case,
of about 2-4 MeV. The result is a constant shift with re-
spect to the complete ADC(3) prediction and the overall
trend of binding energy is reproduced very close to the
experiment. Note that binding energies for odd-even oxy-
gens can be calculated either as neutron addition or neu-
tron removal from two different nearby isotopes. Fig. 6
shows that this procedure can lead to somewhat differ-
ent results, which should be taken as an indication of
the errors due to the second order many-bod truncation.
For the more complete Dyson-ADC(3) method and the
full Hamiltonian, this differences are never larger than
200 keV and are not visible in the plot.

Figure 7 shows the analogous information for the bind-
ing energies of the nitrogen and fluorine isotopic chains,
obtained through removal and addition of one proton.
This confirms that all considerations made regarding the
effects of leading order 3NFs on the oxygens also apply
to their neighbouring chains. In particular, the repulsive
effect on the d3/2 neutron orbit is key in determining the

neutron driplines at 23N and 24O. Fluorine isotopes have
been observed experimentally up to 31F but with a 29F
that is very weakly bound. Fig. 7 clearly demonstrates
that this is due to an very subtle cancellation between
the repulsion form 3NFs and the attraction generated by
one extra proton [19]. Our calculations with the more
accurate Dyson-ADC(3) scheme predict 28O to be un-
bound with respect to 24O by 5.2 MeV. However, this
value should be slightly affected by the vicinity to the
continuum [17], which was neglected in the present work.
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FIG. 7. (Color online) Same as Fig. 6 but for the binding ener-
gies of nitrogen and fluorine isotopes. These are calculated as
addition or removal of a proton to and from even-even oxygen
isotopes. Experiment are from Refs. [56–58, 63, 72].

The general qualitative features of the spectral func-
tions discussed in the previous sections are also found in
our Gorkov propagators but with an even more spread
single particle spectra. For example, the splitting among
the 1/2− and 3/2− quasihole states of 15N is found to
be 10.2 MeV, compared to the 8.2 MeV calculated in the
Dyson-ADC(3) scheme [cfr. Tab. II]. This larger value
is a consequence of neglecting the interactions between
2p1h and 2h1p configurations by the second order trun-
cation. Interestingly, this splitting is sensibly reduced in
the neighbouring semi-magic isotopes and it is calculated
to be 4.9 MeV for 17N and 5.6 MeV for 19N. These values
refer to the separation from the first 3/2− state close to
the Fermi surface (rather than a centroid of the first few
fragments). They are sensibly smaller because the calcu-
lations yield a fragmented p3/2 hole orbit for these nuclei.
In the Gorkov calculations, the changes in these splitting
due to aiding the original NNLO-3NF (∆εpLS) are 4.2,
0.8 and 2.2 MeV, respectively for 15N, 17N and 19N.

Figure 8 demonstrates the trend obtained for point-
matter and charge radii along the whole chain and com-
pares them to the observed charge radii for 16O and 18O.
The induced 3NFs give sizeable contributions to the cal-
culated radii, which would be sensibly smaller if com-
puted from the evolved NN-only interaction [73]. Con-
versely, the original 3NFs cause only a small reduction.
Eventually, the radii predicted by the complete Dyson-
ADC(3) calculations and the full Hamiltonian are smaller
than the experimental charge radii by 0.2-0.3 fm. Note
that the present calculations do not account for the evo-
lution of operators through the SRG. On the other hand,
the small radii are consistent with the over stretched
spectra discussed above. The radii calculated with the
second order Gorkov approach give somewhat smaller re-
sults due to the many-body truncation. Nevertheless,
they describe the overall trend of increasing matter radii
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along the whole chain, while charge radii remain largely
independent of neutron number. Note that the available
experimental data shows almost equal charge radii for
16O and 17O and a slight larger value for 18O [39]. This
is reminiscent of the behaviour of isotope shifts in cal-
cium isotopes that first increase and then return small
moving when going from 40Ca and 48Ca, although more
data up to 22O would be required to confirm this. The
bell shape observed in calcium isotopes is explained by
extensive shell model calculations covering both sd and
pf shells [74, 75]. Such type of correlations are not in-
cluded in the present Gorkov formalism at second order
and therefore the flat behaviour of charge radii of Fig. 8
is consistent with the many-body truncations adopted
here.

V. CONCLUSIONS

We have presented a comprehensive study of the single
particle spectral functions and ground state properties of
oxygen isotopes based on chiral NN+3N interactions. To
this goal, we performed ab initio calculations within self-
consistent Green’s function (SCGF) theory. The theoret-
ical framework of this approach has been reviewed high-
lighting the physics information contained in the nuclear
spectral function. Calculations were performed for the
closed subshell isotopes using the Dyson-ADC(3) many-
body truncation scheme which is presently the state of
the art technique. For the open shell isotopes 18O, 20O
and 26O we performed calculations using the recently in-
troduced Grokov formulation of SCGF, which can be cur-

rently applied at second order.

The general features of the nuclear spectral functions
have been discussed, with particular emphasis on the
quasiparticle energies (also referred to as “separation”
energies) for the dominant peaks observed in the removal
and addition of a nucleon. The 3N interactions at NNLO
have the effect of increasing the spin orbit splittings of the
p and d orbits and lead to over estimating the experiment.
At the same time, the 3NFs reduce the gaps between
the p and sd major shells, improving the agreement with
data but not enough to reproduce the empirical values.
We observe that all these deficiencies might be corrected
by having extra short-range repulsion in the NN section
of the Hamiltonian. Other approaches, such as global
fittings of chiral NN+3N forces to include medium mass
isotopes, also hold the promise to reach proper satura-
tion [76]. In general, it is found that the current NN-
N3LO interaction with cutoff at 500 MeV, augmented by
the local 3NF-NNLO with a 400 MeV local cutoff, tends
to stretch the single particle spectrum too much com-
pared to data. The corresponding predictions for matter
radii under estimate the experiment.

The conclusion that the present chiral forces overesti-
mate the gaps between major shells was already pointed
out in Ref. [22] for isotopic chains around Ca, and sug-
gest that these saturate nuclear matter at slightly higher
densities than the empirical point [77, 78]. Here, we find
that hints of the same pathologies are seen also for the
oxygen isotopes, in spite of the fact that binding energies
are nicely predicted at smaller masses.

The calculated absolute quenchings of spectroscopic
factors change only mildly with proton-neutron asym-
metry. This is valid as long as the occupied states in
the single particle spectrum are not near to the contin-
uum. Stronger correlations would instead be generated
by smaller particle-hole gaps in the oxygen isotopes with
closed subshells.
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FIG. 10. (Color online) Same as Fig. 9 but for neutrons.

Appendix A: plots of spectral functions

The diagonal part of the one-nucleon spectral function,
Eq. (3), has a straightforward physical interpretation [79,
80]. Its particle part, Spαα(ω), is the joint probability of
adding a nucleon with quantum numbers α to the A-body
ground state, |ΨA

0 〉, and then to find the system in a final
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state with energy EA+1 = EA0 + ω. Likewise, Shαα(ω)
gives the probability of removing a particle from state
α and later finding the nucleus in an eigenfunction of
energy EA−1 = EA0 −ω. Once transformed to coordinate
or momentum representations, these distributions give a
rather intuitive picture of the single particle structure of a
nucleus. We demonstrate this by calculating the spectral
function in coordinate basis as

S(r, ω) =
∑
α β

φα(r)
[
Spαβ(ω) + Shαβ(ω)

]
φ∗β(r) , (A1)

where φα(r) are spin-coupled harmonic oscillator func-
tions. The angular and spin dependences in Eq. (A1) are
removed by summing over all oscillator sates. This ap-
pens for all nuclei under consideration because they have
Jπ =0+ quantum numbers in their ground sates.

The spectral functions obtained from Dyson-ADC(3)
calculations are displayed in Figs. 9 and 10 for protons
and neutrons, respectively. These shows the radial distri-
bution of the squared one-nucleon overlap wave functions
at different quasiparticle energies. The Fermi energy,
EF ≡ (ε+0 +ε−0 )/2, marks the separation between the hole
and particle parts of the spectral distribution. Hence, in-
tegration over all energies in the range ω ∈ [−∞, EF ]
yields the nucleon density ρ(r) [see Eq. (4)] and fur-

ther integrations over coordinate space yields the particle
number. Note that quasiparticle states for ω > 0 corre-
spond to the continuum spectrum of the corresponding
(A+1)-nucleon system. These are unbound states for the
scattering of a nucleon off the |ΨA

0 〉 ground state [44, 45].
Thus, they extend to infinity in the limit of a complete
single particle model space. In the present work, we only
calculate their projection on a truncated harmonic os-
cillator space, which cannot be normalised to the usual
asymptotic boundary conditions. Nevertheless, the plots
put in evidence the predicted location for neutron res-
onances in the sd and pf shells. It must be kept in
mind that these resonances will be further corrected in
extended calculations that properly account for the con-
tinuum. In general these effects will be more important
the broader is the resonance and for the present case
one may expect corrections as large as a few MeV. Im-
portantly, the self-energy, Eq. (14), is a bound function
which can be correctly expanded even in an harmonic
oscillator basis. Thus, by first transforming this to coor-
dinate or momentum space, it is possible to obtain a com-
plete optical potential and to compute scattering waves
with proper boundary conditions. This is normally done
in applications of SCGF theory to scattering [81, 82].
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