
Noname manuscript No.
(will be inserted by the editor)

On Fairness of Systemic Risk Measures

Francesca Biagini · Jean-Pierre Fouque ·
Marco Frittelli · Thilo Meyer-Brandis

the date of receipt and acceptance should be inserted later

Abstract In our previous paper “A Unified Approach to Systemic Risk Measures via
Acceptance Set” we have introduced a general class of systemic risk measures that
allow random allocations to individual banks before aggregation of their risks. In the
present paper, we address the question of fairness of these allocations and propose a fair
allocation of the total risk to individual banks. We show that the dual formulation of the
minimization problem identifying the systemic risk measure provides a valuation of the
random allocations, which is fair both from the point of view of the society/regulator
and from the individual financial institutions. The case with exponential utilities which
allows for explicit computation is treated in details.

Keywords: Systemic risk measures, random allocations, risk allocation, fairness.
Mathematics Subject Classification (2010): 60A99; 91B30; 91G99; 93D99.
JEL Classification: C60, G01.

F. Biagini, corresponding author
Department of Mathematics, University of Munich, Theresienstraße 39, 80333 Munich, Ger-
many. E-mail: francesca.biagini@math.lmu.de. Secondary affiliation: Department of Mathe-
matics, University of Oslo, Box 1053, Blindern, 0316, Oslo, Norway.

Jean-Pierre Fouque
Department of Statistics & Applied Probability, University of California, Santa Barbara, CA
93106-3110, E-mail: fouque@pstat.ucsb.edu. Work supported by NSF grant DMS-1409434.

Marco Frittelli
Dipartimento di Matematica, Università degli Studi di Milano, Via Saldini 50, 20133 Milano,
Italy, E-mail: marco.frittelli@unimi.it.

Thilo Meyer-Brandis
Department of Mathematics, University of Munich, Theresienstraße 39, 80333 Munich, Ger-
many. E-mail: meyerbr@math.lmu.de.
Part of this research was performed while F. Biagini, M. Frittelli and T. Meyer-Brandis were
visiting the University of California Santa Barbara.



2 Francesca Biagini et al.

1 Introduction

Consider a vector X = (X1, . . . , XN ) ∈ L0(RN ) of N random variables denoting a
configuration of risky factors at a future time T associated to a system of N enti-
ties/banks.

In the framework of Risk Measures, one of the first proposals, see [16], to measure
the systemic risk of X was to consider the map

ρ(X) := inf{m ∈ R | Λ(X) +m ∈ A} , (1)

where
Λ : RN → R,

is an aggregation rule that aggregates the N -dimensional risk factors into a univariate
risk factor, and

A ⊆L0(R),

is a one-dimensional acceptance set. Systemic risk can again be interpreted as the
minimal cash amount that secures the system when it is added to the total aggregated
system loss Λ(X). The interpretation of (1) is that the systemic risk is the minimal
capital needed to secure the system after aggregating individual risks.

It might be more relevant to measure systemic risk as the minimal capital that
secures the aggregated system by injecting the capital into the single institutions before
aggregating their individual risks. This way of measuring systemic risk can be expressed
by

ρ(X) := inf

{
N∑
i=1

mi |m = (m1, · · · ,mN ) ∈ RN , Λ(X+ m) ∈ A

}
. (2)

Here, the amount mi is added to the financial position Xi of institution i ∈ {1, · · · , N}
before the corresponding total loss Λ(X+m) is computed (we refer to [3], [7] and [24]).

The main novelty of our paper [7] was the possibility of adding to X not merely a
vector m = (m1, · · · ,mN ) ∈ RN of cash, but, more generally, a random vector Y ∈ C
in a class C such that

C ⊆ CR ∩ L, where CR :=

{
Y ∈ L0(RN ) |

N∑
n=1

Y n ∈ R

}
,

where the subspace L ⊆ L0(RN ) will be specified later. Here, the notation
∑N
n=1 Y

n ∈
R means that

∑N
n=1 Y

n is equal to some deterministic constant in R, even though each
single Y n, n = 1, · · · , N , is a random variable.

Then, the general systemic risk measure considered in [7] can be written as

ρ(X) := inf

{
N∑
n=1

Y n | Y ∈ C, Λ(X+Y) ∈ A

}
, (3)

and can still be interpreted as the minimal total cash amount
∑N
n=1 Y

n ∈ R needed
today to secure the system by distributing the cash at the future time T among the
components of the risk vector X. However, contrary to (2), in general the allocation
Y i(ω) to institution i does not need to be decided today but depends on the scenario
ω that has been realized at time T . This corresponds to the situation of a lender of last
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resort who is equipped with a certain amount of cash today and who will allocate it
according to where it serves the most depending on the scenario that has been realized
at T . Of course, in general, the use of scenario dependent allocation Y as in (3) reduces,
in comparison to the deterministic case in (2), the minimal amount of capital ρ(X)
needed to secure the system. Restrictions on the possible distributions of cash are given
by the class C, as shown in the Example 1.

Definition 1 (i) We say that the scenario dependent allocation YX = (Y nX)n ∈ C is
a systemic optimal allocation for ρ(X), defined in (3), if it satisfies Λ(X + YX) ∈ A
and ρ(X) =

∑N
n=1 Y

n
X.

(ii) We say that a vector (ρn(X))n ∈ RN is a systemic risk allocation of ρ(X) if∑N
n=1 ρ

n(X) = ρ(X).

Even though, as mathematicians, we like well defined and sharp definitions, the
analysis of a system of financial institutions suggests that the concept of fairness is a
multi-faceted notion.

The aim of this paper is to analyze in detail the systemic risk measure in (3). In
addition to several technical aspects regarding such systemic risk measures, we will
answer the following main questions about fairness of risk allocations:

1. When is the systemic valuation ρ(X) and its optimal allocation YX fair from the
point of view of the whole system?

2. When is a systemic risk allocation (ρn(X))n ∈ RN of ρ(X) fair from the point of
view of the whole system?

3. When are the systemic optimal allocation YX ∈ C and the systemic risk allocation
(ρn(X))n ∈ RN associated to ρ(X), fair from the point of view of each individual
bank?

We provide answers to these questions in the following introductory section without
entering in the mathematical details of our analysis which will be provided in the
subsequent sections. The optimal solution to the dual problem of the primal problem (3)
will play a crucial role. It is a vector of probability measures QX = (Q1

X, · · ·Q
N
X) which

will provide the fair valuation of the optimal random allocations through the formula
ρ(X) =

∑N
n=1 EQnX [Y nX]. Existence and uniqueness of QX is proved in Proposition

4 and Corollary 4. In Section 3 we introduce the setting of the paper and the main
assumptions, and we show that our optimization problems are well posed. The main
results are collected in Section 4, where we first present our results in the Orlicz space
setting (introduced in Section 3.2) and in Section 5, where the existence of the optimal
solution to ρ(X) (Theorem 7), as well as other technical existence results, are provided.
To guarantee existence, we need to enlarge the environment and consider appropriate
spaces of integrable random variables. For this reason, we point out, in the course of
the paper, those results that admit an extension to the larger setting. The case with
exponential utilities and grouping of banks will be treated in details in Section 6, where
meaningful sensitivity properties will be established as well.

In the rest of the paper, we shall assume that the aggregation function Λ is of the
form Λ(x) =

∑N
n=1 un(xn) for utility functions un, n = 1, · · · , N .

2 Fairness of systemic risk measures and allocations

The main objective of this paper is to discuss various aspects of fairness of the systemic
risk measures ρ(X), random allocationsY ∈ C, and risk allocations of the total systemic
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risk among individual banks. In this introductory section, we explain and motivate the
various fairness properties, both from the point of view of the society/regulator and
from the individual financial institutions. Precise definitions and statements, as well
as detailed proofs, will be given in the course of the paper. For the remaining of this
section, we assume that the infimum of the systemic risk measure

ρ(X) := inf
Y∈C⊂CR

{
N∑
n=1

Y n | E

[
N∑
n=1

un(X
n + Y n)

]
≥ B

}
, (4)

is attained for an optimal (random) allocation YX = (Y 1
X, · · · , Y

N
X ) ∈ C, which will

turn out to be unique. Existence of such minimizer is proved in Section 5. Note that
(4) is a particular case of (3), where the function Λ is the sum of the utility functions
un and A is the particular acceptance set A = {Z ∈ L0(R), E[Z] ≥ B} for a given
constant B.

We first introduce the related optimization problem

π(X) := sup
Y∈C⊂CR

{
E

[
N∑
n=1

un(X
n + Y n)

]
|
N∑
n=1

Y n ≤ A

}
, (5)

so that, if we interpret
∑N
n=1 un(X

n + Y n) as the aggregated utility of the system
after allocating Y, then π(X) can be interpreted as the maximal expected utility
of the system over all random allocations Y ∈ C such that the aggregated budget
constraint

∑N
n=1 Y

n ≤ A holds for a given constant A. In the following, we may write
ρ(X) = ρB(X) and π(X) = πA(X) in order to express the dependence on the minimal
level of expected utility B ∈ R and on the maximal budget level A ∈ R, respectively.
We will see in Section 4.2 that

B = πA(X) if and only if A = ρB(X), (6)

and, in these cases, the two problems πA(X) and ρB(X) have the same unique optimal
solution YX. From this, we infer that once a level ρ(X) of total systemic risk has been
determined, the optimal allocation YX of ρ maximizes the expected system utility
among all random allocations of cost less or equal to ρ(X).

Once the total systemic risk has been identified as ρ(X), the second essential ques-
tion is how to allocate the total risk to the individual institutions. Recall that a vector
(ρ1(X), · · · , ρN (X)) ∈ RN is called a systemic risk allocation (SRA) of ρ(X) if∑N
n=1 ρ

n(X) = ρ(X). For deterministic allocation, this property is known as the “Full
Allocation” property, see for example [13].
In the case of deterministic allocations Y ∈ RN , i.e. C = RN , the optimal deterministic
YX represents a canonical risk allocation ρn(X) := Y nX. For general (random) alloca-
tions Y ∈ C ⊂ CR, we then follow the natural approach to consider risk allocations of
the form

ρn(X) := EQn [Y nX] for n = 1, · · · , N, (7)

where Q = (Q1, · · · , QN ) is a vector of probability measures with
∑N
n=1 EQn [Y

n
X] =

ρ(X). In that way, ρn(X) = EQn [Y nX] can be understood as a systemic risk valuation of
Y nX. Note that in our setting, besides providing a ranking in terms of systemic riskiness,
a risk allocation ρn(X) can be interpreted as a capital requirement for institution n

in order to fund the total amount ρ(X) of cash needed. In this sense, the vector Q
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allows for the monetary interpretation of a systemic pricing operator to determine the
price (or cost) of (future) random allocations of the individual institutions. Obviously,
it is of high interest to identify fairness criteria, acceptable both by the society and
by the individual financial institutions, for such systemic valuation measures and their
corresponding risk allocations.

Now, consider the situation where a valuation (or cost) operatorQ = (Q1, · · · , QN )
is given for the system. Then, a natural alternative formulation of the systemic risk
measure and the related utility maximization problem in terms of the valuation pro-
vided by Q is

ρQ(X) = ρQB (X) := inf
Y∈MΦ

{
N∑
n=1

EQn [Y n] | E

[
N∑
n=1

un(X
n + Y n)

]
≥ B

}
, (8)

πQ(X) = πQA (X) := sup
Y∈MΦ

{
E

[
N∑
n=1

un(X
n + Y n)

]
|
N∑
n=1

EQn [Y n] ≤ A

}
. (9)

Note that in (8) and (9) the allocation Y is not required to belong to CR (that is adding
up to a deterministic quantity) but to a vector space L = MΦ of random variables
introduced later. Thus, for the systemic risk measure ρQ(X), we look for the mini-
mal (systemic) cost

∑N
n=1 EQn [Y

n] among all Y ∈ MΦ satisfying the acceptability

(utility) constraint E
[∑N

n=1 un(X
n + Y n)

]
≥ B. Analogously, for πQ(X) we maxi-

mize the expected systemic utility among all Y ∈MΦ satisfying the budget constraint∑N
n=1 EQn [Y

n] ≤ A. Similarly as in (6), we will see in Section 4.2 that

B = πQA (X) if and only if A = ρQB (X), (10)

and the two problems πQA (X) and ρQB (X) have the same unique optimal solution.
The specific choice of a systemic valuation is the central question of this paper.

It will turn out that the optimizer QX = (Q1
X, · · ·Q

N
X) of the dual problem of (4),

presented in detail in Section 4.1 and in Corollary 4, provides a systemic risk allocation
(EQ1

X
[Y 1

X], · · · , (EQNX [Y NX ]), see (74), with

N∑
n=1

EQXn
[Y nX] = ρ(X),

satisfying

ρB(X) = ρQX

B (X), (11)

πA(X) = πQX

A (X). (12)

Furthermore, by Proposition 13, YX is the unique optimal allocation to ρB(X) and
ρQX

B (X) in (11). Similarly, πA(X) and πQX

A (X) in (12) have the same optimal solution
YX, see Section 5.3.2.

We now discuss fairness properties of the systemic risk measure ρ(X), the optimal
allocation YX, and the systemic probability measure QX with corresponding risk al-
locations EQ1

X
[Y 1

X],.. ..,EQNX [Y NX ], both from the perspective of the society/regulator
and from the individual institutions.

Fairness from the perspective of the society/regulator. Consider the sys-
temic risk measure ρ(X) with C = RN . In this case not only the total amount of
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cash ρ(X) but also the individual cash amounts Y ∈ RN allocated to the insti-
tutions are already known today (i.e., they are deterministic). Such a risk measure
only depends on the marginal distributions of X as can be seen from the constraint
E
[∑N

n=1 un(X
n + Y n)

]
≥ B in (4) with Y n deterministic. However, ignoring po-

tential dependencies among the banks might be over-conservative and too costly. By
considering scenario-dependent allocations Y ∈ C ) RN (and by that considering the
dependencies among the banks as was shown through examples in [7]), the consequen-
tial reduction of the overall cost of securing the system is beneficial to the society.
Additionally, the requirement Y ∈ C and C ⊆ CR is important from the society’s
perspective as it guarantees that the cash amount ρ(X) determined today is suffi-
cient to cover the allocations Y at time T in any possible scenario. There might be
cross-subsidization (in the sense of a risk exchange) among the banks at time T , but∑N
n=1 Y

n = ρ(X) means that the system clears and no additional external injections
(or withdrawals) are necessary at time T . In that sense, the requirement Y ∈ C ⊆ CR
is fair from the society/regulator’s perspective. Furthermore and most importantly,
by (5) and (10), the optimal allocation YX maximizes the expected systemic utility
among all allocations with total cost less or equal to A = ρB(X).

Next, consider the systemic risk valuation using QX. To explain one of the features
of QX, observe first that ρ in (3) keeps the classical cash additivity property

ρ(X+m) = ρ(X)−
N∑
n=1

mn for all m ∈ RN and all X, (13)

which is a global property, see Section 4.3 for details. The local version associated to
(13) is

d

dε
ρ(X+εm)|ε=0 = −

N∑
n=1

mn for m ∈RN . (14)

The expression d
dερ(X+εm)|ε=0 represents the sensitivity of the risk of X with respect

to the impact m ∈RN and was named the marginal risk contribution by [3]. However,
such property can not be immediately generalized to the case wherem ∈ RN is replaced
by random vectors V, in particular when

∑N
n=1 V

n is not a constant.
If the positions change from X to X+ εV jej , where ej is the jth unit vector and

V j is a random variable, then, we show in Section 4.3 that the riskiness of the entire
system changes linearly by

d

dε
ρ(X+εV jej)|ε=0 = E

QjX
[−V j ], (15)

which shows thatQX can be naturally introduced as a systemic risk valuation operator.
Now, given a systemic risk valuation Q, one is naturally led to the specification

(8) for a systemic risk measure. Note, however, that in (8) the clearing condition∑N
n=1 Y

n = ρ(X) is not guaranteed since the optimization is performed over all Y ∈
MΦ. Using the valuation with QX is then fair from the society/regulator’s point of
view since, by Proposition 13, the optimal allocation in (8) fulfills the clearing condition
Y ∈ CR, and is in fact the same as the optimal allocation of the original systemic risk
measure in (4). From (73) and (74) we obtain

N∑
n=1

Y nX = ρ(X) = ρQX(X) =
N∑
n=1

EQnX [Y nX],
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which also shows that the selection of EQX
[·] as the valuation functional is as fair

as computing ρ(X) as the infimum of
∑N
n=1 Y

n , for admissible Y, and supports the
definition of QX as the systemic probability measure.

Fairness from the perspective of the individual institutions. The essential
question for a financial institution is whether its allocated share of the total systemic
risk determined by the risk allocation (EQ1

X
[Y 1

X], · · · , (EQNX [Y NX ]) is fair.
For the banks, the clearing condition Y ∈ CR is not relevant. Instead, given a vector

Q = (Q1, · · · , QN ) of valuation measures, the systemic risk measure ρQB (X) in (8) is
more relevant. Thus, by choosing Q = QX, the requirements from both the society
and the banks are reconciled as seen from (11). Furthermore, with the choice Q = QX,
we have by (12)

πA(X) = πQX

A (X) = sup∑N
n=1 a

n=A,

N∑
n=1

sup
EQn

X
[Y n]=an

E [un(X
n + Y n)] , (16)

see Lemma 3 for details. Choosing A = ρB(X), we obtain by (10) and the fact that,
then,YX is the optimal solution of πQX

A (X), that EQXn
[Y nX] = an,

∑N
n=1 EQXn

[Y nX] =
A and (16) can be rewritten as

πA(X) = πQX

A (X) =
N∑
n=1

sup
EQn

X
[Y n]=EQn

X
[Y nX ]

E [un(X
n + Y n)] .

This means that by using QX for valuation, the system utility maximization in
(9) reduces to individual utility maximization problems for the banks without the
“systemic” constraint Y ∈ C:

∀n, sup
Y n

{
E [un(X

n + Y n)] | EQnX [Y n] = EQnX [Y nX]
}
.

The optimal allocation Y nX and its value EQnX [Y nX] can thus be considered fair by the
nth bank, as Y nX maximizes the individual expected utility of bank n among all random
allocations (not constrained to be in CR) with value EQnX [Y nX]. This finally argues for
the fairness of the risk allocation (EQ1

X
[Y 1

X], · · · ,EQNX [Y NX ]) as fair valuation of the

optimal allocation (Y 1
X, · · · , Y

N
X ).

Another desirable fairness property is monotonicity. It is clear that if C1 ⊆ C2 ⊆ CR,
then ρ1(X) ≥ ρ2(X) for the corresponding systemic risk measures

ρi(X) := inf

{
N∑
n=1

Y n | Y ∈ Ci, Λ(X+Y) ∈ A

}
, i = 1, 2.

The two extreme cases occur for C1 := RN (the deterministic case) and C2 := CR
(the unconstraint scenario dependent case). Hence we know that when going from
deterministic to scenario-dependent allocations the total systemic risk decreases. It is
then desirable that each institution profits from this decrease in total systemic risk in
the sense that also its individual risk allocation decreases:

ρn1 (X) ≥ ρn2 (X) for each n = 1, ..., N. (17)

The opposite would clearly be perceived as unfair. This is discussed in the exponential
setting of Section 6.2, where we show that (17) holds when ρn1 (X) := Y n1 and ρn2 (X) :=
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EQn2 [Y
n
2 ] (where Y nj is the optimal allocation to the systemic risk measure ρj(X)

associated to Cj , so that Y n1 ∈ R is deterministic, and Q2 is the systemic probability
measure associated to ρ2(X)). By using a probability measure R different from Q2 to
compute the risk allocation ρn2 (X) = ERn [Y n2 ], the property (17) is lost in general.

Additional fairness properties related to the systemic probability measure QX are
addressed in Section 6.1, Proposition 18.

We conclude this Section with a literature overview on systemic risk. In [19], [12]
and [18] one can find empirical studies on banking networks, while interbank lending
has been studied via interacting diffusions and mean field approach in several papers
like [28], [26], [15], [35], [5]. Among the many contributions on systemic risk modeling,
we mention the classical contagion model proposed by [23], the default model of [31],
the illiquidity cascade models of [30], [34] and [37], the asset fire sale cascade model
by [17] and [14], as well as the model in [42] that additionally includes cross-holdings.
Further works on network modeling are [1], [40], [2], [32], [4], [21] and [22]. See also
the references therein. For an exhaustive overview on the literature on systemic risk
we refer the reader to the recent volumes of [33] and of [27].

3 The setting

We now introduce the setting and discuss some fundamental properties of systemic
risk measures. Given a probability space (Ω,F ,P), we consider the space of random
vectors

L0 := L0(P;RN ) := {X = (X1, . . . , XN ) | Xn ∈ L0(Ω,F ,P;R), n = 1, · · · , N}.

The measurable space (Ω,F) will be fixed throughout the paper and will not appear in
the notations. Unless we need to specify a different probability, we will also suppress P
from the notations and simply write L0(RN ). In addition, we will sometimes suppress
Rd, d = 1, ..., N, in the notation of the vector spaces, when the dimension of the random
vector is clear from the context. When Q = (Q1, ..., QN ) is a vector of probability
measures on (Ω,F), we set L1(Q) := {X = (X1, . . . , XN ) | Xn ∈ L1(Qn), n =
1, · · · , N}. Unless differently stated, all inequalities between random vectors are meant
to be P-a.s. inequalities.
A vector X = (X1, . . . , XN ) ∈ L0 denotes a configuration of risky factors at a future
time T associated to a system of N entities. We assume that L0(RN ) is a vector lattice
equipped with the order relation

X1 � X2 if Xi
1 ≥ Xi

2 P− a.s. ∀i = 1, · · · , N. (18)

Let CR be the linear space

CR := {Y ∈ L0(RN ) |
N∑
n=1

Y n ∈ R}. (19)

Here we use the notation
∑N
n=1 Y

n ∈ R to denote that
∑N
n=1 Y

n is equal to some
deterministic constant in R, even though each single Y n, n = 1, · · · , N , is a random
variable.

By following [7], we consider systemic risk measures

ρ : L → R∪{∞}∪{−∞} ,
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of the form

ρ(X) := inf

{
N∑
n=1

Y n | Y ∈ C, Λ(X+Y) ∈ A

}
, (20)

where the map
Λ : RN → R,

is an aggregation rule that aggregates the N -dimensional risk factor into a univariate
risk factor, A ⊆L0(R) is a one dimensional acceptance set and the set C of admissible
random elements satisfies C ⊆ CR ∩ L, where

L ⊆ L1(P;RN ),

is a vector subspace containing RN , that will be specified in the sequel.

Example 1 We now introduce one relevant example for the set of admissible random
elements, which we denote C(n).

Definition 2 Set n0 = 0. For h ∈ {1, · · · , N} , let n := (n1, · · · , nh) ∈ Nh, with
nm−1 < nm for all m = 1, · · · , h and nh := N , represent some partition of {1, · · · , N}.
We set Im := {nm−1 + 1, · · · , nm} for each m = 1, · · · , h. The cardinality of each
group is denoted with Nm := nm − nm−1. We introduce the following family of allo-
cations C(n) = C(n)0 ∩ L, where

C(n)
0 =

Y ∈ L0(RN ) | ∃ d = (d1, · · · , dh) ∈ Rh :
∑
i∈Im

Y i = dm for m = 1, · · · , h

 ⊆ CR.
(21)

For a given n := (n1, · · · , nh), the values (d1, · · · , dh) may change, but the number
of elements in each of the h groups Im is fixed by the partition n. It is then easily
seen that C(n) is a linear space containing RN and closed with respect to convergence
in probability. Beside the obvious interpretation of the restrictions imposed to the
elements Y ∈C(n), we point out that the family C(n) admits two extreme cases:

(i) the strongest restriction occurs when h = N, i.e. we consider exactly N groups,
and in this case C(n) = RN corresponds to the deterministic case;

(ii) on the opposite side, we have only one group h = 1 and C(n) = CR ∩ L is the
largest possible class, corresponding to arbitrary random injection Y ∈L with the
only constraint

∑N
n=1 Y

n ∈ R.

3.1 Assumptions and properties of ρ

We now specify further properties of systemic risk measures of the form (20) under
some additional, but still general hypotheses. In the sequel we will always work under
the following

Assumption 1

1. L ⊆ L1(P;RN ); C0 ⊆ CR and C = C0 ∩L is a convex cone satisfying RN ⊆ C ⊆ CR.
2. Λ(x) =

∑N
n=1 un(x

n) where un : R→ R is increasing, concave, and limx→−∞
un(x)
x =

+∞.
3. B < Λ(+∞), i.e. there exists M ∈ RN such that Λ(M) ≥ B.
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4. A :=
{
Z ∈ L1(P;R) | E[Z] ≥ B

}
.

As C is a convex cone containing RN , Y+ δ ∈ C for every Y ∈ C and any deterministic
δ ∈ RN .
Under Assumption 1, a systemic risk measure of the form (20) can be written as

ρ(X) := inf

{
N∑
n=1

Y n | Y ∈ C, E

[
N∑
n=1

un(X
n + Y n)

]
≥ B

}
. (22)

Note that there is no loss of generality in assuming that un(0) = 0 (simply replace B
with B −

∑N
n=1 un(0)), and that a natural selection for B is B :=

∑N
n=1 un(0). In

this case ρ(0) ≤ 0. The proof of the following proposition, which exploits the behavior
of un at −∞, is given in Appendix A.1.

Proposition 1 For all X ∈L we have ρ(X) > −∞.

The domain of ρ is defined by

dom(ρ) := {X ∈L | ρ(X) < +∞} .

Proposition 2 The map ρ : L → R∪{+∞} in (22) is convex, monotone decreasing
and satisfies

{X ∈L | E[Λ(X)] > −∞} ⊂ dom(ρ),

and so (L∞(RN )∩L) ⊂ dom(ρ). If E[un(Xn)] > −∞ for each n and all X ∈ L, then

ρ(X) = ρ=(X) := inf

{
N∑
n=1

Y n | Y ∈ C, E

[
N∑
n=1

un(X
n + Y n)

]
= B

}
, X ∈ dom(ρ).

If, in addition, for each n, un : R → R is strictly concave and there exists an optimal
allocation YX = {Y nX}n ∈ C0 ∩ L of ρ(X), then it is unique.

Proof By Proposition 1, we know that ρ : L → R∪{+∞} and then convexity and
monotonicity are straightforward. Let X ∈L such that E[Λ(X)] > −∞, m ∈ R and set
1 = (1, · · · ,1). ThenX+m1 ↑ +∞ P-a.s. ifm→ +∞. As E[Λ(X)] > −∞, we have that
E[Λ(X+m1)] > −∞ form > 0, and by monotone convergence it follows that E[Λ(X+
m1)]↑Λ(+∞) > B. Since RN ⊆ C, then m1 ∈ C and {Y ∈ C, Λ(X+Y) ∈ A} 6= ∅, so
that ρ(X) < +∞.

We now claim that if E[Λ(X+Y)] > B then Y ∈ C can not be optimal:

Y ∈ C and E[Λ(X+Y)] > B =⇒
N∑
n=1

Y n > ρ=(X). (23)

Indeed, the continuity of un and E[un(Zn)] > −∞ for all Z ∈ L imply the exis-
tence of δ ∈RN+ , δ 6= 0, such that E[Λ(X + Y − δ)] = B and so, as Y − δ ∈ C,
ρ=(X) ≤

∑N
n=1(Y

n − δn) <
∑N
n=1 Y

n. This readily implies ρ(X) = ρ=(X), other-
wise if ρ(X) <ρ=(X), then by definition of ρ(X), there would exist ε > 0 and Y ∈ C
satisfying E[Λ(X+Y)] > B and

∑N
n=1 Y

n ≤ ρ(X)+ε<ρ=(X), which contradicts (23).
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We now show uniqueness by contradiction. Suppose that ρ(X) is attained by two
distinct Y1 ∈ C and Y2 ∈ C, so that P(Yj

1 6= Yj
2) > 0 for some j. Then we have

ρ(X) =
N∑
n=1

Y n1 =
N∑
n=1

Y n2 and E

[
N∑
n=1

un(X
n + Y nk )

]
= B for k = 1, 2.

For λ ∈ [0, 1] set Yλ := λY1 + (1− λ)Y2. Then Yλ ∈ C, as C is convex. This implies

N∑
n=1

Y nλ = λ

N∑
n=1

Y n1 + (1− λ)
N∑
n=1

Y n2 = ρ(X), ∀λ ∈ [0, 1],

and for λ ∈ (0, 1)

B = λE

[
N∑
n=1

un(X
n + Y n1 )

]
+ (1− λ)E

[
N∑
n=1

un(X
n + Y n2 )

]
<

< E

[
N∑
n=1

un(λX
n+λY n1 + (1− λ)Xn+(1− λ)Y n2 )

]
= E

[
N∑
n=1

un(X
n + Y nλ )

]
,

where we used that uj is strictly concave and P(Y j1 6= Y j2 ) > 0. This is a contradiction
with ρ(X) = ρ=(X) and (23).

Remark 1 (Extension to L1(Q)) The extension of Proposition 2 to the case where
Y ∈ C0 ∩L1(Q) (instead of Y ∈ C0 ∩L) would a priori require Assumption (85), as in
this case we can not guarantee E[un(Zn)] > −∞ for all Z ∈ L1(Q), see Remark 14.
However, we will obtain uniqueness also for Y ∈ C0 ∩L1(Q), based on the uniqueness
of the solution to ρQX(X), see Remark 5, and on Remark 11.

3.2 Orlicz setting

We now study some important properties of systemic risk measures of the form (22) in
a Orlicz space setting, see [38] for further details on Orlicz spaces. This presents several
advantages. From a mathematical point of view, it is a more general setting than L∞,
but at the same time it simplifies the analysis, since the topology is order continuous
and there are no singular elements in the dual space. Furthermore, it has been shown in
[10] that the Orlicz setting is the natural one to embed utility maximization problems,
as the natural integrability condition E[u(X)] > −∞ is implied by E[φ(X)] < +∞.

Let u : R → R be a concave and increasing function satisfying limx→−∞
un(x)
x =

+∞. Consider φ(x) := −u(−|x|)+u(0). Then φ : R→ [0,+∞) is a strict Young func-
tion, i.e., it is finite valued, even and convex on R with φ(0) = 0 and limx→+∞

φ(x)
x =

+∞. The Orlicz space Lφ and Orlicz Heart Mφ are respectively defined by

Lφ :=
{
X ∈ L0(R) | E[φ(αX)] < +∞ for some α > 0

}
, (24)

Mφ :=
{
X ∈ L0(R) | E[φ(αX)] < +∞ for all α > 0

}
, (25)
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and they are Banach spaces when endowed with the Luxemburg norm. The topological
dual of Mφ is the Orlicz space Lφ

∗
, where the convex conjugate φ∗ of φ, defined by

φ∗(y) := sup
x∈R
{xy − φ(x)} , y ∈ R,

is also a strict Young function. Note that

E[u(X)] > −∞ if E[φ(X)] < +∞. (26)

Remark 2 It is well known that L∞(P;R) ⊆ Mφ ⊆ Lφ ⊆ L1(P;R). In addition, from
the Fenchel inequality xy ≤ φ(x) + φ∗(y) we obtain

(α|X|)
(
λ
dQ

dP

)
≤ φ(α|X|) + φ∗

(
λ
dQ

dP

)
,

and we immediately deduce that dQ
dP ∈ L

φ∗ implies Lφ ⊆ L1(Q;R).

Given the utility functions u1, · · · , uN : R → R satisfying Assumption 1, with
associated Young functions φ1, · · · , φN , we define

MΦ :=Mφ1 × · · · ×MφN , LΦ := Lφ1 × · · · × LφN (27)

and consider

L =MΦ,

i.e. ρ : MΦ → R∪{+∞}. Under Assumption 1, MΦ coincides with the domain of ρ
and the systemic risk measures of the form (22) have good properties if restricted to
MΦ. Recall also that

C = C0 ∩MΦ.

Proposition 3 The map ρ : MΦ → R∪{+∞} defined in (22) is finitely valued,
monotone decreasing, convex, continuous and subdifferentiable on the Orlicz Heart
MΦ = dom(ρ).

Proof The equality MΦ = dom(ρ), so that ρ : MΦ → R, follows from Proposition 2,
the definition of MΦ in (25), and (26). The remaining properties are a consequence of
Proposition 2, Theorem 9 in Appendix and the fact that MΦ is a Banach space.

In the following section we will start presenting our results in the Orlicz space
setting. When the utility functions un are of the exponential type, the Orlicz HeartMΦ

is sufficiently large and it contains the optimal allocation YX to ρ(X), see Section 6.
This of course also happens in the case of general utility functions on a finite probability
space. However, for arbitrary utility functions and a general probability space, the
existence technical results established in Section 5 require a larger space of integrable
random variables.
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4 Main results

4.1 Dual representation of ρ

We now investigate the dual representation of systemic risk measures of the form
(22). When Z ∈ MΦ and ξ ∈ LΦ

∗
, we set E[ξZ] :=

∑N
n=1 E[ξ

nZn] and, for dQ
dP ∈

LΦ
∗

+ , EQ[Z] =
∑N
n=1 EQn [Z

n]. We will frequently identify the density dQ
dP with the

associated probability measure Q� P.

Proposition 4 For any X ∈MΦ,

ρ(X) = max
Q∈D

{
N∑
n=1

EQn [−Xn]− αΛ,B(Q)

}
, (28)

where the penalty function is given by

αΛ,B(Q) := sup
Z∈A

{
N∑
n=1

EQn [−Zn]

}
, Q ∈ D, (29)

with A :=
{
Z ∈MΦ |

∑N
n=1 E[un(Z

n)] ≥ B
}

and

D := dom(αΛ,B)∩
{
dQ

dP
∈ LΦ

∗
+ | Qn(Ω) = 1 ∀n and

N∑
n=1

(EQn [Y n]− Y n) ≤ 0 for all Y ∈ C0 ∩MΦ

}
.

(30)

(i) Suppose that for some i, j ∈ {1, · · · , N}, i 6= j, we have ±(ei1A − ej1A) ∈ C for
all A ∈ F . Then

D = dom(αΛ,B)∩
{
dQ

dP
∈ LΦ

∗
+ | Qn(Ω) = 1 ∀n, Qi = Qj and

N∑
n=1

(EQn [Y n]− Y n) ≤ 0 for all Y ∈ C
}
.

(ii) Suppose that ±(ei1A − ej1A) ∈ C for all i, j and all A ∈ F . Then

D = dom(αΛ,B) ∩
{
dQ

dP ∈ L
Φ∗

+ | Qn(Ω) = 1, Qn = Q, ∀n
}
.

Proof The dual representation (28) is a consequence of Proposition 3, Theorem 9 and
of Propositions 3.9 and 3.11 in [29], taking into consideration that C is a convex cone,
the dual space of the Orlicz Heart MΦ is the Orlicz space LΦ

∗
and MΦ = dom(ρ).

Note that from Theorem 9 we know that the dual elements ξ ∈ LΦ
∗

+ are positive but a
priori not normalized. However, we obtain E[ξn] = 1 by taking as Y = ±ej ∈ RN , and
using

∑N
n=1(ξ

n(Y n)−Y n) ≤ 0 for all Y ∈ C, so that ξj(1)−1 ≤ 0 and ξj(−1)+1 ≤ 0
imply ξj(1) = 1. This shows the form of the domain D in (30). Furthermore:

(i) Take Y := ei1A− ej1A ∈ C. From
∑N
n=1(Q

n(Y n)− Y n) ≤ 0 we obtain Qi(1A)−
1A + Qj(−1A) + 1A ≤ 0, i.e., Qi(A) − Qj(A) ≤ 0 and similarly taking Y :=
−ei1A + ej1A ∈ C, we get Qj(A)−Qi(A) ≤ 0.

(ii) From (i), we obtainQi = Qj . In addition, we get
∑N
n=1(EQ[Y

n]−Y n) = EQ[
∑N
n=1 Y

n]−∑N
n=1 Y

n) = 0, as
∑N
n=1 Y

n ∈ R.
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Proposition 4 guarantees the existence of a maximizer QX to the dual problem
(28) and that αΛ,B(QX) < +∞. Uniqueness will be proved in Corollary 4.

Definition 3 Let X ∈MΦ. An optimal solution of the dual problem (28) is a vector
of probability measures QX = (Q1

X, · · · , Q
N
X) verifying dQX

dP ∈ D and

ρ(X) =
N∑
n=1

EQnX [−Xn]− αΛ,B(QX). (31)

The probability measures Q having density in D could be viewed, in the systemic
N -dimensional one period setting, as the counterpart of the notion of (P-absolutely
continuous) martingale measures. Indeed, as Y ∈ C0 ⊆ CR,

∑N
n=1 Y

n ∈ R is the
total amount to be allocated to the N institutions and then the total cost or value∑N
n=1 EQn [Y

n] should at most be equal to
∑N
n=1 Y

n, for any “fair” valuation operator
Q, that is dQ

dP ∈ D.
There exists a simple relation among ρB , ρ

Q
B and αΛ,B(Q) defined in (22), (8), and

(29), respectively.

Proposition 5 We have

ρQB (X) = −
N∑
n=1

EQn [Xn]− αΛ,B(Q), (32)

and
ρQX

B (X) = ρB(X), (33)
where QX is an optimal solution of the dual problem (28).

Proof We have

−αΛ,B(Q) = inf

{
N∑
n=1

EQn [Zn] | Z ∈MΦ and
N∑
n=1

E[un(Zn)] ≥ B

}

= inf

{
N∑
n=1

EQn [Xn + Y n] | Y ∈MΦ and
N∑
n=1

E[un(Xn + Y n)] ≥ B

}

=
N∑
n=1

EQn [Xn] + ρQB (X),

which proves (32). Then from (32) and (31) we deduce

ρQX

B (X) = −
N∑
n=1

EQnX [Xn]− αΛ,B(QX) = ρB(X).

Remark 3 If dQdP ∈ D then
∑N
n=1 EQn [Y

n] ≤
∑N
n=1 Y

n for all Y ∈ C, so that

ρQB (X) = inf

{
N∑
n=1

EQn [Y n] | Y ∈MΦ and
N∑
n=1

E[un(Xn + Y n)] ≥ B

}

≤ inf

{
N∑
n=1

EQn [Y n] | Y ∈C and
N∑
n=1

E[un(Xn + Y n)] ≥ B

}

≤ inf

{
N∑
n=1

Y n | Y ∈C and
N∑
n=1

E[un(Xn + Y n)] ≥ B

}
= ρB(X).
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Then (33) shows that

ρB(X) = max
dQ
dP ∈D

ρQB (X) = ρQX

B (X),

which means that ρB is the most conservative among those risk measures ρQB defined
through fair valuation operators dQdP ∈ D. In this respect, the probability measure QX

plays, in the theory of systemic risk measure, an analogous role played by the minimax
martingale measure in the theory of contingent claim valuation in incomplete markets,
see [6] for details.

We now turn our attention to the uniqueness of the optimal solution to the problem
(29). The proof employs the same arguments used in the proof of Proposition 2.

Lemma 1 If each un is strictly concave and αΛ,B(Q) < +∞, then there exists at
most one Z ∈MΦ satisfying

αΛ,B(Q) =
N∑
n=1

EQn [−Zn] and
N∑
n=1

E[un(Zn)] ≥ B. (34)

Proof Set

c=(Q):= inf

{
N∑
n=1

EQn [Zn] | Z ∈MΦ, E[Λ(Z)] = B

}
.

First we show that if E[Λ(Z)] > B then Z ∈MΦ can not be optimal:

Z ∈MΦ and E[Λ(Z)] > B =⇒
N∑
n=1

EQn [Zn] > c=(Q). (35)

Indeed, the continuity of un, E[un(Zn)] > −∞ for all Z ∈MΦ and E[Λ(Z)] > B

imply the existence of δ ∈RN+ , δ 6= 0, such that E[Λ(Z− δ)] = B and therefore
c=(Q) ≤

∑N
n=1 EQn [Z

n − δn] <
∑N
n=1 EQn [Z

n]. Then

c(Q) :=− αΛ,B(Q)= inf

{
N∑
n=1

EQn [Zn] | Z ∈MΦ, E[Λ(Z)] ≥ B

}
= c=(Q)

Indeed, −∞ < c(Q) ≤c=(Q) and assume by contradiction that c(Q) < c=(Q). By defi-
nition of c(Q), there exist ε > 0 and Z ∈MΦ such that E[Λ(Z)] > B and

∑N
n=1 EQn [Z

n] ≤
c(Q)+ ε<c=(Q), which contradicts (35). For the uniqueness, let us suppose that c(Q)
is attained by two distinct Z1 ∈MΦ and Z2 ∈MΦ, so that P(Zj1 6= Zj2) > 0 for some
j. Then we have

c(Q) =
N∑
n=1

EQn [Zn1 ] =
N∑
n=1

EQn [Zn2 ] and
N∑
n=1

E [un(Z
n
k )] ≥ B for k = 1, 2.

For λ ∈ [0, 1] set Zλ := λZ1 + (1 − λ)Z2 ∈ MΦ. Then
∑N
n=1 EQn [Z

n
λ ] = c(Q),

∀λ ∈ [0, 1], and for λ ∈ (0, 1)

B ≤ λE

[
N∑
n=1

un(Z
n
1 )

]
+ (1− λ)E

[
N∑
n=1

un(Z
n
2 )

]
< E

[
N∑
n=1

un(Z
n
λ )

]
,

where we used the strict concavity of uj and P(Zj1 6= Zj2) > 0. This is a contradiction
with c(Q) = c=(Q) and (35).
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Remark 4 (Extension to L1(Q)) It is possible to extend Lemma 1 to the case where
Z ∈ L1(Q) by applying the simple argument stated in Remark 14. So, if each un is
strictly concave, there exists at most one Z ∈L1(Q) satisfying (34).

Remark 5 (Uniqueness) Suppose that each un is strictly concave. The existence of an
optimizer YQ for the problem ρQB (X) will be proved in Section 5.2. The uniqueness of
Z ∈MΦ (or Z ∈ L1(Q)) for αΛ,B(Q), shown in Lemma 1, also implies the uniqueness of
the optimizer YQ∈MΦ (or YQ∈L1(Q)) for ρQB (X), as ρQB (X) = −

∑N
n=1 EQn [X

n]−
αΛ,B(Q), thanks to Proposition 5. With a similar proof to the one of Lemma 1, we may
replace the inequality with an equality sign in the budget constraint in the definition
of ρQB (X).

Example 2 Consider the grouping Example 1. As C(n) is a linear space containing
RN , the dual representation (28) applies. In addition in each group we have ±(ei1A−
ej1A) ∈ C(n) for all i, j in the same group and for all A ∈ F . Therefore, in each group
the components Qi, i ∈ Im, of the dual elements are all the same, i.e., Qi = Qj , for
all i, j ∈ Im, and the representation (28) becomes

ρ(X) = max
Q∈D


h∑

m=1

∑
k∈Im

(
EQm [−Xk]

)
− αΛ,B(Q)

 = max
Q∈D

{
h∑

m=1

EQm [−Xm]− αΛ,B(Q)

}
,

(36)
with

D := dom(αΛ,B) ∩
{
dQ

dP ∈ L
Φ∗

+ | Qi = Qj ∀i, j ∈ Im, Qi(Ω) = 1

}
and Xm :=

∑
k∈Im X

k. Indeed,

N∑
n=1

(EQn [Y n]−Y n) =
h∑

m=1

∑
k∈Im

(EQm [Y k]−Y k) =
h∑

m=1

EQm

 ∑
k∈Im

Y k

− ∑
k∈Im

Y k

 = 0,

as
∑
k∈Im Y

k ∈ R. If we have only one single group, all components of a dual element
Q ∈ D are the same.

Remark 6 Consider the grouping Example 1. Let Q = (Q1, · · · , Qn)n=1,··· ,N be a
vector of probability measures with the property that in each group the components
Qi, i ∈ Im, satisfy Qi = Qm for all i ∈ Im. Then (EQ1

[Y 1
X], ...,EQN

[Y NX ]) is a systemic
risk allocation as in Definition (1), i.e.,

ρ(X) =
N∑
n=1

EQn [Y nX] =
h∑

m=1

∑
k∈Im

EQm [Y kX] =
h∑

m=1

dm.

Indeed, for such a vector (Q1, · · · , Qm) of probability measures we have

∑
k∈Im

EQm [Y kX] = EQm

 ∑
k∈Im

Y kX

 = EQm [dm] = dm.

Returning to our general setting, from now on, we work under the fol-
lowing two assumptions, with the understanding that Assumption 3 will hold with
respect to the probability measures (Q orQX) involved in the statements of the results.
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Assumption 2 In addition to Assumptions 1, we assume that for any n = 1, · · · , N ,
un : R→ R is increasing, strictly concave, differentiable and satisfies the Inada condi-
tions

u′n(−∞) := lim
x→−∞

u′n(x) = +∞, u′n(+∞) := lim
x→+∞

u′n(x) = 0.

Some useful properties on the convex conjugate function vn(y) := supx∈R {un(x)− xy}
are collected in Lemma 10. The following additional Assumption 3 is related to the
Reasonable Asymptotic Elasticity condition on utility functions, which was introduced
in [41]. This assumption, even though quite weak (see [8] Section 2.2), is fundamen-
tal to guarantee the existence of the optimal solution to classical utility maximization
problems (see [41] and [8]).

Assumption 3 For any n = 1, · · · , N , vn and Qn � P satisfy

E
[
vn

(
dQn

dP

)]
<∞ iff E

[
vn

(
λ
dQn

dP

)]
<∞, ∀λ > 0.

From the Fenchel inequality

un(X
n) ≤ Xn dQ

n

dP + vn

(
dQn

dP

)
P a.s.

we immediately deduce that ifXn ∈ L1(Qn) and E
[
vn

(
dQn

dP

)]
<∞ then E [un (X

n)] <

+∞.

Proposition 6 When αΛ,B(Q) < +∞, then the penalty function in (29) can be writ-
ten as

αΛ,B(Q) := sup
Z∈A

{
N∑
n=1

EQn [−Zn]

}
= inf
λ>0

(
−1

λ
B +

1

λ

N∑
n=1

E
[
vn

(
λ
dQn

dP

)])
,

(37)
and E

[
vn

(
λdQ

n

dP

)]
<∞ for all n and all λ > 0.

Proof In Appendix A.

Proposition 7 When αΛ,B(Q) < +∞, the infimum is attained in (37), i.e.,

αΛ,B (Q) =
N∑
n=1

E
[
dQn

dP v′n

(
λ∗
dQn

dP

)]
, (38)

where λ∗ > 0 is the unique solution of the equation1

−B +
N∑
n=1

E
[
vn

(
λ
dQn

dP

)]
− λ

N∑
n=1

E
[
dQn

dP v′n

(
λ
dQn

dP

)]
= 0. (39)

1 Note that λ∗ will depend on B, (un)n=1,··· ,N and
(
dQn
dP

)
n=1,··· ,N

.
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Proof Set ξn := dQn

dP ≥ 0 a.s.. Recall from Lemma 10 that vn is strictly convex with
vn(+∞) = +∞, vn(0+) = un(+∞), limz→+∞

vn(z)
z = +∞ because of Assumption

2, and vn is continuously differentiable. As u′n(+∞) = 0 and u′n(−∞) = +∞, we get
v′n(0) = −∞ and v′n(+∞) = +∞.
Set η = 1

λ ∈ (0,+∞) and consider the differentiable function F : (0,+∞)→ R defined
by

F (η) := −Bη + η

N∑
n=1

E
[
vn

(
1

η
ξn

)]
.

Then αΛ,B(ξ) = infη>0 F (η) and (39) can be rewritten as

F ′(η) = 0 (40)

with

F ′(η) = −B +
N∑
n=1

E
[
vn

(
1

η
ξn

)]
− 1

η

N∑
n=1

E
[
ξnv
′
n

(
1

η
ξn

)]
.

Note that if η∗ > 0 is the solution to (40), then by replacing such η∗ into F (η) we
immediately obtain (38).
Next, thanks to the integrability conditions provided by Lemma 9, we show the exis-
tence of the solution η∗ > 0 of (40). First we consider η → +∞. Since

∑N
n=1 vn(0

+) =∑N
n=1 un(+∞) > B by Assumption 1, we have that

lim inf
η→+∞

−B +
N∑
n=1

E
[
vn

(
1

η
ξn

)]
> 0.

Moreover, v′n(0) = −∞ shows that

lim inf
η→+∞

−1

η

N∑
n=1

E
[
ξnv
′
n

(
1

η
ξn

)]
≥ 0.

Hence lim infη→+∞ F ′(η) > 0. We now look at η → 0:

lim
η→0

F ′(η) = −B + lim
η→0

N∑
n=1

E
[
vn

(
1

η
ξn

)]
− 1

η

N∑
n=1

E
[
ξnv
′
n

(
1

η
ξn

)]

= −B + lim
t→+∞

N∑
n=1

E [vn (tξn)]− t
N∑
n=1

E
[
ξnv
′
n (tξn)

]
= −B +

N∑
n=1

lim
t→+∞

E
[
vn (tξn)− tξnv′n (tξn)

]
.

The convexity of vn implies that for any fixed z0 > 0 and z > z0

vn(z)− vn(z0) ≤ v′n(z)(z − z0).

From limz→+∞
v(z)
z = +∞, v′n(z)→ +∞ as z → +∞ and

vn(z)− zv′n(z) ≤ vn(z0)− z0v′n(z) ↓ −∞ as z → +∞,
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we have by monotone convergence

lim
t→+∞

E
[
vn (tξn)− tξnv′n (tξn)

]
= −∞,

so that lim infη→0 F
′(η) = −∞. By the continuity of F ′ we obtain the existence of

the solution η∗ > 0 for (40). Uniqueness follows from the strict convexity of F .

Example 3 Let Λ =
∑N
n=1 un with un : R → R, un(x) = −e−αnx, αn > 0, for each

n, and let B < 0. Then, v′n(y) = 1
αn

ln( y
αn

). From the first order condition (39) we

obtain that the minimizer is λ∗ = −Bβ , with β :=
∑N
n=1

1
αn

. Therefore, from (38) we
have

αΛ,B(Q) =
N∑
n=1

E
[
dQn

dP v′n

(
λ∗
dQn

dP

)]
=

N∑
n=1

1

αn

(
H (Qn,P) + ln

(
− B

βαn

))
,

(41)
where H (Qn,P) := E

[
dQn

dP ln
(
dQn

dP

)]
is the relative entropy.

4.2 Fairness in the details

We now turn to the details of the introductory Section 2 and establish important
relations between primal problems (4) and (5), and problems (8) and (9).

Note that in this section, we do not assume the existence of an optimizer for
problems (4) or (5). We work under Assumptions 2 and 3.
Let A ∈ R, B ∈ R. As un is increasing, in both problems (4) and (5) we may replace the
inequality in the constraints with an equality, and due to strict concavity the solution,
if it exists, is unique (see Proposition 2 and Remark 5). Recall that under Assumptions
1, C is a convex cone and therefore, if Y ∈ C, then Y + δ ∈ C for every deterministic
δ ∈ RN .

Proposition 8 B = πA(X) if and only if A = ρB(X), and in this case the unique
optimal solution, if it exists, is the same for the two problems πA(X) and ρB(X).

Proof ⇐) Let A = ρB(X) and suppose first that πA(X) > B. Then there must exist

Ỹ ∈ C such that
∑N
n=1 Ỹ

n ≤ A and E
[∑N

n=1 un(X
n + Ỹ n)

]
> B. By continuity of

un, then, there exists ε > 0 and Ŷ := Ỹ− ε1 such that E
[∑N

n=1 un(X
n + Ŷ n)

]
≥ B

and
∑N
n=1 Ŷ

n < A. This is in contradiction with A = ρB(X).
Suppose now that πA(X) < B. Then there exists δ > 0 such that

E

[
N∑
n=1

un(X
n + Y n)

]
≤ B − δ,

for all Y ∈ C such that
∑N
n=1 Y

n ≤ A. As A = ρB(X), for all ε > 0, there exists

Yε ∈ C such that
∑N
n=1 Y

n
ε ≤ A + ε and E

[∑N
n=1 un(X

n + Y nε )
]
≥ B. For any

η ≥ ε ≥
∑N
n=1 Y

n
ε −A, we get

∑N
n=1(Y

n
ε − η

N ) ≤ A+ε−η ≤ A. By continuity of un, we

may select ε > 0 and η ≥ ε small enough so that E
[∑N

n=1 un(X
n + Y nε − η

N )
]
> B−δ.

As Ŷ := (Y nε − η
N )n ∈ C, we obtain a contradiction.
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Suppose that there exists Y ∈ C that is the optimal solution of problem (4). As
A := ρB(X), then

∑N
n=1 Y

n = A and the constraint in problem (5) is fulfilled for

Y. Hence, B = πA(X) ≥ E
[∑N

n=1 un(X
n + Y n)

]
≥ B and we deduce that Y is an

optimal solution of problem (5).
⇒) Let B = πA(X) and suppose first that ρB(X) < A. Then, there must exist

Ỹ ∈ C such that E
[∑N

n=1 un(X
n + Ỹ n)

]
≥ B and

∑N
n=1 Ỹ

n < A. Then, there exists

ε > 0 and Ŷ := Ỹ+ ε1 ∈ C such that
∑N
n=1 Ŷ

n ≤ A and E
[∑N

n=1 un(X
n + Ŷ n)

]
>

B. This is in contradiction with B = πA(X).
Suppose now that ρB(X) > A. Then, there exists δ > 0 such that

∑N
n=1 Y

n ≥ A+δ
for all Y ∈ C such that E

[∑N
n=1 un(X

n + Y n)
]
≥ B. As B = πA(X), for all ε > 0

there exists Yε ∈ C such that E
[∑N

n=1 un(X
n + Y nε )

]
> B − ε and

∑N
n=1 Y

n
ε ≤ A.

Define ηε := inf
{
a > 0 : E

[∑N
n=1 un(X

n + Y nε + a
N )
]
≥ B

}
and note that ηε ↓ 0 if

ε ↓ 0. Select ε > 0 such that ηε < δ. Then, for any 0 < β < δ − ηε we have

E

[
N∑
n=1

un(X
n + Y nε +

ηε + β

N
)

]
≥ B,

and
∑N
n=1(Y

n
ε + ηε+β

N ) ≤ A + ηε + β < A + δ. As (Y nε + ηε+β
N ) ∈ C, we obtain a

contradiction.
Suppose that there exists Y ∈ C that is the optimal solution of problem (5) and

set B := πA(X). Then E
[∑N

n=1 un(X
n + Y n)

]
= B and the constraint in problem

(4) is fulfilled for Y. Hence, A = ρB(X) ≤
∑N
n=1 Y

n ≤ A and we deduce that Y is an
optimal solution of problem (4). As ρB(X) admits at most one solution by Proposition
2, the same must be true for πA(X).

Remark 7 (Extension to L1(Q)) The extension of Proposition 8 to the case where
Y ∈ C0 ∩ L1(Q) requires Assumption (85), see Remark 14.

Now consider the situation where a valuation operator Q = (Q1, · · · , QN ) such
that dQ

dP ∈ L
Φ∗ is given for the system. Note that ρQB (X) < +∞ and πQA (X) > −∞.

Then, similarly as in Proposition 8, we obtain

Proposition 9 B = πQA (X) < +∞ if and only if A = ρQB (X) > −∞, and the two
problems have the same optimal solution YQ.

Proof ⇐) Let Y be an optimal solution of problem (8) and set A := ρQB (X) > −∞.
Then

∑N
n=1 EQn [Y

n] = A and the constraint in problem (9) is fulfilled for Y. Hence,

πQA (X) ≥ E
[∑N

n=1 un(X
n + Y n)

]
≥ B. If πQA (X) > B, then there exists Ỹ ∈ MΦ

such that
∑N
n=1 EQn

[
Ỹ n
]
≤ A and E

[∑N
n=1 un(X

n + Ỹ n)
]
> B. Then, there ex-

ist ε > 0 and Ŷ := Ỹ − ε1 ∈ MΦ such that E
[∑N

n=1 un(X
n + Ŷ n)

]
≥ B and∑N

n=1 EQn
[
Ŷ n
]
< A. This is in contradiction with A = ρQB (X). Hence, πQA (X) = B

and πQA (X) = E
[∑N

n=1 un(X
n + Y n)

]
, and therefore, Y is an optimal solution of

problem (9).
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⇒) Let Y be an optimal solution of problem (9) and set B := πQA (X) < +∞.

Then we have E
[∑N

n=1 un(X
n + Y n)

]
= B and the constraint in problem (8) is

fulfilled for Y. Hence, ρQB (X) ≤
∑N
n=1 EQn [Y

n] ≤ A. If ρQB (X) < A, then, there

exists Ỹ ∈ MΦ such that E
[∑N

n=1 un(X
n + Ỹ n)

]
≥ B and

∑N
n=1 EQn

[
Ỹ n
]
< A.

Then, there exist ε > 0 and Ŷ := Ỹ + ε1 ∈ MΦ such that
∑N
n=1 EQn

[
Ŷ n
]
≤ A

and E
[∑N

n=1 un(X
n + Ŷ n)

]
> B. This is in contradiction with B = πQA (X). Hence,

ρQB (X) = A so that ρQB (X) =
∑N
n=1 EQn [Y

n] and Y is an optimal solution of problem
(8).

Remark 8 (Extension to L1(Q)) By applying the simple argument stated in Remark
14, Proposition 9 also holds when Y ∈MΦ is replaced by Y ∈ L1(Q).

Recall that we denote by QX = (Q1
X, · · ·Q

N
X) an optimizer of the dual problem of

(4), presented in detail in Section 4.1. The key relation (11) was shown in Proposition
5. We now prove the other key relation (12).

Corollary 1 Let A := ρB(X). Then πA(X) = πQX

A (X).

Proof As A = ρB(X) ∈ R,

A = ρB(X) = ρQX

B (X), (by Proposition 5),

B = πA(X), (by Proposition 8),

B = πQX

A (X), (by Proposition 9),

and therefore, πA(X) = πQX

A (X).

4.3 On local cash additivity and marginal risk contribution

We now show when the systemic risk measures of the form (20) are cash additive and
local cash additive.

Lemma 2 Define

WC := {Z ∈ CR | Y ∈ C ⇐⇒ Y − Z ∈ C} ∩ L.

Then the risk measure ρ defined in (20) is cash additive on WC , i.e.,

ρ(X+ Z) = ρ(X)−
N∑
n=1

Zn for all Z ∈ WC and all X ∈ L.
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Proof Let Z ∈ WC . Then W := Z+Y ∈ C ⊆ CR for any Y ∈ C. For any X ∈ L it
holds

ρ(X+ Z) = inf{
N∑
n=1

Y n | Y ∈ C, Λ(X+ Z+Y) ∈ AB}

= inf{
N∑
n=1

Wn −
N∑
n=1

Zn |W − Z ∈ C, Λ(X+W) ∈ AB}

= inf{
N∑
n=1

Wn −
N∑
n=1

Zn |W ∈ C, Λ(X+W) ∈ AB}

= ρ(X)−
N∑
n=1

Zn.

Example 4 In case of the set C(n) in Example 1, ρ is cash additive on

WC(n) = C(n). (42)

Note that equality (42) holds since we are assuming no restrictions on the vector
d = (d, · · · , dm) ∈ Rm, which determines the grouping. If for example, we restrict d to
have non negative components, then it is no longer true that WC(n) = C(n).

Corollary 2 For the systemic risk measures of the form (20) we have:

d

dε
ρ(X+εV)|ε=0 = −

N∑
n=1

V n (43)

for all V such that εV ∈WC for all ε ∈ (0, 1].

Proof It follows from Lemma 2 which gives ρ(X+εV) = ρ(X)− ε
∑N
n=1 V

n.

Remark 9 Note that Lemma 2 and Corollary 2 hold for systemic risk measures of the
general form (20), without Assumption 1. Under Assumption 1 we have RN ⊆ WC and
(43) holds for all V ∈ RN .

The expression d
dερ(X+εV)|ε=0 represents the sensitivity of the riskX with respect

to the impact V ∈L0(RN ). In the case of a deterministic V := m ∈ RN , it was called
marginal risk contribution in [3]. Such property cannot be immediately generalized to
the case of random vectors V, also because in general

∑N
n=1 V

n /∈ R. In the following,
we obtain the general local version of cash additivity, which extends the concept of
marginal risk contribution to a random setting. In particular, (44) shows how the
change in one component affects the change of the systemic risk measure.

Proposition 10 Let V ∈MΦ and X ∈MΦ. Let QX be the optimal solution to the
dual problem (28) associated to ρ(X) and assume that ρ(X+εV) is differentiable with
respect to ε at ε = 0, and dQX+εV

dP → dQX

dP in σ∗(LΦ
∗
,MΦ), as ε→ 0. Then,

d

dε
ρ(X+εV)|ε=0 = −

N∑
n=1

EQnX [V n]. (44)
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Proof As the penalty function αΛ,B does not depend on X, by (31) we deduce

d

dε
ρ(X+εV)|ε=0 =

d

dε

{
N∑
n=1

EQnX+εV
[−Xn−εV n]− αΛ,B(QX+εV)

}
|ε=0

=
d

dε

{
N∑
n=1

EQnX+εV
[−Xn]− αΛ,B(QX+εV)

}
|ε=0

+
N∑
n=1

d

dε

(
εEQnX+εV

[−V n]
)
|ε=0 (45)

= 0+
N∑
n=1

lim
ε→0

EQnX+εV
[−V n] =

N∑
n=1

EQnX [−V n], (46)

where the equality between (45) and (46) is justified by the optimality of QX and the
differentiability of ρ(X+εV), while the last equality is guaranteed by the convergence
of dQX+εV

dP .

Remark 10 We emphasize that the generalization (44) of (43) holds because we are
computing the expectation with respect to the systemic probability measure QX. A
relevant example where the assumptions of Proposition 10 hold is provided in Section
6.

5 Existence of the optimal solutions

Throughout the entire Section 5, we assume X ∈ MΦ and that Q = (Q1, ..., QN )

satisfies Qn � P, dQ
dP ∈ LΦ

∗
and αΛ,B(Q) < +∞, or equivalently ρQB (X) > −∞.

Recall from Proposition 6 that this implies E
[
vn

(
λdQ

n

dP

)]
< +∞ for all n and all

λ > 0. Set

L1(P;Q) := (L1(P;RN ) ∩ L1(Q;RN )) ⊇ LΦ ⊇MΦ, (47)

where the inclusions follows from Remark 2 and dQ
dP ∈ L

Φ∗ .

In order to prove the existence of the optimal solutions for ρQX

B (X) and ρB(X), we
will proceed in several steps. As shown in Section 5.2, in general, we can not expect to
find the optimal solution YQ to the problem ρQB (X) in the space MΦ, but only in the
larger space L1(Q). We first prove the existence of Y ∈ L1(P), which is the candidate
solution, as specified in Theorem 5, to an extended problem. We already know that
the optimal allocation to ρB(X), when it exists, coincides with YQX

∈ L1(QX). So in
a second step (see Theorem 7 and Corollary 5) we show that the optimal solution YX

to the extended problem ρ̃QX

B (X) = ρB(X) exists and YQX
= YX ∈ L1(P;QX).

W.l.o.g. we may assume that ui(0) = 0, 1 ≤ i ≤ N and observe that then

ui(xi) = ui(x
+
i ) + ui(−x−i ). (48)
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5.1 On the utility maximization problem

For an ∈ R consider the problem:

Un(a
n) := sup

{
E [un(X

n +W )] |W ∈Mφn , EQn [W ] ≤ an
}
. (49)

If we need to emphasize the dependence onQn we write UQnn (an).Note that E[un(Xn+
W )] ≤ un(E[Xn + W ]) < +∞ for all Xn,W ∈ Mφn ⊆ L1(P;R). The condi-
tions Xn,W ∈ Mφn imply that E[u(Xn + W )] > −∞, which in turn implies that
U(an) > −∞. As dQ

dP ∈ L
Φ∗ , then W ∈ Mφn implies W ∈ L1(Qn) and the problem

(49) is well posed. Due to the monotonicity and concavity of un, Un is monotone in-
creasing, concave and continuous on R and we may replace, in the definition of Un,
the inequality with the equality sign. However, in general the optimal solution to (49)
will only exist on a larger domain, as suggested by the well known result reported in
Proposition 20. This leads to introduce the auxiliary problems:

Ûn(a
n) : = sup

{
E [un(X

n +W )] |W ∈ L1(Qn), EQn [W ] ≤ an
}
,

Ũn(a
n) : = sup

{
E [un(X

n +W )] |W ∈ L1(P, Qn), EQn [W ] ≤ an
}
, (50)

where L1(P, Qn) is defined as in (47).

Proposition 11
Un(a

n) = Ũn(a
n) = Ûn(a

n) < +∞. (51)

If Un(an) < un(+∞) then

Un : R→ R is differentiable, Un(−∞) = −∞, U ′n > 0, U ′n(−∞) = +∞, U ′n(+∞) = 0
(52)

and

Un(a
n) = inf

λ>0

{
λ
(
EQn [Xn] + an

)
+ E

[
vn

(
λ
dQn

dP

)]}
(53)

= E
[
un(X

n + Ŷ nQ)
]
, (54)

where the optimal solution Ŷ nQ ∈ L
1(Qn) is given by

Ŷ nQ := −Xn − v′n
(
λn
dQn

dP

)
, (55)

un(X
n + Ŷ nQ) ∈ L1(P) and λn > 0 is the unique solution of

EQn [Xn] + an + EQn
[
v′n

(
λn
dQn

dP

)]
= 0. (56)

Proof From Mφn ⊆ L1(P, Qn) ⊆ L1(Qn) we clearly have: Un(an) ≤ Ũn(a
n) ≤

Ûn(a
n) ≤ un(+∞), so that

if Un(an) = u(+∞) then Un(an) = Ũn(a
n) = Ûn(a

n) = un(+∞). (57)
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By the Fenchel inequality we get

E [un(X
n +W )] ≤ λ

(
EQn [Xn] + EQn [W ]

)
+ E

[
vn

(
λ
dQn

dP

)]
,

and hence

Un(a
n) ≤ Ũn(an) ≤ Ûn(an) ≤ inf

λ>0

{
λ
(
EQn [Xn] + an

)
+ E

[
vn

(
λ
dQn

dP

)]}
< +∞,

(58)
as E

[
vn

(
λdQ

n

dP

)]
< +∞. Therefore (51) is a consequence of (57) and (53). To show

(53), consider the integral functional I :Mφn → R defined by I(Xn) = E [un(X
n)] . It

is finite valued, monotone increasing and concave onMφn (as E[un(Xn)] ≤ un(E[Xn]) <

+∞), and therefore, by the Theorem 9, it is norm-continuous on Mφn . We can then
follow the well known duality approach (see for example [11]). Consider the convex
cone D0 :=

{
W ∈Mφn | EQn [W ] ≤ 0

}
which is the polar cone of the one dimen-

sional cone D :=
{
λdQ

n

dP | λ ≥ 0
}
, so that the bipolar D00 coincide with D. Let

δD0 :Mφn → R∪{+∞} be the support functional of D0. By [36], or directly by hand,
the concave conjugate I∗ : Lφ

∗
n → R∪{−∞} is given by I∗(ξn) = E [−vn(ξn)] and so,

by Fenchel duality Theorem,

Un(a
n) = sup

W∈D0
E [un(X

n + an +W )] = sup
Z∈D0+Xn+an

E [un(Z)]

= sup
Z∈Mφn

{
E [un(Z)]− δD0+Xn+an (Z)

}
= min
ξn∈Lφ

∗
n

{
δ∗
D0+Xn+an

(ξn)− E [−vn(ξn)]
}

= min
ξn∈Lφ

∗
n

{E[ξn(Xn + an)] + δD00 (ξn) + E [vn(ξ
n)]}

= min
ξn∈D00

{E[ξn(Xn + an)] + E [vn(ξ
n)]} = min

λ>0

{
λ
(
EQn [Xn] + an

)
+ E

[
vn

(
λ
dQn

dP

)]}
,

where we used δ∗D0 = δD00 , D00 = D and the fact that the minimizer is obtained
at λ > 0, otherwise if λ = 0 then Un(a

n) = E [vn (0)] = un(+∞). The statements
(54), (55) and (56) are immediate consequence of Proposition 20, replacing c with
EQn [Xn] + an in (107). We conclude the proof by proving (52). From the inequality
(58), it is clear that Un(−∞) = −∞. Define

Vn(λ) := E
[
vn

(
λ
dQn
dP

)]
+ λEQn [X

n].

When Un(an) < un(+∞), from (53) we have that

Un(a
n) = inf

λ>0

{
Vn(λ) + λan

}
,

which shows that Un and Vn are conjugate of each other, i.e., Vn(λ) = supan>0 {Un(a
n)− λan} .

From Lemmas 9 and 10 we know that the convex function Vn is differentiable on
(0,+∞) and therefore Un is differentiable on (−∞,+∞) and

U ′n(a) = (V ′n)
−1(−a) > 0.
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We only need to show the last two conditions. As vn(0+) = un(+∞) = +∞ then
Vn(0

+) = +∞. Since v′n(0
+) = −∞ we get V ′n(0+) = −∞ and U ′n(+∞) = 0.

Moreover

V ′n(+∞) = lim
λ→+∞

Vn(λ)

λ
= lim
λ→+∞

1

λ
E
[
vn

(
λ
dQn
dP

)]
+ EQn [X

n]

Jensen
≥ lim

λ→+∞

1

λ
vn (λ) + EQn [X

n] = v′n (∞) + EQn [X
n] = +∞

which implies U ′n(−∞) = +∞.

Define

π̃QA (X) : = sup
Y∈L1(P;Q)

{
E

[
N∑
n=1

un(X
n + Y n)

]
|
N∑
n=1

EQn [Y n] ≤ A

}
,

π̂QA (X) : = sup
Y∈L1(Q)

{
E

[
N∑
n=1

un(X
n + Y n)

]
|
N∑
n=1

EQn [Y n] ≤ A

}
,

and similarly for ρ̃QB (X) and ρ̂QB (X). As shown in (60), the extension to L1(Q) does
not increment the optimal value of πQA (X). In addition (60) justifies equation (16) in
Section 2.

Lemma 3 Let A := ρQB (X) and πQA (X) < +∞. Then

πQA (X) = sup
Y∈MΦ

{
E

[
N∑
n=1

un(X
n + Y n)

]
|
N∑
n=1

EQn [Y n] = A

}
:= πQ,=A (X). (59)

and

πQA (X) = sup∑N
n=1 a

n=A

N∑
n=1

Un(a
n) = π̃QA (X) = π̂QA (X), (60)

ρQB (X) = ρ̃QB (X) = ρ̂QB (X). (61)

Proof Clearly, +∞ > πQA (X) ≥ πQ,=A (X). By contradiction suppose that πQA (X) >

πQ,=A (X) and take ε > 0 such that πQA (X) − ε > πQ,=A (X). By definition of πQA (X)

there exists Y ∈ MΦ satisfying
∑N
n=1 EQn [Y

n] < A and E
[∑N

n=1 un(X
n + Y n)

]
>

πQA (X) − ε. Take Ỹ n = Y n + δ , δ ∈ R+, such that
∑N
n=1 EQn

[
Ỹ n
]
= A. Then

πQ,=A (X) ≥ E
[∑N

n=1 un(X
n + Ỹ n)

]
≥ E

[∑N
n=1 un(X

n + Y n)
]
> πQA (X) − ε >

πQ,=A (X), a contradiction. Hence (59) holds true. Note that

MΦ =
{
Y = a+ Z | a ∈RN and Z ∈MΦ such that EQn [Zn] = 0 for each n

}
.
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Indeed, just take Y ∈MΦ and let an := EQn [Y n] ∈ R and Zn := Y n − an ∈ Mφn .
Then

πQA (X) = sup
Y∈MΦ

{
E

[
N∑
n=1

un(X
n + Y n)

]
|
N∑
n=1

EQn [Y n] = A

}

= sup∑N
n=1 a

n=A, Zn∈Mφn , EQn [Zn]=0 ∀n

{
E

[
N∑
n=1

un(X
n + an + Zn)

]}

= sup∑N
n=1 a

n=A

N∑
n=1

sup
EQn [Y n]=an

E [un(X
n + Y n)] = sup∑N

n=1 a
n=A

N∑
n=1

Un(a
n),

(62)

which shows the first equality in (60). Then πQA (X) = π̃QA (X) = π̂QA (X) are conse-
quences of (51) and the decompositions analogous to the one just obtained for πQA (X)

in (62). From Proposition 9, its extension to L1(Q) in Remark 8 and ρQB (X) > −∞,
we easily deduce (61).

Lemma 4 For arbitrary constant A, B ∈ R set

K :=

{
a ∈ RN |

N∑
n=1

an ≤ A,
N∑
n=1

Un(a
n) ≥ B

}
.

Then K is a bounded closed set in RN .

Proof For N = 1 it is true. Let N > 1. First we prove that, for all j = 1, ..., N ,

Uj(a)

1 +

∑
n 6=j

Un(A− (N − 1)a)

Uj(a)

→ −∞ as a ↓ −∞. (63)

Recall that Un(−∞) = −∞ and Un(+∞) ≤ un(+∞) for all n. Suppose that for some
k ∈ {1, ..., N}, uk(+∞) < +∞. Then Uk(+∞) < +∞ and for all j = 1, ..., N

lim
a→−∞

{
Uk(A− (N − 1)a)

Uj(a)

}
= 0. (64)

Now suppose that for some k ∈ {1, ..., N}, uk(+∞) = +∞. Then Proposition 11 shows
that Uk(ak) < +∞ = uk(+∞),U ′k > 0, U ′k(−∞) = +∞, U ′k(+∞) = 0. By l’Hopital’s
rule, for all j = 1, ..., N we obtain again

lim
a→−∞

{
Uk(A− (N − 1)a)

Uj(a)

}
= lim
a→−∞

−(N − 1)U ′k(A− (N − 1)a)

U ′j(a)
= 0. (65)

From (64) and (65) we deduce that (63) holds true.
We conclude that for any constant B there exists a constant R such that for all

j = 1, ..., N and a < R

Uj(a)

1 +

∑
n 6=j

Un(A− (N − 1)a)

Uj(a)

 < B.
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Let a ∈ K and let i be such that ai = min{a1, ..., aN}. Note that aj ≤ A− (N − 1)ai

for all j = 1, ..., N because
∑N
n=1 a

n ≤ A holds. Assume that ai < R. Then

B ≤
N∑
n=1

Un(a
n) ≤ Ui(ai)

1 +

∑
n6=i

Un(A− (N − 1)ai)

Ui(ai)

 , (66)

which is a contradiction. Thus aj ≥ R for all j = 1, ..., N , and then also aj ≤ A− (N−
1)R for all j = 1, ..., N because

∑N
n=1 a

n ≤ A holds. This proves the claim.

Proposition 12 Let A := ρQB (X) and πQA (X) < +∞. There exists an optimal solution
a∗ ∈ RN to the problem (60), namely

πQA (X) = sup
a∈RN s.t.

∑N
n=1 a

n=A,

N∑
n=1

Un(a
n) =

N∑
n=1

Un(a
n
∗ ) and

N∑
n=1

an∗ = A.

(67)

Proof Let am = (a1m, · · · , aNm)m∈N be the approximating sequence of the supremum
in (67). Then

∑N
n=1 Un(a

n
m) ≥ πQA (X)− δ := C and

∑N
n=1 a

n
m = A for each m. Then

(67) is a consequence of the continuity of Un and of Lemma 4, which guarantees that
am belongs to a bounded closed set in RN .

Corollary 3 Let A := ρQB (X) and suppose that for each n, Un(an∗ ) < un(+∞), with
the notation of Proposition 12. Then

B = πQA (X) =
N∑
n=1

Un(a
n
∗ ) =

N∑
n=1

E
[
un(X

n + Ŷ nQ)
]

ρQB (X) = A =
N∑
n=1

an∗ =
N∑
n=1

EQn
[
Ŷ nQ

]
where Ŷ nQ ∈ L1(Qn) is given by (55). Therefore, under the assumption Un(a

n
∗ ) <

un(+∞), ŶQ is the optimal solution to both extended problems π̂QA (X) and ρ̂QB (X).

Proof It follows directly from Propositions 12 and 11 and from the equality

an∗ = EQn
[
Ŷ nQ

]
,

which can be easily shown from (55) and (56):

an∗ = −EQn [Xn]− EQn
[
v′n

(
λn
dQn

dP

)]
= EQn

[
Ŷ nQ

]
,

where λn > 0 is the unique solution of (56). Proposition 9 concludes the proof, ob-
serving that +∞ > πQA (X) = π̂QA (X) and −∞ < ρQB (X) = ρ̂QB (X), due to (60) and
(61).
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Due to u(−v′(y)) = v(y)− yv′(y) (see Lemma 10) we also deduce from (55) that

B =
N∑
n=1

E
[
un

(
Xn + Ŷ nQ

)]
=

N∑
n=1

E
[
un

(
−v′n

(
λn
dQn

dP

))]

=
N∑
n=1

E
[
vn

(
λn
dQn

dP

)]
− λn

N∑
n=1

EQn
[
v′n

(
λn
dQn

dP

)]
,

so that the vector {λn}n=1,...,N of positive numbers solves the equation above, that
should be compared with (39). We will show in Theorem 4 that all components λn are
equal, when in (56) the value an is replaced by the optimal an∗ .

5.2 On the optimal solution of ρQ and comparison of optimal solutions

Theorem 4 Suppose that αΛ,B(Q) < +∞. Then the random vector YQ given by

Y nQ := −Xn − v′n
(
λ∗
dQn

dP

)
,

where λ∗ is the unique solution to (39), satisfies Y nQ ∈ L
1(Qn), un(Xn+Y nQ) ∈ L1(P),

E
[∑N

n=1 un(X
n + Y nQ)

]
= B and

ρQB (X) = inf
Y∈MΦ

{
N∑
n=1

EQn [Y n] | E

[
N∑
n=1

un(X
n + Y n)

]
≥ B

}
=

N∑
n=1

EQn
[
Y nQ
]
(68)

= inf
Y∈L1(Q)

{
N∑
n=1

EQn [Y n] | E

[
N∑
n=1

un(X
n + Y n)

]
≥ B

}
:= ρ̂QB (X), (69)

so that YQ = ŶQ is the optimal solution to the extended problem ρ̂QB (X).

Proof Note that ρQB (X) > −∞, as αΛ,B(Q) < +∞. The integrability conditions hold
thanks to the results stated in Appendix A.3. From (32) and the expression (38) for
the penalty, we compute:

ρQB (X) = −
N∑
n=1

EQn [Xn]− αΛ,B(Q) =

=
N∑
n=1

EQn
[
−Xn − v′n

(
λ∗
dQn

dP

)]
=

N∑
n=1

EQn
[
Y nQ
]
.

We show that Y nQ satisfies the budget constraint:

N∑
n=1

E
[
un
(
Xn + Y nQ

)]
=

N∑
n=1

E
[
un

(
−v′n

(
λ∗
dQn

dP

))]

=
N∑
n=1

E
[
vn

(
λ∗
dQn

dP

)]
− λ∗

N∑
n=1

EQn
[
v′n

(
λ∗
dQn

dP

)]
= B
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due to u(−v′(y)) = v(y)− yv′(y) (see Lemma 10) and (39). Finally, ρQB (X) = ρ̂QB (X)

follows from (61) and the uniqueness shown in Remark 5 proves that YQ = ŶQ.

When both solutions to the problems ρB(X) and ρQX

B (X) exist, then they coincide.

Proposition 13 Let YX ∈ C0 ∩MΦ be the optimal allocation to ρB(X), QX be an
optimal solution to the dual problem (28). Then:

YX = YQX
:= −Xn − v′n

(
λ∗
dQnX
dP

)
.

Proof Note that YX satisfies:

E

[
N∑
n=1

un(X
n + Y nX)

]
≥ B, (70)

N∑
n=1

Y nX = ρB(X), (71)

N∑
n=1

EQnX [Y nX] ≤
N∑
n=1

Y nX, (72)

as YX ∈ C and QX ∈ D. From the definition of YX, from (68), (32) and (31) we
deduce that

N∑
n=1

EQnX [Y nQX
] = ρQX

B (X) = −
N∑
n=1

EQnX [Xn]−αΛ,B(QX) = ρB(X) =
N∑
n=1

Y nX. (73)

As YX satisfies (70), by definition of ρQX

B (X) we have

N∑
n=1

Y nX = ρB(X) = ρQX

B (X) ≤
N∑
n=1

EQnX [Y nX],

which shows, together with (72), that

N∑
n=1

Y nX =
N∑
n=1

EQnX [Y nX]. (74)

From (73) and (74) we then deduce

αΛ,B(QX) = −
N∑
n=1

EQnX
[
Xn + Y nQX

]
, and

αΛ,B(QX) = −
N∑
n=1

(
EQnX [Xn] + Y nX

)
= −

N∑
n=1

EQnX [Xn + Y nX] .

As both (X + YX) and (X + YQX
) satisfy the budget constraints associated to

αΛ,B(QX) in equation (34), this implies that αΛ,B(QX) is attained by both (X+YX)
and (X + YQX

). The uniqueness shown in Lemma 1 allows us to conclude that
YX = YQX

.
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Remark 11 (Extension to L1(QX)) We will show in Section 5 the existence of an
optimal solution YX to the problem ρ̃QB (X), namely YX ∈ C0 ∩ L1(P,QX) satisfies
(70), (71) and (72). Then the above proof and Remark 4 show that YX = YQX

,
even for YX ∈ C0 ∩ L1(P,QX). Similarly, the following Corollary holds also for such
YX ∈ C0 ∩ L1(P,QX).

We now show that the maximizer of the dual representation is unique.

Corollary 4 Suppose that there exists an optimal allocation YX to ρB(X). Then the
optimal solution QX = (Q1

X, · · · , Q
N
X) of the dual problem (28) is unique.

Proof Suppose that Q1 and Q2 are two optimizers of the dual problem (28). Then
αΛ,B(Q1) < +∞, αΛ,B(Q2) < +∞ and, by Proposition 13, we have, for each n :

−Xn − v′n
(
λ∗1
dQn1
dP

)
= Y nQ1

= Y nX = Y nQ2
= −Xn − v′n

(
λ∗2
dQn2
dP

)
, P a.s.

As v′n is invertible, we conclude that λ∗1
dQn1
dP = λ∗2

dQn2
dP , P a.s., which then implies

Qn1 = Qn2 , as E
[
dQn1
dP

]
= E

[
dQn2
dP

]
= 1.

5.3 On the existence of the optimal allocation to ρ(X)

5.3.1 A first step

Theorem 5 For C ⊆ CR ∩MΦ and for any X ∈MΦ there exists Y ∈ L1(P;RN ) such
that

N∑
n=1

Y n ∈ R, E

[
N∑
n=1

un(X
n+Y n)

]
≥ B,

ρB(X) := inf

{
N∑
n=1

Zn | Z ∈ C, E

[
N∑
n=1

un(X
n+Zn)

]
≥ B

}
=

N∑
n=1

Y n,

and a sequence {Yk}k∈N ⊂ C such that E
[∑N

n=1 un(X
n+Y nk )

]
≥ B and

Yk → Y P-a.s.

Remark 12 Recall that C := C0 ∩MΦ and that C0 ⊆ CR represents the effective con-
straint on the admissible injections, except for the integrability restriction expressed by
MΦ. Assume further that C0 is closed in L0(P), which is a reasonable assumption and
holds true if C = C(n), in which case C(n)0 is defined in (21). Then the random vector
Y in Theorem 5 would also belong to C0, but in general not to C (as MΦ is in general
not closed for P-a.s. convergence). The conclusion is that Y satisfies all the conditions
for being the optimal allocation to ρB(X), with the only exception for the integrability
condition Y ∈MΦ, which is replaced by Y ∈ L1(P;RN ). In the next subsection we
will show when such Y also belongs to C0 ∩ L1(QX;RN ).

It is now evident that when the cardinality of Ω is finite and the set C is closed
for P-a.s. convergence, then the random vector Y in Theorem 5 belongs to C and
Y = YX = YQX

.
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Proof Take a sequence of vectors (Vk)k∈N ∈ C ⊆ CR ∩MΦ ⊆ L1(P;RN ) such that

R 3 ck :=
∑N
n=1 V

n
k ↓ ρB(X) as k → +∞ and E

[∑N
n=1 un(X

n+V nk )
]
≥ B. The

sequence (Vk)k∈N is bounded for the L1(P;RN ) norm if and only if so is the sequence
(X+Vk)k∈N. Given the following decomposition in positive and negative part

N∑
n=1

E[|Xn+V nk |] =
N∑
n=1

E[(Xn+V nk )+] +
N∑
n=1

E[(Xn+V nk )−], (75)

we define the index sets:

N+
∞ =

{
n ∈ {1, ..., N} | lim sup

k→+∞
E[(Xn+V nk )+] = +∞

}
,

N+
b =

{
n ∈ {1, ..., N} | lim sup

k→+∞
E[(Xn+V nk )+] < +∞

}
,

and, similarly, N−∞ and N−b for the negative part. We can split the expression (75) as∑
n∈N+

∞

EP[(X
n+V nk )+]+

∑
n∈N+

b

EP[(X
n+V nk )+]+

∑
n∈N−∞

EP[(X
n+V nk )−]+

∑
n∈N−b

EP[(X
n+V nk )−].

If the sequence (X+Vk)k∈N is not L1(P;RN ) -bounded, then one of the sets N+
∞ or

N−∞ must be nonempty and therefore, because of the constraint
∑N
n=1 V

n
k = ck, both

N+
∞ and N−∞ must be nonempty. From Lemma 11 and from Lemma 8 with M := 2A,

by Jensen inequality and (48) we obtain

B ≤
N∑
n=1

E[un(Xn+V nk )] ≤
N∑
n=1

un (E[Xn+V nk ])

=
N∑
n=1

un
(
E[(Xn+V nk )+]

)
+

N∑
n=1

un

(
−E[(Xn+V nk )−]

)

≤ A

 ∑
n∈N+

∞

E[(Xn+V nk )+] +
∑
n∈N+

b

E[(Xn+V nk )+]



−2A

 ∑
n∈N−∞

E[(Xn+V nk )−] +
∑
n∈N−b

E[(Xn+V nk )−]

+ const

= A

(
ck +

N∑
n=1

E[Xn]

)
+ const−A

 ∑
n∈N−∞

E[(Xn+V nk )−] +
∑
n∈N−b

E[(Xn+V nk )−]


which is a contradiction, as the second term that multiplies A in not bounded from
above. Hence we exclude that our minimizing sequence (Vk)k∈N has unbounded L1(P;RN )
norm and we may apply a Komlós compactness argument, as stated below in Theorem
6, with E = RN . Applying this result to the sequence (Vk)k∈N ∈ C, we can find a
sequence Yk ∈ conv(Vi, i ≥ k) ∈ C, as C is convex, such that

Yk converges P-a.s. to Y ∈ L1(P;RN ).
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Observe that by construction
∑N
n=1 Y

n
k is P-a.s. a real number and, as a consequence,

so is
∑N
n=1 Y

n. As E
[∑N

n=1 un(X
n+V nk )

]
≥ B, also the Yk satisfy such constraint

and therefore ρB(X) ≤
∑N
n=1 Y

n
k .

Let Yk =
∑
i∈Jk λ

k
iVi ∈ conv(Vi, i ≥ k), for some finite convex combination

(λki )i∈Jk such that λki > 0 and
∑
i∈Jk λ

k
i = 1, where Jk is a finite subset of {k, k + 1, ...} .

For any fixed k we compute

N∑
n=1

Y nk =
N∑
n=1

∑
i∈Jk

λki V
n
i


j

=
∑
i∈Jk

λki

(
N∑
n=1

V ni

)
=
∑
i∈Jk

λki ci ≤ ck

∑
i∈Jk

λki

 = ck

(76)
and from ρB(X) ≤

∑N
n=1 Y

n
k ≤ ck, we then deduce that

∑N
n=1 Y

n = ρB(X).
We now show that Y also satisfies the budget constraint. In case that all utility

functions are bounded from above, this is an immediate consequence of Fatou Lemma,
since

N∑
n=1

E[−un(Xn+Y n)] =
N∑
n=1

E[limk→∞ (−un(Xn+Y nk ))]

≤ limk→∞

N∑
n=1

E[−un(Xn+Y nk )] ≤ B.

In the general case, recall first that the sequence Vk is bounded in L1(P;RN ), and the
argument used in (76) shows that

‖ X+Yk ‖1≤‖ X ‖1 + sup
k
‖ Vk ‖1,

hence supk ‖ X+Yk ‖1<∞.
Now we need to exploit the Inada condition at +∞. Applying the Lemma 12 to

the utility functions un, assumed null in 0, we get

−un(x) + εx+ + b(ε) ≥ 0 ∀x ∈ R.

Replacing X+Y in the expression above, applying Fatou Lemma we have

E

[
N∑
n=1

−un(Xn+Y n) + ε(Xn+Y n)+ + b(ε)

]

= E

[
limk→∞

(
N∑
n=1

−un(Xn+Y nk ) + ε(Xn+Y nk )+ + b(ε)

)]

≤ limk→∞

N∑
n=1

E
[
−un(Xn+Y nk ) + ε(Xn+Y nk )+ + b(ε)

]
≤ −B + ε

(
sup
k
‖ X+Yk ‖1

)
+ b(ε).

As the term b(ε) simplifies in the above inequality, we conclude that for all ε > 0

E

[
N∑
n=1

−un(Xn+Y n)

]
≤ −B + ε

(
sup
k
‖ X+Yk ‖1 −

N∑
n=1

E
[
(Xn+Y n)+

])
,
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and since supk ‖ X+Yk ‖1<∞ we obtain

E

[
N∑
n=1

−un(Xn+Y n)

]
≤ −B,

so that Y satisfies the constraint.

Theorem 6 (Theorem 1.4 [20]) Let E be a Banach reflexive space and (fk)k∈N ⊆
L1((Ω,F ,P);E) := L1 be a sequence with bounded L1 norms. Then there exists a
sequence (gk)k∈N and g0 in L1 such that gk ∈ conv(fi, i ≥ k) and ‖ gk − g ‖E→ 0
P−a.s., as k →∞.

5.3.2 Second Step: The optimal allocation to ρ(X) in L1(QX)

Lemma 5 The random vector Y in Theorem 5 satisfies Y−∈L1(QX).

Proof Applying (48) and φj(x) := −uj(−|x|), note that for each fixed 1 ≤ j ≤ N

0 ≤ E
[
φj((X

j + Y j)−)
]
≤

N∑
n=1

E
[
φn((X

n + Y n)−)
]
=

N∑
n=1

E
[
−un(−(Xn + Y n)−)

]
=

N∑
n=1

E
[
un(X

n + Y n)+
]
−

N∑
n=1

E [un(X
n + Y n)]

≤
N∑
n=1

un
(
E
[
(Xn + Y n)+

])
−B <∞,

where we used Jensen inequality and X+Y ∈ L1(P;RN ). This yields (Xj + Y j)− ∈
Lφj ⊆ L1(QjX). From Y j = (Xj + Y j)+ − (Xj + Y j)− −Xj ≥ −(Xj + Y j)− −Xj

we get

0 ≤ (Y j)− ≤ (−(Xj + Y j)− −Xj)− = ((Xj + Y j)− +X)+.

Since, by assumption, Xj ∈Mφj ⊆ L1(QjX), then also ((Xj+Y j)−+Xj)+ ∈ L1(QjX)
and so

(Y j)− ∈ L1(QjX), 1 ≤ j ≤ N.

Lemma 6 The random vector Y in Theorem 5 satisfies Y+∈L1(QX).

Proof We proved in Theorem 5 the existence of Y satisfying ρB(X) =
∑N
n=1 Y

n ∈ R
with Y ∈ L1(P;RN ), E

[∑N
n=1 un(X

n+Y n)
]
≥ B and Y is the P-a.s. limit of

a sequence {Yk}k in C ⊆ CR ∩ MΦ such that
∑N
n=1 Y

n
k → ρB(X), as k ↑ +∞,∑N

n=1 E [un(X
n + Y nk )] ≥ B and

∑N
n=1 EQnX [Y nk ] ≤

∑N
n=1 Y

n
k . By passing to a sub-

sequence, w.l.o.g we may assume
∑N
n=1 Y

n
k ↓ ρB(X). Let j ∈ {1, ..., N}. By Fatou’s

Lemma we get

E
QjX

[(Y j)+] ≤ lim inf
k

E
QjX

[(Y jk )
+] ≤ sup

k
E
QjX

[Y jk ] + sup
k

E
QjX

[(Y jk )
−]. (77)
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First we show that supk EQjX [Y jk ] < ∞. Put ank = EQnX [Y nk ]. Then
∑N
n=1 a

n
k ≤ Ã :=∑N

n=1 Y
n
k ≤

∑N
n=1 Y

n
1 and

∑N
n=1 U

QnX
n (ank ) ≥

∑N
n=1 E [un(X

n + Y nk )] ≥ B for all
k ∈ N. Thus by Lemma 4, {ak}k∈N lies in a bounded set in RN and thus

sup
k

E
QjX

[Y jk ] <∞. (78)

Next we show supk EQjX [(Y jk )
−] <∞. For all k ∈ N it holds that

0 ≤ E
[
φj((X

j + Y jk )
−)
]
≤

N∑
n=1

E
[
φn((X

n + Y nk )−)
]
=

N∑
n=1

E
[
−un(−(Xn + Y nk )−)

]
=

N∑
n=1

E
[
un(X

n + Y nk )+
]
−

N∑
n=1

E [un(X
n + Y nk )] ≤

N∑
n=1

un
(
E
[
(Xn + Y nk )+

])
−B,

where we used Jensen inequality and the fact thatYk satisfies
∑N
n=1 E [un(X

n + Y nk )] >
B. From the proof of Theorem 5 we know that (Xn + Y nk )k∈N is L1(P)-bounded for
all n = 1, ..., N , and thus

0 ≤ sup
k

E
[
φj((X

j + Y jk )
−)
]
≤

N∑
n=1

un

(
sup
k

E
[
(Xn + Y nk )+

])
−B <∞ .

By Remark 2 it then follows that (Xj + Y jk )
−
k∈N is L1(QjX)-bounded. From Y jk =

(Xj + Y jk )
+ − (Xj + Y jk )

− −Xj ≥ −(Xj + Y jk )
− −Xj we get

0 ≤ (Y jk )
− ≤ (−(Xj + Y jk )

− −Xj)− = ((Xj + Y jk )
− +Xj)+,

and thus

sup
k

E
QjX

[(Y jk )
−] ≤ sup

k
E
QjX

[(Xj + Y jk )
−] + E

QjX
[|Xj |] <∞ , (79)

where we recall that by assumption Xj ∈Mφj ⊆ L1(QjX). From (78) and (79) together
with (77) the claim follows.

For our final result on the existence we need one more assumption.

Definition 4 We say that C0 is closed under truncation if for each Y ∈ C0 there exists
mY ∈ N and cY = (c1Y , ..., c

N
Y ) ∈ RN such that

∑N
n=1 c

n
Y =

∑N
n=1 Y

n := cY ∈ R and
for all m ≥ mY

Ym := YI{∩Nn=1{|Y n|<m}} + cY I{∪Nn=1{|Y n|≥m}} ∈ C0. (80)

In Definition 2, the set C(n)0 is closed under truncation.
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Theorem 7 Let C = C0 ∩MΦ and suppose that C0 ⊆ CR is closed for the convergence
in probability and closed under truncation. For any X ∈ MΦ there exists YX ∈ C0 ∩
L1(P;QX) such that

N∑
n=1

Y nX ∈ R, E

[
N∑
n=1

un(X
n+Y nX)

]
≥ B,

N∑
n=1

(
EQnX [Y nX]− Y nX

)
= 0,

ρB(X) = inf

{
N∑
n=1

Zn | Z ∈ C0 ∩MΦ, E

[
N∑
n=1

un(X
n+Zn)

]
≥ B

}
=

N∑
n=1

Y nX

= inf

{
N∑
n=1

Zn | Z ∈ C0 ∩ L1(P;QX), E

[
N∑
n=1

un(X
n+Zn)

]
≥ B

}
:= ρ̃B(X),

(81)

so that YX is the optimal solution to the extended problem ρ̃B(X).

Proof The optimal solution YX coincides with the vector Y in Theorem 5, which
belongs to L1(P;QX), by Theorem 5, Lemma 5, Lemma 6, and to C0, as C0 3 Ym →
Y P-a.s. and C0 is closed for the convergence in probability. Comparing Theorem
7 with Theorem 5 we see that it remains to prove ρB = ρ̃B (Proposition 15) and∑N
n=1

(
EQnX [Y nX]− Y nX

)
≤ 0 (Proposition 14), where the truncation assumption on C0

is needed. The opposite inequality

N∑
n=1

Y nX = ρB(X) = ρQX

B (X) ≤
N∑
n=1

EQnX [Y nX]

holds as YX fulfills the budget constraints of ρQX

B (X).

Proposition 14 Suppose that C0 is closed under truncation. Then

N∑
n=1

EQnX [Y n] ≤
N∑
n=1

Y n, for all Y ∈ C0 ∩ L1(QX;RN ).

Proof Let Y ∈ C0∩L1(QX;RN ) and consider Ym for m ∈ N as defined in (80), where
w.l.o.g. we assume mY = 1. Note that

∑N
n=1 Y

n
m = cY (=

∑N
n=1 Y

n) for all m ∈ N.
By boundedness of Ym and (80), we have Ym ∈ C0 ∩MΦ for all m ∈ N. Further,
Ym → Y QX-a.s. form→∞ , and thus, since |Ym| ≤ max{|Y|, |cY |} ∈ L1(QX;RN )
for all m ∈ N, also Ym → Y in L1(QX;RN ) for m → ∞ by dominated convergence.
We then obtain

N∑
n=1

EQnX [Y n] = lim
m→∞

N∑
n=1

EQnX [Y nm] ≤ lim
m→∞

N∑
n=1

Y nm = cY =
N∑
n=1

Y n.

The map ρ̃B is defined on MΦ but the admissible claims Y belongs to the set
C0 ∩ L1(P;QX), not included in MΦ. As L1(P;QX) ⊆ L1(P;RN ) with the same
argument used in the proof of Proposition 1, we can show that ρ̃B(X) > −∞ for all
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X ∈MΦ. By the same argument in the proof of Proposition 2 and by (26) we also
deduce that ρ̃B(X) < +∞ for all X ∈MΦ, so that

ρ̃B :MΦ → R

is convex and monotone decreasing on its domain dom(ρ̃) =MΦ. From Theorem 9, we
then know that the penalty functions of ρB and ρ̃B are defined as:

αΛ,B(Q) : = sup

{
N∑
n=1

EQn [−Xn]− ρB(X) | X ∈MΦ

}
,

α̃Λ,B(Q) : = sup

{
N∑
n=1

EQn [−Xn]− ρ̃B(X) | X ∈MΦ

}
.

In order to prove ρB = ρ̃B we first show that α̃Λ,B(Q) = αΛ,B(Q). Set

D(L) := dom(αΛ,B)∩
{
dQ

dP
∈ LΦ

∗
+ | Qn(Ω) = 1 and

N∑
n=1

(EQn [Y n]− Y n) ≤ 0 for all Y ∈ C0 ∩ L
}
.

Lemma 7 If Q ∈ D(L1(P;QX)) then α̃Λ,B(Q) = αΛ,B(Q).

Proof In the proof, we will suppress the labels Λ and B from the penalty functions.
From (29) and (61), note that the penalty function can also be written as

α(Q) = sup
Z∈MΦ

{
N∑
n=1

EQn [−Zn] | E

[
N∑
n=1

un(Z
n)

]
≥ B

}

= sup
Z∈L1(P;Q)

{
N∑
n=1

EQn [−Zn] | E

[
N∑
n=1

un(Z
n)

]
≥ B

}
.

LetQ ∈ D(L1(P;QX)) and recall thatX ∈MΦ ⊆ L1(P;QX), so thatW := X+ Z ∈L1(P;QX)

forX ∈MΦ and Z ∈L1(P;QX). Set E [Λ(X+ Z)] = E
[∑N

n=1 un(X
n+Zn)

]
. We then

have that

α̃(Q) = sup

{
N∑
n=1

EQn [−Xn]− ρ̃B(X) | X ∈MΦ

}

= sup
X∈MΦ

{
N∑
n=1

EQn [−Xn] + sup

{
−

N∑
n=1

Zn | Z ∈ C0 ∩ L1(P;QX), E [Λ(X+ Z)] ≥ B
}}

= sup

{
N∑
n=1

EQn [−Xn]−
N∑
n=1

Zn | Z ∈ C0 ∩ L1(P;QX), X ∈MΦ, E [Λ(X+ Z)] ≥ B
}

≤ sup

{
N∑
n=1

EQn [−Xn]−
N∑
n=1

Zn | Z ∈ C0 ∩ L1(P;QX), X ∈ L1(P;QX), E [Λ(X+ Z)] ≥ B
}

= sup

{
N∑
n=1

EQn [−Wn] +
N∑
n=1

EQn [Zn]−
N∑
n=1

Zn | Z ∈ C0 ∩ L1(P;QX), W ∈ L1(P;QX), E [Λ(W)] ≥ B
}

= sup
W∈L1(P;QX)

{
N∑
n=1

EQn [−Wn] | E [Λ(W)] ≥ B
}

+ sup

{
N∑
n=1

(
EQn [Zn]− Zn

)
| Z ∈ C0 ∩ L1(P;QX)

}

≤ sup
W∈L1(P;QX)

{
N∑
n=1

EQn [−Wn] | E [Λ(W)] ≥ B
}

= α(Q),
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because Q ∈ D(L1(P;QX)) implies
∑N
n=1

(
EQn [Zn]− Zn

)
≤ 0 for all Z ∈ C0 ∩

L1(P;QX).
The opposite inequality is trivial, as ρ̃B ≤ ρB implies

α̃(Q) = sup

{
N∑
n=1

EQn [−Xn]− ρ̃B(X) | X ∈MΦ

}

≥ sup

{
N∑
n=1

EQn [−Xn]− ρB(X) | X ∈MΦ

}
= α(Q).

Proposition 15 If C0 is closed under truncation, then

ρB(X) = ρ̃B(X) = inf
Z∈L1(P;QX)

{
N∑
n=1

Zn | Z ∈ C0, E

[
N∑
n=1

un(X
n+Zn)

]
≥ B

}
Proof We know that ρ̃B :MΦ → R is convex and monotone decreasing. By definition,
ρ̃B ≤ ρB . Under the truncation assumption, in Proposition 14 we proved that QX ∈
D(L1(QX)) ⊆ D(L1(P;QX)) and Lemma 7 shows that then α̃Λ,B(QX) = αΛ,B(QX).
Then, by Theorem 9,

ρ̃B(X) = sup

{
N∑
n=1

EQn [−Xn]− α̃Λ,B(Q) | dQ
dP
∈ LΦ

∗

}
≥

N∑
n=1

EQnX [−Xn]− α̃Λ,B(QX)

=
N∑
n=1

EQnX [−Xn]− αΛ,B(QX) = ρB(X).

From Lemma 3, Proposition 5, and Corollary 1 we already know that, for A = ρB(X),
the optimal values satisfy

ρB(X) = ρQX

B (X) = ρ̃QX

B (X) = ρ̂QB (X), (82)

πA(X) = πQX

A (X) = π̃QX

A (X) = π̂QA (X). (83)

From Theorem 7, Lemma 3 and by the same arguments applied in Proposition 13,
Corollary 4 and Remark 11 we conclude:

Corollary 5 Let A = ρB(X). Under the same assumptions of Theorem 7, we have
ρB(X) = ρ̃B(X). The unique optimal solutions to the extended problems ρ̃QX

B (X),
ρ̂QX

B (X), ρ̃B(X) and π̃QX

A (X), π̂QX

A (X) exist, coincide with

YX = YQX
= −Xn − v′n

(
λ∗
dQnX
dP

)
∈ C0 ∩ L1(P;QX),

and QX is the unique optimal solution to the dual problem (28).

Remark 13 Under the Assumption (85) and if C0 is closed under truncation then

πA(X) = π̃A(X) := sup
Z∈L1(P;QX)

{
E

[
N∑
n=1

un(X
n + Zn)

]
| Z ∈ C0,

N∑
n=1

Zn ≤ A

}
.

(84)
Indeed, (84) is a consequence of Proposition 15 and of the equivalence B = π̃A(X) iff
A = ρ̃B(X), that can be shown similarly as in Proposition 8, by using the Assumption
(85) and Remark 14.
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Remark 14 (i) Let X ∈MΦ. If Y ∈MΦ, then the function
F (δ) := E

[∑N
n=1 un(X

n + Y n − δ)
]
, δ ∈ R, is finite valued and concave on R, hence

continuous on R. However, when Y ∈ L1(Q) satisfies E
[∑N

n=1 un(X
n + Y n)

]
> B

(with the understanding that un(Xn+Y n) ∈ L1(P) for each n), it is not any more evi-

dent if F is continuous onR, as one has to guarantee that E
[∑N

n=1 un(X
n + Y n − δ)

]
>

−∞, for δ > 0. Set An := {Xn + Y n > kn} and let kn ∈ R satisfy P(An) > 0 and
Qn(An) > 0. For any δ > 0, (Y n − δ1An)n ∈ L

1(Q) and one has

E

[
N∑
n=1

un(X
n + Y n − δ1An)

]

= E

[
N∑
n=1

un(X
n + Y n)1ACn

]
+ E

[
N∑
n=1

un(X
n + Y n − δ)1An)

]

≥ E

[
N∑
n=1

un(X
n + Y n)1ACn

]
+ E

[
N∑
n=1

un(kn − δ)1An)

]
> −∞,

so that it is possible to find δ > 0 such that E
[∑N

n=1 un(X
n + Y n − δ1An)

]
= B and

EQn [Y n−δ1An] < EQn [Y n]. This argument works when (Y n−δ1An)n is not required
to belong to CR.

(ii) Consider the following assumption on the utility function u at −∞:

∀δ > 0 ∃M =M(δ), K = K(δ) and x0 = x0(δ) < 0 such that u(x−δ) ≥Mu(x)+K ∀x < x0.
(85)

Such assumption is clearly satisfied if limx→−∞
u(x−δ)
u(x) < +∞ ∀δ > 0. If X ∈ MΦ

and Y ∈ L1(Q) satisfy E
[∑N

n=1 un(X
n + Y n)

]
> B, then, under (85), F (δ) is finite

valued and continuous on R and (Y n − δ)n ∈ CR if so is Y.

6 The exponential case

In this section, we focus on a relevant case under Assumption 1, i.e., we set C = C(n),
see Examples 1 and 2, and we choose un(x) = −e−αnx, αn > 0, n = 1, · · · , N ,
as in Example 3 . We select B <

∑N
n=1 un(+∞) = 0. Under these assumptions,

φn(x) := −un(−|x|) + un(0) = eαn|x| − 1,

Mφn =Mφ0 :=
{
X ∈ L0(R) | E[ec|X|] < +∞ for all c > 0

}
,

the Orlicz Hearts Mφn , n = 1, · · · , N , coincide with the single Orlicz Heart Mφ0

associated to the exponential function φ0(x) := e|x| − 1 and the random variable
X :=

∑
nX

n ∈Mφ0 is well defined.
The systemic risk measure (22) becomes

ρ(X) = inf

{
N∑
n=1

Y n | Y ∈ C(n), E

[
N∑
n=1

un(X
n + Y n)

]
= B

}
,

= inf

{
N∑
n=1

Y n | Y ∈ C(n), E

[
−

N∑
n=1

exp [−αn(Xn + Y n)]

]
= B

}
. (86)
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For a given partition n and allocations C(n), we can explicitly compute the unique
optimal allocation Y of (86) and the corresponding systemic risk

ρ(X) =
N∑
i=1

Y i =
h∑

m=1

dm.

Theorem 8 For m = 1, · · · , h, and for k ∈ Im we have that

dm = βm log

(
− β
B
E
[
exp

(
−Xm

βm

)])
−Am (87)

Y km = −Xk +
1

βmαk
Xm +

1

βmαk
dm +

(
1

βmαk
Am −Akm

)
∈Mφ0 , (88)

where Xm =
∑
k∈Im X

k and

βm =
∑
k∈Im

1

αk
, β =

N∑
i=1

1

αi
,

Akm =
1

αk
log

(
1

αk

)
, Am =

∑
k∈Im

Akm.

Proof In Appendix A.

Remark 15 Note that if we arbitrarily change the components of the vector X, but
keep fixed the components in one given subgroup, say Im0 , then the risk measure ρ(X)
will of course change, but dm0 and Y km0

for k ∈ Im0 remain the same.

From Propositions 3, 2 and Theorem 8 we deduce

Proposition 16 The map ρ in (86) is finitely valued, monotone decreasing, convex,
continuous and subdifferentiable on the Orlicz Heart MΦ = (Mφ0)N , and it has a
unique optimal solution.

Define:

dQmX
dP :=

e−
1
βm

Xm

E
[
e−

1
βm

Xm
] m = 1, · · · , h. (89)

Proposition 17 The vector QX of probability measures with densities given by (89)
is the optimal solution of the dual problem (36), i.e.,

ρ(X) =
h∑

m=1

EQmX [−Xm]− αΛ,B(QX),

and EQmX [Y nX], m = 1, · · · , h, n ∈ Im, is a systemic risk allocation, as in Definition 1.
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Proof First note that∑
i∈Im

1

αi
ln

(
− B

βαi

)
= −βm ln

(
− β
B

)
+Am,

and

H (QmX ,P) = EQmX

[
ln

(
dQmX
dP

)]
=

1

βm
EQmX

[
−Xm

]
− lnE

[
e−

1
βm

Xm
]
. (90)

By (41), αΛ,B(QX) can be rewritten as

αΛ,B(QX) =
h∑

m=1

∑
i∈Im

{
1

αi
H (QmX ,P) +

1

αi
ln

(
− B

βαi

)}

=
h∑

m=1

βmH (QmX ,P) +
∑
i∈Im

1

αi
ln

(
− B

βαi

)
=

h∑
m=1

(
EQmX

[
−Xm

]
− βm lnE

[
e−

1
βm

Xm
]
− βm ln

(
− β
B

)
+Am

)

=
h∑

m=1

(
EQmX

[
−Xm

]
− βm log

(
− β
B
E
[
e−

1
βm

Xm
])

+Am

)

=
h∑

m=1

(
EQmX

[
−Xm

]
− dm

)
=

h∑
m=1

EQmX
[
−Xm

]
− ρ(X).

Remark 6 concludes the proof.

6.1 Sensitivity analysis

Let X ∈MΦ, V ∈MΦ and set Vm :=
∑
k∈Im Vk, for m = 1, · · · , h. We consider a

perturbation εV, ε ∈ R, and perform a sensitivity analysis in the exponential case.
Consider the optimal allocations Y iX+εV and the optimal solution QX+εV of the dual
problem associated to ρ(X+ εV), see (89). By (88) and (87) we have

Y nX+εV = −Xn−εV n+ 1

βmαn

(
Xm + εVm

)
+

1

βmαn
dm(X+εV)+

(
1

βmαn
Am −Anm

)
,

(91)
where

dm(X+ εV) = βm log

(
− β
B
E
[
exp

(
−Xm + εVm

βm

)])
−Am. (92)

Proposition 18 Let ρ be the systemic risk measure defined in (86). Then

1. Marginal risk contribution of group m:

d

dε
dm(X+ εV)

∣∣∣∣
ε=0

= EQmX [−Vm], m = 1, ..., h.
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2. Local causal responsibility:

d

dε
EQmX [Y nX+εV]

∣∣∣∣
ε=0

= EQmX [−V n], n ∈ Im.

3. d
dεEQmX+εV

[Z]
∣∣∣
ε=0

= − 1
βm

COVQm
X
[Vm, Z], for any Z∈MΦ(R),

4. Marginal risk allocation of institution n ∈ Im:

d

dε
EQmX+εV

[Y nX+εV]

∣∣∣∣
ε=0

= EQmX [−V n]− 1

βm
COVQm

X
[Vm, Y

n
X] (93)

= EQmX [−V n] + 1

βm
COVQm

X
[Vm, X

n]− 1

αn

1

βm

1

βm
COVQm

X
[Vm, Xm],

(94)

5. Sensitivity of the penalty function:

d

dε
αΛ,B(QX+εV)

∣∣∣∣
ε=0

=
h∑

m=1

1

βm
COVQm

X
[Vm, Xm],

6. Systemic marginal risk contribution:

d

dε
ρ(X+εV)

∣∣∣∣
ε=0

=
h∑

m=1

∑
i∈Im

EQmX [−V i] =
h∑

m=1

EQmX [−Vm].

The proof is postponed to the Appendix. The interpretation of these formulas is
not simple because we are dealing with the systemic probability measure QmX and not
with the “physical” measure P. Indeed, QmX is the “artificial” measure that emerges from
the dual optimization (think of the difference between the physical measure P and a
martingale measure). To fix the idea, let us take V with only one component different
from 0, so that we write V =V jej . From Item 1 (or Item 6), we see that

d

dε
ρ(X+εV jej)

∣∣∣∣
ε=0

= EQmX [−V j ] (with j belonging to the group m).

From this, we can interpret QmX as systemic risk evaluation (systemic probability mea-
sure): i.e. if the position changes from X to X+εV jej then the riskiness of the entire
system changes linearly by EQmX [−V j ]. In the following discussion, we have to keep in
mind that QmX already represents the systemic view of the system. If we replace QX

with P, none of the results of Proposition 18 will hold in general.

Remark 16 We now comment on the results of Proposition 18.
The first term EQmX [−V n] in (93) or (94) is easy to interpret: it is not a systemic
contribution, as it only involves the increment V n in the (same) bank n. If we sum
over all n in the same group, we obtain from (93) or (94)∑

n∈Im

d

dε
EQmX+εV

[Y nX+εV]

∣∣∣∣
ε=0

= EQmX [−Vm] =
d

dε
dm(X+εV )

∣∣∣∣
ε=0

, (95)

as it should be. So, this first term EQmX [−V n] is the contribution to the marginal risk
allocation of bank n regardless of any systemic influence. When summing up we get
the marginal risk allocation of the whole group. Equation (95) is the Local Casual
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Responsibility for the whole group, but not for the single bank inside each group. Note
that the sign of the increment V n in the first term of (93) is here relevant: an increment
(positive) corresponds to a risk reduction, regardless of the dependence structure. If V
is deterministic, the marginal risk allocation to bank n is exactly EQmX [−V n] = −V n
and no other correction terms are present.

To understand the other terms in (93) or (94), take V =V jej with j 6= n. In this
way, the first term in (93) disappears (V n = 0) and we obtain

d

dε
EQm

X+εV jej

[Y nX+εV jej
]

∣∣∣∣
ε=0

=
1

βm
COVQm

X
[V j , Xn]− 1

αn

1

βm

1

βm
COVQm

X
[V j , Xm].

To fix the ideas, suppose that COVQm
X
[V j , Xn] < 0, and examine for the moment

only the contribution of 1
βm

COVQm
X
[V j , Xn]. This component does not depend on

the “systemic relevance” of bank n (i.e. it does not depend on the specific αn) but it
depends on the dependence structure between (V j , Xn). If the systemic risk evaluation
QmX attributes negative correlation to (V j , Xn), then, from the systemic perspective
this is good (independently of the sign of V j): a decrement in bank j is balanced by bank
n, and viceversa. If bank n is negatively correlated (as seen by QmX) with the increment
of bank j, then the risk allocation of bank n should decrease. Therefore, bank n takes
advantage of this, as its risk allocation is reduced ( 1

βm
COVQm

X
[V j , Xn] < 0). Since

the overall marginal risk allocation of the group m is fixed (equal to EQmX [−Vm] =

EQmX [−V j ], from (95)), someone else has to pay for such advantage to bank n. This is
the last term in (94), discussed next.

For the third component in (94), we distinguish between the systemic component
− 1
βm

1
βm

COVQm
X
[V j , Xm], which only depends on the aggregate group Xm, and the

systemic relevance 1
αn

of bank n. The systemic quantity is therefore distributed among
the various banks according to 1

αn
. In addition, this term must compensate for the

possible risk reduction term (the second term in (94)), as the overall risk allocation to
group m is determined by EQmX [−Vm] = EQmX [−V j ].
Note that if αn = α then we may rewrite Item 4 as

d

dε
EQmX+εV

[Y nX+εV]

∣∣∣∣
ε=0

= EQmX [−V n ]+αCOVQm
X

[
Vm
Nm

, Xn

]
−αCOVQm

X

[
Vm
Nm

,
Xm

Nm

]
where Nm is the number of banks in group Im.
Finally Items 1 and 6 express the same property (which holds in general, as shown in
Proposition 10) respectively for one group or for the entire system.

6.2 Monotonicity

Consider a fixed X ∈MΦ. For a given partition n and C = C(n), let Y kr , k ∈ Ir,
r = 1, · · · , h, be the corresponding optimal allocations of the primal problem (86) and
QrX, r = 1, · · · , h, be the optimal solutions of the corresponding dual problem (36) (in
this section we suppress the label X from the optimal allocation YX to ρ(X)).
Consider for some m ∈ {1, · · · , h} a non empty subgroup I ′m of the group Im. Set
I ′′m := Im\I ′m. Then the (h + 1) groups I1, I2, · · · , I ′m, I ′′m, Im+1, · · · , Ih corresponds
to a new partition n′. The optimal allocations of the primal problem (86) with C = C(n

′)

coincide with Y kr , k ∈ Ir, for r 6= m.
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The interpretation of the monotonicity condition (98) was already formulated at
the end of Section 2. Its generalization in the context of h groups is formulated below
in (96).

For r = m, i ∈ I ′m, we have the following.

Proposition 19 Define with Y im′ , i ∈ I
′
m, the optimal allocation to the primal problem

with C = C(n
′). Then

EQmX

∑
i∈I′m

Y im

 ≤ ∑
i∈I′m

Y im′ := d′m. (96)

In particular, if the group I ′m consists of only one single element {i}, then Y im′ is
deterministic and

EQmX [Y im] ≤ Y im′ for each i ∈ Im. (97)

If we compare the deterministic optimal allocation Y∗ (corresponding to C = RN ) with
the (random) optimal allocations Y associated to one single group (C = CR ∩MΦ), we
conclude

EQX
[Y n] ≤ (Y ∗)n for each n = 1, · · · , d, (98)

where QX is the unique optimal solution of the dual problem associated to C = CR∩MΦ.

Proof Given the subgroup I ′m, define

β′m :=
∑
k∈I′m

1

αk
; A′m :=

∑
k∈I′m

Akm

A′ :=
∑
k∈I′m

(
1

βmαk
Am −Akm

)
=
β′m
βm

Am −A′m.

with βm =
∑
k∈Im

1
αk
. Then the optimal value with respect to C(n

′) is given by

d′m = β′m ln

− βBE

exp
− 1

β′m

∑
k∈I′m

Xk

−A′m.
Summing the components of the solutions relative to C(n) over k ∈ I ′m, we get

∑
k∈I′m

Yk
m =

∑
k∈I′m

(
1

βmαk
Xm −Xk

)
+
∑
k∈I′m

1

βmαk
dm +

∑
k∈I′m

(
1

βmαk
Am −Akm

)

=

β′m
βm

Xm −
∑
k∈I′m

Xk

+
β′m
βm

dm +A′.
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Using Jensen inequality we obtain

EQm
X

 ∑
k∈I′m

Yk
m


= β′m ln

exp

 1

β′m
EQm

X

β′m
βm

Xm −
∑
k∈I′m

Xk

+
β′m
βm

βm log

(
−
β

B
E

[
exp

(
−
Xm

βm

)])

−
β′m
βm

Am +A′

≤ β′m ln

EQm
X

exp
 1

βm
Xm −

1

β′m

∑
k∈I′m

Xk

+ β′m log

(
−
β

B
E

[
exp

(
−
Xm

βm

)])
−A′m

= β′m ln

E

 exp
(
−Xm
βm

)
exp

(
1
βm

Xm

)
exp

(
− 1
β′m

∑
k∈I′m

Xk
)

E
[
e
− 1
βm

Xm

]



+ β′m log

(
−
β

B
E

[
exp

(
−
Xm

βm

)])
−A′m

= β′m ln

E

 exp
(
− 1
β′m

∑
k∈I′m

Xk
)

E
[
exp

(
−Xm
βm

)]
 β
γ
E

[
exp

(
−
Xm

βm

)]−A′m
= β′m ln

− βBE

exp
− 1

β′m

∑
k∈I′m

Xk

−A′m = d′m.

We have that (97) and (98) directly follow by (96).

A Appendix

A.1 Properties

Lemma 8 Assumption 1 implies:
(a) there exists c ∈ R and b ∈ R+ such that un(x) ≤ c+ bx for all x ≥ 0 and all n.
(b) for all n there exists An ∈ R and an ∈ R+ such that un(x) ≤ An + anx for all x ∈ R.
(c) the constants b and an can be selected so that a := minn an > b.

Proof Note that dom(un) = R for each n. Hereafter the left derivatives of the concave increas-
ing functions un are denoted by u′n and satisfy u′n(x) ≥ 0 for all x ∈ R.

(a) The concavity of each un implies that un(x) ≤ cn+u′n(0)x for all x ∈ R (for some cn)
and therefore, setting b := maxn u′n(0) ≥ 0 and c := maxn cn, un(x) ≤ c+ bx for all x ≥ 0.

(b) From limx→−∞
un(x)
x

= +∞ we obtain u′n(x) ↑ +∞ as x ↓ −∞. Therefore, for each
n there exists xn ∈ R such that u′n(x) > b for all x ≤ xn. Then, for x0 := min {x1, · · · , xN} ,
u′n(x) > b for all x ≤ x0. Set an := u′n(x0). Then the concavity of un implies: un(x) ≤ An+anx
for all x ∈ R (for some An).

(c) Finally the construction above guarantees that minn an = minn u′n(x0) > b.

Proof (Proof of Proposition 1) By contradiction, we suppose that ρ(X) = −∞, for some
X ∈L ⊆ L1(P,RN ). Let Ym ∈ C satisfy

∑N
n=1 Y

n
m ↓ −∞, as m → +∞ and Λ(X+Ym) ∈ A
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for each m. The condition
∑N
n=1 Y

n
m ↓ −∞, as m → +∞ implies

∑N
n=1 E[Y nm] ↓ −∞, as

m→ +∞. Note also that, by Jensen inequality,

B ≤ E[Λ(X+Ym)] ≤ Λ(E[X+Ym]) =

N∑
n=1

un(E[Xn] + E[Y nm]). (99)

We now prove that
∑N
n=1 un(E[Xn] + E[Y nm]) ↓ −∞, as m → +∞, which is in contradiction

with (99). Set xm := (xnm)Nn=1 where xnm := E [Y nm] . Since
∑N
n=1 x

n
m ↓ −∞, there must exist

n0 ∈ {1, · · · , N} and a subsequence xhm such that xn0
hm
↓ −∞ as m → +∞. With an abuse

of notation, denote again such subsequence xhm with xm. Then we have xn0
m ↓ −∞. If there

exists another coordinate n1 ∈ {1, · · · , N} \n0 such that lim infm→∞ xn1
m = −∞, take the

subsequence xkm such that xn1
km
↓ −∞. By diagonal procedure, we obtain one single sequence

denoted again by xm such that xn0
m ↓ −∞ and xn1

m ↓ −∞, as m → +∞. We may adopt this
procedure (at most N times) also in the case lim supm→∞ xn2

m = +∞ for some coordinate n2.
At the end, we will obtain one single sequence xm and three disjoint sets of coordinate indices
N−, N+, N∗ such that

xnm ↓ −∞ if n ∈ N− ⊆ {1, · · · , N} ,
xnm ↑ +∞ if n ∈ N+ ⊆ {1, · · · , N} ,
| xnm |≤ K for all m and all n ∈ N∗ = {1, · · · , N} \(N− ∪N+),

where K is a constant independent of m. We know that N− 6= ∅, since n0 ∈ N− (but the
other two sets N+ and N∗ may be empty). Since

∑N
n=1 x

n
m ↓ −∞, we deduce that, for large

m,
∑N
n=1 x

n
m ≤ 0 so that∑

n∈N+

xnm ≤ −
∑
n∈N−

xnm −
∑
n∈N∗

xnm ≤ −
∑
n∈N−

xnm +NK, for each fixed (large) m. (100)

Now we use the inequalities of Lemma 8. From an ≥ a, we get (for large m) anxnm ≤ axnm
when n ∈ N− (as xnm ≤ 0); for n ∈ N+ (and large m) we have (E[Xn] + xnm) ≥ 0 and we can
use inequality (a) in Lemma 8. Letting dn := E[Xn], we obtain, for each fixed large m, that

N∑
n=1

un(E[Xn] + E[Y nm]) =
∑
n∈N+

un(d
n + xnm) +

∑
n∈N−

un(d
n + xnm) +

∑
n∈N∗

un(d
n + xnm)

≤
∑
n∈N+

(c+ b(dn + xnm)) +
∑
n∈N−

(An + an(d
n + xnm)) +

∑
n∈N∗

un(d
n +K)

≤ C +
∑
n∈N+

bxnm +
∑
n∈N−

anx
n
m

≤ C + bNK + (a− b)
∑
n∈N−

xnm, (101)

where we use (100) in inequality (101) and C :=
∑
n∈N+

(c + bdn) +
∑
n∈N− (An + andn) +∑

n∈N∗ un(d
n +K) is independent of m. Then (a− b)

∑
n∈N− x

n
m ↓ −∞, as m→ +∞, since

a > b by Lemma 8 and xnm ↓ −∞ for each n ∈ N−. This concludes the proof.

Remark 17 Condition ρ(X) > −∞ is essentially a condition on the behavior of Λ : RN → R
at −∞. Note that if the condition limx→−∞

un(x)
x

= +∞ is not satisfied, there might be a
problem. Take N = 2 and the increasing concave functions

u1(x) = 3x, u2(x) = x.

Take x1m = m, x2m = −2m. As

x1m + x2m = −m→ −∞, but Λ(xm) = u1(x
1
m) + u2(x

2
m) = 3m− 2m = m→ +∞,

we cannot control Λ(x) as in (101).
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A.2 Orlicz setting

We now recall an important result for the characterization of systemic risk measures of the
form (22) on the Orlicz Heart.

Theorem 9 (Theorem 1, [9]) Suppose that L is a Fréchet lattice and ρ : L → R ∪ {+∞}
is convex and monotone decreasing. Then

1. ρ is continuous in the interior of dom(ρ), with respect to the topology of L,
2. ρ is subdifferentiable in the interior of dom(ρ),
3. for all X ∈ int(dom(ρ))

ρ(X) = max
Q∈L∗+

{Q(−X)− α(Q)} ,

where L∗ is the dual of L (for the topology for which L is a Frechet lattice), L∗+ =

{Q ∈ L∗ | Q is positive} and α : L∗ → R ∪ {+∞} , defined by

α(Q) = sup
X∈L

{Q(−X)− ρ(X)} ,

is σ(L∗,L)-lsc and convex.

A.2.1 Dual representation in the Orlicz setting

Proof (of Proposition 6)
Consider the convex functional Θn : Mφn (R) → R defined by Θn(Z) := E[−un(Z)]

and let Θ∗n be its convex conjugate. We have: Θn(Zn) > −∞, as Mφn (R) ⊆ L1(P) and
E[un(Zn)] ≤ un(E[Zn]) < +∞; Θn(Zn) < +∞, as Zn ∈ Mφn (R) implies E[un(Zn)] > −∞.
Then we have Θ∗n(ξ) = E[vn(−ξ)], for ξ ∈ Lφ

∗
n (R) by [9], Section 5.2. Let f : MΦ → R be

defined by f(Z) :=
∑N
n=1 E[−un(Zn)] +B =

∑N
n=1Θn(Z

n) +B, and observe that

A :=

{
Z ∈MΦ |

N∑
n=1

E[un(Zn)] ≥ B
}

=
{
Z ∈MΦ | f(Z) ≤ 0

}
.

We have that f is convex and decreasing with respect to the order relation (18). Let f∗(ξ) be
its convex conjugate, for ξ ∈ LΦ∗ . We assume that ξ 6= 0. By the Fenchel inequality

E[Zξ] ≤ f(Z)+f∗(ξ),

we obtain for all Z ∈ A and λ > 0,

E[−Zξ] =λE[Z(−
1

λ
ξ)] ≤λ[f(Z) + f∗(−

1

λ
ξ)] ≤λf∗(−

1

λ
ξ), P-a.s.

Hence
αΛ,B(ξ) := sup

Z∈A
{E[−Zξ]} ≤ inf

λ>0
λf∗(−

1

λ
ξ). (102)

By definition of the convex Fenchel conjugate and the fact that MΦ is a product space, we
have

f∗(ξ) : = sup
Z∈MΦ

{E[ξZ]− f(Z)}

= −B + sup
Z∈MΦ

{
N∑
n=1

E[ξnZn]−
N∑
n=1

Θn(Z
n)

}

= −B +

N∑
n=1

(
sup

Z∈MΦ(R)
{E[ξnZ]−Θn(Z)}

)

= −B +
N∑
n=1

Θ∗n(ξn),
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where we have used (27), and therefore

inf
λ>0

λf∗(−
1

λ
ξ) = inf

λ>0

(
−Bλ+ λ

N∑
n=1

Θ∗n(−
1

λ
ξn)

)
= inf
λ>0

(
−Bλ+ λ

N∑
n=1

E
[
vn

(
1

λ
ξn

)])
.

We need only to prove that there is no duality gap in (102), i.e., if αΛ,B(ξ) < +∞ then

αΛ,B(ξ) = inf
λ>0

λf∗(−
1

λ
ξ). (103)

Observe that, by the definition of f∗, we have for each λ > 0

λf∗(−
1

λ
ξ) := sup

Z∈MΦ

{E[−ξZ]− λf(Z)} .

As ξ is not identically equal to 0 andMΦ is a linear space, we have supZ∈MΦ {E[−ξZ]} = +∞
and therefore

inf
λ>0

λf∗(−
1

λ
ξ) = inf

λ>0
sup

Z∈MΦ

{E[−ξZ]− λf(Z)} = inf
λ≥0

sup
Z∈MΦ

{E[−ξZ]− λf(Z)} .

We claim that

inf
λ≥0

sup
Z∈MΦ

{E[−ξZ]− λf(Z)} = sup
Z∈MΦ

inf
λ≥0
{E[−ξZ]− λf(Z)} . (104)

Assuming (104), we may immediately conclude that

inf
λ>0

λf∗(−
1

λ
ξ) = sup

Z∈MΦ

inf
λ≥0
{E[−ξZ]− λf(Z)} = sup

Z∈MΦ

{
E[−ξZ]− sup

λ≥0
λf(Z)

}
= sup

Z∈A
{E[−ξZ]} := αΛ,B(ξ).

We now prove (104) by showing the equivalent condition (simply multiply each side of (104)
by −1):

sup
λ≥0

inf
Z∈MΦ

{E[ξZ] + λf(Z)} = inf
Z∈MΦ

sup
λ≥0
{E[ξZ] + λf(Z)} . (105)

In order to make an easy comparison with the results in [39], let f0(Z) := E[ξZ]. Consider the
function F :MΦ × R→ R∪{+∞} , defined by

F (Z, u) =

{
f0(Z) if Z ∈MΦ and f(Z) ≤ u,
+∞ otherwise,

see (2.8) in [39], and the associated Lagrangian, see (4.4) in [39],

K(Z, λ) =

 f0(Z) + λf(Z) if Z ∈MΦ, λ ≥ 0,
−∞ if Z ∈MΦ, λ < 0,
+∞ if Z /∈MΦ.

Then (105) can be rewritten as

sup
λ≥0

inf
Z∈MΦ

K(Z, λ) = inf
Z∈MΦ

sup
λ≥0

K(Z, λ). (106)

As f : MΦ → R is convex decreasing and finite valued, Theorem 9 guarantees that it is
continuous on MΦ (for the MΦ-norm). Therefore, see Example 1 on pages 7 and 22 in [39],
the function F is closed convex in (Z, u).

Then the absence of duality gap, expressed by (106) follows from Theorems 17 and 18 of
[39], provided that the (convex) optimal value function, defined in (4.7) [39],

ϕ(u) := inf
Z∈MΦ

F (Z, u), u ∈ R,
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is bounded from above in a neighborhood of 0. Clearly, it is sufficient to show the existence of an
element Z0 ∈MΦ such that u→ F (Z0, u) is bounded from above in a neighborhood of 0. The
assumption Λ(+∞) > B guarantees the existence of Z0 ∈MΦ such that

∑N
n=1 E[un(Zn0 )] > B

(take Zn0 equal to some large enough constant), i.e., f(Z0) :=
∑N
n=1 E[−un(Zn0 )]+B < 0. Set

0 < δ < |f(Z0)|. Hence for all u ∈ R such that |u| < δ we have f(Z0) < u and F (Z0, u) =

E[ξZ0] < +∞, as Z0 ∈MΦ and ξ∈ LΦ∗ .

Remark 18 In [25], (103) is deduced, by different means, in a L∞(R) setting and in the one-
dimensional case. In [3], (103) is obtained, by different means, in the multi-dimensional deter-
ministic case, i.e. in RN .

A.3 Auxiliary results for existence

The following auxiliary results are standard and can be found in many articles on utility
maximization. Recall that we are working under Assumptions 2 and 3.

Lemma 9 Let υ : R+ → R be a strictly convex differentiable function with υ′(0+) = −∞,
υ′(+∞) = +∞ and let Q� P. Then
(a) υ′(λ dQ

dP ) ∈ L1(Q) ∀λ > 0;

(b) F (λ) , E[ dQ
dP υ

′(λ dQ
dP )] defines a bijection between (0,+∞) and (−∞,+∞).

Lemma 10 The convex conjugate function v : R → (−∞,+∞] of u, given by v(y) =
supx∈R {u(x)− xy}, is a proper lsc convex function, equal to +∞ on (−∞, 0), bounded from
below on R, finite valued strictly convex, continuously differentiable on (0,+∞) and satisfying

v(+∞) = +∞, v(0+) = u(+∞), v′(0+) = −∞, v′(+∞) = +∞,
u′(x) = (v′)−1(−x), u(−v′(y)) = −yv′(y) + v(y), ∀y ≥ 0,

where the usual rule 0 · ∞ = 0 is applied.

Proposition 20 (Proposition 3.6, [11]) Let Q� P. For all c ∈ R the optimizer λ(c;Q) of

min
λ>0

{
E
[
v

(
λ
dQ

dP

)]
+ λc

}
is the unique positive solution of the first order condition

EQ
[
v′
(
λ
dQ

dP

)]
+ c = 0. (107)

If sup
{
E[u(g)] | g ∈ L1(Q) and EQ[g] ≤ c

}
< u(+∞), the random variable ĝ := −v′(λ(c;Q) dQ

dP )

belongs to the set
{
g ∈ L1(Q) | EQ[g] = c

}
, satisfies u(ĝ) ∈ L1(P), and

min
λ>0

{
E
[
v

(
λ
dQ

dP

)]
+ λc

}
= sup

{
E[u(g)] | g ∈ L1(Q) and EQ[g] ≤ c

}
= E[u(ĝ)] < u(+∞).

Lemma 11 If limx→−∞
(
un(x)
x

)
= +∞, then for every M > 0 there exists a constant d > 0

with un(x) ≤Mx+ d for all n and x ≤ 0.

Proof The assumption implies that there exists K > 0 (which depends on M) such that for
all n un(x) ≤Mx for x ≤ −K. Hence Mx−un(x) ≥ 0 for x ∈ (−∞,−K). It is clear now that
since the function Mx− un(x) is continuous on [−K, 0] we may add a properly chosen d > 0
so that Mx+ d− un(x) ≥ 0 for all x ∈ (−∞, 0] and all n.

Lemma 12 Suppose that for every n ∈ {1, ..., N} the function un : R → R is continuous
increasing and satisfies

lim
x→+∞

un(x)

x
= 0.

Then for every ε > 0 there exists b = b(ε) > 0 such that un(x) ≤ εx+ b for x ≥ 0 and all n.
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Proof The assumption guarantees the existence of a constant K > 0, which depends on ε,
such that un(x) ≤ εx for x ≥ K and all n. Hence

un(x) ≤ εx+Kε+ sup
n

(
sup
[0,K]

un(s)

)
∀x ≥ 0.

A.4 The exponential case

Proof (Proof of Theorem 8) For the sake of simplicity we start by choosing h = 1. We note
that

ρB(X)

= inf

{
N∑
n=1

Y n | Y ∈MΦ : ∃d ∈ R s.t.
N∑
n=1

Y n = d and E

[
N∑
n=1

un(X
n + Y n)

]
= B

}

= inf

{
d | (d,Y) ∈ R×MΦ s.t.

N∑
n=1

Y n = d and E

[
N∑
n=1

un(X
n + Y n)

]
= B

}
.

Let F : R×MΦ → R be given by
F (d,Y) = d

and f1 : R×MΦ →Mφ0 and f2 : R×MΦ → R be defined by

f1(d,Y) =

N∑
n=1

Y n − d and f2(d,Y) = E

[
N∑
n=1

un(X
n + Y n)

]
−B,

respectively. Then we can rewrite

ρB(X) = inf
(d,Y)∈R×MΦ

{F (d,Y) | f1(d,Y) = 0, f2(d,Y) = 0}

with associated Lagrangian L(d,Y,Z,µ) : R×MΦ × (Mφ0 )∗ × R→ R given by

L(d,Y,Z, µ) = F (d,Y) + E[Zf1(d,Y)] + µf2(d,Y)

= d+ E

[
Z

(
N∑
n=1

Y n − d
)]

+ µ

(
E

[
N∑
n=1

un(X
n + Y n)

]
−B

)
.

The problem boils down to solve the system ∇L = 0, taking derivatives with respect to each
(d,Y,Z, µ).
Consider now the general case h > 1. We have

L({dm}hm=1 ,Y, {Z
m}hm=1 , µ) =

h∑
m=1

dm + E

[
h∑

m=1

Zm(Ym − dm)

]

+ µ

E

 h∑
m=1

∑
k∈Im

exp(−αk(Xk + Yk))

+B

 ,

with Ym =
∑
k∈Im Yk.

We compute the Gateaux derivative in the direction V ∈MΦ:

lim
ε→0

L(Y + εV)− L(Y)

ε

= lim
ε→0

µE

 h∑
m=1

∑
k∈Im

exp(−αk(Xk + Yk))
exp(−εVkαk)− 1

ε

+ lim
ε→0

1

ε
E

ε h∑
m=1

∑
k∈Im

VkZ
m


(108)

= −µE

 h∑
m=1

∑
k∈Im

exp(−αk(Xk + Yk))Vkαk

+ E

[
h∑

m=1

VkZ
m

]
=: φY (V),
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where in (108) we can apply the Dominated Convergence Theorem by using estimations similar
to the ones in Remark 19. We now show that φY (V) is also the Fréchet derivative of MΦ, i.e.,
that

lim
‖V‖

MΦ
→0

L(Y +V)− L(Y)− φY (V)

‖V‖MΦ

= 0.

We have

L(Y+V)−L(Y)− φY (V) = µE

 h∑
m=1

∑
k∈Im

exp(−αk(Xk + Yk))(exp(−vkαk)− 1 + vkαk)

 ,
and we obtain

E[exp(−αk(Xk + Yk))(exp(−αkVk)− 1 + αkVk)]

≤ E[| exp(−αk(Xk + Yk))(exp(−αkVk)− 1 + αkVk)|]

≤ K1E[exp(−αk(Xk + Yk − |Vk|))V 2
k ]

≤ K2E[exp(−2αk(Xk + Yk − |Vk|))]
1
2 E[V 4

k ]
1
2

≤ K2E[exp(−4αk(Xk + Yk))]
1
4 E[exp(4|Vk|)]

1
4 E[V 4

k ]
1
2

= K3 ‖Vk‖2L4(R) ,

where we use twice the Hölder inequality. Since

K3 ‖Vk‖2L4(R) ≤ K4 ‖Vk‖2Mφk
,

we have

|L(Y +V)− L(Y)− φY (V)| ≤ K4 ‖V)‖2
MΦ .

To conclude the proof, it is then sufficient to substitute Y of the form (88) in φY (V) to verify
that φY (V) = 0 for all V ∈MΦ.

Proof (Proof of Proposition 18) The following results hold because X,V ∈MΦ and Remark
19.

1. By (92) we get

d

dε
dm(X+ εV)

∣∣∣∣
ε=0

= βm

d
dε

E
[
exp

(
−Xm+εVm

βm

)]
E
[
exp

(
−Xm
βm

)] = −
E
[
−Vm exp

(
−Xm
βm

)]
E
[
exp

(
−Xm
βm

)]
= EQm

X
[−Vm]. (109)

2. By (92) and (109) we deduce

d

dε
EQm

X
[Y iX+εV]|ε=0 = lim

ε→0

1

ε

{
EQm

X

[
Y iX+εV − Y

i
X

]}
= EQm

X
[−V i] +

1

βmαi
EQm

X
[Vm] +

1

βmαi

d

dε
dm(X+ εV)

∣∣∣∣
ε=0

= EQm
X
[−V i]. (110)
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3. Note that

d

dε

 exp
(
−Xm+εVm

βm

)
E
[
exp

(
−Xm+εVm

βm

)]


=
exp

(
−Xm+εVm

βm

)
E
[
exp

(
−Xm+εVm

βm

)] (−Vm
βm

)
−

exp
(
−Xm+εVm

βm

)
E
[
exp

(
−Xm+εVm

βm

)]2 d

dε

(
E

[
exp

(
−
Xm + εVm

βm

)])

=
1

βm

−Vm exp
(
−Xm+εVm

βm

)
E
[
exp

(
−Xm+εVm

βm

)] +
exp

(
−Xm+εVm

βm

)
E
[
exp

(
−Xm+εVm

βm

)]E
 exp

(
−Xm+εVm

βm

)
E
[
exp

(
−Xm+εVm

βm

)]Vm


=
1

βm

{
−Vm

dQmX+εV

dP
+
dQmX+εV

dP
EQm

X+εV
[Vm]

}
.

Hence we have by Remark 19 that

lim
ε→0

1

ε

(
EQm

X+εV
[Z]− EQm

X
[Z]
)
= lim
ε→0

1

ε

(
EP

[(
dQmX+εV

dP
−
dQmX
dP

)
Z

])
= EP

[
lim
ε→0

1

ε

(
dQmX+εV

dP
−
dQmX
dP

)
Z

]
(111)

= EP

 lim
ε→0

1

ε

 exp
(
−Xm+εVm

βm

)
E
[
exp

(
−Xm+εVm

βm

)] − exp
(
−Xm
βm

)
E
[
exp

(
−Xm
βm

)]
Z



= EP

 d

dε

exp
(
−Xm+εVm

βm

)
E
[
exp

(
−Xm+εVm

βm

)]
∣∣∣∣∣∣
ε=0

Z


=

1

βm
EP

[
dQmX
dP

EQm
X

[
Vm

]
Z

]
− EP

[
Vm

dQmX
dP

Z

]
=

1

βm
EQm

X

[
Vm

]
EQm

X
[Z]− EQm

X

[
VmZ

]
= −

1

βm
COV

Qm
X
[Vm, Z].

(112)

4. By (109) and (110) we obtain

lim
ε→0

1

ε

(
EQm

X+εV
[Y iX+εV]− EQm

X+εV
[Y iX]

)
= lim
ε→0

{
EQm

X+εV
[−V i] +

1

βmαi
EQm

X+εV
[Vm]

}
+

1

βmαi

d

dε
dm(X+ εV)

∣∣∣∣
ε=0

= EQm
X
[−V i] +

1

βmαi
EQm

X
[Vm] +

1

βmαi
EQm

X
[−Vm] = EQm

X
[−V i]. (113)

By (112) and (113) we have

d

dε
EQm

X+εV
[Y iX+εV]|ε=0

= lim
ε→0

1

ε

(
EQm

X+εV
[Y iX+εV]− EQm

X
[Y iX]

)
= lim
ε→0

1

ε

(
EQm

X+εV
[Y iX+εV]− EQm

X+εV
[Y iX]

)
+ lim
ε→0

1

ε

(
EQm

X+εV
[Y iX]− EQm

X
[Y iX]

)
= EQm

X
[−V i]−

1

βm
COV

Qm
X
[Vm, Y

i
X]

= EQm
X
[−V i ] +

1

βm
COV

Qm
X
[Vm, X

i]−
1

βm

1

βm

1

αi
COV

Qm
X
[Vm, Xm],

where the last equation follows from (88).
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5. Set

θm(ϕm) :=

βmH(Qm,P) +
∑
i∈Im

1

αi
ln

(
−

B

βαi

) .

By (90) we then have

θm

(
dQmX+εV

dP

)
− θm

(
dQmX
dP

)
= −βmEQm

X+εV

[(
Xm + εVm

βm

)]
+ βmEQm

X

[
Xm

βm

]

− βm ln

(
E
[
e
− 1
βm

(Xm+εVm)
]
+ βm ln

(
E
[
e
− 1
βm

Xm

]))

= −
(
EQm

X+εV

[
Xm

]
− EQm

X

[
Xm

])
− εEQm

X+εV

[
Vm

]
− βm ln

E
[
e
− 1
βm

(Xm+εVm)
]

E
[
e
− 1
βm

Xm

]
 .

(114)

By De L’Hôpital it follows

lim
ε→0

ln

E
[
e
− 1
βm

(Xm+εVm)
]

E
[
e
− 1
βm

Xm

]
 = −

1

βm
EQm

X

[
Vm

]
, (115)

Hence by (112), (114), and (115) we get

lim
1

ε

{
θm

(
dQmX+εV

dP

)
− θm

(
dQmX
dP

)}
=

1

βm
COV

Qm
X
[Vm, Xm]− EQm

X

[
Vm

]
+ EQm

X

[
Vm

]
=

1

βm
COV

Qm
X
[Vm, Xm].

6. It follows by (109).

Remark 19 In (111) we can apply the dominated convergence theorem because of the following.
We have

∣∣∣∣1ε
(
dQmX+εV

dP
−
dQmX
dP

)∣∣∣∣
=

∣∣∣∣∣∣1ε
exp

(
−Xm+εVm

βm

)
E
[
exp

(
−Xm+εVm

βm

)] − exp
(
−Xm
βm

)
E
[
exp

(
−Xm
βm

)]
∣∣∣∣∣∣

=

∣∣∣∣∣∣1ε
exp

(
−Xm+εVm

βm

)
E
[
exp

(
−Xm
βm

)]
− exp

(
−Xm
βm

)
E
[
exp

(
−Xm+εVm

βm

)]
E
[
exp

(
−Xm+εVm

βm

)]
E
[
exp

(
−Xm
βm

)]
∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣
1

ε

exp
(
−Xm
βm

)
E
[
exp

(
−Xm
βm

)] exp
(
− εVm

βm

) [
exp

(
−Xm
βm

)]
− E

[
exp

(
−Xm
βm

)
exp

(
− εVm

βm

)]
E
[
exp

(
−Xm−|Vm|

βm

)]
∣∣∣∣∣∣∣

≤ f(Xm, Vm)

{
|Vm|
βm

exp

(
|Vm|
βm

)
E

[
exp

(
−
Xm

βm

)]
+ E

[
exp

(
−
Xm

βm

)
|Vm|
βm

exp

(
|Vm|
βm

)]}
︸ ︷︷ ︸

:=Zm
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where we have set

f(Xm, Vm) :=
exp

(
−Xm
βm

)
E
[
exp

(
−Xm
βm

)] 1

E
[
exp

(
−Xm−|Vm|

βm

)] ,
and used that ∣∣∣∣∣∣

exp(− εVm
βm

)− 1

ε

∣∣∣∣∣∣ ≤ 1

βm
|Vm| exp

(
|Vm|
βm

)
.

Note that in this case Mφ0 ⊆ L2(R), hence

f(Xm, Vm) =
exp

(
−Xm
βm

)
E
[
exp

(
−Xm
βm

)] 1

E
[
exp

(
−Xm−|Vm|

βm

)] = K1 exp

(
−
Xm

βm

)
∈ L2(R)

and

Zm ≤ exp

(
2|Vm|
βm

)
E

[
exp

(
−
Xm

βm

)]
+ E

[
exp

(
2|Vm| −Xm

βm

)]

= K2 +K3 exp

(
2|Vm|
βm

)
∈ L2(R)

because Xm, Vm ∈Mφ0 . We can conclude that f(Xm, Vm)Zm is in L1(R).
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